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Outline for This Training

1. Introduction to Data Mining

2. Data Preprocessing
– Case Study on Big Data Preprocessing using R

3. Classification Methodologies
– Case Study on Classification using R

4. Regression Methodologies
– Case Study: Regression Analysis using R

5. Unsupervised Learning
– Case Study: Social Media Sentiment Analysis using R

2E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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This Session’s Outline

• Multiple Linear Regression

• Model Evaluation

• Variable Selection and Model Building

– Best Subsets Regression

– Stepwise Regression

– Ridge Regression

– Standardized Regression

• Indicator Variables

• Multicollinearity 

• Logistic Regression

• Case Study

3E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Regression

• Regression is a data mining task of predicting the value of 
target (numerical variable 𝑦) by building a model based on 
one or more predictors (numerical and categorical 
variables).

𝑦 = 𝛽0 + 𝛽1𝑥1
• Not all observations will fall exactly on a straight line

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝜀
where  represents error

- it is a random variable that accounts for the failure of the model 
to fit the data exactly.

-  ~𝑁(0, 𝜎2)

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 4
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Required Dataset Structure

5
E.R. L. Jalao, Copyright UP NEC, 

eljalao@up.edu.ph

Tid Refund Marital 
Status 

Taxable 
Income 

1 Yes Single 125K 

2 No Married 100K 

3 No Single 70K 

4 Yes Married 120K 

5 No Divorced 95K 

6 No Married 60K 

7 Yes Divorced 220K 

8 No Single 85K 

9 No Married 75K 

10 No Single 90K 
10 

 

Attributes/Columns/Variables/Features  (𝑝 + 1)

Rows/ Instances 

/Tuples /Objects 

(𝑛)

Predictor Variables/Independent 

Variables/Control Variables

Numeric Response 

Variable/ Dependent 

Variable/ Class Variable/ 

Label Variable/ Target 

Variable
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Regression

• There are many uses of regression, including:
– Data description

– Parameter estimation

– Prediction and estimation

– Control

• Regression analysis is perhaps the most widely used 
statistical technique, and probably the most widely 
misused. 

6E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Multiple Linear Regression Models

• Multiple linear regression (MLR) is a method used to 
model the linear relationship between a target variable 
and more than one predictor variables.

• This is a multiple linear regression model in two variables.

• In general, the multiple linear regression model 
with 𝑘 regressors is

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜖

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘 + 𝜖

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 7
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Multiple Regression Models

• We define linear in terms of coefficients

• We can also model non-linear relationships
– E.g.

– Let 𝑥2
′ = 𝑥2

2

– Then

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘 + 𝜖

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2
2

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2
′

8
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Estimation of the Model Parameters

• We use the Least Squares Estimation methodology to 
estimate Regression Coefficients

• Notation
– 𝑛 := number of observations available

– 𝑘 := number of regressor variables = 𝑝 = 𝑘 + 1

– 𝑦 := response or dependent variable

– 𝑥𝑖𝑗 := 𝑖𝑡ℎ observation or level of regressor 𝑗.

• Some properties of Regression Models

𝐸 𝜀 = 0, 𝑉𝑎𝑟 𝜀 = 𝜎2

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 9
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Least Squares Estimation of the Regression 
Coefficients

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 10
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Least Squares Estimation of the Regression 
Coefficients

• Matrix notation is typically used:

• Let

• where

𝑦 = 𝑿𝜷 + 𝜖

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 11
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Least Squares Estimation of the Regression 
Coefficients

• To estimate 𝛽, we wish to minimize

𝑆 𝛽 =෍

𝑖=1

𝑛

𝜀𝑖
2 = 𝜀′𝜀 = 𝑦 − 𝑋𝛽 ′ 𝑦 − 𝑋𝛽

• The solution is 
መ𝛽 = 𝑋′𝑋 −1𝑋′𝑦

• These are the least-squares normal equations.

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 12
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The Delivery Time 
Data

13
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R Code to Run 

› deliverytime = 

read.csv(“deliverytime.csv")

› lrfit=lm(deltime ~ ncases + distance, 

data= deliverytime)

› summary(lrfit)

14E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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R Output

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 15
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This Session’s Outline

• Multiple Linear Regression

• Model Evaluation

• Variable Selection and Model Building

– Best Subsets Regression

– Stepwise Regression

– Ridge Regression

– Standardized Regression

• Indicator Variables

• Multicollinearity 

• Logistic Regression

• Case Study

16E.R. L. Jalao, UP NEC, eljalao@up.edu.ph



17
E.R. L. Jalao, UP NEC, 

eljalao@up.edu.ph
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Model Evaluation: Questions

• Is at least one of the predictors, 𝑥1, 𝑥2, . . . , 𝑥𝑝 useful in 

predicting the response?

• How well does the model fit the data?

• Given a set of predictor values, what response value 
should we predict, and how accurate is our prediction?

• Are there any outliers that might influence the 
coefficients?

• Do all the predictors help to explain 𝑦 , or is only a subset 
of the predictors useful?

18E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Testing the Global Significance of Regression

• To know if the 𝑥 predictor variables influences 𝑦 we 
consider the F Statistic from the ANOVA table output from R

• We usually test for:
– 𝐻0 : There is no relationship between all 𝑥 and 𝑦.

– 𝐻𝑎 : There is some relationship between some 𝑥 and 𝑦.

• p-Value Methodology
– If 𝑝 < 𝛼 = 0.05 , Reject 𝐻0

• F Test Methodology
– Consider a Confidence Level, usually 95%

– Lookup Critical Value 𝐹𝛼,𝑘,𝑛−𝑘−1 from Statistical F Tables

– If 𝐹 > 𝐹𝛼,𝑘,𝑛−𝑘−1, Reject 𝐻0

19E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Model Evaluation: Questions

• Is at least one of the predictors, 𝑥1, 𝑥2, . . . , 𝑥𝑝 useful in 

predicting the response?

• How well does the model fit the data?

• Given a set of predictor values, what response value 
should we predict, and how accurate is our prediction?

• Are there any outliers that might influence the 
coefficients?

• Do all the predictors help to explain 𝑦 , or is only a subset 
of the predictors useful?

20E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Coefficient of Determination

• 𝑅2 is called the coefficient of determination: proportion of 
variance (or information) explained by the predictor 
variables

• For the Delivery Time Data

𝑅2 =
𝑆𝑆𝑅
𝑆𝑆𝑇

= 1 −
𝑆𝑆𝑅𝑒𝑠
𝑆𝑆𝑇

𝑅2 =
𝑆𝑆𝑅
𝑆𝑆𝑇

= 95.96%

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 21
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Coefficient of Determination

• Some issues with 𝑅2

– 𝑅2 can be inflated simply by adding more terms to the model 
(even insignificant terms)

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 22
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Coefficient of Determination

• Adjusted 𝑅2

– Penalizes for added terms to the model that are not significant

• For the Delivery Time Data

• With Gibberish

𝑅𝑎𝑑𝑗
2 = 95.59%

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 23

)1(
1

1 22

, ppadj R
pn

n
R 














𝑅𝑎𝑑𝑗
2 = 95.39%



24

Limitations of R Squared

• Similarities Between the Regression Models
– The two models are nearly identical in several ways:

– Regression equations: Output = 44 + 2 * Input

– Input is significant with P < 0.001 for both models

24E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝑅2 = 14.3% 𝑅2 = 86.5 %
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eljalao@up.edu.ph

The Delivery 

Time Data

Scatterplot matrix 

for the delivery 

time data

25
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Inadequacy of Scatter Diagrams in Multiple 
Regression

• Scatter diagrams of the regressor variable(s) against the 
response may be of little value in multiple regression.
– These plots can actually be misleading

– If there is an interdependency between two or more regressor 
variables, the true relationship between xi and y may be masked.

𝑦 = 8 − 5𝑥1 + 12𝑥2

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 26
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Model Adequacy Checking

• Assumptions of Linear Regression that must be checked 
and passed before using the model
– Relationship between response and regressors is linear (at least 

approximately).

– Error term,  has zero mean

– Error term,  has constant variance

– Errors are uncorrelated

– Errors are normally distributed (required for tests and intervals)

• Utilize Residual Plots to identify violations

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 27
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eljalao@up.edu.ph

• Normal Probability Plot of Residuals/Q-Q Plot
– Checks the normality assumption

• Residuals against Fitted values and Scale-Location Plot
– Checks for nonconstant variance

– Checks for nonlinearity

– Looks for potential outliers 

• Residuals Versus Leverage
– Looks for potential outliers 

Residual Plots

28
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Normal Probability Plot of Residuals

• Checks the normality assumption

29
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R Code to Run 

› par(mfrow =c(2,2),mar=c(2,2,2,2))

› plot(lrfit)

30E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Delivery Time Data: Normal Probability Plot

31E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Variance Stabilizing Transformations

• Constant variance assumption
– Often violated when the variance is functionally related to the 

mean.

– Transformation on the response may eliminate the problem.

– The strength of the transformation depends on the amount of 
curvature that is induced.

– If not satisfied, the regression coefficients will have larger 
standard errors (less precision)

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 32
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Residuals Versus Fitted Values Plot

• Checks for 
– Constant Variance Assumption

– Outliers

– Non Linearity

33E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Delivery Time Data: Residuals Versus Fits

34E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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How to Solve?

• Do Transformations on Y

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 35

Relationship of 2 to 𝐸(𝑦) Transformation
2  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑦 = 𝑦 (no transformation)

2  𝐸(𝑦) 𝑦 = 𝑦 (square root; Poisson data)
2  𝐸(𝑦)[1 – 𝐸(𝑦)] 𝑦 = sin−1(𝑦) (arcsin; binomial 

proportions 0  𝑦𝑖  1)
2  [𝐸(𝑦)]2 𝑦 = ln(𝑦) (log)
2  [𝐸(𝑦)]3 𝑦 = 𝑦−

1

2 (reciprocal square root)
2  [𝐸(𝑦)]4 𝑦 = 𝑦−1 (reciprocal)
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Delivery Time Data: Residuals Versus Fits

› slrfit=lm(deltime^0.5~ncases+distance,d

ata=deliverytime)

› plot(slrfit)

36E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Model Evaluation: Questions

• Is at least one of the predictors, 𝑥1, 𝑥2, . . . , 𝑥𝑝 useful in 

predicting the response?

• How well does the model fit the data?

• Given a set of predictor values, what response value 
should we predict, and how accurate is our prediction?

• Are there any outliers that might influence the 
coefficients?

• Do all the predictors help to explain 𝑦 , or is only a subset 
of the predictors useful?

37E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Predictions For New Orders

• Use the generated regression model to predict the mean 
response

• For delivery time data model is:
ො𝑦 = 2.34 + 1.616 ∗ 𝑁𝑐𝑎𝑠𝑒𝑠 + 0.014 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

• Using the Delivery Time Data For 2 Cases, 110 Feet 
Delivery Distance
– Average Estimated Del Time: 7.15 Mins.

• For 10 Cases, 140 Feet Delivery Distance:
– Average Estimated Del Time: 56.01 Mins.

38E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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R Code To Run

› deliverytimenewdata = 

read.csv(“deliverytimendata.csv")

› predict(lrfit, deliverytimenewdata , 

interval="confidence") 

39E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Confidence Intervals

• We use a confidence interval to quantify the uncertainty 
surrounding the average response 

• Using the Delivery Time Data For 2 Cases, 110 Feet Delivery 
Distance
– Average Estimated Del Time: 7.15 Mins.

– Lower Limit: 5.22 Mins, Upper Limit: 9.08 Mins.

– Difference of ±𝟏. 𝟗𝟑

• For 10 Cases, 140 Feet Delivery Distance:
– Average Estimated Del Time: 20.51 Mins.

– Lower Limit: 17.76 Mins. Upper Limit: 23.26 Mins.

– Difference of ±𝟐. 𝟕𝟓

40E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Recall

41

𝑅2 = 14.3% 𝑅2 = 86.5 %
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Model Evaluation: Questions

• Is at least one of the predictors, 𝑥1, 𝑥2, . . . , 𝑥𝑝 useful in 

predicting the response?

• How well does the model fit the data?

• Given a set of predictor values, what response value 
should we predict, and how accurate is our prediction?

• Are there any outliers that might influence the 
coefficients?

• Do all the predictors help to explain 𝑦 , or is only a subset 
of the predictors useful?

42E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Importance of Detecting Influential 
Observations

• Leverage Point:
– unusual x-value;  

– very little effect on 
regression coefficients. 

43E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Importance of Detecting Influential 
Observations

• Influence Point:  unusual in y and x; 

44E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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The Leverage Statistic

• ℎ𝑖 – standardized measure of the distance of 
the 𝑖𝑡ℎ observation from the center of the x-space.

• For simple regression

ℎ𝑖 =
1

𝑛
+

𝑥𝑖 − ҧ𝑥 2

σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2

• ℎ𝑖 increases with the distance of 𝑥𝑖 from ҧ𝑥.

• If a given observation has a leverage statistic that greatly 
exceeds (𝑝 + 1)/𝑛, then that point is considered to be a 
leverage point. 

45E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Delivery Time Data

46E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

› plot(hatvalues(lrfit))

› abline(h=4/25, col="red")

𝐶𝑢𝑡𝑜𝑓𝑓 =
𝑝 + 1

𝑛
=

4

25
= 0.16
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Outlier Detection: Studentized Residuals

• The plain residual 𝜀𝑖 and its plot is useful for checking how 
well the regression line fits the data, and in particular if 
there is any systematic lack of fit

• But, what value should be considered as a big residual? 
– 𝜀𝑖 retains the scale of the response variable.

– standardize by an estimate of the variance of the residual.

𝑆𝑖 =
𝜀𝑖

ො𝜎 1 − ℎ𝑖

• Observations whose studentized residuals are greater 
than 3 in absolute value are possible outliers

47E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Delivery Time Data

› plot(rownames(deliverytime), 

rstudent(lrfit))

› abline(h=3, col="red")

› rstudent(lrfit)

48E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝐶𝑢𝑡𝑜𝑓𝑓 = ±3
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Row Values

49E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Residuals Versus Leverage Plot

50E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Model Evaluation: Questions

• Is at least one of the predictors, 𝑥1, 𝑥2, . . . , 𝑥𝑝 useful in 

predicting the response?

• How well does the model fit the data?

• Given a set of predictor values, what response value 
should we predict, and how accurate is our prediction?

• Are there any outliers that might influence the 
coefficients?

• Do all the predictors help to explain 𝑦 , or is only a subset 
of the predictors useful?

51E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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This Session’s Outline

• Multiple Linear Regression

• Model Evaluation

• Variable Selection and Model Building

– Best Subsets Regression

– Stepwise Regression

– Ridge Regression

– Standardized Regression

• Indicator Variables

• Multicollinearity 

• Logistic Regression

• Case Study

52E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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R Code To Run

› cardata= read.csv("cars.csv")

› rownames(cardata) =cardata[,1]

› cardata =cardata[,c(2:12)]

› mpglrfit= lm(mpg~.,data=cardata)

› summary(mpglrfit)

53E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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t-Test Using T Table

• If P value of 
variable 𝑥𝑖 is 
> 0.05 the 

variable in question 
is no longer needed 
since there are 
other variables 
already in the 
model that 
provides the same 
information as 𝑥𝑖

54
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t-Test Using T Table

• However, it does not follow that if 𝑥1 is not needed in a 
model that contains all other variables, it is not needed at 
all. 

55
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Variable Selection

• How to select the best model from multiple alternative 
Regression Models?
– Concept of Overfitting and Underfitting

• All Possible Regressions 
– Assume the intercept term is in all equations considered.  Then, if 

there are 𝑘 regressors,  we would investigate 2𝑘 − 1 possible 
regression equations.  

– Use the some criteria to determine some candidate models and 
complete regression analysis on them. 

56E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Hald Cement Data: Raw Data

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 57
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Hald Cement Data: All Possible Regressions

58E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Hald Cement Data: Size Versus 𝑅2

59E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Criteria for Evaluating Subset Regression 
Models

• Coefficient of Multiple Determination (𝑅2 and 𝑅𝑎𝑑𝑗
2 ) 

• Mean Square Error

• AIC

60E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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𝑅2

• Say we are investigating a model with 𝑝 terms, 

• Models with large values of 𝑅𝑝
2 are preferred, but adding 

terms will increase this value. 

61
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Adjusted 𝑅2

• Say we are investigating a model with 𝑝 terms, 

• This value will not necessarily increase as additional terms 
are introduced into the model.

• We want a model with the maximum adjusted 𝑅𝑎𝑑𝑗
2

62
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Residual Mean Square

• The 𝑀𝑆𝑟𝑒𝑠 for a subset regression model is 

• 𝑀𝑆𝑅𝑒𝑠(𝑝) increases as 𝑝 increases, in general.  

• We want a model with a minimum 𝑀𝑆𝑅𝑒𝑠(𝑝).
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Hald Cement Data 

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 64
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Akaike Information Criterion 

• AIC is based on maximizing the expected entropy of the 
model. In case of OLS regression:

• The key insight to the AIC is similar to 𝑅𝑎𝑑𝑗
2 . As we add 

regressors to the model, 𝑆𝑆𝑅𝑒𝑠 cannot increase. 

• The issue whether the decrease in 𝑆𝑆𝑅𝑒𝑠 justifies the 
inclusion of the extra terms

• We want a model with the lowest 𝐴𝐼𝐶

65E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝐴𝐼𝐶 = 𝑛 ln
𝑆𝑆𝑅𝑒𝑠
𝑁

+ 2𝑝
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Computational Techniques for Variable 
Selection

• All Possible Regressions 

• Step-Wise Regression

66E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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All Possible Regressions 

• Once some candidate models have been identified, run 
regression analysis on each one individually and make 
comparisons 

• Computationally expensive

• Recommended maximum ~ 15 variables = 32,768 
Comparisons!

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 67
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Hald Cement Data 

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 68



69

Stepwise Regression

• A heuristic methodology to select significant variables for 
a regression model
– Starts with no variables in the model

– Regressor variables are added one at a time starting with the 
variable with the highest correlation to y. 

– A regressor that makes it into the model, may also be removed it 
if is found to be insignificant with the addition of other variables 
to the model. 

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 69
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R Code to Run

› carbasefit =lm(mpg~1, data= cardata)

› Stepwise= step(carbasefit, scope = 

list(lower=~1,upper=~cyl+disp+hp+drat+w

t+qsec+vs+am+gear+carb, direction = 

"both", trace=1))

70E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Results
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Final Reduced Model

› carfinalfit = lm(mpg~wt + cyl + hp, 

data=cardata)

› summary(carfinalfit)
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As Compared to the Full Model
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Cautions

• No one model may be the “best”

• The techniques could result in different models

• Greedy Algorithm is used

• Inexperienced analysts may use the final model simply 
because the procedure spit it out.

• Needs lots of common sense. 

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph 74
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Unit Normal Scaling

• Employs unit normal scaling for the regressors and the 
response variable. That is,

𝑧𝑖𝑗 =
𝑥𝑖𝑗 − ҧ𝑥𝑗

𝑠𝑗
, 𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛, 𝑗 = 1,2… , 𝑘

𝑦𝑖
∗ =

𝑦𝑖 − ത𝑦

𝑠𝑦
, 𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛

• Where:

𝑠𝑗
2 =

σ𝑖=1
𝑛 𝑥𝑖𝑗 − ҧ𝑥

𝑛 − 1
, 𝑠𝑦 =

σ𝑖=1
𝑛 𝑦𝑖 − ത𝑦

𝑛 − 1
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Unit Normal Scaling

• All of the scaled regressors and the scaled response have 
sample mean equal to zero and sample variance equal to 
1.

• The model becomes

76E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝑦𝑖
∗ = 𝛽1𝑧𝑖1 + 𝛽2𝑧𝑖2 +⋯+ 𝛽𝑘𝑧𝑖𝑘 + 𝜖
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R Code to Run

77E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

› options(scipen=100)

› scardata = data.frame(scale(cardata, 

center = TRUE, scale = TRUE))

› scarfinalfit = lm(mpg~., data=scardata)

› summary(scarfinalfit)
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Standardized R Coefficients
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This Session’s Outline

• Multiple Linear Regression

• Model Evaluation

• Variable Selection and Model Building

– Best Subsets Regression

– Stepwise Regression

– Ridge Regression

– Standardized Regression

• Indicator Variables

• Multicollinearity 

• Logistic Regression

• Case Study
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Indicator Variables

• How to do we handle Qualitative Variables?
– Red

– Green

– Blue

• Qualitative variables do not have a scale of measurement.  

• We cannot assign numerical values as follows
– Red = 1

– Green =2

– Blue =3

• Indicator variables – a variable that assigns levels to the 
qualitative variable (also known as dummy variables).

80E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Example

• We like to relate the 
effective life of a 
cutting tool (𝑦) used 
on a lathe to the lathe 
speed in revolutions 
per minute (𝑥1) and 
type of cutting tool 
used.  

81E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

hours rpm tooltype
18.73 610 A
14.52 950 A
17.43 720 A
14.54 840 A

13.44 980 A
24.39 530 A

13.34 580 A
22.71 540 A
12.68 890 A

19.32 730 A

30.16 670 B

27.09 770 B
25.4 880 B

26.05 1000 B
33.49 760 B
35.62 590 B

26.07 910 B
36.78 650 B

34.95 810 B

43.67 500 B
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Indicator Variables

• Tool type is qualitative and can be represented as:

• The regression model would be:

82E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝑥2 = ቊ
0 𝑇𝑜𝑜𝑙𝐴
1 𝑇𝑜𝑜𝑙𝐵

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀
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Dataset With Indicator Variables

hours rpm tooltype x2
18.73 610 A 0
14.52 950 A 0
17.43 720 A 0
14.54 840 A 0

13.44 980 A 0

24.39 530 A 0

13.34 580 A 0
22.71 540 A 0
12.68 890 A 0

19.32 730 A 0

30.16 670 B 1

27.09 770 B 1

25.4 880 B 1
26.05 1000 B 1
33.49 760 B 1
35.62 590 B 1

26.07 910 B 1
36.78 650 B 1

34.95 810 B 1

43.67 500 B 1 83
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Example

• If Tool type A is used, model becomes:

• If Tool type B is used, model becomes:

– Then:

• Changing from A to B induces a change in the intercept
(slope is unchanged and identical).  

• We assume that the variance is equal for all levels of the 
qualitative variable. 

84

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝜀

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2 + 𝜀

𝑦 = 𝛽0 + 𝛽2 + 𝛽1𝑥1 + 𝜀

E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Example
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Tool Life Data
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Tool Life Data

› toollife = read.csv(“toollife.csv")

› toollifefit=lm(hours~rpm+tooltype,data=toollife)

› summary(toollifefit)
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For Three More Levels

• For qualitative variables with 𝑎 levels (specific categorical 
values), we would need 𝑎 − 1 indicator variables. 

• For example, say there were three tool types, A, B, and C.  
Then two indicator variables (called 𝑥2 and 𝑥3) will be 
needed:

88

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝜀
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Difference in Slope

• If we expect the slopes to differ, we can model this 
phenomenon by including an interaction term between 
the variables.

• Consider the tool life data again, and say we believe there 
may be different slopes for the two tools. The model we 
can fit to account for the change in slope is:

89E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥1𝑥2 + 𝜀
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The Tool Life Data With Interactions

90E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

› toollifefit=lm(hours~rpm+tooltype+rpm*tooltype,data

=toollife)

› summary(toollifefit)
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More than Two Indicator Variables

• Suppose that in the tool life data, a second qualitative 
factor, the type of cutting oil used, must be considered.

• Assuming that this factor has two levels, we may define a 
second indicator variable, 𝑥3, as follows:

91E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝑥3 = ቊ
0 𝑖𝑓 𝑙𝑜𝑤 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑜𝑖𝑙 𝑖𝑠 𝑢𝑠𝑒𝑑
1 𝑖𝑓 𝑚𝑒𝑑𝑖𝑢𝑚 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑜𝑖𝑙 𝑖𝑠 𝑢𝑠𝑒𝑑
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More than Two Indicator Variables With 
Interactions

• Suppose that we consider interactions between cutting 
speed and the two qualitative factors. 

• Hence we can have the following models

92E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥1𝑥2 + 𝛽5𝑥1𝑥3 + 𝜀
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This Session’s Outline

• Multiple Linear Regression

• Model Evaluation

• Variable Selection and Model Building

– Best Subsets Regression

– Stepwise Regression

– Ridge Regression

– Standardized Regression

• Indicator Variables

• Multicollinearity 

• Logistic Regression

• Case Study
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Introduction

• Multicollinearity: the inflation of coefficient estimates due 
to interdependent regressors

• If all regressors are orthogonal (independent), with each 
other then multicollinearity is not a problem. However, 
this is a rare situation in regression analysis.  

• More often than not, there are near-linear dependencies 
among the regressors such that

• is approximately true.  

94E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝑡1𝑥1 + 𝑡2𝑥2 + 𝑡3𝑥3 +⋯ ≈ 0
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Effects of Multicollinearity

• Strong multicollinearity can result in large variances and 
covariances for the least squares estimates of the 
coefficients. 

• This make the coefficient estimates very sensitive to minor 
changes in the model

• When severe multicollinearity is present, confidence 
intervals for coefficients tend to be very wide and t-
statistics tend to be very small

• In other words, the variance of the least squares estimate 
of the coefficient will be very large.

95E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Multicollinearity Diagnostics

• Ideal characteristics of a multicollinearity diagnostic: 
– We want the procedure to correctly indicate if multicollinearity is 

present; and,

– We want the procedure to provide some insight as to which 
regressors are causing the problem.

96E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Variance Inflation Factors 

• Variance inflation factors are very useful in determining if 
multicollinearity is present.

• 𝑅𝑗
2 is the coefficient of determination of the regression 

model when regressor 𝑗 is predicted from all other 
regressors

• VIFs >  5 to 10 are considered significant.  

97E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝑉𝐼𝐹𝑗 = 1 − 𝑅𝑗
2 −1
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R Code

› library(car)

› wgmdata = read.csv(“wgmdata.csv")

› wgmdatafit=lm(y~.,data=wgmdata)

› summary(wgmdatafit)

› vif(wgmdatafit)

98E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Webster Gunst Mason Data

99E.R. L. Jalao, UP NEC, eljalao@up.edu.ph



100

R Code

› wgmdatafit=lm(y~x1+x2+x3+x5+x6,data=wgm

data)

› summary(wgmdatafit)

› vif(wgmdataFit)

100E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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R Code

101E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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This Session’s Outline

• Multiple Linear Regression

• Model Evaluation

• Variable Selection and Model Building

– Best Subsets Regression

– Stepwise Regression

– Ridge Regression

– Standardized Regression

• Indicator Variables

• Multicollinearity 

• Logistic Regression

• Case Study
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Logistic Regression

• Logistic regression predicts the probability of an outcome 
that can only have two values 

• The prediction is based on the use of one or several 
predictors (numerical and categorical). 

• Logistic regression produces a logistic curve, which is 
limited to values between 0 and 1. 

103E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Logistic Regression

• Logit Function

104E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Logistic Regression

• Logistic regression is similar to a linear regression, but the 
curve is constructed using the natural logarithm of the 
“odds” of the target variable. 

• A linear regression is not appropriate for predicting the 
value of a binary variable for two reasons:
– A linear regression will predict values outside the acceptable 

range (e.g. predicting probabilities outside the range 0 to 1)

– Since the dichotomous experiments can only have one of two 
possible values for each experiment, the residuals will not be 
normally distributed about the predicted line.

• Predictors do not have to be normally distributed or have 
equal variance in each group.

105E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Maximum Likelihood Estimation in Logistic 
Regression

• Logistic regression is a nonlinear model
– Solving the ML score equations in logistic regression isn’t quite as 

easy

• Solution is based on iteratively reweighted least squares 
or IRLS
– An iterative procedure is necessary because parameter estimates 

must be updated from an initial “guess” through several steps

– Weights are necessary because the variance of the observations is 
not constant

– The weights are functions of the unknown parameters

106E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Example: Menarche Data

• Data contains: 
– "Age" (average age of age homogeneous groups of girls), 

– "Total" (number of girls in each group), 

– "Menarche" (number of girls in the group who have reached 
menarche)

• Sources: (Milicer, H. and Szczotka, F., 1966, Age at 
Menarche in Warsaw girls in 1965, Human Biology, 38, 
199-203)

107E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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R Code

108E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

› library("MASS")

› menarchedata = 

read.csv(“menarchedata.csv")

› menarchedata.fit = glm(cbind(menarche, 

total-menarche) ~ age, 

family=binomial(logit), data=menarchedata)

› summary(menarchedata.fit)

› plot(menarche/total ~ age, 

data=menarchedata)

› lines(menarchedata$age, 

menarchedata.fit$fitted, type="l", 

col="red")
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R Output
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Example: Menarche Data

110E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑀𝑒𝑛𝑎𝑟𝑐ℎ𝑦 =
1

1 + 𝑒− −21+1.63 𝐴𝑔𝑒
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Example: Menarche Data

• Generated Model

• The coefficient of "Age" can be interpreted as "for every 
one year increase in age the odds of having reached 
menarche increase by exp(1.632) = 5.11 times.“

• Prediction for Age = 12

111E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑀𝑒𝑛𝑎𝑟𝑐ℎ𝑦 =
1

1 + 𝑒− −21+1.63 𝐴𝑔𝑒

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑀𝑒𝑛𝑎𝑟𝑐ℎ𝑦 =
1

1 + 𝑒− −21+1.63 ∗12

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑀𝑒𝑛𝑎𝑟𝑐ℎ𝑦 = 15.71%
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Global Model Validation

• To know if any of the 𝑥 predictor variables influences 𝑦 we 
consider the Deviance Statistic 

• We usually test for:
– 𝐻0 : There is no significant difference between the actual and the 

predicted values

– 𝐻𝑎 : There  is a significant difference between the actual and the 
predicted values

• p-Value Methodology
– If 𝑝 < 𝛼 = 0.05 , Reject 𝐻0

112E.R. L. Jalao, UP NEC, eljalao@up.edu.ph



113

Global Model Validation

› 1-pchisq(3693.884,24)

› 1-pchisq(26.703,23)

113E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Recall the Credit Scoring Data

• Credit scoring is the practice of analyzing a persons 
background and credit application in order to assess the 
creditworthiness of the person

• The variables income (yearly), age, loan (size in euros) 
and LTI(the loan to yearly income ratio) are available.

• Our goal is to devise a model which predicts, whether or 
not a default will occur within 10 years..

114E.R. L. Jalao, UP NEC, eljalao@up.edu.ph

http://www.r-bloggers.com/using-neural-

networks-for-credit-scoring-a-simple-

example/
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R Code

› creditdata = 

read.csv(“creditsetnumeric.csv")

› creditdata.fit = glm(default10yr ~ 

income + age +loan+ LTI, 

family=binomial(logit), 

data=creditdata)

› summary(creditdata.fit)

115E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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R Output
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Example: Interpretation

• Generated Model

• The coefficient of "Age" can be interpreted as "for every 
one year increase in age the odds of defaulting increase by 
exp(-0.37) = 0.69 times.“

• Prediction for a new Client with Income = 66000, Age = 18, 
Loan = 8770, LTI = 0.000622
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𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 =
1

1 + 𝑒− 1.2−4×10−5 𝑖𝑛𝑐𝑜𝑚𝑒−0.37𝑎𝑔𝑒+3×10−4𝑙𝑜𝑎𝑛 +68𝐿𝑇𝐼

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 =
1

1 + 𝑒− 1.2−4×10−5 (66𝑘)−0.37(18)+3×10−4(8770) +68(0.00062)

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 0.794
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Model Validation

• To know if the 𝑥 predictor variables influences 𝑦 we 
consider the Deviance Statistic 

• We usually test for:
– 𝐻0 : There is no significant effect when adding 𝑥𝑖 in the model

– 𝐻𝑎 : There  is a significant effect when adding 𝑥𝑖 in the model

• p-Value Methodology
– If 𝑝 < 𝛼 = 0.05 , Reject 𝐻0

118E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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Testing Null and Residual Deviance

› anova(creditdata.fit,test="Chi")

119E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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This Session’s Outline

• Multiple Linear Regression

• Model Evaluation

• Variable Selection and Model Building

– Best Subsets Regression

– Stepwise Regression

– Ridge Regression

– Standardized Regression

• Indicator Variables

• Multicollinearity 

• Logistic Regression

• Case Study
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Case 3: TV Advertising Revenue Dataset 

• Jalao (2012) proposed a regression model to predict the 
revenue of advertising for a 30 second primetime TV show 
slot. 

• Significant factors that affect the revenue of advertising 
where also determined. 

• Data was obtained and compiled from multiple websites 
that provide information that could potentially affect the 
revenue of advertising.

• Moreover, the effect of several social media websites on 
the revenue of advertising was also studied. 

121E.R. L. Jalao, UP NEC, eljalao@up.edu.ph
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