

Structure of Scientific Revolution

Thomas S. Kuhn

I. Introduction: A Role for History

History, if viewed as a repository for more than anecdote or chronology, could produce a decisive transformation in the image of science by which we are now possessed. That image has previously been drawn, even by scientists themselves, mainly from the study of finished scientific achievements as these are recorded in the classics and, more recently, in the textbooks from which each new scientific generation learns to practice its trade. Inevitably, however, the aim of such books is persuasive and pedagogic; a concept of science drawn from them is no more likely to fit the enterprise that produced them than an image of a national culture drawn from a tourist brochure or a language text. This essay attempts to show that we have been misled by them in fundamental ways. Its aim is a sketch of the guite different concept of science that can emerge from the historical record of the research activity itself.

Even from history, however, that new concept will not be forthcoming if historical data continue to be sought and scrutinized mainly to answer questions posed by the unhistorical stereotype drawn from science texts. Those texts have, for example, often seemed to imply that the content of science is uniquely exemplified by the observations, laws, and theories described in their pages. Almost as regularly, the same books have been read as saying that scientific methods are simply the ones illustrated by the manipulative techniques used in gathering textbook data, together with the logical operations employed when relating those data to the textbook's theoretical generalizations. The result has been a concept of science with profound implications about its nature and development.

If science is the constellation of facts, theories, and methods collected in current texts, then scientists are the men who, successfully or not, have striven to contribute one or another element to that particular constellation. Scientific development becomes the piecemeal process by which these items have been added, singly and in combination, to the ever growing stockpile that constitutes scientific technique and knowledge. And history of science becomes the discipline that chronicles both these successive increments and the obstacles that have inhibited their accumulation. Concerned with scientific development, the historian then appears to have two main tasks. On the one hand, he must determine by what man and at what point in time each contemporary scientific fact, law, and theory was discovered or invented. On the other, he must describe and explain the congeries of error, myth and superstition that have inhibited the more rapid accumulation of the constituents of the modern science text. Much research has been directed to these ends, and some still is.

In recent years, however, a few historians of science have been finding it more and more difficult to fulfil the functions that the concept of development-by-accumulation assigns to them. As chroniclers of an incremental process, they discover that additional research makes it harder, not easier, to answer questions like: When was oxygen discovered? Who first conceived of energy conservation? Increasingly, a few of them suspect that these are simply the wrong sorts of questions to ask. Perhaps science does not develop by the accumulation of individual discoveries and inventions. Simultaneously, these same historians confront growing difficulties in distinguishing the "scientific" component of past observation and belief from what their predecessors had readily labeled "error" and "superstition." The more carefully they study, say, Aristotelian dynamics, phlogistic chemistry, or caloric thermodynamics, the more certain they feel that those once current views of nature were, as a whole, neither less scientific nor more the product of human idiosyncrasy than those current today. If these out-of- date beliefs are to be called myths, then myths can be produced by the same sorts of methods and held for the same sorts of reasons that now lead to scientific knowledge. If, on the other hand, they are to be called science, then science has included bodies of belief quite incompatible with the ones we hold today. Given these alternatives, the historian must choose the

01 Readings 2 *Property of STI

latter. Out-of-date theories are not in principle unscientific because they have been discarded. That choice, however, makes it difficult to see scientific development as a process of accretion. The same historical research that displays the difficulties in isolating individual inventions and discoveries gives ground for profound doubts about the cumulative process through which these individual contributions to science were thought to have been compounded.

The result of all these doubts and difficulties is a historiographic revolution in the study of science, though one that is still in its early stages. Gradually, and often without entirely realizing they are doing so, historians of science have begun to ask new sorts of questions and to trace different, and often less than cumulative, developmental lines for the sciences. Rather than seeking the permanent contributions of an older science to our present vantage, they attempt to display the historical integrity of that science in its own time. They ask, for example, not about the relation of Galileo's views to those of modern science, but rather about the relationship between his views and those of his group, i.e., his teachers, contemporaries, and immediate successors in the sciences. Furthermore, they insist upon studying the opinions of that group and other similar ones from the viewpoint—usually very different from that of modern science—that gives those opinions the maximum internal coherence and the closest possible fit to nature. Seen through the works that result, works perhaps best exemplified in the writings of Alexandre Koyré, science does not seem altogether the same enterprise as the one discussed by writers in the older historiographic tradition. By implication, at least, these historical studies suggest the possibility of a new image of science. This essay aims to delineate that image by making explicit some of the new historiography's implications.

What aspects of science will emerge to prominence in the course of this effort? First, at least in order of presentation, is the insufficiency of methodological directives, by themselves, to dictate a unique substantive conclusion to many sorts of scientific questions. Instructed to examine electrical or chemical phenomena, the man who is ignorant of these fields but who knows what it is to be scientific may legitimately reach any one of a number of incompatible conclusions. Among those legitimate possibilities, the particular conclusions he does arrive at are probably determined by his prior experience in other fields. by the accidents of his investigation, and by his own individual makeup. What beliefs about the stars, for example, does he bring to the study of chemistry or electricity? Which of the many conceivable experiments relevant to the new field does he elect to perform first? And what aspects of the complex phenomenon that then results strike him as particularly relevant to an elucidation of the nature of chemical change or of electrical affinity? For the individual, at least, and sometimes for the scientific community as well, answers to questions like these are often essential determinants of scientific development. We shall note, for example, in Section II that the early developmental stages of most sciences have been characterized by continual competition between a number of distinct views of nature, each partially derived from, and all roughly compatible with, the dictates of scientific observation and method. What differentiated these various schools was not one or another failure of method— they were all "scientific"—but what we shall come to call their incommensurable ways of seeing the world and of practicing science in it. Observation and experience can and must drastically restrict the range of admissible scientific belief, else there would be no science. But they cannot alone determine a particular body of such belief. An apparently arbitrary element, compounded of personal and historical accident, is always a formative ingredient of the beliefs espoused by a given scientific community at a given time.

That element of arbitrariness does not, however, indicate that any scientific group could practice its trade without some set of received beliefs. Nor does it make less consequential the particular constellation to which the group, at a given time, is in fact committed. Effective research scarcely begins before a scientific community thinks it has acquired firm answers to questions like the following: What are the fundamental entities of which the universe is composed? How do these interact with each other and with the senses? What questions may legitimately be asked about such entities and what techniques employed in seeking solutions? At least in the mature sciences, answers (or full substitutes for answers) to questions like these are firmly embedded in the educational initiation that prepares and licenses the student for professional practice. Because that education is both rigorous and rigid, these answers come to exert a deep hold on

01 Readings 2 *Property of STI

the scientific mind. That they can do so does much to account both for the peculiar efficiency of the normal research activity and for the direction in which it proceeds at any given time. When examining normal science in Sections III, IV, and V, we shall want finally to describe that research as a strenuous and devoted attempt to force nature into the conceptual boxes supplied by professional education. Simultaneously, we shall wonder whether research could proceed without such boxes, whatever the element of arbitrariness in their historic origins and, occasionally, in their subsequent development.

Yet that element of arbitrariness is present, and it too has an important effect on scientific development, one which will be examined in detail in Sections VI, VII, and VIII. Normal science, the activity in which most scientists inevitably spend almost all their time, is predicated on the assumption that the scientific community knows what the world is like. Much of the success of the enterprise derives from the community's willingness to defend that assumption, if necessary at considerable cost. Normal science, for example, often suppresses fundamental novelties because they are necessarily subversive of its basic commitments. Nevertheless, so long as those commitments retain an element of the arbitrary, the very nature of normal research ensures that novelty shall not be suppressed for very long. Sometimes a normal problem, one that ought to be solvable by known rules and procedures, resists the reiterated onslaught of the ablest members of the group within whose competence it falls. On other occasions a piece of equipment designed and constructed for the purpose of normal research fails to perform in the anticipated manner, revealing an anomaly that cannot, despite repeated effort, be aligned with professional expectation. In these and other ways besides, normal science repeatedly goes astray. And when it does—when, that is, the profession can no longer evade anomalies that subvert the existing tradition of scientific practice—then begin the extraordinary investigations that lead the profession at last to a new set of commitments, a new basis for the practice of science. The extraordinary episodes in which that shift of professional commitments occurs are the ones known in this essay as scientific revolutions. They are the tradition-shattering complements to the tradition-bound activity of normal science.

The most obvious examples of scientific revolutions are those famous episodes in scientific development that have often been labeled revolutions before. Therefore, in Sections IX and X, where the nature of scientific revolutions is first directly scrutinized, we shall deal repeatedly with the major turning points in scientific development associated with the names of Copernicus, Newton, Lavoisier, and Einstein. More clearly than most other episodes in the history of at least the physical sciences, these display what all scientific revolutions are about. Each of them necessitated the community's rejection of one time-honored scientific theory in favor of another incompatible with it. Each produced a consequent shift in the problems available for scientific scrutiny and in the standards by which the profession determined what should count as an admissible problem or as a legitimate problem-solution. And each transformed the scientific imagination in ways that we shall ultimately need to describe as a transformation of the world within which scientific work was done. Such changes, together with the controversies that almost always accompany them, are the defining characteristics of scientific revolutions.

These characteristics emerge with particular clarity from a study of, say, the Newtonian or the chemical revolution. It is, however, a fundamental thesis of this essay that they can also be retrieved from the study of many other episodes that were not so obviously revolutionary. For the far smaller professional group affected by them, Maxwell's equations were as revolutionary as Einstein's, and they were resisted accordingly. The invention of other new theories regularly, and appropriately, evokes the same response from some of the specialists on whose area of special competence they impinge. For these men the new theory implies a change in the rules governing the prior practice of normal science. Inevitably, therefore, it reflects upon much scientific work they have already successfully completed. That is why a new theory, however special its range of application, is seldom or never just an increment to what is already known. Its assimilation requires the reconstruction of prior theory and the re-evaluation of prior fact, an intrinsically revolutionary process that is seldom completed by a single man and never overnight. No wonder historians have had difficulty in dating precisely this extended process that their vocabulary impels them to view as an isolated event.

01 Readings 2 *Property of STI
Page 3 of 5

Nor are new inventions of theory the only scientific events that have revolutionary impact upon the specialists in whose domain they occur. The commitments that govern normal science specify not only what sorts of entities the universe does contain, but also, by implication, those that it does not. It follows, though the point will require extended discussion, that a discovery like that of oxygen or X-rays does not simply add one more item to the population of the scientist's world. Ultimately it has that effect, but not until the professional community has re- evaluated traditional experimental procedures, altered its conception of entities with which it has long been familiar, and, in the process, shifted the network of theory through which it deals with the world. Scientific fact and theory are not categorically separable, except perhaps within a single tradition of normal-scientific practice. That is why the unexpected discovery is not simply factual in its import and why the scientist's world is qualitatively transformed as well as quantitatively enriched by fundamental novelties of either fact or theory.

This extended conception of the nature of scientific revolutions is the one delineated in the pages that follow. Admittedly the extension strains customary usage. Nevertheless, I shall continue to speak even of discoveries as revolutionary, because it is just the possibility of relating their structure to that of, say, the Copernican revolution that makes the extended conception seem to me so important. The preceding discussion indicates how the complementary notions of normal science and of scientific revolutions will be developed in the nine sections immediately to follow. The rest of the essay attempts to dispose of three remaining central questions. Section XI, by discussing the textbook tradition, considers why scientific revolutions have previously been so difficult to see. Section XII describes the revolutionary competition between the proponents of the old normal- scientific tradition and the adherents of the new one. It thus considers the process that should somehow, in a theory of scientific inquiry, replace the confirmation or falsification procedures made familiar by our usual image of science. Competition between segments of the scientific community is the only historical process that ever actually results in the rejection of one previously accepted theory or in the adoption of another. Finally, Section XIII will ask how development through revolutions can be compatible with the apparently unique character of scientific progress. For that question, however, this essay will provide no more than the main outlines of an answer, one which depends upon characteristics of the scientific community that require much additional exploration and study.

Undoubtedly, some readers will already have wondered whether historical study can possibly effect the sort of conceptual transformation aimed at here. An entire arsenal of dichotomies is available to suggest that it cannot properly do so. History, we too often say, is a purely descriptive discipline. The theses suggested above are, however, often interpretive and sometimes normative. Again, many of my generalizations are about the sociology or social psychology of scientists; yet at least a few of my conclusions belong traditionally to logic or epistemology. In the preceding paragraph I may even seem to have violated the very influential contemporary distinction between "the context of discovery" and "the context of justification." Can anything more than profound confusion be indicated by this admixture of diverse fields and concerns?

Having been weaned intellectually on these distinctions and others like them, I could scarcely be more aware of their import and force. For many years I took them to be about the nature of knowledge, and I still suppose that, appropriately recast, they have something important to tell us. Yet my attempts to apply them, even *grosso modo*, to the actual situations in which knowledge is gained, accepted, and assimilated have made them seem extraordinarily problematic. Rather than being elementary logical or methodological distinctions, which would thus be prior to the analysis of scientific knowledge, they now seem integral parts of a traditional set of substantive answers to the very questions upon which they have been deployed. That circularity does not at all invalidate them. But it does make them parts of a theory and, by doing so, subjects them to the same scrutiny regularly applied to theories in other fields. If they are to have more than pure abstraction as their content, then that content must be discovered by observing them in application to the data they are meant to elucidate. How could history of science fail to be a source of phenomena to which theories about knowledge may legitimately be asked to apply?

01 Readings 2 *Property of STI
Page 4 of 5

Reference:

The Structure of Scientific Revolutions (pp. 5-22). (1970). Chicago, IL, USA: University of Chicago Press. Retrieved Febraury 9, 2018, from https://projektintegracija.pravo.hr/_download/repository/Kuhn_Structure_of_Scientific_Revolution s.pdf

01 Readings 2 *Property of STI
Page 5 of 5