
Sören Auer
Volha Bryl
Sebastian Tramp (Eds.)

Linked Open Data –
Creating Knowledge
Out of Interlinked Data

St
at

e-
of

-th
e-

Ar
t

Su
rv

ey
LN

CS
 8

66
1

Results of the LOD2 Project

Inter-
linking/
Fusing

Classifi-
ca�on/

Enrichment

Quality
Analysis

Evolu�on /
Repair

Search/
Browsing/

Explora�on

Extrac�on

Storage/
Querying

Manual
revision/
authoring Enrichmthoring

Lecture Notes in Computer Science 8661

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Sören Auer • Volha Bryl
Sebastian Tramp (Eds.)

Linked Open Data –
Creating Knowledge
Out of Interlinked Data
Results of the LOD2 Project

123

Editors
Sören Auer
Institut für Informatik III
Rheinische Friedrich-Wilhelms-Universität
Bonn
Germany

Volha Bryl
University of Mannheim
Mannheim
Germany

Sebastian Tramp
University of Leipzig
Leipzig
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-09845-6 ISBN 978-3-319-09846-3 (eBook)
DOI 10.1007/978-3-319-09846-3

Library of Congress Control Number: 2014945220

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

Springer Cham Heidelberg New York Dordrecht London

© The Editor(s) (if applicable) and the Author(s) 2014. The book is published with open access at Springer-
Link.com

Open Access. This book is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License, which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://springerlink.com
http://springerlink.com

Preface

This book presents an overview of the results of the research project ‘LOD2 – Creating
Knowledge out of Interlinked Data’. LOD2 is a large-scale integrating project co-
funded by the European Commission within the FP7 Information and Communication
Technologies Work Programme (Grant Agreement No. 257943). Commencing in
September 2010, this 4-year project comprised leading Linked Open Data research
groups, companies, and service providers from across 11 European countries and South
Korea.

Linked Open Data (LOD) is a pragmatic approach for realizing the Semantic Web
vision of making the Web a global, distributed, semantics-based information system.
The aim of the LOD2 project was to advance the state of the art in research and
development in four key areas relevant for Linked Data, namely 1. RDF data man-
agement; 2. the extraction, creation, and enrichment of structured RDF data; 3. the
interlinking and fusion of Linked Data from different sources; and 4. the authoring,
exploration, and visualization of Linked Data. The results the project has attained in
these areas are discussed in the technology part of this volume, i.e., chapters 2–6. The
project also targeted use cases in the publishing, linked enterprise data, and open
government data realms, which are discussed in chapters 7–10 in the second part. The
book gives an overview of a diverse number of research, technology, and application
advances and refers the reader to further detailed technical information in the project
deliverables and original publications. In that regard, the book is targeted at IT pro-
fessionals, practitioners, and researchers aiming to gain an overview of some key
aspects of the emerging field of Linked Data.

During the lifetime of the LOD2 project, Linked Data technology matured signifi-
cantly. With regard to RDF and Linked Data management, the performance gap
compared with relational data management was almost closed. Automatic linking,
extraction, mapping, and visualization of RDF data became mainstream technology
provided by mature open-source software components. Standards such as the R2RML
RDB2RDF mapping language were defined and a vast number of small and large
Linked Data resources (including DBpedia, LinkedGeoData, or the 10.000 publicdata.
eu datasets) amounting to over 50 Billion triples are now available. The LOD2 project
has driven and actively contributed to many of these activities. As a result, Linked Data
is now ready to enter the commercial and large-scale application stage, as many
commercial products and services (including the ones offered by the industrial LOD2
project partners) demonstrate.

In addition to the LOD2 project partners, who are authors and contributors of the
individual chapters of this book, the project was critically accompanied and supported
by a number of independent advisers and mentors including Stefano Bertolo (European
Commission), Stefano Mazzocchi (Google), Jarred McGinnis (Logomachy), Atanas
Kiryakov (Ontotext), SteveHarris (Aistemos), and Márta Nagy-Rothengass (European
Commission). Furthermore, a large number of stakeholders engaged with the LOD2

project, for example, through the LOD2 PUBLINK initiatives, the regular LOD2
technology webinars, or the various events organized by the project. We are grateful for
their support and feedback, without which the project as well as this book would not
have been possible.

July 2014 Sören Auer
Volha Bryl

Sebastian Tramp

VI Preface

Contents

1 Introduction to LOD2 . 1
Sören Auer

Technology

2 Advances in Large-Scale RDF Data Management 21
Peter Boncz, Orri Erling, and Minh-Duc Pham

3 Knowledge Base Creation, Enrichment and Repair 45
Sebastian Hellmann, Volha Bryl, Lorenz Bühmann, Milan Dojchinovski,
Dimitris Kontokostas, Jens Lehmann, Uroš Milošević, Petar Petrovski,
Vojtěch Svátek, Mladen Stanojević, and Ondřej Zamazal

4 Interlinking and Knowledge Fusion . 70
Volha Bryl, Christian Bizer, Robert Isele, Mateja Verlic, Soon Gill Hong,
Sammy Jang, Mun Yong Yi, and Key-Sun Choi

5 Facilitating the Exploration and Visualization of Linked Data 90
Christian Mader, Michael Martin, and Claus Stadler

6 Supporting the Linked Data Life Cycle Using an Integrated Tool Stack . . . 108
Bert Van Nuffelen, Valentina Janev, Michael Martin, Vuk Mijovic,
and Sebastian Tramp

Use Cases

7 LOD2 for Media and Publishing . 133
Christian Dirschl, Tassilo Pellegrini, Helmut Nagy, Katja Eck,
Bert Van Nuffelen, and Ivan Ermilov

8 Building Enterprise Ready Applications Using Linked Open Data 155
Amar-Djalil Mezaour, Bert Van Nuffelen, and Christian Blaschke

9 Lifting Open Data Portals to the Data Web . 175
Sander van der Waal, Krzysztof Węcel, Ivan Ermilov, Valentina Janev,
Uroš Milošević, and Mark Wainwright

10 Linked Open Data for Public Procurement. 196
Vojtěch Svátek, Jindřich Mynarz, Krzysztof Węcel, Jakub Klímek,
Tomáš Knap, and Martin Nečaský

Author Index . 215

http://dx.doi.org/10.1007/978-3-319-09846-3_1
http://dx.doi.org/10.1007/978-3-319-09846-3_1
http://dx.doi.org/10.1007/978-3-319-09846-3_1
http://dx.doi.org/10.1007/978-3-319-09846-3_2
http://dx.doi.org/10.1007/978-3-319-09846-3_2
http://dx.doi.org/10.1007/978-3-319-09846-3_2
http://dx.doi.org/10.1007/978-3-319-09846-3_3
http://dx.doi.org/10.1007/978-3-319-09846-3_3
http://dx.doi.org/10.1007/978-3-319-09846-3_3
http://dx.doi.org/10.1007/978-3-319-09846-3_4
http://dx.doi.org/10.1007/978-3-319-09846-3_4
http://dx.doi.org/10.1007/978-3-319-09846-3_4
http://dx.doi.org/10.1007/978-3-319-09846-3_5
http://dx.doi.org/10.1007/978-3-319-09846-3_5
http://dx.doi.org/10.1007/978-3-319-09846-3_5
http://dx.doi.org/10.1007/978-3-319-09846-3_6
http://dx.doi.org/10.1007/978-3-319-09846-3_6
http://dx.doi.org/10.1007/978-3-319-09846-3_6
http://dx.doi.org/10.1007/978-3-319-09846-3_7
http://dx.doi.org/10.1007/978-3-319-09846-3_7
http://dx.doi.org/10.1007/978-3-319-09846-3_7
http://dx.doi.org/10.1007/978-3-319-09846-3_8
http://dx.doi.org/10.1007/978-3-319-09846-3_8
http://dx.doi.org/10.1007/978-3-319-09846-3_8
http://dx.doi.org/10.1007/978-3-319-09846-3_9
http://dx.doi.org/10.1007/978-3-319-09846-3_9
http://dx.doi.org/10.1007/978-3-319-09846-3_9
http://dx.doi.org/10.1007/978-3-319-09846-3_10
http://dx.doi.org/10.1007/978-3-319-09846-3_10

Introduction to LOD2

Sören Auer(B)

University of Bonn, Bonn, Germany
auer@informatik.uni-bonn.de

Abstract. In this introductory chapter we give a brief overview on the
Linked Data concept, the Linked Data lifecycle as well as the LOD2
Stack – an integrated distribution of aligned tools which support the
whole life cycle of Linked Data from extraction, authoring/creation via
enrichment, interlinking, fusing to maintenance. The stack is designed to
be versatile; for all functionality we define clear interfaces, which enable
the plugging in of alternative third-party implementations. The architec-
ture of the LOD2 Stack is based on three pillars: (1) Software integration
and deployment using the Debian packaging system. (2) Use of a cen-
tral SPARQL endpoint and standardized vocabularies for knowledge base
access and integration between the different tools of the LOD2 Stack. (3)
Integration of the LOD2 Stack user interfaces based on REST enabled
Web Applications. These three pillars comprise the methodological and
technological framework for integrating the very heterogeneous LOD2
Stack components into a consistent framework.

The Semantic Web activity has gained momentum with the widespread publish-
ing of structured data as RDF. The Linked Data paradigm has therefore evolved
from a practical research idea into a very promising candidate for addressing one
of the biggest challenges in the area of intelligent information management: the
exploitation of the Web as a platform for data and information integration as well
as for search and querying. Just as we publish unstructured textual information
on the Web as HTML pages and search such information by using keyword-based
search engines, we are already able to easily publish structured information, reli-
ably interlink this information with other data published on the Web and search
the resulting data space by using more expressive querying beyond simple key-
word searches. The Linked Data paradigm has evolved as a powerful enabler
for the transition of the current document-oriented Web into a Web of inter-
linked Data and, ultimately, into the Semantic Web. The term Linked Data here
refers to a set of best practices for publishing and connecting structured data
on the Web. These best practices have been adopted by an increasing number
of data providers over the past three years, leading to the creation of a global
data space that contains many billions of assertions – the Web of Linked Data
(cf. Fig. 1).

In that context LOD2 targets a number of research challenges: improve coher-
ence and quality of data published on the Web, close the performance gap
between relational and RDF data management, establish trust on the Linked

c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 1–17, 2014.
DOI: 10.1007/978-3-319-09846-3 1

2 S. Auer

Fig. 1. Overview of some of the main Linked Data knowledge bases and their interlinks
available on the Web. (This overview is published regularly at http://lod-cloud.net and
generated from the Linked Data packages described at the dataset metadata repository
ckan.net.)

Data Web and generally lower the entrance barrier for data publishers and users.
The LOD2 project tackles these challenges by developing:

• enterprise-ready tools and methodologies for exposing and managing very
large amounts of structured information on the Data Web.

• a testbed and bootstrap network of high-quality multi-domain, multi-lingual
ontologies from sources such as Wikipedia and OpenStreetMap.

• algorithms based on machine learning for automatically interlinking and fusing
data from the Web.

• adaptive tools for searching, browsing, and authoring of Linked Data.

The LOD2 project integrates and syndicates linked data with large-scale, exist-
ing applications and showcases the benefits in the three application scenarios
publishing, corporate data intranets and Open Government Data.

The main result of LOD2 is the LOD2 Stack1 – an integrated distribution of
aligned tools which support the whole life cycle of Linked Data from extrac-
tion, authoring/creation via enrichment, interlinking, fusing to maintenance.
The LOD2 Stack comprises new and substantially extended existing tools from
the LOD2 partners and third parties. The major components of the LOD2 Stack
are open-source in order to facilitate wide deployment and scale to knowledge
bases with billions of triples and large numbers of concurrent users. Through
1 After the end of the project, the stack will be called Linked Data Stack and main-

tained by other projects, such as GeoKnow and DIACHRON.

http://lod-cloud.net
http://ckan.net

Introduction to LOD2 3

an agile, iterative software development approach, we aim at ensuring that the
stack fulfills a broad set of user requirements and thus facilitates the transition
to a Web of Data. The stack is designed to be versatile; for all functionality we
define clear interfaces, which enable the plugging in of alternative third-party
implementations. We also plan a stack configurer, which enables potential users
to create their own personalized version of the LOD2 Stack, which contains
only those functions relevant for their usage scenario. In order to fulfill these
requirements, the architecture of the LOD2 Stack is based on three pillars:

• Software integration and deployment using the Debian packaging system. The
Debian packaging system is one of the most widely used packaging and deploy-
ment infrastructures and facilitates packaging and integration as well as main-
tenance of dependencies between the various LOD2 Stack components. Using
the Debian system also allows to facilitate the deployment of the LOD2 Stack
on individual servers, cloud or virtualization infrastructures.

• Use of a central SPARQL endpoint and standardized vocabularies for knowl-
edge base access and integration between different tools. All components of
the LOD2 Stack access this central knowledge base repository and write their
findings back to it. In order for other tools to make sense out of the output of
a certain component, it is important to define vocabularies for each stage of
the Linked Data life-cycle.

• Integration of the LOD2 Stack user interfaces based on REST enabled Web
Applications. Currently, the user interfaces of the various tools are technolog-
ically and methodologically quite heterogeneous. We do not resolve this het-
erogeneity, since each tool’s UI is specifically tailored for a certain purpose.
Instead, we develop a common entry point for accessing the LOD2 Stack UI,
which then forwards a user to a specific UI component provided by a certain
tool in order to complete a certain task.

These three pillars comprise the methodological and technological framework
for integrating the very heterogeneous LOD2 Stack components into a consis-
tent framework. This chapter is structured as follows: After briefly introducing
the linked data life-cycle in Sect. 1 and the linked data paradigm in Sect. 2, we
describe these pillars in more detail (Sect. 3), and conclude in Sect. 4.

1 The Linked Data Life-Cycle

The different stages of the Linked Data life-cycle (depicted in Fig. 2) include:

Storage. RDF Data Management is still more challenging than relational Data
Management. We aim to close this performance gap by employing column-
store technology, dynamic query optimization, adaptive caching of joins,
optimized graph processing and cluster/cloud scalability.

Authoring. LOD2 facilitates the authoring of rich semantic knowledge bases,
by leveraging Semantic Wiki technology, the WYSIWYM paradigm (What
You See Is What You Mean) and distributed social, semantic collaboration
and networking techniques.

4 S. Auer

Fig. 2. Stages of the Linked Data life-cycle supported by the LOD2 Stack.

Interlinking. Creating and maintaining links in a (semi-)automated fashion is
still a major challenge and crucial for establishing coherence and facilitating
data integration. We seek linking approaches yielding high precision and
recall, which configure themselves automatically or with end-user feedback.

Classification. Linked Data on the Web is mainly raw instance data. For data
integration, fusion, search and many other applications, however, we need
this raw instance data to be linked and integrated with upper level ontologies.

Quality. The quality of content on the Data Web varies, as the quality of con-
tent on the document web varies. LOD2 develops techniques for assessing
quality based on characteristics such as provenance, context, coverage or
structure.

Evolution/Repair. Data on the Web is dynamic. We need to facilitate the
evolution of data while keeping things stable. Changes and modifications
to knowledge bases, vocabularies and ontologies should be transparent and
observable. LOD2 also develops methods to spot problems in knowledge
bases and to automatically suggest repair strategies.

Search/Browsing/Exploration. For many users, the Data Web is still invis-
ible below the surface. LOD2 develops search, browsing, exploration and
visualization techniques for different kinds of Linked Data (i.e. spatial, tem-
poral, statistical), which make the Data Web sensible for real users.

These life-cycle stages, however, should not be tackled in isolation, but by
investigating methods which facilitate a mutual fertilization of approaches devel-
oped to solve these challenges. Examples for such mutual fertilization between
approaches include:

• The detection of mappings on the schema level, for example, will directly
affect instance level matching and vice versa.

• Ontology schema mismatches between knowledge bases can be compensated
for by learning which concepts of one are equivalent to which concepts of
another knowledge base.

Introduction to LOD2 5

• Feedback and input from end users (e.g. regarding instance or schema level
mappings) can be taken as training input (i.e. as positive or negative exam-
ples) for machine learning techniques in order to perform inductive reasoning
on larger knowledge bases, whose results can again be assessed by end users
for iterative refinement.

• Semantically enriched knowledge bases improve the detection of inconsisten-
cies and modelling problems, which in turn results in benefits for interlinking,
fusion, and classification.

• The querying performance of RDF data management directly affects all other
components, and the nature of queries issued by the components affects RDF
data management.

As a result of such interdependence, we should pursue the establishment
of an improvement cycle for knowledge bases on the Data Web. The improve-
ment of a knowledge base with regard to one aspect (e.g. a new alignment with
another interlinking hub) triggers a number of possible further improvements
(e.g. additional instance matches).

The challenge is to develop techniques which allow exploitation of these
mutual fertilizations in the distributed medium Web of Data. One possibility
is that various algorithms make use of shared vocabularies for publishing results
of mapping, merging, repair or enrichment steps. After one service published
its new findings in one of these commonly understood vocabularies, notifica-
tion mechanisms (such as Semantic Pingback [11]) can notify relevant other
services (which subscribed to updates for this particular data domain), or the
original data publisher, that new improvement suggestions are available. Given
proper management of provenance information, improvement suggestions can
later (after acceptance by the publisher) become part of the original dataset.

The use of Linked Data offers a number of significant benefits:

• Uniformity. All datasets published as Linked Data share a uniform data
model, the RDF statement data model. With this data model all information
is represented in facts expressed as triples consisting of a subject, predicate
and object. The elements used in subject, predicate or object positions are
mainly globally unique identifiers (IRI/URI). Literals, i.e., typed data values,
can be used at the object position.

• De-referencability. URIs are not just used for identifying entities, but since
they can be used in the same way as URLs they also enable locating and
retrieving resources describing and representing these entities on the Web.

• Coherence. When an RDF triple contains URIs from different namespaces in
subject and object position, this triple basically establishes a link between
the entity identified by the subject (and described in the source dataset using
namespace A) with the entity identified by the object (described in the target
dataset using namespace B). Through the typed RDF links, data items are
effectively interlinked.

• Integrability. Since all Linked Data sources share the RDF data model, which
is based on a single mechanism for representing information, it is very easy
to attain a syntactic and simple semantic integration of different Linked Data

6 S. Auer

sets. A higher level semantic integration can be achieved by employing schema
and instance matching techniques and expressing found matches again as
alignments of RDF vocabularies and ontologies in terms of additional triple
facts.

• Timeliness. Publishing and updating Linked Data is relatively simple thus
facilitating a timely availability. In addition, once a Linked Data source is
updated it is straightforward to access and use the updated data source, since
time consuming and error prune extraction, transformation and loading is not
required.

Table 1. Juxtaposition of the concepts Linked Data, Linked Open Data and Open
Data.

Representation\degree of openness Possibly closed Open (cf. opendefinition.org)

Structured data model Data Open Data

(i.e. XML, CSV, SQL etc.)

RDF data model Linked Data (LD) Linked Open Data (LOD)

(published as Linked Data)

The development of research approaches, standards, technology and tools for
supporting the Linked Data lifecycle data is one of the main challenges. Develop-
ing adequate and pragmatic solutions to these problems can have a substantial
impact on science, economy, culture and society in general. The publishing, inte-
gration and aggregation of statistical and economic data, for example, can help
to obtain a more precise and timely picture of the state of our economy. In the
domain of health care and life sciences making sense of the wealth of struc-
tured information already available on the Web can help to improve medical
information systems and thus make health care more adequate and efficient. For
the media and news industry, using structured background information from
the Data Web for enriching and repurposing the quality content can facilitate
the creation of new publishing products and services. Linked Data technologies
can help to increase the flexibility, adaptability and efficiency of information
management in organizations, be it companies, governments and public admin-
istrations or online communities. For end-users and society in general, the Data
Web will help to obtain and integrate required information more efficiently and
thus successfully manage the transition towards a knowledge-based economy and
an information society (Table 1).

2 The Linked Data Paradigm

We briefly introduce the basic principles of Linked Data (cf. Sect. 2 from [4]).
The term Linked Data refers to a set of best practices for publishing and inter-
linking structured data on the Web. These best practices were introduced by

http://opendefinition.org

Introduction to LOD2 7

Tim Berners-Lee in his Web architecture note Linked Data2 and have become
known as the Linked Data principles. These principles are:

• Use URIs as names for things.
• Use HTTP URIs so that people can look up those names.
• When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL).
• Include links to other URIs, so that they can discover more things.

The basic idea of Linked Data is to apply the general architecture of the
World Wide Web [6] to the task of sharing structured data on global scale. The
Document Web is built on the idea of setting hyperlinks between Web documents
that may reside on different Web servers. It is built on a small set of simple stan-
dards: Uniform Resource Identifiers (URIs) and their extension Internationalized
Resource Identifiers (IRIs) as globally unique identification mechanism [2], the
Hypertext Transfer Protocol (HTTP) as universal access mechanism [3], and
the Hypertext Markup Language (HTML) as a widely used content format [5].
Linked Data builds directly on Web architecture and applies this architecture to
the task of sharing data on global scale.

2.1 Resource Identification with IRIs

To publish data on the Web, the data items in a domain of interest must first
be identified. These are the things whose properties and relationships will be
described in the data, and may include Web documents as well as real-world
entities and abstract concepts. As Linked Data builds directly on Web archi-
tecture, the Web architecture term resource is used to refer to these things of
interest, which are in turn identified by HTTP URIs. Linked Data uses only
HTTP URIs, avoiding other URI schemes such as URNs [8] and DOIs3. The
structure of HTTP URIs looks as follows:

[scheme:][//authority][path][?query][#fragment]

A URI for identifying Shakespeare’s ‘Othello’, for example, could look as
follows:

http://de.wikipedia.org/wiki/Othello#id

HTTP URIs provide a simple way to create globally unique names in a
decentralized fashion, as every owner of a domain name or delegate of the domain
name owner may create new URI references. They serve not just as a name but
also as a means of accessing information describing the identified entity.
2 http://www.w3.org/DesignIssues/LinkedData.html
3 http://www.doi.org/hb.html

http://www.w3.org/DesignIssues/LinkedData.html
http://www.doi.org/hb.html

8 S. Auer

2.2 De-referencability

Any HTTP URI should be de-referencable, meaning that HTTP clients can look
up the URI using the HTTP protocol and retrieve a description of the resource
that is identified by the URI. This applies to URIs that are used to identify classic
HTML documents, as well as URIs that are used in the Linked Data context to
identify real-world objects and abstract concepts. Descriptions of resources are
embodied in the form of Web documents. Descriptions that are intended to be
read by humans are often represented as HTML. Descriptions that are intended
for consumption by machines are represented as RDF data. Where URIs identify
real-world objects, it is essential to not confuse the objects themselves with
the Web documents that describe them. It is therefore common practice to use
different URIs to identify the real-world object and the document that describes
it, in order to be unambiguous. This practice allows separate statements to be
made about an object and about a document that describes that object. For
example, the creation year of a painting may be rather different to the creation
year of an article about this painting. Being able to distinguish the two through
use of different URIs is critical to the consistency of the Web of Data.

There are two different strategies to make URIs that identify real-world
objects de-referencable [10]. In the 303 URI strategy, instead of sending the
object itself over the network, the server responds to the client with the HTTP
response code 303 See Other and the URI of a Web document which describes
the real-world object (303 redirect). In a second step, the client de-references
this new URI and retrieves a Web document describing the real-world object.
The hash URI strategy builds on the characteristic that URIs may contain a
special part that is separated from the base part of the URI by a hash symbol
(#), called the fragment identifier. When a client wants to retrieve a hash URI
the HTTP protocol requires the fragment part to be stripped off before request-
ing the URI from the server. This means a URI that includes a hash cannot be
retrieved directly, and therefore does not necessarily identify a Web document.
This enables such URIs to be used to identify real-world objects and abstract
concepts, without creating ambiguity [10].

Both approaches have their advantages and disadvantages [10]: Hash URIs
have the advantage of reducing the number of necessary HTTP round-trips,
which in turn reduces access latency. The downside of the hash URI approach is
that the descriptions of all resources that share the same non-fragment URI part
are always returned to the client together, irrespective of whether the client is
interested in only one URI or all. If these descriptions consist of a large number
of triples, the hash URI approach can lead to large amounts of data being unnec-
essarily transmitted to the client. 303 URIs, on the other hand, are very flexible
because the redirection target can be configured separately for each resource.
There could be one describing document for each resource, or one large docu-
ment for all of them, or any combination in between. It is also possible to change
the policy later on.

Introduction to LOD2 9

2.3 RDF Data Model

The RDF data model [7] represents information as sets of statements, which
can be visualized as node-and-arc-labeled directed graphs. The data model is
designed for the integrated representation of information that originates from
multiple sources, is heterogeneously structured, and is represented using different
schemata. RDF can be viewed as a lingua franca, capable of moderating between
other data models that are used on the Web.

In RDF, information is represented in statements, called RDF triples. The
three parts of each triple are called its subject, predicate, and object. A triple
mimics the basic structure of a simple sentence, such as for example:

Burkhard Jung is the mayor of Leipzig
(subject) (predicate) (object)

The following is the formal definition of RDF triples as it can be found in
the W3C RDF standard [7].

Definition 1 (RDF Triple). Assume there are pairwise disjoint infinite sets I,
B, and L representing IRIs, blank nodes, and RDF literals, respectively. A triple
(v1, v2, v3) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple. In this tuple, v1
is the subject, v2 the predicate and v3 the object. We call T = I ∪ B ∪ L the set
of RDF terms.

The main idea is to use IRIs as identifiers for entities in the subject, predicate
and object positions in a triple. Data values can be represented in the object
position as literals. Furthermore, the RDF data model also allows in subject and
object positions the use of identifiers for unnamed entities (called blank nodes),
which are not globally unique and can thus only be referenced locally. However,
the use of blank nodes is discouraged in the Linked Data context. Our example
fact sentence about Leipzig’s mayor would now look as follows:

<http://leipzig.de/id>

<http://example.org/p/hasMayor>

<http://Burkhard-Jung.de/id> .

(subject) (predicate) (object)

This example shows that IRIs used within a triple can originate from different
namespaces thus effectively facilitating the mixing and mashing of different RDF
vocabularies and entities from different Linked Data knowledge bases. A triple
having identifiers from different knowledge bases at subject and object position
can be also viewed as an typed link between the entities identified by subject
and object. The predicate then identifies the type of link. If we combine different
triples we obtain an RDF graph.

Definition 2 (RDF Graph). A finite set of RDF triples is called RDF graph.
The RDF graph itself represents an resource, which is located at a certain loca-
tion on the Web and thus has an associated IRI, the graph IRI.

10 S. Auer

Fig. 3. Example RDF graph describing the city of Leipzig and its mayor.

An example of an RDF graph is depicted in Fig. 3. Each unique subject or
object contained in the graph is visualized as a node (i.e. oval for resources
and rectangle for literals). Predicates are visualized as labeled arcs connect-
ing the respective nodes. There are a number of synonyms being used for RDF
graphs, all meaning essentially the same but stressing different aspects of an RDF
graph, such as RDF document (file perspective), knowledge base (collection of
facts), vocabulary (shared terminology), ontology (shared logical conceptualiza-
tion).

2.4 RDF Serializations

The initial official W3C RDF standard [7] comprised a serialization of the RDF
data model in XML called RDF/XML. Its rationale was to integrate RDF with
the existing XML standard, so it could be used smoothly in conjunction with
the existing XML technology landscape. However, RDF/XML turned out to be
difficult to understand for the majority of potential users because it requires
to be familiar with two data models (i.e., the tree-oriented XML data model
as well as the statement oriented RDF datamodel) and interactions between
them, since RDF statements are represented in XML. As a consequence, with N-
Triples, Turtle and N3 a family of alternative text-based RDF serializations was
developed, whose members have the same origin, but balance differently between
readability for humans and machines. Later in 2009, RDFa (RDF Annotations,
[1]) was standardized by the W3C in order to simplify the integration of HTML
and RDF and to allow the joint representation of structured and unstructured
content within a single source HTML document. Another RDF serialization,
which is particularly beneficial in the context of JavaScript web applications
and mashups is the serialization of RDF in JSON. Figure 4 presents an example
serialized in the most popular serializations.

3 Integrating Heterogeneous Tools into the LOD2 Stack

The LOD2 Stack serves two main purposes. Firstly, the aim is to ease the distrib-
ution and installation of tools and software components that support the Linked

Introduction to LOD2 11

Data publication cycle. As a distribution platform, we have chosen the well estab-
lished Debian packaging format. The second aim is to smoothen the information
flow between the different components to enhance the end-user experience by a
more harmonized look-and-feel.

3.1 Deployment Management Leveraging Debian Packaging

In the Debian package management system [9], software is distributed in
architecture-specific binary packages and architecture-independent source code
packages. A Debian software package comprises two types of content: (1) control
information (incl. metadata) of that package, and (2) the software itself.

The control information of a Debian package will be indexed and merged
together with all other control information from other packages available for the
system. This information consists of descriptions and attributes for:

(a) The software itself (e.g. licenses, repository links, name, tagline, . . .),
(b) Its relation to other packages (dependencies and recommendations),
(c) The authors of the software (name, email, home pages), and
(d) The deployment process (where to install, pre and post install instructions).

The most important part of this control information is its relations to other
software. This allows the deployment of a complete stack of software with one
action. The following dependency relations are commonly used in the control
information:

Depends: This declares an absolute dependency. A package will not be config-
ured unless all of the packages listed in its Depends field have been correctly
configured. The Depends field should be used if the depended-on package is
required for the depending package to provide a significant amount of func-
tionality. The Depends field should also be used if the install instructions
require the package to be present in order to run.

Recommends: This declares a strong, but not absolute, dependency. The Rec-
ommends field should list packages that would be found together with this
one in all but unusual installations.

Suggests: This is used to declare that one package may be more useful with
one or more others. Using this field tells the packaging system and the user
that the listed packages are related to this one and can perhaps enhance its
usefulness, but that installing this one without them is perfectly reasonable.

Enhances: This field is similar to Suggests but works in the opposite direction.
It is used to declare that a package can enhance the functionality of another
package.

Conflicts: When one binary package declares a conflict with another using a
Conflicts field, dpkg will refuse to allow them to be installed on the system at
the same time. If one package is to be installed, the other must be removed
first.

12 S. Auer

Fig. 4. Different RDF serializations of three triples from Fig. 3

Introduction to LOD2 13

Fig. 5. Example DEB-package dependency tree (OntoWiki). Some explanation: Boxes
are part of the LOD2 Stack, Ellipses are part of the Debian/Ubuntu base system,
Dashed forms are meta-packages, Relations: Depends (D), Depends alternative list
(A), Conflicts (C) and Suggests (S).

All of these relations may restrict their applicability to particular versions of
each named package (the relations allowed are <<, <=, =, >= and >>). This
is useful in forcing the upgrade of a complete software stack. In addition to this,
dependency relations can be set to a list of alternative packages. In such a case,
if any one of the alternative packages is installed, that part of the dependency
is considered to be satisfied. This is useful if the software depends on a specific
functionality on the system instead of a concrete package (e.g. a mail server or
a web server). Another use case of alternative lists are meta-packages. A meta-
package is a package which does not contain any files or data to be installed.
Instead, it has dependencies on other (lists of) packages.

Example of meta-packaging: OntoWiki.
To build an appropriate package structure, the first step is to inspect the manual
deployment of the software, its variants and the dependencies of these variants.
OntoWiki is a browser-based collaboration and exploration tool as well as an
application for linked data publication. There are two clusters of dependencies:
the runtime environment and the backend. Since OntoWiki is developed in the
scripting language PHP, it’s architecture-independent but needs a web server
running PHP. More specifically, OntoWiki needs PHP5 running as an Apache 2
module. OntoWiki currently supports two different back-ends which can be used
to store and query RDF data: Virtuoso and MySQL. Virtuoso is also part of the
LOD2 Stack while MySQL is a standard package in all Debian-based systems.
In addition to OntoWiki, the user can use the OntoWiki command line client
owcli and the DL-Learner from the LOD2 Stack to enhance its functionality.

The dependency tree (depicted in Fig. 5) is far from being complete, since
every component also depends on libraries and additional software which is omit-
ted here. Given this background information, we can start to plan the pack-
aging. We assume that users either use MySQL or Virtuoso as a backend on

14 S. Auer

Fig. 6. Basic architecture of a local LOD2 Stack.

a server, so the first decision is to split this functionality into two packages:
ontowiki-mysql and ontowiki-virtuoso. These two packages are abstracted
by the meta-package ontowiki, which requires either ontowiki-mysql or
ontowiki-virtuoso, and which can be used by other LOD2 Stack packages
to require OntoWiki. Since both the MySQL backend and the Virtuoso backend
version use the same system resources, we need to declare them as conflicting
packages.

3.2 Data Integration Based on SPARQL, WebID and Vocabularies

The basic architecture of a local LOD2 Stack installation is depicted in Fig. 6.
All components in the LOD2 Stack act upon RDF data and are able to commu-
nicate via SPARQL with the central system-wide RDF quad store (i.e. SPARQL
backend). This quad store (Openlink Virtuoso) manages user graphs (knowledge
bases) as well as a set of specific system graphs where the behaviour and status
of the overall system is described. The following system graphs are currently
used:

Package Graph:
In addition to the standard Debian package content, each LOD2 Stack package
consists of a RDF package info which contains:

• The basic package description, e.g. labels, dates, maintainer info (this is basi-
cally DOAP data and redundant to the classic Debian control file)

• Pointers to the place where the application is available (e.g. the menu entry
in the LOD2 Stack workbench)

• A list of capabilities of the packed software (e.g. resource linking, RDB extrac-
tion). These capabilities are part of a controlled vocabulary. The terms are
used as pointers for provenance logging, access control definition and a future
capability browser of the LOD2 workbench.

Upon installation, the package info is automatically added to the package graph
to allow the workbench / demonstrator to query which applications are available
and what is the user able to do with them.

Introduction to LOD2 15

Fig. 7. The visualization widgets CubeViz (statistic) and SemMap (spatial data).

Access Control Graph:
This system graph is related to WebID4 authentication and describes which users
are able to use which capabilities and have access to which graphs. The default
state of this graph contains no restrictions, but could be used to restrict certain
WebIDs to specific capabilities. Currently, only OntoWiki takes this graph into
account and the access control definition is based on the WebAccessControl
schema5.

Provenance Graph:
Each software package is able to log system wide provenance information to
reflect the evolution of a certain knowledge base. Different ontologies are devel-
oped for that use-case. To keep the context of the LOD2 Stack, we use the
controlled capability vocabulary as reference points.

In addition to the SPARQL protocol endpoint, application packages can use
a set of APIs which allow queries and manipulation currently not available with
SPARQL alone (e.g. fetching graph information and manipulating namespaces).
Two authorized administration tools are allowed to manipulate the package and
access control graphs:

• The Debian system installer application automatically adds and removes pack-
age descriptions during install / upgrade and remove operations.

• The LOD2 Workbench (Demonstrator) is able to manipulate the access con-
trol graph.

All other packages are able to use the APIs as well as to create, update and
delete knowledge bases. Chapter 5 gives an comprehensive overview on the LOD2
Stack components.

3.3 REST Integration of User Interfaces

Many of the components come with their own user interface. For example, the
Silk Workbench is a user interface for the Silk linking engine. This workbench
supports the creation of linking specifications, executing them and improving
them using the feedback from the user on the created links. With the OntoWiki
4 http://www.w3.org/wiki/WebID
5 http://www.w3.org/wiki/WebAccessControl

http://dx.doi.org/10.1007/978-3-319-09846-3_5
http://www.w3.org/wiki/WebID
http://www.w3.org/wiki/WebAccessControl

16 S. Auer

linked data browsing and authoring tool, a user can browse and update infor-
mation in a knowledge base. By using both tools together, the user gains the
ability to study the input sources’ content structure and to create links between
them.

Many stack components request similar information from the user. For exam-
ple, selecting the graph of interest. To provide the end-user the feeling of a
harmonized single application, we develop supportive REST-based WebAPIs.
These APIs offer a common application view of the LOD2 Stack. The more tools
support this API, the more harmonized and integrated the end-user experience
gets. Currently, the LOD2 Stack WebAPI consists of:

• Graph management : The set of graphs is not easy to maintain. SPARQL does
not support retrieval of all graphs. The only possible query which selects all
graphs that have at least one triple is performance wise quite costly: SELECT
DISTINCT ?g WHERE GRAPH ?g ?s ?p ?o The WebAPI also standardizes
some meta information like being a system graph. When LOD2 Stack com-
ponents use this common graph management WebAPI, the end-user obtains
a uniform look-and-feel with respect to graph management.

• Prefix management : To make RDF resources more readable, prefixes are used
to abbreviate URI namespaces. Typically, each application manages its own
namespace mapping. Using this REST API, a central namespace mapping is
maintained, thus producing consistency among stack components. The end-
user is freed from updating the individual component mappings. Moreover,
an update in one component is immediately available to another.

In addition to creating supportive REST-based APIs, the LOD2 Stack
encourages component owners to open up their components using REST based
WebAPIs. For example, the semantic-spatial browser, a UI tool that visualizes
RDF data containing geospatial information on a map, is entirely configurable
by parameters encoded within its invocation URL. Similarly other visualization
and exploration widgets (such as the CubeViz statistical data visualization) can
directly interact with the SPARQL endpoint (cf. Fig. 7). This makes it easy to
integrate into (third party) applications into the stack.

4 Conclusion and Outlook

In this chapter we gave a brief introduction to Linked Data its management
life-cycle on the Web and the LOD2 Stack, the result of a large-scale effort to
provide technological support for the life-cycle of Linked Data. We deem this a
first step in a larger research and development agenda, where derivatives of the
LOD2 Stack are employed to create corporate enterprise knowledge hubs withing
the Intranets of large companies. The overall stack architecture and guidelines
can also serve as a blue-print for similar software stacks in other areas.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution Noncommercial License, which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

Introduction to LOD2 17

References

1. Adida, B., Birbeck, M., McCarron, S., Pemberton, S.: RDFa in XHTML: Syn-
tax and processing - a collection of attributes and processing rules for extending
XHTML to support RDF. W3C Recommendation, October 2008. http://www.w3.
org/TR/rdfa-syntax/

2. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform resource identifiers (URI):
Generic syntax. Internet RFC 2396, August 1998

3. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol - http/1.1 (rfc 2616). Request for Comments.
http://www.ietf.org/rfc/rfc2616.txt (1999). Accessed 7 July 2006

4. Heath, T., Bizer, C.: Linked data - evolving the web into a global data space.
In: Hendler, J., van Harmelen, F. (eds.) Synthesis Lectures on the Semantic Web:
Theory and Technology. Morgan & Claypool, San Rafael (2011)

5. HTML 5: A vocabulary and associated APIs for HTML and XHTML. W3C Work-
ing Draft, August 2009. http://www.w3.org/TR/2009/WD-html5-20090825/

6. Jacobs, I., Walsh, N.: Architecture of the world wide web, volume one. World Wide
Web Consortium, Recommendation REC-webarch-20041215, December 2004

7. Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts and
abstract syntax. Technical report W3C, 2 (2004)

8. Moats, R.: Urn syntax. Internet RFC 2141, May 1997
9. Murdock, I.: The Debian Manifesto (1994). http://www.debian.org/doc/manuals/

project-history/ap-manifesto.en.html
10. Sauermann, L., Cyganiak, R.: Cool URIs for the semantic web. W3C Interest

Group Note, December 2008
11. Tramp, S., Frischmuth, P., Ermilov, T., Auer, S.: Weaving a social data web with

semantic pingback. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI),
vol. 6317, pp. 135–149. Springer, Heidelberg (2010)

http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rdfa-syntax/
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/2009/WD-html5-20090825/
http://www.debian.org/doc/manuals/project-history/ap-manifesto.en.html
http://www.debian.org/doc/manuals/project-history/ap-manifesto.en.html

Technology

Advances in Large-Scale
RDF Data Management

Peter Boncz1, Orri Erling2, and Minh-Duc Pham1(B)

1 CWI, Amsterdam, The Netherlands
{P.Boncz,duc}@cwi.nl

2 OpenLink Software, Burlington, UK
erling@xs4all.nl

Abstract. One of the prime goals of the LOD2 project is improving
the performance and scalability of RDF storage solutions so that the
increasing amount of Linked Open Data (LOD) can be efficiently man-
aged. Virtuoso has been chosen as the basic RDF store for the LOD2
project, and during the project it has been significantly improved by
incorporating advanced relational database techniques from MonetDB
and Vectorwise, turning it into a compressed column store with vectored
execution. This has reduced the performance gap (“RDF tax”) between
Virtuoso’s SQL and SPARQL query performance in a way that still
respects the “schema-last” nature of RDF. However, by lacking schema
information, RDF database systems such as Virtuoso still cannot use
advanced relational storage optimizations such as table partitioning or
clustered indexes and have to execute SPARQL queries with many self-
joins to a triple table, which leads to more join effort than needed in
SQL systems. In this chapter, we first discuss the new column store
techniques applied to Virtuoso, the enhancements in its cluster parallel
version, and show its performance using the popular BSBM benchmark
at the unsurpassed scale of 150 billion triples. We finally describe ongo-
ing work in deriving an “emergent” relational schema from RDF data,
which can help to close the performance gap between relational-based
and RDF-based storage solutions.

1 General Objectives

One of the objectives of the LOD2 EU project is to boost the performance and
the scalability of RDF storage solutions so that it can, efficiently manage huge
datasets of Linked Open Data (LOD). However, it has been noted that given
similar data management tasks, relational database technology significantly out-
performed RDF data stores. One controlled scenario in which the two tech-
nologies can be compared is the BSBM benchmark [2], which exists equivalent
relational and RDF variants. As illustrated in Fig. 1, while the SQL systems
can process by up to 40–175K QMpH, the Triple stores can only reach 1–10K
QMpH, showing a factor of 15–40 of performances difference.

c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 21–44, 2014.
DOI: 10.1007/978-3-319-09846-3 2

22 P. Boncz et al.

Fig. 1. Triple stores vs. SQL: a heavy “RDF Tax”
(2009)

In the LOD2 project we
investigated the causes of this
large difference (the “RDF
tax”, i.e. the performance cost
of choosing RDF instead of
relational database technol-
ogy). Here we identify three
causes:

• the particular case of BSBM is to the disadvantage of RDF as BSBM by its
nature is very relational: its schema has just few classes, and all its properties
occur exactly once for each subject, such that the data structure is very tab-
ular. As such, the ease of use of SPARQL to formulate queries on irregularly
structured data does not come into play, and the complications to which such
irregular data leads in relational solutions (many more tables, and many more
joins) are avoided.

• relational systems are quite mature in their implementations. For instance, the
explore workload is an OLTP workload which relational systems target with
key index structures and pre-compiled PL/SQL procedures. The BI workload
of BSBM benefits from analytical execution techniques like columnar storage
and vectorized execution and hash joins with bloom filters (to name just a
few). While relational products over the years have implemented many such
optimizations, RDF stores typically have not. Another area where analytical
relational database engines have made important progress is the use of cluster
technology. Whereas in 1990s only the very high end of RDBMS solutions was
cluster-enabled (i.e. Teradata), many other systems have been added such
as Greenplum, Paraccel, Vertica, SAP HANA and SQLserver Parallel data
Warehouse (which without exceptional also leverage columnar storage and
vectorized or JIT-compiled execution).

• RDF stores do not require a schema but also do not exploit it, even though the
structure of the data in fact is highly regular. This hurts in particular in the
very common SPARQL star-patterns, which need to be executed using multi-
ple self-joins, where relational systems do not need joins at all. The structure
that is heavily present in RDF triples further leads to the co-occurrence of
properties to be heavily (anti-) correlated. The complexity of query optimiza-
tion is not only exponential with respect to the amount of joins (and SPARQL
needs many more than SQL) but also relies on cost models, yet cost models
typically become very unreliable in the face of correlations. Unreliable cost
models lead to bad query plans and this very strongly affects performance
and scalability of RDF stores. In all, query optimization for SPARQL is both
more costly and unreliable than for SQL.

Virtuoso6, a high-performance RDF Quad Store, was chosen as the main
RDF store for LOD2 knowledge base at the start of the project. In order to

Advances in Large-Scale RDF Data Management 23

reduce the “RDF tax”, we first revised architectural ideas from the state-of-the-
art of relational database systems, particularly, advanced column stores such as
MonetDB [9] and Vectorwise [18]. Then, we brought some of the unique tech-
nologies and architectural principles from these column stores into Virtuoso7,
making it work more efficiently on modern hardware. These techniques include
tuning the access patterns of database queries to be CPU-cache conscious, and
also making query processing amendable to deeply pipelined CPUs with SIMD
instructions by introducing concepts like vector processing. We note that the
insights gained in improving Virtuoso will also be useful for other RDF store
providers to enhance their respective technologies as well.

Further, the cluster capabilities of Virtuoso were significantly improved. Note
that by lack of table structures, RDF systems must distribute data by the triple
(not tuple), which leads to more network communication during query execution.
Network communication cost tends to be the limiting factor for parallel database
systems, hence Virtuoso7 Cluster Edition introduced an innovative control flow
framework that is able to hide network cost as much as possible behind CPU
computation.

By the end of the LOD2 project, these improvements in Virtuoso7 on the
BSBM BI workload strongly improved performance. A quantified comparison
is hard as Virtuoso6 would not even complete the workload (“infinitely better”
would be an exaggeration). Still, when comparing the SQL with the SPARQL
implementation of BSBM-BI on Virtuoso7, we still see an “RDF tax” of a factor
2.5. This performance difference comes from the schema-last approach of RDF
model: SPARQL plans need more joins than SQL and often the query plan is not
optimal. To address this issue, CWI performed research in the line of the second
bullet point above: the goal would be to give the RDF store more insight in the
actual structure of RDF, such that SPARQL query plans need less self-joins and
query optimization becomes more reliable. This goal should be achieved without
losing the schema-last feature of RDF: there should be no need for an explicit
user-articulated schema.

The idea of recovering automatically an “emergent” schema of actual RDF
data is that RDF data in practice is quite regular and structured. This was
observed in the proposal to make SPARQL query optimization more reliable by
recognizing “characteristics sets” [10]. A characteristic set is a combination of
properties that typically co-occur with the same subject. The work in [10] found
that this number is limited to a few thousand on even the most complex LOD
datasets (like DBpedia), and the CWI research on emergent schema detection
that started in the LOD2 project [15] aims to further reduce the amount of char-
acteristic sets to the point that characteristics sets become tables in a table of
limited size (less than 100), i.e. further reducing the size. To that, the additional
challenge of finding human-understandable labels (names) for tables, columns,
and relationships was added. The goal of emergent schemata thus became two-
fold: (1) to inform SPARQL systems of the schema of the data such that they
need less self-joins and query optimization becomes more reliable, (2) to offer
a fully relational view of an RDF dataset to end-users so that existing SQL

24 P. Boncz et al.

applications can be leveraged on any RDF dataset. The latter goal could help to
increase RDF adoption and further help make relational systems more seman-
tic (because all tables, columns and relationships in an emergent schema are
identified by URIs).

In all, this chapter shows tangible progress in reducing the “RDF tax” and a
promising avenue to further reduce the performance gap between SPARQL and
SQL systems and even some hope of making them converge.

2 Virtuoso Column Store

The objective of the Virtuoso7 column store release was to incorporate the state
of the art in relational analytics oriented databases into Virtuoso, specifically
for the use with RDF data. Ideally, the same column store engine would excel
in both relational analytics and RDF.

Having RDF as a driving use case emphasizes different requirements from a
purely relational analytics use case, as follows:

Indexed access. Some column stores geared purely towards relational ana-
lytics [18] obtain excellent benchmark scores without any use of index lookup,
relying on merge and hash join alone. An RDF workload will inevitably have to
support small lookups without setup cost, for which indexed access is essential.

Runtime data types. Runtime data typing is fundamental to RDF. There
must be a natively supported any data type that can function as a key part
in an index. Dictionary encoding all literal values is not an option, since short
data types such all numbers and dates must be stored inline inside an index. This
offers native collation order and avoids a lookup to a dictionary table, e.g. before
doing arithmetic or range comparisons. This is a requirement for any attempt
at near parity with schema-first systems. Thus dictionary encoding is retained
only for strings.

Multi-part and partitionable indices. Many early column stores [9] were
based on an implicit row number as a primary key. Quite often this would be
dense and would not have to be materialized. Such a synthetic row number is
however ill suited to a scale-out RDF store as a globally unique row number for a
partitioned column is hard to be maintained. Thus, Virtuoso does not have any
concept of row number but rather has multi-part sorted column-wise compressed
indices for all persistent data structures. In this, Virtuoso most resembles [1,7].
This structure is scale-out friendly since partitioning can be determined by any
high cardinality key part and no global synthetic row number needs to exist,
even as an abstraction.

Adaptive compression. Column stores are renowned for providing excellent
data compression. This comes from having all the values in a column physically
next to each other. This means that values, even in a runtime typed system,
tend to be of the same type and to have similar values. This is specially so for
key parts where values are ascending or at least locally ascending for non-first

Advances in Large-Scale RDF Data Management 25

key parts. However, since a single column (specially for the RDF object column)
will store all the object values of all triples, there can be no predeclared hints for
type or compression. Different parts of the column will have radically different
data types, data ordering and number of distinct values. Thus local environment
is the only indication available for deciding on compression type.

Transactionality. While a column-wise format is known to excel for read-
intensive workloads and append-style insert, RDF, which trends to index quads
at least from S to O and the reverse. Thus with one index there can be mostly
ascending insert but there is no guarantee of order on the other index. Also row-
level locking needs to be supported for transactional applications. This is by and
large not an OLTP workload but short transactions must still be efficient. Thus
Virtuoso departs from the typical read-intensive optimization of column stores
that have a separate delta structure periodically merged into a read-only column-
wise compressed format [7,18]. Virtuoso updates column-wise compressed data
in place, keeping locks positionally and associating rollback information to the
lock when appropriate. Thus there is no unpredictable latency having to do with
flushing a write optimized delta structure to the main data. While doing so, Vir-
tuoso has excellent random insert performance, in excess of the best offered by
Virtuoso’s earlier row store.

As a result of these requirements, Virtuoso uses a sparse row-wise index for
each column-wise stored index. The row wise index is a B-Tree with one row
for anywhere between 2000 to 16000 rows. This entry is called the row-wise leaf.
To each row-wise leaf corresponds a segment of each column in the table. Each
segment has an equal number of values in each column. Consecutive segments
tend to be of similar size. When values are inserted into a segment, the segment
will split after reaching a certain size, leading to the insertion of a new row-
wise leaf row. This may cause the row-wise leaf page to split and so forth. Each
column segment is comprised of one or more compression entries. A compression
entry is a sequence of consecutive values of one column that share the same
compression. The compression entry types are chosen based on the data among
the following:

• Run length. Value and repeat count
• Array. Consecutive fixed length (32/64 nbit) or length prefixed strings
• Run length delta. One starting value followed by offsets and repeat counts

for each offset
• Bitmap. For unique closely spaced integers, there is a start value and a one

bit for each consecutive value, the bit position gives the offset from start value
• Int delta. From a start value, array of 16 bit offsets
• Dictionary. For low cardinality columns, there is a homogenous or heteroge-

neous array of values followed by an array of indices into the array. Depending
on the distinct values, the index is 4 or 8 bits.

Using the Virtuoso [5] default index scheme with two covering indices (PSOG
and POSG) plus 3 distinct projections (SP, OP, GS), we obtain excellent com-
pression for many different RDF datasets. The values are in bytes per quad
across all the five indices, excluding dictionary space for string literals.

26 P. Boncz et al.

BSBM: 6 bytes DBpedia: 9 bytes Uniprot: 6 bytes Sindice crawl: 14 bytes

DBpedia has highly irregular data types within the same property and many
very differently sized properties, thus compresses less. Uniprot and BSBM are
highly regular and compress very well. The web crawl consists of hundreds of
millions of graphs of 20 triples each, thus the graph column is highly irregular
and less compressible, accounting for the larger space consumption. However one
typically does not reference the graph column in queries, so it does not take up
RAM at runtime.

2.1 Vectored Execution

A column store is nearly always associated with bulk operators in query execu-
tion, from the operator at a time approach of MonetDB [9] to vectored execution
[4,7,18]. The idea is to eliminate query interpretation overhead by passing many
tuples between operators in a query execution pipeline. Virtuoso is no exception,
but it can also run vectored plans for row-wise structures. The main operators
are index lookup and different variations of hash, from hash join to group by.
An index lookup receives a vector of key values, sorts them, does a log(n) index
lookup for the first and subsequently knows that all future matches will be to
the right of the first match. If there is good locality, an index lookup is indis-
tinguishable from a merge join. The added efficiency of vectoring is relative to
the density of hits. Considering that over a million rows are typically under one
row-wise leaf page (e.g. 16K rows per segment * 70 segments per page), there is
a high likelihood that the next hit is within the next 16K or at least within the
next 1M rows, hence there is no need to restart the index lookup from the tree
top.

Hash based operations use a memory-only linear hash table. This is essen-
tially the same hash table for hash join, group by and distinct. The hash table
consists of a prime number of fixed size arrays that are aligned by CPU cache
line. Different fields of a 64 bit hash number give the array and a place in the
array. The entry is either found at this place or within the same cache line or is
not in the hash table. If a cache line is full and the entry does not match, there is
an extra exceptions list which is typically short. One can determine the absence
of a value with most often one cache miss. Only if the line is full does one need
to consult the exceptions, leading to a second cache miss. Since the hash opera-
tions are all vectored, prefetch is used to miss multiple consecutive locations in
parallel. Further, if the hash table contains pointers to entries instead of single
fixed length integers, the high bits of the pointer are used to contain a filed of
the hash number. Thus one does not dereference a pointer to data unless the
high bits of the pointer (not used for addressing) match the high bits of the hash
number. In this way cache misses are minimized and each thread can issue large
numbers of cache misses in parallel without blocking on any.

Further, Bloom filters are used for selective hash joins. We have found that
a setting of 8 bits per value with 4 bits set gives the best selectivity. Typically

Advances in Large-Scale RDF Data Management 27

the Bloom filter drops most of non-matching lookup keys before even getting to
the hash table.

2.2 Vector Optimizations

Virtuoso can adjust the vector size at runtime in order to improve locality of
reference in a sparse index lookup. Easily 30 % of performance can be gained
if looking for 1M instead of 10K consecutive values. This comes from higher
density of hits in index lookup. The vector size is adaptively set in function of
available memory and actually observed hit density.

2.3 Query Optimization

All the advanced execution techniques described so far amount to nothing if the
query plan is not right. During the last year of LOD2 we have made a TPC-H
implementation to ensure that all state of the art query optimization techniques
are present and correctly applied. TPC-H is not an RDF workload but offers an
excellent checklist of almost all execution and optimization tricks [3].

The goal of LOD2 is RDF to SQL parity but such parity is illusory unless the
SQL it is being compared to is on the level with the best. Therefore having a good
TPC-H implementation is a guarantee of relevance plus opens the possibility of
Virtuoso applications outside of the RDF space. Details are discussed in [13].

In the following we cover the central query optimization principles in Virtuoso.

Sampling. Virtuoso does not rely on up-front statistics gathering. Instead, the
optimizer uses the literals in queries to sample the database. The results of
sampling are remembered for subsequent use. In RDF, there is an indexed access
path for everything. Thus if leading P, S or O are given, the optimizer can just
look at how many hits there in the index. The hits, if numerous, do not have to be
counted. Counting the number of hits per page and number of pages is accurate
enough. Also, within each RDF predicate, there is a count of occurrences of the
predicate, of distinct S’s, distinct O’s and G’s. These allow estimating the fan-
out of the predicate, e.g. a foaf:name has one O per S and foaf:knows has 100
O’s per S. Also we recognize low cardinality properties, e.g. there is one city per
person but 1M persons per city.

The statistics interact with runtime support of inference. Thus in one infer-
ence context, if tag is a super-property of about and mentions, but there are
no triples with tag, the statistics automatically drill down to the sub-properties
and sum these up for the super-property. This is however scoped to the inference
context.

There can be conditions on dependent part columns, e.g. if P, S and G are
given, G is likely a dependent part since in PSOG there is O between the leading
parts and G. Thus sampling is used to determine the frequency of a specific G
within a fixed P, S. The same is done for relational tables where there in fact
are dependent columns that do not participate in ordering the table.

28 P. Boncz et al.

Cost Model. It has been recently argued [17] that SPARQL can be optimized
just as well or even better without a cost model. We do not agree with this
due to the following: It is true that a cost model has many complexities and
possibilities for error. However, there are things that only a cost model can
provide, in specific, informed decision on join type.

There is a definite break-even point between hash join and vectored index
lookup. This is tied to the input counts on either side of the join. Both the
number of rows on the build and the probe sides must be known in order to
decide whether to use hash join. Also, when building the hash table, one has
to put as many restrictions as possible on the build side, including restrictive
joins. To get this right, a cost model of one kind or another is indispensable. The
choice hinges on quantities, not on the structure of the query. If the goal is only
to do look-ups efficiently, then one can probably do without a cost model. But
here the goal is to match or surpass the best, hence a cost model, also for RDF is
necessary even though it is very complex and has a high cost of maintenance. It is
also nearly impossible to teach people how to maintain a cost model. Regardless
of these factors, we believe that one is indispensable for our level of ambition.

2.4 State of the RDF Tax

We refer to the performance difference between a relational and RDF implemen-
tation of a workload as the RDF tax. This has been accurately measured with
the Star Schema Benchmark (SSB) [12], a simplified derivative of TPC-H. While
Virtuoso does TPC-H in SQL [13] on a par with the best, the RDF translation
of all the query optimization logic is not yet complete, hence we will look at
SSB.

SSB has one large fact table (line order) and several smaller dimension tables
(part, supplier, dw date, nation and region). The schema is denormalized into a
simple star shape. Its RDF translation is trivial; each primary key of each table
is a URI, each column is a property and each foreign key is a URI.

SSB was run at 30G scale on a single server with Virtuoso, MonetDB and
MySQL. In SQL, Virtuoso beats MonetDB by a factor of 2 and MySQL by a
factor of 300 (see Table 1). In SPARQL, Virtuoso came 10–20 % behind Mon-
etDB but still 100x ahead of MySQL. These results place the RDF tax at about
2.5x in query execution time. Thanks to Virtuoso’s excellent query performance,
SPARQL in Virtuoso will outperform any but the best RDBMS’s in analytics
even when these are running SQL.

All plans consist of a scan of the fact table with selective hash joins against
dimension tables followed by a simple aggregation or a group by with rela-
tively few groups, e.g. YEAR, NATION. In the RDF variant, the fact table scan
becomes a scan of a property from start to end, with the object, usually a for-
eign key, used for probing a hash table built from a dimension table. The next
operation is typically a lookup on another property where the S is given by the
first and the O must again satisfy a condition, like being in a hash table.

The RDF tax consists of the fact that the second column must be looked up
by a self join instead of being on the same row with the previous column. This is

Advances in Large-Scale RDF Data Management 29

Table 1. Star Schema Benchmark with scales 30 GB and 300 GB (in seconds)

Query 30 GB 300 GB

Virtuoso Virtuoso RDF MonetDB MySQL Virtuoso Virtuoso RDF

SQL SPARQL tax SQL SPARQL tax

Q1 0.413 1.101 2.67 1.659 82.477 2.285 7.767 3.40

Q2 0.282 0.416 1.48 0.5 74.436 1.53 3.535 2.31

Q3 0.253 0.295 1.17 0.494 75.411 1.237 1.457 1.18

Q4 0.828 2.484 3.00 0.958 226.604 3.459 6.978 2.02

Q5 0.837 1.915 2.29 0.648 222.782 3.065 8.71 2.84

Q6 0.419 1.813 4.33 0.541 219.656 2.901 8.454 2.91

Q7 1.062 2.33 2.19 5.658 237.73 5.733 15.939 2.78

Q8 0.617 2.182 3.54 0.521 194.918 2.267 6.759 2.98

Q9 0.547 1.29 2.36 0.381 186.112 1.773 4.217 2.38

Q10 0.499 0.639 1.28 0.37 186.123 1.44 4.342 3.02

Q11 1.132 2.142 1.89 2.76 241.045 5.031 12.608 2.51

Q12 0.863 3.77 4.37 2.127 241.439 4.464 15.497 3.47

Q13 0.653 1.612 2.47 1.005 202.817 2.807 4.467 1.59

Total 8.405 21.989 2.62 17.622 2391.55 37.992 100.73 2.65

the best case for the RDF tax, as the execution is identical in all other respects.
There are some string comparisons, e.g. brand contains a string but these are
put on the build side of a hash join and are not run on much data.

In a broader context, the RDF tax has the following components:

Self-joins. If there are conditions on more than one column, every next one
must be fetched via a join. This is usually local and ordered but still worse
than getting another column. In a column store, predicates on a scan can be
dynamically reordered based on their observed performance. In RDF, this is not
readily feasible as it would alter the join order.

Cardinality estimation. In a multi-column table one can sample several pred-
icates worth in one go, in RDF this requires doing joins in the cost model and is
harder. Errors in cost estimation build up over many joins. Accurate choice of
hash vs index based join requires reliable counts on either side. In SQL analytics,
indices are often not even present, hence the join type decision is self-evident.

Optimization search space. A usage pattern of queries with tens of triple
patterns actually hitting only a few thousand triples leads to compilation dom-
inating execution times. A full exploration of all join orders is infeasible, as this
is in the order of factorial of the count of tables and there can easily be 30 or
40 tables. Reuse of plans when the plans differ only in literals is a possibility
and has been tried. This is beneficial in cases but still needs to revalidate if the
cardinality estimates still hold with the new literal values. Exploring plans with

30 P. Boncz et al.

many joins pushed to the build side of a hash join further expands the search
space.

String operations. Since RDF is indexed many ways and arbitrary strings are
allowed everywhere, implementations store unique strings in a dictionary and a
specially tagged reference to the dictionary in the index. Going to the dictionary
makes a scan with a LIKE condition extremely bad, specially if each string is
distinct. Use of a full text index is therefore common.

URI’s. For applications that do lookups, as most RDF applications do, trans-
lating identifiers to their external, usually very long, string form is an RDF-only
penalty. This can be alleviated by doing this as late as possible but specially
string conditions on URI’s are disastrous for performance.

Indexing everything. Since there is usually an indexed access path for every-
thing, space and time are consumed for this. TPC-H 100G loads in SQL in
15 min with no indices other than the primary keys. The 1:1 RDF translation
takes 12 h. This is the worst case of the RDF tax but is limited to bulk load.
Update intensive OLTP applications where this would be worse still are gen-
erally not done in RDF. Of course nobody forces one to index everything but
this adds complexities to query optimization for cases where the predicate is not
known at compile time.

Runtime data typing. This is a relatively light penalty since with vectored
execution it is possible to detect a homogenous vector at runtime and use a typed
data format. If a property is all integers, these can be summed by an integer-
specific function. This usually works since RDF often comes from relational
sources. DBpedia is maybe an exception with very dirty data, but then it is not
large, hence the penalty stays small.

Lack of schema. There is usually no schema or the data does not comply
with it. Therefore optimizations like late projection that are safe in SQL are not
readily applicable. If you take the 10 youngest people and return their birth date,
name and address you cannot defer getting the name and address after the top
10 since there might be people with many names or no names etc. These special
cases complicate the matter but optimizations having to do with top k order
are still possible. Similarly dependencies inside grouping columns in a group by
cannot be exploited because one does not know that these are in fact functional
even if the schema claims so.

Many of these penalties fall away when leaving the triple table format and
actually making physical tables with columns for single valued properties. The
exceptions may still be stored as triples/quads, so this does not represent a return
to schema-first. Physical design, such as storing the same data in multiple orders
becomes now possible since data that are alike occupy their own table. Also n:m
relationships with attributes can be efficiently stored in a table with a multi-part
key while still making this look like triples.

This is further analyzed in a later section of this chapter. Implementation in
Virtuoso is foreseen in the near future.

Advances in Large-Scale RDF Data Management 31

3 Virtuoso Cluster Parallel

Virtuoso’s scale out capability has been significantly upgraded during LOD2.
The advances are as follows:

Elastic partitions. The data is sharded in a large number of self-contained
partitions. These partitions are divided among a number of database server
processes and can migrate between them. Usually each process should have one
partition per hardware thread. Queries are parallelized to have at most one
thread per partition. Partitions may split when growing a cluster. Statistics are
kept per partition for detecting hot spots.

Free-form recursion between partitions. One can write stored procedures
that execute inside a partition and recursively call themselves in another par-
tition, ad infinitum. This is scheduled without deadlocking or running out of
threads. If a procedure waits for its descendant and the descendant needs to
execute something in the waiting procedure’s partition, the thread of the wait-
ing procedure is taken over. In this way a distributed call graph never runs out
of threads but still can execute at full platform parallelism. Such procedures can
be transparently called from queries as any SQL procedures, the engine does the
partitioning and function shipping transparently.

Better vectoring and faster partitioning. Even the non-vectored Virtuoso
cluster combined data for several tuples in messages, thus implementing a sort
of vectoring at the level of interconnect while running scalar inside the nodes.
Now that everything is vectored, the architecture is simpler and more efficient.

More parallel control flows. The basic query execution unit in cluster is a
series of cross partition joins, called DFG (distributed fragment). Each set of
co-located joins forms a stage of the DFG pipeline. Each stage runs one thread
per partition if there is work to do in the partition. The results are partitioned
again and sent onwards. The DFG ends by returning vectors of query variable
bindings to the query coordinator or by feeding them in an aggregation. An
aggregation itself will be partitioned on the highest cardinality grouping key
if the cardinality is high enough. A subsequent DFG can pick the results of a
previous partitioned aggregation and process these through more joins again
with full platform utilization.

Different parallel hash joins. Tables are usually partitioned and in the case
of RDF always partitioned. However, if a hash join build side is small, it is
practical to replicate this into every server process. In this way, what would
be a non-collocated join from foreign key to primary key becomes collocated
because the hash table goes to its user. However, if the probe key is also the
partitioning key of the probe, there is never a need to replicate because the hash
table can be partitioned to be collocated with the probe without replicating. If
the hash table would be large but the probe key is not the partitioning key of
the probing operator, the hash table can still be partitioned. This will require a
message exchange (a DFG stage). However, this is scalable since each server will

32 P. Boncz et al.

only host a fraction of the whole hash table. Selective hash joins have Bloom
filters. Since the Bloom filter is much smaller than the hash table itself, it can
be replicated on all nodes even if the hash table is not. This allows most of
the selectivity to take place before the inter-partition message exchange (DFG
stage).

With SSB, the cluster shows linear throughput gains: 10x the data takes 5x
longer on twice the hardware (see Table 1). This is the case for either RDF or
SQL. The RDF tax is the same for cluster as for single server, as one would
expect.

3.1 Performance Dynamics

Running complex queries such as the BSBM BI workload makes high use of cross
partition joins (DFG) and of nested subqueries. This is a DFG inside a DFG,
where the innermost DFG must run to completion before the invoking stage of
the calling DFG can proceed. An existence test containing a non-collocated set
of joins is an example of such pattern.

We find that message scheduling that must keep track of distributed depen-
dencies between computations becomes a performance bottleneck. Messages can
be relatively fragmented and numerous. Scheduling a message involves a critical
section that can become a bottleneck. In subsequent work this critical section has
been further split. The scheduling itself is complex since it needs to know which
threads are waiting for which operations and whether a descendant operation
ought to take over the parent’s thread or get its own.

All the techniques and observed dynamics apply identically to RDF and SQL
but are worse in RDF because of more joins. Use of hash joins and flattening of
subqueries alleviates many of these problems. Hash joins can save messages by
replicating the hash table, so there are messages only when building the hash
table. In a good query plan this is done on far less data than probing the hash
table.

3.2 Subsequent Development

Virtuoso is at present an excellent SQL column store. This is the prerequisite
for giving RDF performance that is comparable with the best in relational data
warehousing.

The next major step is storing RDF in tables when regular structure is
present. This will be based on the CWI research, described in the next section.
Query plans can be made as for triples but many self-joins can be consolidated at
run time in into a table lookup when the situation allows. Cost model reliability
will also be enhanced since this will know about tables and can treat them as
such.

4 BSBM Benchmark Results

The BSBM (Berlin SPARQL Benchmark) was developed in 2008 as one of the first
open source and publicly available benchmarks for comparing the performance

Advances in Large-Scale RDF Data Management 33

of storage systems that expose SPARQL endpoints such as Native RDF stores,
Named Graph stores, etc. The benchmark is built around an e-commerce use case,
where a set of products is offered by different vendors and consumers have posted
reviews about products. BSBM has been improved over this time and is current on
release 3.1 which includes both Explore and Business Intelligence use case query
mixes, the latter stress-testing the SPARQL1.1 group-by and aggregation func-
tionality, demonstrating the use of SPARQL in complex analytical queries. To
show the performance of Virtuoso cluster version, we present BSBM results [2] on
the V3.1 specification, including both the Explore (transactional) and Business
Intelligence (analytical) workloads (See the full BSBM V3.1 results for all other
systems1).

We note that, comparing to the previously reported BSBM report2 for 200M
triples dataset, this BSBM experiment against 50 and 150 billion triple datasets
on a clustered server architecture represents a major step (750 times more data)
in the evolution of this benchmark.

4.1 Cluster Configuration

We selected the CWI scilens3 cluster for these experiments. This cluster is
designed for high I/O bandwidth, and consists of multiple layers of machines. In
order to get large amounts of RAM, we used only its “bricks” layer, which con-
tains its most powerful machines. Virtuoso V7 Column Store Cluster Edition was
set up on 8 Linux machines. Each machine has two CPUs (8 cores and hyper
threading, running at 2 GHz) of the Sandy Bridge architecture, coupled with
256 GB RAM and three magnetic hard drives (SATA) in RAID 0 (180 MB/s
sequential throughput). The machines were connected through an InfiniBand
Switch (Mellanox MIS5025Q). The cluster setups have 2 processes per machine,
1 for each CPU. A CPU has its own memory controller which makes it a NUMA
node. CPU affinity is set so that each server process has one core dedicated to the
cluster traffic reading thread (i.e. dedicated to network communication) and the
other cores of the NUMA node are shared by the remaining threads. The reason
for this set-up is that communication tasks should be handled with high-priority,
because failure to handle messages delays all threads. These experiments have
been conducted over many months, in parallel to the Virtuoso V7 Column Store
Cluster Edition software getting ready for release. Large part of the effort spent
was in resolving problems and tuning the software.
1 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

results/V7/index.html
2 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

results/V6/index.html
3 This cluster is equipped with more-than-average I/O resources, achieving an Amdahl

number >1. See www.scilens.org.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/index.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V7/index.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V6/index.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/results/V6/index.html
www.scilens.org

34 P. Boncz et al.

4.2 Bulk Loading RDF

The original BSBM data generator was a single-threaded program. Generating
150B triples with it would have taken weeks. We modified the data generator to
be able to generate only a subset of the dataset. By executing the BSBM data
generator in parallel on different machines, each generating a different part of the
dataset, BSBM data generation has become scalable. In these experiments we
generated 1000 data files, and then distributed them to each machine according
to the modulo of 8 (i.e., the number of machine) so that files number 1, 9, ...
go to machine 1, file number 2, 10, ... go to machine 2, and so on. This striping
of the data across the nodes ensures a uniform load, such that all nodes get an
equal amount of similar data (Table 2).

Table 2. BSBM data size and loading statistic

Each machine loaded its local set of files (125 files), using the standard par-
allel bulk-load mechanism of Virtuoso. This means that multiple files are read
at the same time by the multiple cores of each CPU. The best performance
was obtained with 7 loading threads per server process. Hence, with two server
processes per machine and 8 machines, 112 files were being read at the same
time. Also notice that in a cluster architecture there is constant need for com-
munication during loading, since every new URIs and literals must be encoded
identically across the cluster; hence shared dictionaries must be accessed. Thus,
a single loader thread counts for about 250 % CPU across the cluster. The load
was non-transactional and with no logging, to maximize performance. Aggregate
load rates of up to 2.5M quads per second were observed for periods of up to
30 min. The total loading time for the dataset of 50 billion triples is about 6 h
28 min, which makes the average loading speed 2.14M triples per second.

The largest load (150B quads) was slowed down by one machine showing
markedly lower disk write throughput than the others. On the slowest machine
iostat showed a continuous disk activity of about 700 device transactions per sec-
ond, writing anything from 1 to 3 MB of data per second. On the other machines,
disks were mostly idle with occasional flushing of database buffers to disk produc-
ing up to 2000 device transactions per second and 100 MB/s write throughput.
Since data is evenly divided and 2 of 16 processes were not runnable because
the OS had too much buffered disk writes, this could stop the whole cluster for
up to several minutes at a stretch. Our theory is that these problems were being
caused by hardware malfunction.

To complete the 150B load, we interrupted the stalling server processes,
moved the data directories to different drives, and resumed the loading again.
The need for manual intervention, and the prior period of very slow progress
makes it hard to calculate the total time it took for the 150B load.

Advances in Large-Scale RDF Data Management 35

4.3 Notes on the BI Workload

The test driver can run with single-user run or multi-user run, simulating the
cases that one user or multiple users concurrently execute query mixes against
the system under test.

All BSBM BI runs were with minimal disk IO. No specific warm-up was used
and the single user run was run immediately following a cold start of the multi-
user run. The working set of BSBM BI is approximately 3 bytes per quad in
the database. The space consumption without literals and URI strings is 8 bytes
with Virtuoso column store default settings. For a single user run, typical CPU
utilization was around 190 of 256 core threads busy. For a multi-user run, all
core threads were typically busy. Hence we see that the 4 user run takes roughly
3 times the real time of the single user run.

4.4 Benchmark Results

The following terms will be used in the tables representing the results.

• Elapsed runtime (seconds): the total runtime of all the queries excluding the
time for warm-up runs.

• Throughput : the number of executed queries per hour. Throughput = (Total
of executed queries) * (3600 / ElapsedTime) * scaleFactor. Here, the scale
factor for the 50 billion triples dataset and 150 billion triples dataset is 500
and 1500, respectively.

• AQET : Average Query Execution Time (seconds): The average execution time
of each query computed by the total runtime of that query and the number of
executions: AQET(q) = (Total runtime of q) / (number of executions of q).

BI Use Case. Table 3 shows the results for the BI workload. Some results seem
noisy, for instance Q2@50B, Q4@50B, Q4@150B are significantly cheaper in the
multi-client-setup. Given the fact that the benchmark was run in drill-down
mode, this is unexpected. It could be countered by performing more runs, but,
this would lead to very large run-times as the BI workload has many long-running
queries.

In the following, we discuss the above performance result over the query Q2.
Further discussion on other queries can be found in [6].

SELECT ?otherProduct ?sameFeatures {
?otherProduct a bsbm:Product .
FILTER(?otherProduct != %Product%)
{SELECT ?otherProduct (COUNT(?otherFeature) AS ?sameFeatures) {

%Product% bsbm:productFeature ?feature .
?otherProduct bsbm:productFeature ?otherFeature .
FILTER(?feature=?otherFeature)

} GROUP BY ?otherProduct}}
ORDER BY DESC(?sameFeatures) ?otherProduct LIMIT 10

36 P. Boncz et al.

Table 3. BI Use Case: detailed
results (Jan. 2013)

Table 4. BI Use Case:
updated results (Mar. 2013)

BSBM BI Q2 is a lookup for the products with the most features in common
with a given product. The parameter choices (i.e., %Product%) produce a large
variation in run times. Hence the percentage of the query’s timeshare varies
according to the repetitions of this query’s execution. For the case of 4-clients,
this query is executed for 4 times which can be the reason for the difference
timeshare between single-client and 4-client of this query.

The benchmark results in the Table 3 are taken from our experiments running
in January 2013. With more tuning in the Virtuoso software, we have re-run the
benchmark with the dataset of 50B triples. The updated benchmark results in
Table 4 show that the current version of Virtuoso software, namely Virtuoso7-
March2013, can run the BSBM BI with a factor of 2 faster than the old version
(i.e., the Virtuoso software in January). Similar improvement on the benchmark
results is also expected when we re-run the benchmark with the dataset of 150B
triples.

Explore Use Case. We now discuss the performance results in the Explore
workload. We notice that these 4-client results seem more noisy than the single-
client results and therefore it may be advisable in future benchmarking to also
use multiple runs for multi-client tests. What is striking in the Explore results
is that Q5 (see the query below) dominates execution time (Tables 5 and 6).

SELECT DISTINCT ?product ?productLabel WHERE {

?product rdfs:label ?productLabel .

FILTER (%ProductXYZ% != ?product)

%ProductXYZ% bsbm:productFeature ?prodFeature .

?product bsbm:productFeature ?prodFeature .

%ProductXYZ% bsbm:productPropertyNumeric1 ?origProp1 .

?product bsbm:productPropertyNumeric1 ?simProp1 .

FILTER (?simProp1<(?origProp1+120) && ?simProp1>(?origProp1-120))

%ProductXYZ% bsbm:productPropertyNumeric2 ?origProp2 .

Advances in Large-Scale RDF Data Management 37

Table 5. Explore Use Case: detailed results Table 6. Explore Use Case
results: query mixes per
hour

?product bsbm:productPropertyNumeric2 ?simProp2 .

FILTER (?simProp2<(?origProp2+170) && ?simProp2>(?origProp2-170))

} ORDER BY ?productLabel LIMIT 5

Q5 asks for the 5 most similar products to one given product, based on
two numeric product properties (using range selections). It is notable that such
range selections might not be computable with the help of indexes; and/or the
boundaries of both 120 and 170 below and above may lead to many products
being considered ‘similar’. Given the type of query, it is not surprising to see
that Q5 is significantly more expensive than all other queries in the Explore use
case (the other queries are lookups that are index computable. – this also means
that execution time on them is low regardless of the scale factor). In the Explore
use case, most of the queries have the constant running time regardless of the
scale factor, thus computing the throughput by multiplying the qph (queries per
hour) with the scale factor may show a significant increase between the cases of
50 billion and 150 billion triples. In this case, instead of the throughput metric,
it is better to use another metric, namely qmph (number of query mixes per
hour).

5 Emergent Schemas

In this section, we describe solutions for deriving an emergent relational schema
from RDF triples, that one could liken to an UML class diagram. These solutions
have been implemented in the RDF parser of the open-source research column
store, MonetDB, which we call MonetDB/RDF. A more extensive description of
this work can be found in [8].

38 P. Boncz et al.

Our problem description is as follows. Given a (very) large set of RDF triples,
we are looking an emergent schema that describes this RDF data consisting of
classes with their attributes and their literal types, and the relationships between
classes for URI objects, but:
(a) the schema should be compact, hence the amount of classes, attributes and
relationships should be as small as possible, such that it is easily understood by
humans, and data does not get scattered over too many small tables.
(b) the schema should have high coverage, so the great majority of the triples in
the dataset should represent an attribute value or relationship of a class. Some
triples may not be represented by the schema (we call these the “non-regular”
triples), but try to keep this loss of coverage small, e.g. <10 %.
(c) the schema should be precise, so the amount of missing properties for any
subject that is member of such an recognized class is minimized.

Our solution is based on finding Characteristic Sets (CS) of properties that
co-occur with the same subject. We obtain a more compact schema than [10],
by using the TF/IDF (Term Frequency/Inverted Document Frequency) measure
from information retrieval [16] to detect discriminative properties, and using
semantic information to merge similar CS’s. Further, a schema graph of CS’s is
created by analyzing the co-reference relationship statistics between CS’s.

Given our intention to provide users an easy-to-understand emergent schema,
our second challenge is to determine logical and short labels for the classes,
attributes and relationships. For this we use ontology labels and class hierarchy
information, if present, as well as CS co-reference statistics, to obtain class,
attribute and relational labels.

5.1 Step1: Basic CS Discovery

Exploring CS’s. We first identify the basic set of CS’s by making one pass
through all triples in the SPO (Subject, Predicate, Object) table created after
bulk-loading of all RDF triples. These basic CS’s are secondly further split out
into combinations of (property, literal-type), when the object is a literal value.
Thus, for each basic CS found, we may have multiple CS variants, one for each
combination of occurring literal types. We need the information on literal types
because our end objective is RDF storage in relational tables, which allow only
a single type per column.

Exploring CS Relationships. A foreign key (FK) relationship between two
CS’s happens when a URI property of one CS typically refers in the object field
to members of one other CS (object-subject references). Therefore, we make a
second pass over all triples with a non-literal object, look up which basic CS the
reference points, and count the frequencies of the various destination CS’s.

5.2 Step2: Dimension Tables Detection

There tends to be a long tail of infrequently occurring CS’s, and as we want a com-
pact schema, the non-frequent CS’s should be pruned. However, a low-frequency

Advances in Large-Scale RDF Data Management 39

CS which is referred to many times by high-frequency CS’s in fact represents impor-
tant information of the dataset and should be part of the schema. This is similar
to a dimension table in a relational data warehouse, which may be small itself,
but may be referred to by many millions of tuples in large fact tables, over a for-
eign key. However, detecting dimension tables should not be handled just based
on the number of direct relationship references. The relational analogy here are
snowflake schemas, where a finer-grained dimension table like NATION refers to
an even smaller coarse-grained dimension table CONTINENT. To find the tran-
sitive relationships and their relative importance, we use the recursive PageRank
[14] algorithm on the graph formed by all CS’s (vertexes) and relationships (edges).
As a final result, we mark low-frequency CS’s with a high rank as “dimension”
tables, which will protect them later from being pruned.

5.3 Step3: Human-Friendly Labels

When presenting humans with a UML or relational schema, short labels should
be used as aliases for machine-readable and unique URIs for naming classes,
attributes and relationships. For assigning labels to CS’s, we exploit both struc-
tural and semantic information (ontologies).

Type Properties. Certain specific properties (e.g., rdf:type) explicitly specify
the class or concept a subject belongs to. By analyzing the frequency distribution
of different RDF type property values in the triples that belong to a CS, we can
find a class label for the CS. As ontologies usually contain hierarchies, we create
a histogram of type property values per CS that is aware of hierarchies. The
type property value that describes most of the subjects in the CS, but is also
as specific as possible is chosen as the URI of the class. If a ontology class URI
is found, we can use its label as the CS’s label. In Fig. 3, the value “Ship” is
chosen.

Ontologies. Even if no type property is present in the CS, we can still try to
match a CS to an ontology class. We compare the property set of the CS with
the property sets of ontology classes using the TF/IDF similarity score [16].
This method relies on identifying “discriminative” properties, that appear in few
ontology classes only, and whose occurrence in triple data thus gives a strong
hint for the membership of a specific class. An example is shown in Fig. 2.

The ontology class correspondence of a CS, if found, is also used to find labels
for properties of the CS (both for relationships and literal properties).

Relationships between CS’s. If the previous approaches do not apply, we can
look at which other CS’s refer to a CS, and then use the URI of the referring
property to derive a label. For example, a CS that is referred as <author>
indicates that this CS represents instances of a <Author> class. We use the
most frequent relationship to provide a CS label. Figure 4 shows an example of
such “foreign key” names.

URI shortening. If the above solutions cannot provide us a link to ontol-
ogy information, for providing attribute and relationship labels we resort to a

40 P. Boncz et al.

Fig. 2. Example CS vs. ontology class

Fig. 3. CS type property values

Fig. 4. References to a CS

practical fall-back, based on the observation that often property URI values do
convey a hint of the semantics. That is, for finding labels of CS properties we
shorten URIs (e.g., http://purl.org/goodrelations/v1#offers becomes offers),
by removing the ontology prefix (e.g., http://purl.org/goodrelations/v1#) or
simply using the part after the last slash, as suggested by [11].

5.4 Step4: CS Merging

To have a compact schema, we further reduce the number of tables in the emer-
gent relational schema by merging CS’s, using either semantic or structural infor-
mation.

Semantic Merging. We can merge two CS’s on semantic grounds when both
CS class labels that we found were based on ontology information. Obviously,
two CS’s whose label was created using the same ontology class URI represent
the same concept, and thus can be merged. If the labels stem from different
ontology classes we can observe the subclass hierarchy and identify the com-
mon concept/class shared by both CS’s (e.g., <Athlete> is a common class for
<BasketballP layer> and <BaseballP layer>), if any, and then justify whether
these CS’s are similar based on the “generality” of the concept. Here the “gen-
erality” score of a concept is computed by the percentage of instances covered
by it and its subclasses among all the instances covered by that ontology. Two
CS’s whose labels share a non-general ancestor in an ontology class hierarchy
can be merged.

Structural Merging. The structural similarity between two CS’s can be assessed
by using the set of properties in each CS and the found relationships to them with
other CS’s. As original class can be identified based on “discriminating” proper-
ties (based on TF/IDF scoring), we merge two CS if their property sets have a
high TF/IDF similarity score. Additionally, as a subject typically refers to only
one specific entity via a property, we also merge two CS’s which are both referred
from the same CS via the same property.

http://purl.org/goodrelations/v1#offers
http://purl.org/goodrelations/v1

Advances in Large-Scale RDF Data Management 41

5.5 Step5: Schema and Instance Filtering

We now perform final post-processing to clean up and optimize both the schema
and the data instances in it. At part of this phase, all RDF triples are visited
again, and either become stored in relational tables (typically >90 % of the
triples, which we consider regular), and the remainder gets stored separately in
a PSO table. Hence, our final result is a set of relational tables with foreign keys
between them, and a single triple table in PSO format.

Filtering small tables. After the merging process, most of these merged classes
(i.e., surviving merged CS’s) cover a large amount of triples. However, it may
happen that some classes still cover a limited number of RDF subjects, (i.e.
less than 0.1 of all data). As removing these classes will only marginally reduce
coverage, we remove them from the schema (except classes that were recognized
as dimension tables with the described PageRank method). All triples of subjects
belonging to these classes will be moved to the separate PSO table.

Maximizing type homogeneity. Literal object values corresponding to each
attribute in a class can have several different types e.g., number, string, date-
Time, etc. The relational model can only store a single type in each column, so in
case of type diversity multiple columns will be used for a single property. As the
number of columns can be large just due to a few triples having the wrong type
(dirty data), we minimize this number by filtering out all the infrequent literal
types (types that appear in less than 5 % of all object values) for each property.
The triples with infrequent literal types are moved to the separate PSO table.

Minimizing the number of infrequent columns. Infrequent columns are
those that have lots of NULL values. If the property coverage is less than a
certain threshold value (i.e., 5 %), that property is infrequent and all the RDF
triples of that property are treated as irregular data and moved to the separate
PSO table.

Filtering the relationships. We further filter out infrequent or “dirty” rela-
tionships between classes. A relationship between csi and csj is infrequent if the
number of references from csi to csj is much smaller than the frequency of csi
(e.g., less than 1 % of the CS’s frequency). A relationship is considered dirty if
most but not all the object values of the referring class (e.g., csi) refer to the
instances of the referred class (csj). In the former case, we simply remove the
relationship information between two classes. In the latter case, the triples in csi
that do not refer to csj will be filtered out (placed in the separate PSO table).

Multi-valued attributes. The same subject may have 0, 1 or even multiple
triples with the same property, which in our schema leads to an attribute with
cardinality >1. While this is allowed in UML, direct storage of such values is not
possible in relational databases. Practitioners handle this by creating a separate
table that contains the primary key (subject oid) and the value (which given
literal type diversity may be multiple columns). The MonetDB/RDF system
does this, but only creates such separate storage if really necessary. That is, we
analyze the mean number of object values (meanp) per property. If the meanp

42 P. Boncz et al.

of a property p is not much greater than 1 (e.g., less than 1.1), we consider
p as a single-valued property and only keep the first value of that property
while moving all the triples with other object values of this property to the non-
structural part of the RDF dataset. Otherwise, we will add a table for storing
all the object values of each multi-valued property.

5.6 Final Schema Evaluation

For evaluating the quality of the final schema, we have conducted extensive
experiments over a wide range of real-world and synthetic datasets (i.e., DBpe-
dia4, PubMed5, DBLP6, MusicBrainz7, EuroStat8, BSBM9, SP2B10, LUBM11

and WebDataCommons12). The experimental results in Table 7 show that we
can derive a compact schema from each dataset with a relative small number of
tables. We see that the synthetic RDF benchmark data (BSBM, SP2B, LUBM) is
fully relational, and also all dataset with non-RDF roots (PubMed, MusicBrainz,
EuroStat) get >99% coverage. Most surprisingly, the RDFa data that dominates
WebDataCommons and even DBpedia are more than 90 % regular.

Table 7. Number of tables and coverage percentage after merging & filtering steps

Labeling Evaluation. We evaluate the quality of the labels in the final schema
by showing the schema of DBpedia and WebDataCommons (complex and, may
be, “dirty” datasets) to 19 humans. The survey asking for rating label quality
4 http://dbpedia.org - we used v3.9.
5 http://www.ncbi.nlm.nih.gov/pubmed
6 http://gaia.infor.uva.es/hdt/dblp-2012-11-28.hdt.gz
7 http://linkedbrainz.c4dmpresents.org/data/musicbrainz ngs dump.rdf.ttl.gz
8 http://eurostat.linked-statistics.org
9 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

10 http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
11 http://swat.cse.lehigh.edu/projects/lubm/
12 A 100M triple file of http://webdatacommons.org.

http://dbpedia.org
http://www.ncbi.nlm.nih.gov/pubmed
http://gaia.infor.uva.es/hdt/dblp-2012-11-28.hdt.gz
http://linkedbrainz.c4dmpresents.org/data/musicbrainz_ngs_dump.rdf.ttl.gz
http://eurostat.linked-statistics.org
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
http://swat.cse.lehigh.edu/projects/lubm/
http://webdatacommons.org

Advances in Large-Scale RDF Data Management 43

with the 5-point Likert scale from 1 (bad) to 5 (excellent) shows that 78 (Web-
DataCommons) and 90 % (DBpedia) of the labels are rated with 4 points (i.e.,
“good”) or better.

Computational cost & Compression. Our experiments also show that the
time for detecting the emerging schema is negligible comparing to bulk-loading
time for building a single SPO table, and thus the schema detection process
can be integrated into the bulk-loading process without any recognizable delay.
Additionally, the database size stored using relational tables can be 2x smaller
than the database size of a single SPO triple table since in the relational repre-
sentation the S and P columns effectively get compressed away and only the O
columns remain.

Final words. We think the emergent schema detection approach we developed
and evaluated is promising. The fact that all tested RDF datasets turned out
highly regular, and that good labels for them could be found already provides
immediate value, since MonetDB/RDF can now simply be used to load RDF
data in a SQL system; hence existing SQL applications can now be leveraged on
RDF without change. We expect that all systems that can store both RDF and
relational data (this includes besides Virtuoso also the RDF solutions by Oracle
and IBM) could incorporate the possibility to load RDF data and query it both
from SQL and SPARQL.

Future research is to verify the approach on more RDF dataset and further
tune the recognition algorithms. Also, the second and natural step is now to
make the SPARQL engine aware of the emergent schema, such that its query
optimization can become more reliable and query execution can reduce the join
effort in evaluating so-called SPARQL star-patterns. In benchmarks like LUBM
and BSBM our results show that SPARQL systems could become just as fast as
SQL systems, but even on “real” RDF datasets like DBpedia 90 % of join effort
can likely be accelerated. Work is underway to verify this both in MonetDB and
Virtuoso.

6 Conclusion

In this chapter we have described the advanced column store techniques and
architectural ideas implemented in Virtuoso RDF store and its cluster edition,
which help reduce the “RDF tax” by an order of magnitude (i.e., from 150 to
2.5). Extensive experiments using the BSBM benchmark on both short-running
index lookup queries (the Explore use case) and the complex analytical queries
(the BI use case) demonstrate that the new cluster architecture allows to perform
RDF data management on a unprecedented scale (i.e., 150 billion triples).

In addition to the promising approach of exploiting the column store tech-
niques, which significantly reduces the “RDF tax”, to make the performances
of SPARQL and SQL systems converge, RDF store needs to be aware of the
actual structure of RDF data, allowing it to decrease the inherent large num-
ber of self-joins and making query optimization more reliable. For that, we have

44 P. Boncz et al.

presented practical techniques for discovering an emergent relational schema in
RDF dataset, that recovers a compact and precise relational schema with high
coverage and useful labels as alias for all machine-readable URIs (which it pre-
serves). The emergent schemas not only open up many opportunities to improve
physical data indexing for RDF, but also respect the schema-last nature of the
semantic web as being automatically detected. Implementation of these tech-
niques will soon be realized in Virtuoso, and hopefully will close the performance
gap between the SPARQL and SQL systems.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution Noncommercial License, which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

References

1. Abadi, J.: Query execution in column-oriented database systems, MIT Ph.D. thesis
(2008)

2. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf.
Syst. (IJSWIS) 5(2), 1–24 (2009)

3. Boncz, P., Neumann, T., Erling, O.: TPC-H analyzed: hidden messages and lessons
learned from an influential benchmark. In: Nambiar, R., Poess, M. (eds.) TPCTC
2013. LNCS, vol. 8391, pp. 61–76. Springer, Heidelberg (2014)

4. IBM DB2. www.ibm.com/software/data/db2/
5. Erling, O.: Virtuoso, a hybrid RDBMS/graph column store. IEEE Data Eng. Bull.

35(1), 3–8 (2012)
6. Harth, A., Hose, K., Schenkel, R.: Linked Data Management. CRC Press, Boca

Raton (2014)
7. Lamb, A., et al.: The vertica analytic database: C-store 7 years later. Proc. VLDB

Endowment 5, 1790–1801 (2012)
8. Minh-Duc, P., et al.: Deriving an emergent relational schema from RDF data. In:

ISWC (submitted) (2014)
9. MonetDB column store. https://www.monetdb.org/

10. Neumann, T., et al.: Characteristic sets: accurate cardinality estimation for RDF
queries with multiple joins. In: ICDE (2011)

11. Neumayer, R., Balog, K., Nørv̊ag, K.: When simple is (more than) good enough:
effective semantic search with (almost) no semantics. In: Baeza-Yates, R., de Vries,
A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.)
ECIR 2012. LNCS, vol. 7224, pp. 540–543. Springer, Heidelberg (2012)

12. O’Neil, P., et al.: The star schema benchmark (SSB). PAT (2007)
13. Openlink Software Blog. http://www.openlinksw.com/weblog/oerling/
14. Page, L., et al.: The pagerank citation ranking: bringing order to the web. Technical

report, Stanford InfoLab (1999)
15. Pham, M.-D.: Self-organizing structured RDF in MonetDB. In: ICDE Workshops

(2013)
16. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-

Hill, New York (1983)
17. Tsialiamanis, P., et al.: Heuristics-based query optimisation for SPARQL. In:

EDBT (2012)
18. Zukowski, M., Boncz, P.A.: Vectorwise: beyond column stores. IEEE Data Eng.

Bull 35(1), 21–27 (2012)

www.ibm.com/software/data/db2/
https://www.monetdb.org/
http://www.openlinksw.com/weblog/oerling/

Knowledge Base Creation, Enrichment
and Repair

Sebastian Hellmann1(B), Volha Bryl2, Lorenz Bühmann1, Milan Dojchinovski4,
Dimitris Kontokostas1, Jens Lehmann1, Uroš Milošević3, Petar Petrovski2,

Vojtěch Svátek4, Mladen Stanojević3, and Ondřej Zamazal4

1 University of Leipzig, Leipzig, Germany
{hellmann,buehmann,kontokostas,lehmann}@informatik.uni-leipzig.de

2 University of Mannheim, Mannheim, Germany
{volha,petar}@informatik.uni-mannheim.de
3 Institute Mihajlo Pupin, Belgrade, Serbia

{uros.milosevic,mladen.stanojevic}@pupin.rs
4 University of Economics Prague, Prague, Czech Republic
{milan.dojchinovski,svatek,ondrej.zamazal}@vse.cz

Abstract. This chapter focuses on data transformation to RDF and
Linked Data and furthermore on the improvement of existing or extra-
cted data especially with respect to schema enrichment and ontology
repair. Tasks concerning the triplification of data are mainly grounded on
existing and well-proven techniques and were refined during the lifetime
of the LOD2 project and integrated into the LOD2 Stack. Triplification
of legacy data, i.e. data not yet in RDF, represents the entry point for
legacy systems to participate in the LOD cloud. While existing systems
are often very useful and successful, there are notable differences between
the ways knowledge bases and Wikis or databases are created and used.
One of the key differences in content is in the importance and use of
schematic information in knowledge bases. This information is usually
absent in the source system and therefore also in many LOD knowledge
bases. However, schema information is needed for consistency checking
and finding modelling problems. We will present a combination of enrich-
ment and repair steps to tackle this problem based on previous research
in machine learning and knowledge representation. Overall, the Chapter
describes how to enable tool-supported creation and publishing of RDF
as Linked Data (Sect. 1) and how to increase the quality and value of
such large knowledge bases when published on the Web (Sect. 2).

1 Linked Data Creation and Extraction

1.1 DBpedia, a Large-Scale, Multilingual Knowledge Base
Extracted from Wikipedia

Wikipedia is the 6th most popular website1, the most widely used encyclopedia,
and one of the finest examples of truly collaboratively created content. There are
1 http://www.alexa.com/topsites. Retrieved in May 2014.

c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 45–69, 2014.
DOI: 10.1007/978-3-319-09846-3 3

http://www.alexa.com/topsites

46 S. Hellmann et al.

official Wikipedia editions in 287 different languages which range in size from a
couple of hundred articles up to 3.8 million articles (English edition)2. Besides of
free text, Wikipedia articles consist of different types of structured data such as
infoboxes, tables, lists, and categorization data. Wikipedia currently offers only
free-text search capabilities to its users. Using Wikipedia search, it is thus very
difficult to find all rivers that flow into the Rhine and are longer than 100 km,
or all Italian composers that were born in the 18th century.

Fig. 1. Overview of DBpedia extraction framework

The DBpedia project [9,13,14] builds a large-scale, multilingual knowledge
base by extracting structured data from Wikipedia editions in 111 languages.
Wikipedia editions are extracted by the open source “DBpedia extraction frame-
work” (cf. Fig. 1). The largest DBpedia knowledge base which is extracted from
the English edition of Wikipedia consists of over 400 million facts that describe
3.7 million things. The DBpedia knowledge bases that are extracted from the
other 110 Wikipedia editions together consist of 1.46 billion facts and describe
10 million additional things. The extracted knowledge is encapsulated in mod-
ular dumps as depicted in Fig. 2. This knowledge base can be used to answer
expressive queries such as the ones outlined above. Being multilingual and cov-
ering an wide range of topics, the DBpedia knowledge base is also useful within
further application domains such as data integration, named entity recognition,
topic detection, and document ranking.

The DBpedia knowledge base is widely used as a test-bed in the research
community and numerous applications, algorithms and tools have been built
around or applied to DBpedia. Due to the continuous growth of Wikipedia and
2 http://meta.wikimedia.org/wiki/List of Wikipedias

http://meta.wikimedia.org/wiki/List_of_Wikipedias

Knowledge Base Creation, Enrichment and Repair 47

Fig. 2. Overview of the DBpedia data stack.

improvements in DBpedia, the extracted data provides an increasing added value
for data acquisition, re-use and integration tasks within organisations. While the
quality of extracted data is unlikely to reach the quality of completely manually
curated data sources, it can be applied to some enterprise information integration
use cases and has shown to be relevant in several applications beyond research
projects. DBpedia is served as Linked Data on the Web. Since it covers a wide
variety of topics and sets RDF links pointing into various external data sources,
many Linked Data publishers have decided to set RDF links pointing to DBpedia
from their data sets. Thus, DBpedia became a central interlinking hub in the
Web of Linked Data and has been a key factor for the success of the Linked
Open Data initiative.

The structure of the DBpedia knowledge base is maintained by the DBpe-
dia user community. Most importantly, the community creates mappings from
Wikipedia information representation structures to the DBpedia ontology. This
ontology unifies different template structures, both within single Wikipedia lan-
guage editions and across currently 27 different languages. The maintenance of
different language editions of DBpedia is spread across a number of organisa-
tions. Each organisation is responsible for the support of a certain language.
The local DBpedia chapters are coordinated by the DBpedia Internationalisa-
tion Committee. The DBpedia Association provides an umbrella on top of all the
DBpedia chapters and tries to support DBpedia and the DBpedia Contributors
Community.

1.2 RDFa, Microdata and Microformats Extraction Framework

In order to support web applications to understand the content of HTML pages,
an increasing number of websites have started to semantically markup their

48 S. Hellmann et al.

pages, that is, embed structured data describing products, people, organizations,
places, events, etc. into HTML pages using such markup standards as Microfor-
mats3, RDFa4 and Microdata5. Microformats use style definitions to annotate
HTML text with terms from a fixed set of vocabularies, RDFa allows embedding
any kind of RDF data into HTML pages, and Microdata is part of the HTML5
standardization effort allowing the use of arbitrary vocabularies for structured
data.

The embedded data is crawled together with the HTML pages by search
engines, such as Google, Yahoo! and Bing, which use these data to enrich their
search results. Up to now, only these companies were capable of providing
insights [15] into the amount as well as the types of data that are published
on the web using different markup standards as they were the only ones possess-
ing large-scale web crawls. However, the situation changed with the advent of
the Common Crawl6, a non-profit foundation that crawls the web and regularly
publishes the resulting corpora for public usage on Amazon S3.

For the purpose of extracting structured data from these large-scale web
corpora we have developed the RDFa, Microdata and Microformats extraction
framework that is available online7.

The extraction consists of the following steps. Firstly, a file with the crawled
data, in the form of ARC or WARC archive, is downloaded from the storage.
The archives usually contain up to several thousands of archived web pages. The
framework relies on the Anything To Triples (Any23)8 parser library for extract-
ing RDFa, Microdata, and Microformats from HTML content. Any23 outputs
RDF quads, consisting of subject, predicate, object, and a URL which identifies
the HTML page from which the triple was extracted. Any23 parses web pages
for structured data by building a DOM tree and then evaluates XPath expres-
sions to extract the structured data. As we have found that the tree generation
accounts for much of the parsing cost, we have introduced the filtering step: We
run regular expressions against each archived HTML page prior to extraction to
detect the presence of structured data, and only run the Any23 extractor when
potential matches are found. The output of the extraction process is in NQ (RDF
quads) format.

We have made available two implementations of the extraction framework,
one based on the Amazon Web Services, and the second one being a Map/Reduce
implementation that can be run over any Hadoop cluster. Additionally, we pro-
vide a plugin to the Apache Nutch crawler allowing the user to configure the
crawl and then extract structured data from the resulting page corpus.

To verify the framework, three large scale RDFa, Microformats and Micro-
data extractions have been performed, corresponding to the Common Crawl
3 http://microformats.org/
4 http://www.w3.org/TR/xhtml-rdfa-primer/
5 http://www.w3.org/TR/microdata/
6 http://commoncrawl.org/
7 https://subversion.assembla.com/svn/commondata/
8 https://any23.apache.org/

http://microformats.org/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/microdata/
http://commoncrawl.org/
https://subversion.assembla.com/svn/commondata/
https://any23.apache.org/

Knowledge Base Creation, Enrichment and Repair 49

data from 2009/2010, August 2012 and November 2013. The results of the 2012
and 2009/2010 are published in [2] and [16], respectively. Table 1 presents the
comparative summary of the three extracted datasets. The table reports the
number and the percentage of URLs in each crawl containing structured data,
and gives the percentage of these data represented using Microformats, RDFa
and Microdata, respectively.

Table 1. Large-scale RDF datasets extracted from Common Crawl (CC): summary

CC 2009/2010 CC August 2012 CC November 2013

Size(TB), compressed 28.9 40.1 44

Size, URLs 2,565,741,671 3,005,629,093 2,224,829,946

Size, Domains 19,113,929 40,600,000 12,831,509

Parsing cost, USD 576 398 263

Structured data, 147,871,837 369,254,196 585,792,337
URLs with triples

Structured data, in % 5.76 12.28 26.32

Microformats, in % 96.99 70.98 47.48

RDFa, in % 2.81 22.71 26.48

Microdata, in % 0.2 6.31 26.04

Average num. of 3.35 4.05 4.04
triples per URL

The numbers illustrate the trends very clearly: in the recent years, the amount
of structured data embedded into HTML pages keeps increasing. The use of
Microformats is decreasing rapidly, while the use of RDFa and especially Micro-
data standards has increased a lot, which is not surprising as the adoption of the
latter is strongly encouraged by the biggest search engines. On the other hand,
the average number of triples per web page (only pages containing structured
data are considered) stays the same through the different version of the crawl,
which means that the data completeness has not changed much.

Concerning the topical domains of the published data, the dominant ones are:
persons and organizations (for all three formats), blog- and CMS-related meta-
data (RDFa and Microdata), navigational metadata (RDFa and Microdata),
product data (all three formats), and event data (Microformats). Additional topi-
cal domains with smaller adoption include job postings (Microdata) and recipes
(Microformats). The data types, formats and vocabularies seem to be largely
determined by the major consumers the data is targeted at. For instance, the
RDFa portion of the corpora is dominated by the vocabulary promoted by Face-
book, while the Microdata subset is dominated by the vocabularies promoted by
Google, Yahoo! and Bing via schema.org.

50 S. Hellmann et al.

More detailed statistics on the three corpora are available at the Web Data
Commons page9.

By publishing the data extracted from RDFa, Microdata and Microformats
annotations, we hope on the one hand to initialize further domain-specific studies
by third parties. On the other hand, we hope to lay the foundation for enlarging
the number of applications that consume structured data from the web.

1.3 Rozeta

The ever-growing world of data is largely unstructured. It is estimated that
information sources such as books, journals, documents, social media content
and everyday news articles constitute as much as 90 % of it. Making sense of all
this data and exposing the knowledge hidden beneath, while minimizing human
effort, is a challenging task which often holds the key to new insights that can
prove crucial to one’s research or business. Still, understanding the context, and
finding related information are hurdles that language technologies are yet to
overcome.

Rozeta is a multilingual NLP and Linked Data tool wrapped around STRU-
TEX, a structured text knowledge representation technique, used to extract
words and phrases from natural language documents and represent them in a
structured form. Originally designed for the needs of Wolters Kluwer Deutsch-
land, for the purposes of organizing and searching through their database of court
cases (based on numerous criteria, including case similarity), Rozeta provides
automatic extraction of STRUTEX dictionaries in Linked Data form, seman-
tic enrichment through link discovery services, a manual revision and authoring
component, a document similarity search tool and an automatic document clas-
sifier (Fig. 3).

1.3.1 Dictionary Management
The Rozeta dictionary editor (Fig. 4) allows for a quick overview of all dictio-
nary entries, as well as semi-automatic (supervised) vocabulary enrichment/link
discovery and manual cleanup. It provides a quick-filter/AJAX search box that
helps users swiftly browse through the dictionary by retrieving the entries that
start with a given string, on-the-fly. The detailed view for a single entry shows
its URI, text, class, any existing links to relevant LOD resources, as well as links
to the files the entry originated from. Both the class and file origin information
can be used as filters, which can help focus one’s editing efforts on a single class
or file, respectively.

To aid the user in enriching individual entries with links to other relevant
linked data sources, Wiktionary2RDF recommendations are retrieved automat-
ically. The user can opt for one of the available properties (skos:exactMatch
and skos:relatedMatch) or generate a link using a custom one. Furthermore,
the Custom link and More links buttons give the user the ability to link the
9 http://webdatacommons.org

http://webdatacommons.org

Knowledge Base Creation, Enrichment and Repair 51

Fig. 3. Rozeta: dictionary selection

Fig. 4. Rozeta: dictionary management

52 S. Hellmann et al.

selected dictionary phrase to any LOD resource, either manually, or by letting
the system provide them with automatic recommendations through one of the
available link discovery services, such as Sindice or a custom SPARQL endpoint.

Fig. 5. Rozeta: text annotation and enrichment

1.3.2 Text Annotation and Enrichment
The text annotation and enrichment module, used for highlighting the learned
vocabulary entries in any natural language document and proposing potential
links through custom services, can be launched from the dictionary editor, or
used as a stand-alone application.

The highlighted words and phrases hold links to the corresponding dictionary
entry pages, as well as linking recommendations from DBpedia Spotlight, or
custom SPARQL endpoints (retrieved on-the-fly; sources are easily managed
through an accompanying widget). The pop-up widget also generates quick-link
buttons (skos:exactMatch and skos:relatedMatch) for linking the related entries
to recommended Linked Open Data resources (Fig. 5).

2 Analysis, Enrichment and Repair of Linked Data with
ORE Tool

The ORE tool supports knowledge engineers in enriching the schema of OWL
based knowledge bases, either accessible as file or via SPARQL. Additionally, it

Knowledge Base Creation, Enrichment and Repair 53

allows for the detection and repair of logical errors as well as the validation of
instance data by defining constraints in forms of OWL axioms. ORE also inte-
grates the PaOMat framework (see Sect. 3), thus, it allows for the detection and
repair of naming issues. The ORE tool is published as an open source project10,11.

2.1 Logical Debugging

2.1.1 Motivation
Along with the uptake of Semantic Web technologies, we observe a steady
increase of the amount of available OWL ontologies as well as an increase of
the complexity of such ontologies. While the expressiveness of OWL is indeed
a strong feature, it can also lead to a misunderstanding and misusage of par-
ticular types of constructs in the language. In turn, this can lead to modeling
errors in the ontology, i.e. inconsistency or unsatisfiable classes. Inconsistency,
in simple terms, is a logical contradiction in the knowledge base, which makes
it impossible to derive any meaningful information by applying standard OWL
reasoning techniques. Unsatisfiable classes usually are a fundamental modeling
error, in that they cannot be used to characterize any individual, that means
they cannot have any individual.

Both kinds of modeling errors are quite easy to detect by standard OWL rea-
soners, however, determining why the errors hold can be a considerable challenge
even for experts in the formalism and in the domain, even for modestly sized
ontologies. The problem worsens significantly as the number and complexity of
axioms of the ontology grows. Clearly, only with the understanding of why such
an undesired entailment holds, it is possible to get rid of the errors, i.e. to repair
the ontology.

In the area of ontology debugging, a specific type of explanation called justifi-
cations [1,7,8,18] was introduced by the research community, which is basically
a minimal subset of the ontology that is sufficient for the entailment to hold.
The set of axioms corresponding to the justification is minimal in the sense that
if an axiom is removed from the set, the remaining axioms no longer support the
entailment. One such justification could be the following example, which gives
an explanation why the class metal is unsatisfiable.

2.1.2 Support in ORE
The debugging view for OWL ontologies (see Fig. 6), here described for unsatisfi-
able classes, consists mainly of four parts: The first part on the left side (1©) gives

10 http://ore-tool.net/Projects/ORE
11 https://github.com/AKSW/ORE

http://ore-tool.net/Projects/ORE
https://github.com/AKSW/ORE

54 S. Hellmann et al.

Fig. 6. Screenshot of the debugging view for OWL ontologies.

a list of the unsatisfiable classes which were detected in the selected knowledge
base. In this list itself, root unsatisfiable classes, i.e. classes which unsatisfiability
does not depend on the unsatisfiability of other classes, are tagged with “Root”.
Usually, in a repair process it is recommended to handle such root unsatisfi-
able classes first, as other conflicts will be solved then too. The second main
part contains the presentation of the explanations, which are computed once
an unsatisfiable class is selected, and shown as tables (3©). In addition to the
axioms of the justification, each of the tables contains two metrics which give
some insights into how an axiom is involved in other justifications (frequency)
and how strong an axiom is connected in the ontology (usage), both metrics
finally aggregated in total score (score). The menu (2©) allows for the choice
between the computation of regular or laconic justifications as well as for the
limitation of the maximum number of computed justifications. Furthermore, it
gives the option to show an aggregated view of all the axioms contained in the
computed justifications, compared to the presentation of each justification in
its own table. In the third part (4©) - the repair plan - a list of all changes a
user has chosen in order to repair the knowledge base is displayed. The changes
can either be the removal or addition of axioms and will be executed once a
user has decided to do so by clicking the “Execute” button. The last part of
the debugging view, located at the bottom right (5©), contains an outline of the
effects the changes of the repair plan would have to the knowledge base, i.e. it
contains lost and retained entailments. If an entailment is found to be lost when
executing the repair plan, it is possible to add an axiom to the knowledge base
which retains that entailment. This part is only available during the debugging of
unsatisfiable classes, as it is (currently) impossible to compute such entailments
in inconsistent knowledge bases.

Knowledge Base Creation, Enrichment and Repair 55

2.2 Schema Enrichment

2.2.1 Motivation
The Semantic Web has recently seen a rise in the availability and usage of knowl-
edge bases, as can be observed within the Linking Open Data Initiative, the
TONES and Protégé ontology repositories, or the Watson search engine. Despite
this growth, there is still a lack of knowledge bases that consist of sophisticated
schema information and instance data adhering to this schema. Several knowl-
edge bases, e.g. in the life sciences, only consist of schema information, while
others are, to a large extent, a collection of facts without a clear structure,
e.g. information extracted from data bases or texts. The combination of sophis-
ticated schema and instance data would allow powerful reasoning, consistency
checking, and improved querying possibilities. Schema enrichment allows to cre-
ate a sophisticated schema base based on existing data (sometimes referred to
as “grass roots” approach or “after the fact” schema creation).

Example 1. As an example, consider a knowledge base containing a class
Capital and instances of this class, e.g. London, Paris, Washington, Canberra,
etc. A machine learning algorithm could, then, suggest that the class Capital
may be equivalent to one of the following OWL class expressions in Manchester
OWL syntax12:

Both suggestions could be plausible: The first one is more general and includes
cities that are capitals of states, whereas the latter one is stricter and limits the
instances to capitals of countries. A knowledge engineer can decide which one is
more appropriate, i.e. a semi-automatic approach is used, and the machine learn-
ing algorithm should guide the user by pointing out which one fits the existing
instances better.

Assuming the knowledge engineer decides for the latter, an algorithm can
show the user whether there are instances of the class Capital which are neither
instances of City nor related via the property isCapitalOf to an instance of
Country.13 The knowledge engineer can then continue to look at those instances
and assign them to a different class as well as provide more complete information;
thus improving the quality of the knowledge base. After adding the definition
of Capital, an OWL reasoner can compute further instances of the class which
have not been explicitly assigned before.
12 For details on Manchester OWL syntax (e.g. used in Protégé, OntoWiki) see http://

www.w3.org/TR/owl2-manchester-syntax/.
13 This is not an inconsistency under the standard OWL open world assumption, but

rather a hint towards a potential modelling error.

http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/

56 S. Hellmann et al.

Fig. 7. Screenshot of the enrichment view for SPARQL knowledge bases.

2.2.2 Support in ORE
The enrichment view for SPARQL knowledge bases(see Fig. 7), can be subdi-
vided into two main parts: The first part on the left side (1©) allows for con-
figuring the enrichment process like to denote for which entity and which types
ORE will search for schema axioms. The second part on the right side(2©) shows
the generated axiom suggestions as well as their confidence score for each cho-
sen axiom type in forms of tables. Additionally, it is possible to get some more
details about the confidence score by clicking on the question mark symbol(?).
This shows up a new dialog as shown in Fig. 8. The dialog gives some natural
language based explanation about the F-score depending on the axiom type.
Moreover, positive and negative examples (if exists) according to the axiom are
shown, thus, giving some more detailed insights in how the axiom fits the data
of the knowledge base.

2.3 Constraint Based Validation

2.3.1 Motivation
Integrity constraints provide a mechanism for ensuring that data conforms to
guidelines specified by the defined schema. The demand for validating instance
data as in relational databases or XML tools also holds for knowledge modeled
in languages of the Semantic Web.

Knowledge Base Creation, Enrichment and Repair 57

Fig. 8. Screenshot of confidence score explanation in enrichment view for SPARQL
knowledge bases.

In some use cases and for some requirements, OWL users assume and intend
OWL axioms to be interpreted as Integrity Constraints. However, the direct
semantics of OWL14 does not interpret OWL axioms in this way; thus, the
consequences that one can draw from such ontologies differ from the ones that
some users intuitively expect and require. In other words, some users want to
use OWL as a validation or constraint language for RDF instance data, but that
is not possible using OWL based tools that correctly implement the standard
semantics of OWL.

To see the nature of the problem, consider an OWL ontology that describes
terms and concepts regarding a book store. The ontology includes the classes Book
and Writer, the object property hasAuthor, and the data property hasISBN. Sup-
pose we want to impose the following ICs on the data:

1. Each book must have an ISBN
2. Only books can have ISBNs
3. Books must not have more than one author
14 http://www.w3.org/TR/owl2-direct-semantics/

http://www.w3.org/TR/owl2-direct-semantics/

58 S. Hellmann et al.

These constraints could be interpreted in the following way:
Whenever an instance bookX of Book is added to the ontology, a check should

be performed to verify whether the ISBN of bookX has been specified; if not,
the update should be rejected. Whenever a fact <bookX, hasISBN, ISBNX> is
added to the ontology, a check should be performed to verify whether bookX
is an instance of Book; if not, the update should be rejected. Whenever a fact
<bookX, hasAuthor, writerX> is added to the ontology, a check should be
performed to verify whether another writer writerY has been specified for bookX;
if so, the update should be rejected. These constraints can be concisely and
unambiguously represented as OWL axioms:

However, these axioms will not be interpreted as checks by tools which imple-
ment the standard OWL semantics. In fact, according to the standard OWL
semantics, we have that:

1. Having a book without an ISBN in the ontology does not raise an error, but
leads to the inference that the book in question has an unknown ISBN. (by
axiom 1)

2. Having a fact <bookA, hasISBN, ISBN1> in the ontology without bookA
being an instance of Book does not raise an error, but leads to the inference
that bookA is an instance of Book. (by axiom 2)

3. Having a fact <bookA, hasAuthor, writerA> having specified a previous
writer writerB for bookA does not raise an error, but leads to the inference
that writerA and writerB denote the same individual. (by axiom 3)

In some cases, users want these inferences; but in others, users want integrity
constraint violations to be detected, reported, repaired, etc.

One approach for using OWL as an expressive schema language, but giving
it an alternative semantics such that OWL axioms can be used as ICs, was pro-
posed in [20]. The idea behind it is to interpret OWL axioms with Closed World
Assumption (CWA) and a weak form of Unique Name Assumption (UNA).
Assuming a CWA interpretation basically means that an assertion is false if it is
not explicitly known it is true or false. Weak UNA means that if two individuals
are not inferred to be the same, then they will be assumed to be distinct. Based
on these assumptions, translating an OWL axiom into one or more SPARQL
queries is suggested to validate the given constraint. This approach is integrated
in ORE, thus, it is possible to define and validate ICs by reusing OWL as a
language.

Knowledge Base Creation, Enrichment and Repair 59

Fig. 9. Screenshot of constraint validation view.

2.3.2 Support in ORE
Basically, the constraint validation view (see Fig. 9) consists of two parts. In the
upper table (1©) the user can define a list of constraints by adding OWL axioms,
here for instance that the object properties birthPlace and team are disjoint, i.e.
there are no pairs of instances that are related by both properties. The bottom
part (2©) is used to visualize violations of the given constraints. In the example
on Fig. 9, it was found that Pat Critchley was born in Port Laoise, but also
was a team member of it, which is obviously a contradiction to the disjointness
statement.

3 Ontology Repair with PatOMat

The PatOMat is a pattern-based ontology transformation framework specifi-
cally designed for OWL ontologies [23]. By applying transformation it enables
a designer to modify the structure of an ontology or its fragments to make it
more suitable for a target application. While it can adapt any ontology aspect
(logical, structural, naming or annotation aspect), within the context of LOD2
project the PatOMat focuses on ontology naming aspect.

During the decades of knowledge engineering research, there has been recur-
rent dispute on how the natural language structure influences the structure of
formal knowledge bases and vice versa. A large part of the community seems
to recognise that the content expressed in formal representation languages, such
as the semantic web ones, should be accessible not only to logical reasoning
machines but also to humans and NLP procedures, and thus resemble the nat-
ural language as much as possible [17].

Often, an ontology naming practice can be captured as a naming pattern.
For instance, it is quite common in ontologies that a subclass has the same

60 S. Hellmann et al.

head noun as its parent class (Non-Matching Child Pattern).15 By an earlier
study [22] it was estimated that in ontologies for technical domains this simple
pattern is verified in 50–80 % of class-subclass pairs such that the subclass name
is a multi-token one. This number further increases if one considers thesaurus
correspondence (synonymy and hypernymy) rather than literal string equality.
In fact, the set-theoretic nature of taxonomic path entails that the correspon-
dence of head nouns along this path should be close to 100 % in principle; the
only completely innocent deviations from it should be those caused by incom-
plete thesauri. In other words, any violation of head noun correspondence may
potentially indicate a (smaller or greater) problem in the ontology. Prototypical
situations are:

• Inadequate use of class-subclass relationship, typically in the place of whole-
part or class-instance relationship, i.e., a conceptualisation error frequently
occurring in novice ontologies.

• Name shorthanding, typically manifested by use of adjective, such as “State-
Owned” (subclass of “Company”).

While the former requires complex refactoring of the ontology fragment, the
latter can be healed by propagation of the parent name down to the child name.

While in the biomedical field there have already been efforts in naming analy-
sis, e.g., in [6,19], naming in the broad field of linked data vocabularies (where
domain- specific heuristics cannot be applied) has rarely been addressed.

A pattern in the PatOMat framework, called transformation, consists of three
parts: two ontology patterns (source OP and target OP) and the description of
the transformation between them, called pattern transformation (PT). Naming
pattern, such as non-matching child pattern, can be captured by specifying vio-
lation of a naming pattern to be detected (i.e. source OP) and its refactored
variant (e.g. non-matching child pattern as target OP). Transformation patterns
can be designed directly as XML files or by using graphical editor. For general
usage the framework can be applied directly from the code by importing the
PatOMat Java library16 or by using Graphical User Interface for Pattern-based
Ontology Transformation [21].

Naming issue detection and repair is supported by integrating the PatOMat
framework into the ORE. The whole process is basically done in three subsequent
steps, all of them visualized in a single view shown in Fig. 10. Here the user
can select a naming pattern in the leftmost list (1©). PatOMat then detects
instances of the selected pattern in the currently loaded ontology, e.g. [?OP1P =
Contribution; ?OP1A = Poster](2©). For the selected pattern instances the user
will be provided a list of renaming instructions (see 3©), for example to rename
the class Poster to PosterContribution, which can then be used to transform
the ontology and solve the detected naming issues.
15 The head noun is typically the last token, but not always, in particular due to

possible prepositional constructions, as, e.g., in “HeadOfDepartment”.
16 http://owl.vse.cz:8080/

http://owl.vse.cz:8080/

Knowledge Base Creation, Enrichment and Repair 61

Fig. 10. Screenshot of naming pattern detection and repair view in the ORE.

4 Linked Data Quality Assessment with RDFUnit

RDFUnit [10–12]17 is a framework for test-driven Linked Data quality assess-
ment, which is inspired by test-driven software development. A key principle of
test-driven software development is to start the development with the implemen-
tation of automated test-methods before the actual functionality is implemented.
Compared to software source code testing, where test cases have to be imple-
mented largely manually or with limited programmatic support, the situation
for Linked Data quality testing is slightly more advantageous. On the Data Web
we have a unified data model – RDF – which is the basis for both, data and
ontologies. RDFUnit exploits the RDF data model by devising a pattern-based
approach for the data quality tests of knowledge bases. Ontologies, vocabularies
and knowledge bases can be accompanied by a number of test cases, which help
to ensure a basic level of quality. This is achieved by employing SPARQL query
templates, which are instantiated into concrete quality test SPARQL queries. We
provide a comprehensive library of quality test patterns, which can be instan-
tiated for rapid development of more test cases. Once test cases are defined
for a certain vocabulary, they can be applied to all datasets reusing elements
of this vocabulary. Test cases can be re-executed whenever the data is altered.
Due to the modularity of the approach, where test cases are bound to certain
vocabulary elements, test cases for newly emerging datasets, which reuse existing
vocabularies can be easily derived.

RDFUnit is capable of performing quality assessments with only a minimal
amount of manual user intervention and is easily applicable to large datasets.
Other tools like the TopBraid Composer18 use the SPARQL Inferencing Notation
17 http://rdfunit.aksw.org
18 www.topbraidcomposer.com

http://rdfunit.aksw.org
www.topbraidcomposer.com

62 S. Hellmann et al.

Fig. 11. Flowchart showing the test-driven data quality methodology. The left part
displays the input sources of our pattern library. In the middle part the different ways
of pattern instantiation are shown which lead to the data quality test cases on the
right.

(SPIN)19 to define SPARQL queries for quality assessment. However, RDFUnit
utilizes an own SPARQL template notation, which better suits our methodology.
An overview of the methodology is depicted in Fig. 11.

5 Analysis of Link Validity

5.1 Web Linkage Validator

With the integration of data into the LOD cloud, it is essential that links between
datasets are discoverable as well as efficiently and correctly assessed. The Web
Linkage Validator is a web-based tool that allows for knowledge base owners to
improve their data with respect to linkage and to assess their linked data for
integration with the LOD cloud.

The goal is to provide a tool to the LOD2 stack to aid in assessing links
between LOD datasets. It analyses the links between entities that a dataset has
as well as links to entities from other datasets. It will help knowledge base users
in improving the quality of links of their datasets.

The Web Linkage Validator’s assessment is based on the concept of a data
graph summary [3,4]. A data graph summary is a concise representation of the
RDF data graph and is composed of the structural elements, i.e., class and
property. The information it contains, such as RDF class and predicate, usage
frequency, provenance and linkage, are the basis for suggesting to knowledge
base owners ways in which they may create or improve the links within their
datasets and with other external datasets.
19 http://spinrdf.org/

http://spinrdf.org/

Knowledge Base Creation, Enrichment and Repair 63

5.2 Data Graph Summary Model

In general, an RDF graph consists of datasets which in turn contain a number
of entities. These entities are organised into classes. Links can exist at any of
these levels; either between datasets, between class of entities or between the
entities themselves. The data graph summary is a meta-graph that highlights
the structure of a data graph (e.g. RDF).

For the graph summary process, we need to represent the data graph using
three conceptual layers: the dataset layer, the node collection layer and the entity
layer. The entity layer represents the original data graph. The node collection
layer captures the schema and structure of the data graph in a concise way by
grouping similar entities into a parent node that we call a node collection. This
grouping is required as it allows for the graph summary to correctly determine
collection specific information about those entities. The dataset layer captures
the link structure across datasets as well as the provenance of the information
on the entity and node collection layers. The Fig. 12 gives an example of the
three layer representation of a data graph. Note that the � symbol represents
terminating or leaf entities, e.g., RDF literal values. The node collection layer
represents a summary computed by grouping together entities having the same
classes. The node collection layer is composed of node collections and linksets,
i.e., a set of links having the same labels between two node collections. For
example, in the figure the links “author” between articles and people on the
entity layer are mapped to two linksets “author” on the node collection layer.

5.3 Link Analysis

A data graph summary provides a unique view on the linkage information of a
dataset. Using this meta-graph, it is possible to analyse the links of a dataset
from the “point of view” of said dataset: links from/to other datasets, internal
links between classes, etc. The Web Linkage Validator shown in Fig. 13a presents
various “point of views” for the purpose of aiding the owners of datasets in the
assessment of their linked data.

Besides giving a structural breakdown of the dataset, the graph summary is
a utility for validating the internal and external links of a particular graph of
data. In terms of external links, it shows what a dataset is “saying” about other
datasets and vice-versa. This is important as it gives knowledge base owners the
ability to validate what the links represent.

5.4 Provenance

The provenance represents the origin of entities and links. The provenance
includes a classification of the relationships as intra-dataset or inter-dataset
respectively based on entity linkage inside singular datasets or across multiple
datasets. For example, a link between two entities can be classified as internal
to a dataset because it was published within it, but can also be further classi-
fied as inter-dataset because the relationship contains an entity outside of the

64 S. Hellmann et al.

Fig. 12. A three layer representation of our Web Data model. On the node collection
layer, nodes labelled with a star � represent blank collections.

publishing context. The Fig. 13b presents a view of the Web Linkage Validator
showing the links internal to a dataset.

Direction. Inter-dataset triples are classified as incoming or outgoing depending
on the direction of the link, relative to its origin (the subject entity) and to its
destination (the object entity), based on its perspective (the context or publishing
domain of the triple). For example, a triple published on the knowledge base (or
domain) “xyz.com” that has a subject entity from “123.com” and object entity
from “xyz.com” would be classified as incoming.

Authority. Similar to provenance and direction, the authority is based on the
datasets and entities linked in a relationship. A link is classified as authoritative if
at least one entity of the link originates from the publishing domain. For example,
if a triple was published on “xyz.com” and the subject was from “xyz.com” and
the object was from “123.com”, then this link would be considered authoritative
because “xyz.com” is asserting it. However, if the domain in which this triple was
published was changed to “123.com”, then it would become a non-authoritative
link.

Third-Party Links. In regards to validating datasets, the authority classifi-
cation helps knowledge base owners to distinguish another important aspect:
third-party links. These represent non-authoritative links where both the sub-
ject and object of the link are defined in a dataset other than the publishing

Knowledge Base Creation, Enrichment and Repair 65

Fig. 13. Views on a dataset provided by the Web Linkage Validator application.

66 S. Hellmann et al.

one. Also, they are useful to discover if they consist of links that are incorrect or
specify relationships that the owner does not explicitly agree with. In some cases,
these links can be connotative to the idea of e-mail spam. Figure 13c presents
the view of the Web Linkage Validator that provides information on the links
classified as non-authoritative.

5.5 How to Improve Your Dataset with the Web Linkage Validator

In this section we show how the results of the Web Linkage Validator can be
used as suggestions for improving one’s dataset. Being able to see the classes
and the properties of his dataset, the dataset owner is able to have a deep
understanding of his dataset. He can determine if the dataset graph looks as
he planned. For example, let’s assume the dataset contains the “foaf:Person”
class which has, among others, the “foaf:name” and “foaf:homepage” properties.
From the number of the occurrences of these properties, the dataset owner can
decide if his dataset is as he intended too: if he knows that most of the people
in the dataset should have a homepage, then this should be reflected in similar
numbers for the occurences of the “foaf:name” and “foaf:homepage” properties.

Also, the dataset owner can identify possible mistakes like typos in the
classes/properties names. For example, it is well known that “foaf:name” is a
property of the FOAF vocabulary but “foaf:naem” is not.

Moreover, having access to the number of links to and from other datasets,
the dataset owner can determine whether his dataset really is part of the LOD.
If the number of links to/from other datasets is quite small or even missing
completely, the Web Linkage Validator supports the dataset owner in improving
the dataset by suggesting similar datasets to which the dataset owner can link.
Based on the top most similar dataset, the dataset owner identify concepts in
the recommended dataset similar to the ones he uses and link them.

Once the changes have been done and the dataset has been improved, the
dataset owner changes his website or his dataset dump. The infrastructure on
which the Web Linkage Validator is based will recompute the data graph sum-
mary for the resubmitted dataset and next time the user will see his improve-
ments.

6 Benchmarking Semantic Named Entity Recognition
Systems

Named entity recognition (NER) became one of the most exploited means for
information extraction and content enrichment. The NER systems detect text
fragments identifying entities and provide classification of the entities into a set
of pre-defined categories. This is usually a fixed set of raw classes such as the
CoNLL set (PERSON, ORGANIZATION, LOCATION, MISCELLANEOUS),
or classes from an ontology, such as the DBpedia Ontology. However, it is a
recent trend that the NER systems such as DBpedia Spotlight to go beyond this
type classification and also perform unique identification of the entities using

Knowledge Base Creation, Enrichment and Repair 67

URIs from a knowledge bases such as DBpedia or Wikipedia. During LOD2,
we have created a collection of tools adhering to this new class of Wikification,
Semantic NER or Entity Linking systems and contributed it the Wikipedia page
about Knowledge Extraction20.

While these Semantic NER systems are gaining popularity, there is yet no
oversight on their performance in general, and their performance in specific
domains. To fill this gap, we have developed a framework for benchmarking
NER systems [5]21. It is developed as a stand-alone project on top of the GATE
text engineering framework22. It is primarily developed for off-line evaluation
of NER systems. Since different NER systems might perform better in one and
worse in another domain, we have also developed two annotated datasets with
entities, the News and the Tweets dataset. The Tweets datasets, consists of
very large number of short texts (tweets), while the News dataset consists of
standard-length news articles.

A prerequisite for benchmarking different NER tools is achieving interoper-
ability at the technical, syntactical and conceptual level. Regarding the technical
interoperability, most of the NER tools provide a REST API over the HTTP
protocol. At the syntactical and conceptual level we opted for the NIF format,
which directly addresses the syntactical and the conceptual aspects. The syn-
tactical interoperability is addressed using the RDF and OWL as standards for
common data model, while the conceptual interoperability is achieved by identi-
fying the entities and the classes using global unique identifiers. For identification
of the entities we opted for re-using URIs from DBpedia. Since different NER
tools classify the entities with classes from different classification systems (clas-
sification ontologies), we perform alignment of those ontologies to the DBpedia
Ontology23.

In the future, we hope to exploit the availability of interoperable NIF corpora
as described in [10].

7 Conclusion

In this chapter we have presented tools for conversion and extraction of data
into RDF that were developed in the context of the LOD2 project. Specifically,
the DBpedia Extraction Framework supports the extraction of knowledge from
Wikis such as Wikipedia, the RDFa, Microdata and Microformats Extraction
Framework crawls and collects data from the Web and Rozeta enables users
to create and refine terminological data such as dictionaries and thesauri from
natural language text. Once this data has been extracted and lifted to RDF,
tools such as ORE and RDFUnit can analyse data quality and repair errors via
a GUI. The presented tools are open source and make part of the Linked Data
20 A frequently updated list can be found here http://en.wikipedia.org/wiki/

Knowledge extraction#Tools.
21 http://ner.vse.cz/datasets/evaluation/
22 http://gate.ac.uk/
23 http://wiki.dbpedia.org/Ontology

http://en.wikipedia.org/wiki/Knowledge_extraction#Tools
http://en.wikipedia.org/wiki/Knowledge_extraction#Tools
http://ner.vse.cz/datasets/evaluation/
http://gate.ac.uk/
http://wiki.dbpedia.org/Ontology

68 S. Hellmann et al.

stack (see Chap. 6). The tools have been extensively evaluated, for the details the
reader is referred to the respective sections, cited articles and tools’ webpages.
These tools have been applied within LOD2 project, e.g. in a media publishing,
enterprise and public procurement use cases, for the details see Chaps. 7, 8 and
10 of the present book, respectively.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution Noncommercial License, which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

References

1. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. In: Nebel, B., Rich, C., Swartout, W.R., (eds.) KR, pp.
306–317. Morgan Kaufmann (1992)

2. Bizer, C., Eckert, K., Meusel, R., Mühleisen, H., Schuhmacher, M., Völker, J.:
Deployment of RDFA, microdata, and microformats on the web - a quantitative
analysis. In: Proceedings of the In-Use Track of the 12th International Semantic
Web Conference (2013)

3. Campinas, S., Perry, T.E., Ceccarelli, D., Delbru, R., Tummarello, G.: Introducing
RDF graph summary with application to assisted SPARQL formulation. In: 23rd
International Workshop on Database and Expert Systems Applications, DEXA
2012, pp. 261–266, Sept 2012

4. Campinas, S., Delbru, R., Tummarello, G.: Efficiency and precision trade-offs in
graph summary algorithms. In: Proceedings of the 17th International Database
Engineering and Applications Symposium, IDEAS ’13, pp. 38–47. ACM, New York
(2013)

5. Dojchinovski, M., Kliegr, T.: Datasets and GATE evaluation framework for bench-
marking wikipedia-based NER systems. In: Proceedings of 1st International Work-
shop on NLP and DBpedia, 21–25 October 2013, Sydney, Australia, volume 1064
of NLP & DBpedia 2013, Sydney, Australia, October 2013, CEUR Workshop Pro-
ceedings (2013)

6. Fernandez-Breis, J.T., Iannone, L., Palmisano, I., Rector, A.L., Stevens, R.: Enrich-
ing the gene ontology via the dissection of labels using the ontology pre-processor
language. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp.
59–73. Springer, Heidelberg (2010)

7. Kalyanpur, A.: Debugging and repair of OWL ontologies. Ph.D. thesis, Univer-
sity of Maryland, College Park, College Park, MD, USA (2006) (Adviser-James
Hendler)

8. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of
OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
267–280. Springer, Heidelberg (2007)

9. Kontokostas, D., Bratsas, Ch., Auer, S., Hellmann, S., Antoniou, I., Metakides,
G.: Internationalization of linked data: the case of the greek DBpedia edition. Web
Semant. Sci. Serv. Agents World Wide Web 15, 51–61 (2012)

http://dx.doi.org/10.1007/978-3-319-09846-3_6
http://dx.doi.org/10.1007/978-3-319-09846-3_7
http://dx.doi.org/10.1007/978-3-319-09846-3_8
http://dx.doi.org/10.1007/978-3-319-09846-3_10

Knowledge Base Creation, Enrichment and Repair 69

10. Kontokostas, D., Brümmer, M., Hellmann, S., Lehmann, J., Ioannidis, L.: NLP
data cleansing based on linguistic ontology constraints. In: Proceedings of the
Extended Semantic Web Conference 2014 (2014)

11. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R.: Databugger: a test-driven framework for debugging the web of data. In: Pro-
ceedings of the Companion Publication of the 23rd International Conference on
World Wide Web Companion, WWW Companion ’14, pp. 115–118, Republic and
Canton of Geneva, Switzerland, 2014, International World Wide Web Conferences
Steering Committee

12. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of
the 23rd International Conference on World Wide Web, WWW ’14, pp. 747–758,
Republic and Canton of Geneva, Switzerland, 2014, International World Wide Web
Conferences Steering Committee

13. Lehmann, J., Bizer, Ch., Kobilarov, G., Auer, S., Becker, Ch., Cyganiak, R.,
Hellmann, S.: DBpedia - a crystallization point for the web of data. J. Web Semant.
7(3), 154–165 (2009)

14. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale,
multilingual knowledge base extracted from wikipedia. Semant. Web J. (2014)

15. Mika, P., Potter, T.: Metadata statistics for a large web corpus. In: LDOW: Linked
Data on the Web. CEUR Workshop Proceedings, vol. 937 (2012)

16. Mühleisen, H., Bizer, C., Web data commons - extracting structured data from
two large web corpora. In: LDOW: Linked Data on the Web. CEUR Workshop
Proceedings, vol. 937 (2012)

17. Nirenburg, S., Wilks, Y.: What’s in a symbol: ontology, representation and lan-
guage. J. Exp. Theor. Artif. Intell. 13(1), 9–23 (2001)

18. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence, pp. 355–360. Morgan Kaufmann Publishers,
San Francisco (2003)

19. Schober, D., Smith, B., Lewis, S.E., Kusnierczyk, W., Lomax, J., Mungall, C.,
Taylor, C.F., Rocca-Serra, P., Sansone, S.-A.: Survey-based naming conventions
for use in OBO foundry ontology development. BMC Bioinform. 10(1), 125 (2009)

20. Sirin, E., Tao, J.: Towards integrity constraints in OWL. In: Hoekstra, R., Patel-
Schneider, P.F., (eds.) OWLED, volume 529 of CEUR Workshop Proceedings
(2008). http://CEUR-WS.org

21. Šváb-Zamazal, O., Dudáš, M., Svátek, V.: User-friendly pattern-based trans-
formation of OWL ontologies. In: ten Teije, A., Völker, J., Handschuh, S.,
Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez,
N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 426–429. Springer, Heidelberg (2012)

22. Šváb-Zamazal, O., Svátek, V.: Analysing ontological structures through name pat-
tern tracking. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol.
5268, pp. 213–228. Springer, Heidelberg (2008)

23. Zamazal, O., Svátek, V.: Patomat - versatile framework for pattern-based ontology
transformation. Comput. Inf. (2014) (Accepted)

http://CEUR-WS.org

Interlinking and Knowledge Fusion

Volha Bryl1(B), Christian Bizer1, Robert Isele2, Mateja Verlic3,
Soon Gill Hong4, Sammy Jang4, Mun Yong Yi4, and Key-Sun Choi4

1 University of Mannheim, Mannheim, Germany
{volha,chris}@informatik.uni-mannheim.de

2 Brox IT-Solutions GmbH, Hannover, Germany
mail@robertisele.com

3 Zemanta d.o.o, Ljubljana, Slovenia
mateja.verlic@zemanta.com

4 KAIST, Daejeon, Korea
{soonhong,sammy1221,munyi,kschoi}@kaist.ac.kr

Abstract. The central assumption of Linked Data is that data providers
ease the integration of Web data by setting RDF links between data
sources. In addition to linking entities, Web data integration also requires
the alignment of the different vocabularies that are used to describe
entities as well as the resolution of data conflicts between data sources.
In this chapter, we present the methods and open source tools that have
been developed in the LOD2 project for supporting data publishers to set
RDF links between data sources. We also introduce the tools that have
been developed for translating data between different vocabularies, for
assessing the quality of Web data as well as for resolving data conflicts
by fusing data from multiple data sources.

1 Introduction

The amount of Linked Open Data (LOD) already available on the Web of Data,
or extracted using e.g. the methods presented in Chap. 3, is huge, as well as its
potential for applications. However, the quality of the LOD sources varies greatly
across domains and single datasets [1], making the efficient use of data problem-
atic. An important quality-related problem is the lack of data consistency : same
real world entities are described in different datasets using different vocabularies
and data formats, and the descriptions often contain conflicting values.

According to the architecture of a Linked Data application illustrated in
Fig. 1, four steps are necessary before the input coming from the Web of Data
can be consumed by an application: vocabulary mapping, identity resolution,
data quality assessment and data fusion.

This chapter presents methods and open source tools developed within the
LOD2 project, which cover the above four steps of the process of integrating and
cleansing the Linked Data from the Web.

Vocabulary mapping, or schema alignment step is inevitable as different LOD
providers may use different vocabularies to represent the same type of informa-
tion. E.g. population property of a country or city can come under different names
c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 70–89, 2014.
DOI: 10.1007/978-3-319-09846-3 4

http://dx.doi.org/10.1007/978-3-319-09846-3_3

Interlinking and Knowledge Fusion 71

Fig. 1. Schematic architecture of a Linked Data application [7]

such as population, populationTotal, numberOfInhabitants, hasPopulation, etc.
Therefore, tools that translate terms from different vocabularies into a single
target schema are needed. Section 2 presents the R2R Framework, which enables
Linked Data applications to discover and apply vocabulary mappings to trans-
late the Web data to the application’s target vocabulary.

Identity resolution aims at interlinking URIs that are used by different Linked
Data sources to identify the same entity, for instance, a person or a place. Data
sources may provide owl:sameAs links connecting data about the same real-
world entity, but in many cases methods and tools for discovering these links are
needed. In Sect. 3 we present the Silk Link Discovery Framework that supports
identity resolution and data interlinking in the LOD context. Section 4 presents
the LOD-enabled version of OpenRefine for data cleansing and reconciliation,
which is also enhanced with crowdsourcing capabilities.

Data quality assessment and data fusion steps ensure the quality and con-
sistency of data coming from the web. Depending on the application, different
data quality aspects may become relevant: trustworthiness, precision, recency,
etc. Section 5 presents Sieve – Linked Data Quality Assessment and Fusion tool,
which allows filtering and then fusing the Web data according to user-defined
data quality assessment and conflict resolution policies. One of the crowdsourcing
use cases in Sect. 4 is related to improving the data quality via data enrichment.

In addition, Sect. 6 addresses the specific challenges of identity resolution and
data fusion for some of the most wide-spread Asian languages: Korean, Chinese
and Japanese.

72 V. Bryl et al.

2 Vocabulary Mapping

Linked Data sources use different vocabularies to describe the same type of
objects. It is also common practice to mix terms from different widely used
vocabularies1 with proprietary terms. In contrast, Linked Data applications usu-
ally expect data to be represented using a consistent target vocabulary. Thus
these applications need to translate Web data to their local schema before doing
any sophisticated data processing.

To overcome these problems, we have developed the R2R Framework2[3].
This open source framework consists of a mapping language for expressing term
correspondences, best practices on how to publish mappings on the Web, and a
Java API for transforming data to a given target vocabulary according to the
mappings. We also provide the R2R Graphical User Interface, a web application
that allows loading, editing and executing R2R mappings on data sources that
are either located in a triple store or in RDF dumps.

As the R2R mapping language is designed for publishing mappings as Linked
Data on the Web, mappings are represented as RDF and each mapping is
assigned its own dereferenceable URI. The language defines the link type r2r:has
Mapping to interlink mappings with RDFS or OWL term definitions and voiD
dataset descriptions. The syntax of the R2R mapping language3 is very similar
to the SPARQL query language, which eases the learning curve.

The mapping language covers value transformation for use cases where RDF
datasets use different units of measurement, and can handle one-to-many and
many-to-one correspondences between vocabulary elements. R2R also offers
modifiers to be used for assigning data types and language tags or convert-
ing a literal into a URI reference using a pattern. The language provides a set of
common string functions, such as concat or split, arithmetic and list functions.
See Listing 1 for a mapping example (prefix definition omitted), in which the
firstName and lastName properties are concatenated into the name property.

1 p:manyToOnePropertyMapping
2 a r2r:Mapping ;
3 r2r:sourcePattern "? SUBJ foaf:firstName ?f . ?SUBJ foaf:lastName ?l" ;
4 r2r:targetPattern "? SUBJ dbpedia:name ?n" ;
5 r2r:transformation "?n = concat(?l,’,’, ?f)" ;

Listing 1. R2R mapping example

The R2R Mapping Engine applies a mapping composition method for select-
ing and chaining partial mappings from different sources based on a mapping
quality assessment heuristic. The assumptions are that mappings provided by
vocabulary maintainers and data publishers themselves are likely to be of a
higher quality, and that the quality of data translations decreases with the length
of the mapping chains.
1 E.g FOAF for representing data about people – http://www.foaf-project.org/
2 http://wifo5-03.informatik.uni-mannheim.de/bizer/r2r/
3 Full specification at http://wifo5-03.informatik.uni-mannheim.de/bizer/r2r/spec/

http://www.foaf-project.org/
http://wifo5-03.informatik.uni-mannheim.de/bizer/r2r/
http://wifo5-03.informatik.uni-mannheim.de/bizer/r2r/spec/

Interlinking and Knowledge Fusion 73

We evaluated the R2R Mapping Language by formulating mappings between
DBpedia and 11 data sources that are interlinked with DBpedia, see [3] for
further details. The language proved to be expressive enough in this experi-
ment to represent all mappings that were required. The experiment also showed
that far more expressivity is required to properly translate data to a target
schema than currently provided by standard terms such as owl:equivalentClass,
owl:equivalentProperty or rdfs:subClassOf, rdfs:subPropertyOf.

3 The Silk Link Discovery Framework

A central problem of the Web of Linked Data as well as of data integration in
general is to identify entities in different data sources that describe the same
real-world object. While the amount of Linked Open Data has grown signifi-
cantly over the last years, most data sources are still not sufficiently interlinked.
Out of the over 31 billion RDF statements published as Linked Data less than
500 million represent RDF links between data sources; analysis confirms that
the LOD cloud represents a weakly connected graph with most publishers only
linking to one other data source [2].

This section presents the Silk Link Discovery Framework, which gen-
erates RDF links between data items based on user-provided or automatically
learned linkage rules. Silk can be used by data providers to generate RDF links
pointing at existing Web datasets, and then publish them together with the
primary datasets. Furthermore, applications that consume Linked Data can use
Silk as an identity resolution component to augment the data with additional
RDF links that have not been discovered and/or published.

In Silk linkage rules are expressed using a declarative language, and define
the conditions that data items must conform to in order to be interlinked. For
instance, a linkage rule defines which properties should be compared (e.g. movi-
eTitle in one dataset and label in another), which similarity measures should be
used for comparison and how they are to be combined.

Writing good linkage rules by hand is a non-trivial problem, which requires
considerable effort and expertise. To address this, Silk implements the ActiveG-
enLink algorithm which combines genetic programming and active learning tech-
niques to generate high-quality expressive linkage rules interactively, minimizing
the involvement of a human expert. In this section, we will briefly introduce
the tool and the underlying algorithms. For further details readers are referred
to [8,9].

3.1 Silk: Functionality and Main Concepts

The Silk Link Discovery Framework can be downloaded from its official home-
page4, which is also the source for the documentation, examples and updates.
4 http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/

http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/

74 V. Bryl et al.

Fig. 2. Silk Workbench: linkage rule editor

It is an open source tool with the source code and the detailed developer docu-
mentation available online5. Silk can be used through the Silk Workbench graph-
ical user interface or from the command line.

The Silk Workbench, developed in the course of the LOD2 project, aims at
guiding the user through the process of interlinking different data sources. It is
a web application offering the following functionality:

• Possibility to manage different data sources and linking tasks (with RDF
dump files as well as local and remote SPARQL endpoints as input).

• Graphical editor to create and edit linkage rules (see Fig. 2).
• Possibility to evaluate links generated by the current linkage rule.
• User interface for learning linkage rules from existing reference links.
• Active learning interface, which learns a linkage rule by interactively asking

the user to confirm or decline a number of candidate links.
• Possibility to create and edit a set of reference links used to evaluate the

current link specification.

Additionally, Silk provides 3 command line applications: Silk Single Machine
generates RDF links on a single machine, with input datasets either residing on
the same machine or accessed via the SPARQL protocol; Silk MapReduce gener-
ate RDFs links between datasets using a cluster of multiple machines, is based
on Hadoop and thus enables Silk to scale out to very big datasets. Finally, Silk
Server [10] can be used as an identity resolution component within applications
that consume Linked Data from the Web.

The basic concept in Silk is that of a linkage rule, which specifies the con-
ditions under which two entities are considered to be referring to the same
5 https://www.assembla.com/spaces/silk/wiki

https://www.assembla.com/spaces/silk/wiki

Interlinking and Knowledge Fusion 75

real-world entity. A linkage rule assigns a similarity value to a pair of entities.
We represent a linkage rule as a tree built from 4 types of operators.

Property Operator: Retrieves all values of a specific property of each entity, such
as of values of the label property.

Transformation Operator: Transforms the values according to a specific data
transformation function, e.g. case normalization, tokenization, concatena-
tion. Multiple transformation operators can be nested in order to apply a
sequence of transformations.

Comparison Operator: Evaluates the similarity between the values of two input
operators according to a specific distance measure, such as Levenshtein, Jac-
card, or geographic distance. A user-specified threshold specifies the maxi-
mum distance, and is used to normalize the measure.

Aggregation Operator: As often the similarity of two entities cannot be deter-
mined by evaluating a single comparison, an aggregation operator combines
the scores from multiple comparison or aggregation operators according to
an aggregation function, e.g. weighted average or minimum.

The resulting linkage rule forms a tree where the terminal nodes are repre-
sented by property operators and the internal nodes are represented by trans-
formation, comparison and aggregation operators, see Fig. 2 for an example.

3.2 The GenLink Algorithm

Creating a good linkage rule by hand, that is choosing and combining appropriate
operators and thresholds, is non-trivial and time-consuming. One way to reduce
this effort is to use supervised learning to generate links from existing reference
links, which contain pairs of entities labeled as matches or non-matches. Creating
such reference links is much easier than writing linkage rules as it requires no
previous knowledge about similarity measures or the specific linkage rule format
used by the system. Usually, reference links are created by domain experts who
confirm or reject the equivalence of a number of entity pairs from the input
datasets.

In [8] we have presented the GenLink algorithm for automatically learning
linkage rules from a set of reference links. The algorithm is based on genetic
programming and generates linkage rules that can be understood and further
improved by humans.

Genetic programming starts with a randomly created population of individ-
uals, where each individual is represented by a tree which is a potential solution
to the given problem. In Silk, in order to reduce the search space, before gen-
erating the initial population we build, given a set of positive reference links, a
list of property pairs which hold similar values, and then use this set to build a
random linkage rule.

Starting with the initial population, the genetic algorithm breeds a new pop-
ulation by evolving selected linkage rules using the reproduction, crossover and
mutation genetic operators. A fitness function is used to assign a value to each

76 V. Bryl et al.

linkage rule which indicates how close the rule is to the desired solution. We
use the fitness measure based on Matthews correlation coefficient, and penalize
linkage rules based on their number of operators. Based on the fitness of each
linkage rule, the selection method, tournament selection in our case, selects the
rules to be evolved. The algorithm iteratively evolves the population until either
a linkage rule has been found which covers all reference links or a configured
maximum number of 50 iterations is reached.

The experimental evaluation [8] shows that the GenLink produces better
results than the state-of-art genetic programming approaches for identity
resolution.

3.3 The ActiveGenLink Algorithm

For most real-world datasets it is not feasible, however, to manually create refer-
ence links covering a big enough subset of pairs of entities. Moreover, in order for
the supervised learning algorithms to perform well on unknown data, reference
links need to include all relevant corner cases. For example, while for most pairs
of movie descriptions comparing titles is enough to establish that the two refer
to the same movie, there might exist variations in titles of the same movie, or
different movies having the same title but different release dates. The user has
to label a very large number of randomly selected pairs in order to include these
rare corner cases reliably.

To reduce the number of candidates to be labeled, we employ active learning,
which in our case means iteratively selecting the most informative entity pair to
be labeled by the user as matching or non-matching. In [9] we introduced the
ActiveGenLink algorithm, which evolves a population of candidate solutions
iteratively while building a set of reference links. The algorithm starts with a
random population of linkage rules and an initially empty set of reference links.
In each iteration, it selects a link candidate for which the current population
of linkage rules is uncertain, from a pool of unlabeled links using a so called
query strategy. After the link has been labeled by a human expert, the algorithm
evolves the population of linkage rules using the GenLink algorithm and the
extended set of reference links.

The query strategy Silk implements is based on a query-by-committee strat-
egy: the selected link candidate is determined from the voting of all members of
a committee, which consists of the current linkage rules in the population. We
take as a baseline the widely used query-by-vote-entropy, which selects the can-
didate for which the members in the committee disagree the most, and introduce
an improved strategy as follows. Firstly, as the unlabeled links are not distrib-
uted uniformly across the similarity space, we aim at distributing the links onto
different clusters by selecting links that, based on the Jensen-Shannon diver-
gence, are different from already labeled links. Secondly, the voting committee,
i.e. the evolved population of linkage rules, may contain suboptimal linkage rules
that do not cover all reference links. We implement the restricted committee vot-
ing, in which only linkage rules which fulfill a specific reference link are allowed

Interlinking and Knowledge Fusion 77

to vote. Our experiments show that the improved query strategy outperforms
the query-by-vote-entropy baseline.

The performance of the ActiveGenLink algorithm was evaluated on the same
datasets as we used to evaluate the supervised GenLink algorithm [8]. The results
show that by labeling a small number of links, ActiveGenLink achieves a com-
parable performance to GenLink on the complete reference link set. One of the
datasets on which the evaluation was performed is SiderDrugBank from the
Ontology Alignment Evaluation Initiative (OAEI) 2010 data interlinking track6.
Our evaluation showed that with ActiveGenLink only about 30 links had to be
labeled until a linkage rule could be learned which achieves an F-measure similar
to the one GenLink gets using all 1718 reference links.

Two other experiments were done on the datasets that have been used fre-
quently to evaluate the performance of different record linkage approaches: Cora
and Restaurant datasets7. The results show that labeling a small number of links
is enough to reach high performance. In addition, we successfully evaluated how
the learned linkage rules compare to rules manually created by a human expert
for the same dataset, and studied the scalability of the proposed approach. For
the details of all the evaluation experiments the reader is referred to [9].

In order to further improve the linking precision we have developed the Silk
Free Text Preprocessor [12], an extension of Silk for producing a structured
representation for linking the data that contains or is derived from free text.

4 Data Cleansing and Reconciliation with LODRefine

Data cleansing and linking are very important processes in the life cycle of
linked data, especially when creating new linked data. Nowadays data comes
from different sources and it is published in many formats, e.g. XML, CSV,
HTML, as dumps from relational databases or different services.

Unfortunately, cleansing and linking are rarely trivial, and can be very tedious,
especially with the lack of good tools. A good cleansing tool should be able to
assist users in detecting non-consistent data, removing duplicates, quickly per-
forming transformations on a relatively large amount of data at once, and export-
ing cleansed data into different formats. It should be relatively simple to use and
available on different operating systems. Fortunately, there is a open source (BSD
licensed) solution available meeting all the above criteria. OpenRefine, previously
Google Refine, was specifically created for dealing with messy data, is extendable,
works on all three major operating systems and provides functionalities to recon-
cile data against Freebase. For needs of the LOD2 project we developed a LOD-
enabled version of OpenRefine – LODRefine8.
6 http://oaei.ontologymatching.org/2010/im/index.html
7 XML version: http://www.hpi.uni-potsdam.de/naumann/projekte/dude duplicate

detection.html
8 Available for download at http://sourceforge.net/projects/lodrefine/ or as a source

code at https://github.com/sparkica/LODRefine

http://oaei.ontologymatching.org/2010/im/index.html
http://www.hpi.uni-potsdam.de/naumann/projekte/dude_duplicate_detection.html
http://www.hpi.uni-potsdam.de/naumann/projekte/dude_duplicate_detection.html
http://sourceforge.net/projects/lodrefine/
https://github.com/sparkica/LODRefine

78 V. Bryl et al.

Even with tools available, data cleansing and linking in the LOD cycle still
require a lot of manual work, and the current algorithms and fully automatated
tools cannot completely replace human intuition and knowledge: it can be too
complicated or costly to encode all our knowledge and experience into rules and
procedures computers can understand. Although we already have good cleansing
and linking tools at our disposal requiring only minimal human intervention, with
huge amounts of data even simple tasks add up and time resources become an
issue.

However, such tasks are often simple and include evaluation of automat-
ically obtained results, finding missing information or, in rare cases, demand
special domain knowledge. Crowdsourcing seems to be a promising solution for
such situations and offers hiring affordable working power for certain repetitive
but relatively simple tasks, especially when automated processing does not give
good enough results, e.g. when classifying spam, categorizing images, and disam-
biguating data. To bring crowdsourcing closer to the needs of the LOD2 project
we added support for using CrowdFlower9, a popular and versatile crowdsourcing
platform, directly from the LODRefine environment. In the rest of this section we
introduce LODRefine and shortly describe three use cases of using crowdsourcing
for different tasks, namely, data cleansing and disambiguation of reconciliation
results.

4.1 LODRefine

LODRefine, a powerful tool for cleansing and automatically reconciling data
with external databases, includes all core features of OpenRefine and extends
them with LOD-specific ones. Core features include:

• Importing data from various formats.
• Cleansing data: finding duplicates, removing them, finding similar values.
• Filtering data using faceted browsing.
• Filtering data with regular expressions.
• Google Refine Expression language (GREL): a powerful language for trans-

forming data.
• Reconciling with Freebase: the ability of linking your data to Freebase.
• Extending data from Freebase: the ability of adding data from Freebase to

your reconciled data.

Figure 3 features faceted browsing, using regular expressions and GREL.
LOD-enabling features added support for:

• Reconciliation and extending data with DBpedia.
• Named-entity recognition: recognizing and extracting named entities from text

using different services.
• Using crowdsourcing: creating crowdsourcing jobs and uploading data to crowd-

sourcing platforms.
9 http://www.crowdflower.com/

http://www.crowdflower.com/

Interlinking and Knowledge Fusion 79

Fig. 3. LODRefine: faceted browsing, support for regular expressions and using GREL

4.2 Use Cases

The quality of reconciliation may vary with data and manual evaluation of those
results is needed. In case we do not have available human resources crowdsourcing
might be considered as a viable solution.

In the following we describe three use cases of using crowdsourcing from and
within LODRefine. For further details readers are referred to the corresponding
project deliverable [13].

Evaluating reconciliation results. Quality of linking (reconciliation) in the
context of Linked Data can be evaluated by using rather sophisticated algo-
rithms or manually with human evaluators. In the last case crowdsourcing can
significantly speed up the process, especially when LODRefine is used to create
a job from reconciliation evaluation template.

In this use case crowdsourcing was used to evaluate the quality of reconciled
dataset of National Football League players10. Data contains names of players
and links to their official profiles on NFL webpage. Freebase was used for rec-
onciliation, and manual evaluation was done first by a group of in-house trained
evaluators and then by workers at CrowdFlower. Because we already had veri-
fied evaluation results, we were able to asses the quality of results obtained by
crowdsourcing.

Validation using crowdsourcing was split in two batches. For the first batch
we collected three judgments per unit and for the second batch we lowered the
overall costs by collecting only two judgments per unit. Although the quality of
judgments dropped slightly for the second batch, the ratio costs versus quality
of results was satisfiable.
10 Official NFL webpage: http://www.nfl.com/

http://www.nfl.com/

80 V. Bryl et al.

Validating named entities extracted from blogs. Integrating new entities
into recommendation system is crucial for suggesting relevant contents to blog-
gers. New entities can be discovered by extracting links from blog posts. New
links are considered as potential new named entities and links’ anchors as entity
aliases. In this use case we use crowdsourcing to verify extracted links from blog
posts and mark them as entities if appropriate. If link was considered an entity,
contributors also provided the type of entity.

We published this job on all available channels, which was reflected in the
high number of overall units per hour, while in other two use cases we only used
2–4 labor channels (Amazon MTurk was always selected) and thus obtained
much lower overall units per hour.

Data enrichment – finding missing information about festivals. Find-
ing missing bits of information and enriching data is a frequently appearing type
of assignment on crowdsourcing platforms.

In this use case we used crowdsourcing to enrich a dataset about festivals,
which was extracted from blog posts mentioning festival and conference-like
events either with their short names or using the full titles. In some cases blog
posts mentioned words “festival” or “fest”, but in a different context, and were
wrongly extracted as a festival. We wanted to identify such cases and enrich data
about actual festivals.

Data enrichment took much longer than other two use cases. Searching for
data about festivals was more time consuming and questions were slightly more
difficult. The price set was also relatively low, which was the other factor impact-
ing time needed to collect responses.

4.3 Quality Evaluation of Crowdsourcing Results

All results obtained by crowdsourcing have been evaluated by comparing them to
results provided by in-house trained evaluators. A lot depends on how instruc-
tions and questions are formulated, how much quality control is involved and
which labor channels tasks are published on. In our case we got the best results
in the first use case, in which contributors had to choose one of the provided
suggestions or find a link in Freebase and thus there was not much room for
subjectivity. Second best use case was data enrichment, where contributors had
to check, whether the link contains information about a certain type of event –
a festival – and provide a full name, a short name and a homepage for it. Again,
the instructions and questions did not allow for too much subjectivity. The least
good results were obtained in the second use case involving the evaluation of
named entities. There are many possible causes for this: it might be not easy
to grasp the notion of a named entity for an average contributor, contributors
might not read instructions carefully enough, or instructions might have been
too complicated.

Crowdsourcing is a relatively new business model and still requires some
time before it will be fully mature and properly supported by legislation, but
it can be regarded as a useful and feasible approach at least for some types of

Interlinking and Knowledge Fusion 81

LOD-related problems and tasks that were described and demonstrated above.
There are several considerations that need to be taken into account while using
crowdsourcing: quality assurance measures and constraints have to be applied
and ethical issues related to fair price and reward for all contributors have to be
considered. Although we would not use it for sensitive data or for gigabytes of
data at once, crowdsourcing can serve as a starting point for developing auto-
mated solutions. It can provide means to collect enough data to train algorithms
and to evaluate results obtained by those algorithms.

5 Data Quality Assessment and Fusion

The vocabulary alignment and interlinking steps presented in Sects. 2 and 3,
result in interlinked entity descriptions originating from a number of heteroge-
neous data sources. The quality of data from these sources is very diverse [1],
as values may be out of date, incomplete or incorrect, either because of data
extraction errors or due to the errors by human data editors. Situations in which
conflicting values for a property of a real-world object are provided often occur.
In order for Linked Data applications to efficiently consume data, the latter
should be assessed and integrated based on their quality.

Quality is a subjective matter, often defined as a “fitness for use”, mean-
ing that the interpretation of the quality of a data item depends on who will
use it and for what task. Data quality has many dimensions such as accuracy,
timeliness, completeness, relevancy, objectivity, believability, understandability,
consistency, conciseness, availability, verifiability, etc. These dimensions are not
independent of each other and typically only a subset of them is relevant in a spe-
cific situation. With the objective of supporting user applications in dealing with
data quality and conflict resolution issues, we created Sieve – Linked Data
Quality Assessment and Fusion framework11 [11], which we summarize in
this section.

Sieve consists of two components: Data Quality Assessment and Data Fusion,
and takes as input data to be fused and an XML file containing both quality
assessment and data fusion configurations. The input XML-based specification
language allows a user to manually define conflict resolution strategies and qual-
ity assessment metrics to use for each data property.

Sieve takes as input two or more RDF data sources, along with the data
provenance information. It is assumed that schema and object identifiers have
been normalized, namely, if two descriptions refer to the same real-world object
then they have the same identifier (URI), and if two properties refer to the same
real-world attribute then there should be two values for the same property URI
for a given subject URI. Each property value in the input is expressed by a
quad (subject,property,object,graph) where the graph is a named graph, which
is used to attach provenance information to a fact or a set of facts. For an
example see Listing 2, where the input data for the population of Amsterdam
coming from three different DBpedia editions is given, along with the last edit
11 http://sieve.wbsg.de

http://sieve.wbsg.de

82 V. Bryl et al.

date information. Note that the 4th quad component, the provenance graph for
lastedit property, is the same for all three triples and is omitted due to space
reasons.

1 dbp:Amsterdam dbpedia -owl:population "820654" en:Amsterdam:population
2 dbp:Amsterdam dbpedia -owl:population "758198" ca:Amsterdam:population
3 dbp:Amsterdam dbpedia -owl:population "820654" it:Amsterdam:population
4 en:Amsterdam:population dpb -meta:lastedit "2013 -01 -13 T14 :52:13Z"
5 ca:Amsterdam:population dpb -meta:lastedit "2009 -06 -14 T10 :36:30Z"
6 it:Amsterdam:population dpb -meta:lastedit "2013 -03 -24 T17 :04:16Z"

Listing 2. Data Fusion with Sieve: input data

5.1 Quality Assessment Metrics

Three main concepts Sieve uses in the quality assessment configuration are qual-
ity indicators, scoring functions and assessment metrics. A data quality indicator
is an aspect of a data item or dataset that may indicate the suitability of the
data for some intended use. The types of information used as quality indicators
may stem from the metadata about the circumstances in which information was
created, to information about the information provider, to data source ratings.
A scoring function produces a numerical representation of the suitability of the
data, based on some quality indicator. Each indicator may be associated with
several scoring functions, e.g. max or average functions can be used with the
data source rating indicator. Assessment metrics are procedures for measuring
information quality based on a set of quality indicators and scoring functions.
Additionally, assessment metrics can be aggregated through the average, sum,
max, min or threshold functions.

For an example see Listing 3, where recency assessment metric uses the last
update timestamp of a dataset or a single fact, a quality indicator which is trans-
formed by TimeCloseness scoring function into a numeric score using a range
parameter (in days) to normalize the scores. Other scoring functions available
in Sieve include normalizing the value of a quality indicator, or calculating the
score based on whether the indicator value belongs to some interval or exceeds
a given threshold. The complete list of supported scoring functions is available
at the Sieve webpage; users can define their own scoring functions using Scala
and the guidelines provided at the webpage.

The output of the quality assessment module is a set of quads, where the
calculated scores are associated with each graph. A graph can contain the whole
dataset (e.g. Dutch DBpedia) or a subset of it (all properties of Berlin in Free-
base) or a single fact. The scores represent the user-configured interpretation of
quality and are then used by the Data Fusion module.

1 <QualityAssessment >
2 <AssessmentMetric id=" sieve:recency">
3 <ScoringFunction class=" TimeCloseness">
4 <Param name=" timeSpan" value ="500"/ >
5 <Input path ="? GRAPH/dpb -meta:lastedit"/>
6 </ScoringFunction >
7 </AssessmentMetric >
8 </QualityAssessment >

Interlinking and Knowledge Fusion 83

9 <Fusion >
10 <Class name="dbpedia -owl:PopulatedPlace">
11 <Property name="dbpedia -owl:population">
12 <FusionFunction class=" KeepFirst" metric ="sieve:recency"/>
13 </Property >
14 </Class >
15 </Fusion >

Listing 3. Data Fusion with Sieve: specification

5.2 Fusion Functions

In the context of data integration, Data Fusion is defined as the “process of
fusing multiple records representing the same real-world object into a single,
consistent, and clean representation” [5]. Data Fusion is commonly seen as a
third step following schema mapping and identity resolution, as a way to deal
with conflicts that either already existed in the original sources or were generated
by integrating them.

The Sieve Data Fusion module is inspired by [4], a framework for data fusion
in the context of relational databases that includes three major categories of
conflict handling strategies:

• Conflict-ignoring strategies, which defer conflict resolution to the user. For
instance, PassItOn strategy simply relays conflicts to the user or applications
consuming integrated data.

• Conflict-avoiding strategies, which apply a unique decision to all data. For
instance, strategy TrustYourFriends strategy prefers data from specific data
sources.

• Conflict-resolution strategies, which decide between existing data (e.g. Keep-
UpToDate, which takes the most recent value), or mediate the creation of a
new value from the existing ones (e.g. Average).

In Sieve, fusion functions are of two types. Filter functions remove some or
all values from the input, according to some quality metric, for example keep the
value with the highest score for a given metric (e.g. recency or trust) or vote to
select the most frequent value. Transform functions operate over each value in
the input, generating a new list of values built from the initially provided ones,
e.g. computing the average of the numeric values. The complete list of supported
fusion functions is available at the Sieve webpage, and users have the possibility
to implement their own functions.

The example of the specification in Listing 3 illustrates how a fusion function
for the population property of a populated place is configured to use KeepFirst
fusion function (i.e. keep the highest score) applied to recency quality assessment
metric.

The output of the data fusion module is a set of quads, each representing
a fused value of a subject-property pair, with the 4th component of the quad
identifying the named graph from which a value has been taken. An extension of
Sieve for automatically learning an optimal conflict resolution policy is presented
in [6].

84 V. Bryl et al.

6 Data Interlinking and Fusion for Asian Languages

As the proportion of non-Western data that went to open is relatively small,
recently many projects have been initiated to extend the boundary of Linked
Open Data to non-European language resources, especially in such writing sys-
tems as Korean, Chinese and Japanese. Interlinking and integrating multilin-
gual resources across languages and writing systems will allow exploiting the
full potential of Linked Data.

This section presents the tools we developed to support interlinking and
integrating Asian resources: Asian Resource Linking Assistant and Asian
Data Fusion Assistant. The Asian Resource Linking Assistant extends Silk
with Korean Phonemic Distance metric, Korean Transliteration Distance metric,
and Han Edit Distance metric. The Asian Data Fusion Assistant extends Sieve
by providing functions for translating phrases among Korean, Chinese, Japanese
and English.

6.1 Interlinking Korean Resources in the Korean Alphabet:
Korean Phoneme Distance

Using string distance metrics such as Levenshtein, or edit distance, is a popular
way to measure distance between two strings in Western languages. When we
apply Levenshtein distance to Korean strings, the output is based not on the
number of letters but on the number of combinations of letters. This is because
the unit of comparison is different between a single-byte code set and a multi-
byte code set. The unit of comparison for single-byte code is a single letter. In
Korean, however, a combination of two or three (occasionally four but rarely
more) letters, which constitutes a syllable, is assigned to one code point. So
when the edit distance between Korean strings is 1, it could mean 1 (as in case
of English strings), but also 2, 3 or occasionally more letters. Therefore, we have
developed a new Korean distance metric that reflects the nature of a multi-byte
code set.

Our approach is based on the idea that the more the phonemes are distributed
across the syllables, the less is the possibility the two string have the same
meaning. For example, if two target strings have two different phonemes, then
one target string with one syllable containing two different phonemes is closer
to a source string than the other target string with two syllables each containing
one different phoneme. For example, the distance between (“wind” in
English) and (“15 days” in English) with a syllable-based metric is 2β
whereas the distance between them is 1β+1α (α: weight for syllable, β: weight
for phoneme) with our metric.

The Korean Phoneme Distance metric is defined in Eq. (1), where sD is the
syllable distance, and pDn is a list of phoneme distances of each syllable.

if (sD0 > 0) min
0≤i≤I

[(sDi − 1) ∗ β + min
0≤n≤N

(spDin) ∗ α], else 0 (1)

This new metric can control the range of the target string more precisely,
especially for those string pairs that have only one or two phonemes different

Interlinking and Knowledge Fusion 85

from only one syllable. For example, if a threshold of two is applied, then a
search for (“tiger” in English) would find its dialect as a can-
didate (only the first syllable is different). But a syllable-based metric would
find many of its variations such as (“OK” in English) as well (the first
and second syllables are different). This algorithm is especially useful for finding
matching words in dialects and words with long histories, which have many vari-
ations across the country, and the variations have some similar patterns. This
metric can fine-tune the distribution of different phonemes, and precision can
be improved by reducing irrelevant information to be retrieved. Therefore, this
metric is especially effective in enhancing precision by reducing the number of
irrelevant records compared with Levenshtein.

6.2 Interlinking Korean Resources in Korean and English: Korean
Transliteration Distance

During translation some terms may be transliterated from one language to
another in case translators cannot find proper corresponding terminology in that
local language. Transliteration is a way of converting letters from one writing
system into another without concern for representing the original phonemics. For
example, a Korean popular food called (translated as knife-cut Korean
noodles) can be transliterated as kalguksu in English.

The best approach to measure distance between transliterated strings would
be to apply Korean Phoneme Distance to the strings transliterated back. This
approach, however, is complicated because a transliterated Korean string could
be back transliterated into several possible original Korean strings in case the
transliterated string has no explicit notation for identifying syllables. Unfortu-
nately, existing transliteration systems do not consider back-transliteration, so
no explicit borders of syllables, which is important to restore the original Korean
words, exist. Although many efforts have focused on the back transliteration to
help people identify the original string better, many existing Korean-English
transliteration systems lack this mechanism.

Due to this difficulty, we decided to take a simpler but more practical app-
roach for measuring distance between transliterated Korean strings, namely,
Korean Transliteration Distance, which chooses one random letter for each con-
sonant group from the International Phonetic Alphabet (IPA) chart. For exam-
ple, as ‘b’ and ‘p’ belong to the bilabial plosive group, Korean Transliteration
Distance replaces every ‘b’ with ‘p’. Similarly, it replaces ‘g’ with ‘k’, ‘d’ with
‘t’, and ‘l’ with ‘r’ (although ‘l’ and ‘r’ do not belong to the same group, they
are used interchangeably in Korea). The main difference between Soundex and
Korean Transliteration Distance is that Korean Transliteration Distance does
not eliminate vowels or other consonants, does not remove duplicates, and does
not limit the number of letters for comparison. There are three reasons for this.
First, the Korean alphabet has 10 vowels and 14 consonants compared with 5
vowels and 21 consonants in English, so Korean vowels play a more important
role in matching words than English vowels do. Second, the Korean alphabet has
letters with fortis, which is expressed with two identical consonants in succession,

86 V. Bryl et al.

so the meaning of the string will be lost if duplicate consonants are removed.
Third, keeping all the letters is a more conservative and safer way to measure dis-
tance. This metric is especially useful for enhancing recall while keeping precision
almost intact compared with Levenshtein and for enhancing precision compared
with Soundex, thereby contributing to obtaining a higher number of correct links
when used in Silk.

6.3 Interlinking Asian Resources in Chinese Alphabet:
Han Edit Distance

China, Japan and Korea (CJK) are geographically close and have influenced
each other language systems for thousand years. CJK share Han Chinese even
though Japan and Korea have their own writing systems, and many currently
used words in the three countries were derived from ancient Han Chinese. That
means language resources existing in the three countries can be better matched
and interlinked when the lineage is properly utilized. Therefore, a new linguistic
similarity metric was developed to measure distances between commonly used
Chinese letters among the three languages.

Han Edit Distance (HED) is a new similarity metric for Chinese, Japanese
and Korean based on the Unihan database. The Unihan database covers more
than 45,000 codes and contains mapping data to allow conversion to and from
other coded character sets and additional information to help implement support
for the various languages that use the Han ideographic script. As the Unihan
database provides a variety of information associated with Han Chinese, HED
measures similarities between two words by using this information.

As Han Chinese has been used in many Asian countries for a long period of
time, Han characters are pronounced differently, and some of the shapes have
changed over time in different regions. Reading category in the Unihan database
shows the pronunciation of the same unified ideographs in Mandarin, Cantonese,
Tang-dynasty Chinese, Japanese, Sino-Japanese, Korean and Vietnamese. The
Variants category includes a variety of relationships with Han Chinese that
can be used for interlinking. In Han Edit Distance, each piece of information
about Han Chinese characters was classified into Reading and Semantic cate-
gories. That is, kMandarin, kJapaneseOn, kJapaneseKun, kKorean and kHangul
are classified into the Reading category, and kSemanticVariant, kCompatibili-
tyVariant, kSimplifiedVariant, kRSUnicode and kTotalStroke are classified into
the Semantic category.

Figure 4 shows how HED is measured: it calculates Reading and Semantic
distances using each category, sums the total distance, and normalizes the dis-
tance. The number of matching properties from the Reading category is the
distance between two characters. Therefore, the maximum reading distance is 5
because Reading category has 5 properties. Semantic distance is calculated by
comparing 3 semantic properties (semantic, compatibility, simplified variant). If
any of the three matches, the two characters are believed to have a semantic rela-
tionship. If no match exists, then a semantic distance is calculated by counting
radical strokes. That is, the number of total strokes of two characters when the

Interlinking and Knowledge Fusion 87

Fig. 4. Detailed process of Han Edit Distance algorithm

family root is the same becomes the distance. We defined 30 to be the maximum
number of total strokes, even though the total number of strokes is larger than
30, but the number of Chinese characters that have more than 30 strokes is rare
(about 0.23 %) in the Unihan database.

As Han Chinese words can be composed of one or more characters, we per-
formed two types of experiments to compare with Levenshtein distance by using
commonly used Han Chinese characters (1,936 pairs) and by using Han Chi-
nese words (618 pairs). The F-measure scores of both experiments show better
performance, specially as high as 23 % for Han Chinese words. From the exper-
iment, the HED method shows performance improvements in comparison with
Levenshtein distance for Han characters commonly used in Chinese, Japanese
and Korean.

6.4 Asian Data Fusion Assistant

Integrating multilingual resources to derive new or unified values has not shown
the full potential in the context of Linked Data partly because of language bar-
riers. Asian Fusion Assistant, an extension of Sieve, aims at facilitating the
fusion process by adding translation functionality from one Asian language
to another. While machine translation systems pursue full automatic transla-
tion without human intervention by using a large bilingual corpora, building a
machine translation system for each pairs of languages is hard to achieve. There-
fore, we adopted a translation memory approach for two reasons. First, existing
human translations can be fully utilized. Second, not every part of RDF triples
ought to be translated, but only plain literals that have language tags.

A translation memory system provides similar translation pairs upon trans-
lator’s requests and stores new translation pairs produced by human translators.
Wikipedia (and hence, DBpedia) texts with inter-language links for many lan-
guages is a valuable source of translation memories. Therefore, parallel text
pairs were collected from Korean, English, Chinese and Japanese DBpedia and
stored separately. Although RDF triple translation follows the architecture of
translation memory systems, one major difference is that human translators are
substituted with (free) internet translation services. The advantages of using
the Internet translation API services (e.g. Microsoft Bing) are that they usually
support many language pairs and because the concerns about translation qual-
ity are reduced as texts to be translated are not sentences but nouns or noun
phrases.

88 V. Bryl et al.

Fig. 5. Asian fusion process

Asian resource fusion process consists of 4 steps: translation, encoding, qual-
ity assessment/conflict resolution and decoding as shown at Fig. 5. Translation
is only invoked when input triples contain plain literals with language tags.
Encoder encodes multi-byte letters (e.g. Korean) into a stream of single-byte
letters, and then Sieve performs quality assessment and conflict resolution to
produce an integrated result. Finally, Decoder decodes all encoded strings into
the original language again. We expect that translation memory systems can be
globally interconnected and can boost the multilingual data fusion.

7 Conclusion

In this chapter we have presented the tools for vocabulary mapping, data inter-
linking, quality assessment and fusion, developed in the context of the LOD2
project. Specifically, R2R supports vocabulary mappings, Silk and LODRefine
facilitate the process of creating and evaluating the quality of links among
datasest, Sieve assists its users in assessing the data quality and resolving value
conflicts. Additionally, Silk and Sieve has been extended to address interlinking
and fusion issues specific to CJK (Chinese, Japanese and Korean) languages.

The presented tools are open source and make part of the Linked Data stack
(see Chap. 6). The tools have been extensively evaluated, for the details the
reader is referred to the respective sections, cited articles and tools’ webpages.
These tools have been applied within LOD2 project, e.g. in a media publishing,
enterprise and public procurement use cases, for the details see Chaps. 7, 8 and
10 of the present book, respectively.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution Noncommercial License, which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

http://dx.doi.org/10.1007/978-3-319-09846-3_6
http://dx.doi.org/10.1007/978-3-319-09846-3_7
http://dx.doi.org/10.1007/978-3-319-09846-3_8
http://dx.doi.org/10.1007/978-3-319-09846-3_10

Interlinking and Knowledge Fusion 89

References

1. Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., Lehmann, J.: Crowd-
sourcing linked data quality assessment. In: Alani, H., Kagal, L., Fokoue, A., Groth,
P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, Ch., Janowicz, K. (eds.)
ISWC 2013, Part II. LNCS, vol. 8219, pp. 260–276. Springer, Heidelberg (2013)

2. Bizer, C., Jentzsch, A., Cyganiak, R.: State of the LOD cloud. Technical report,
Freie Universität Berlin (2011). http://lod-cloud.net/state/

3. Bizer, C., Schultz, A.: The R2R framework: publishing and discovering mappings
on the web. In: Proceedings of the 1st International Workshop on Consuming
Linked Data (COLD) (2010)

4. Bleiholder, J., Naumann, F.: Declarative data fusion – syntax, semantics, and
implementation. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J. (eds.) ADBIS
2005. LNCS, vol. 3631, pp. 58–73. Springer, Heidelberg (2005)

5. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1:1–1:41
(2009)

6. Bryl, V., Bizer, C.: Learning conflict resolution strategies for cross-language
Wikipedia data fusion. In: 4th Workshop on Web Quality Workshop (WebQuality)
at WWW 2014 (2014)

7. Heath, T., Bizer, C.: Linked data: evolving the web into a global data space. Syn-
thesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool
Publishers, San Rafael (2011)

8. Isele, R., Bizer, C.: Learning expressive linkage rules using genetic programming.
Proc. VLDB Endowment 5(11), 1638–1649 (2012)

9. Isele, R., Bizer, C.: Active learning of expressive linkage rules using genetic pro-
gramming. J. Web Semant. 23, 2–15 (2013)

10. Isele, R., Jentzsch, A., Bizer, C.: Silk server - adding missing links while consuming
linked data. In: Proceedings of the 1st International Workshop on Consuming
Linked Data (COLD 2010), pp. 85–97 (2010)

11. Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: linked data quality assessment and
fusion. In: EDBT/ICDT Workshops, pp. 116–123 (2012)

12. Petrovski, P., Bryl, V., Bizer, C.: Integrating product data from websites offer-
ing Microdata markup. In: 4th Workshop on Data Extraction and Object Search
(DEOS2014) at WWW 2014 (2014)

13. Verlic, M.: Release of documentation and software infrastructure for using Google
Refine along with Amazon Mechanical Turk, 2013. LOD2 project delivarable
D4.6.2. http://static.lod2.eu/Deliverables/D4.6.2.pdf

http://lod-cloud.net/state/
http://static.lod2.eu/Deliverables/D4.6.2.pdf

Facilitating the Exploration and Visualization
of Linked Data

Christian Mader1, Michael Martin2(B), and Claus Stadler2

1 Semantic Web Company, Vienna, Austria
christian.mader@semantic-web.at

2 University of Leipzig, Leipzig, Germany
{martin,cstadler}@informatik.uni-leipzig.de

Abstract. The creation and the improvement of tools that cover
exploratory and visualization tasks for Linked Data were one of the major
goals focused in the LOD2 project. Tools that support those tasks are
regarded as essential for the Web of Data, since they can act as a user-
oriented starting point for data customers. During the project, several
development efforts were made, whose results either facilitate the explo-
ration and visualization directly (such as OntoWiki, the Pivot Browser)
or can be used to support such tasks. In this chapter we present the three
selected solutions rsine, CubeViz and Facete.

1 Introduction

The increasing number of datasets that are available as Linked Data on the Web
makes it difficult for dataset curators to review additions, removals or updates
of assertions involving resources they authored. Existing approaches like central
registries do not scale with the fast-changing nature of the Web, thus being
outdated or incomplete. In this chapter we propose a set of approaches that
deal with the exploration and visualization of Linked Data. First we present the
Resource SubscrIption and Notification sErvice (rsine) in Sect. 2 which enables
subscribers to register for notifications whenever changes to RDF datasets occur.
Thereby, we outline our approach based on a controlled vocabulary development
scenario and integrate it into two exemplary LOD2 stack components to show
its applicability. Based on requirements that come from practical experience in
thesaurus development at Wolters Kluwer Germany, we describe how rsine can
be used to check and avoid introduction of potential thesaurus quality problems.

Secondly, we showcase in Sect. 3 CubeViz, a flexible exploration and visu-
alization platform for statistical data represented adhering to the RDF Data
Cube vocabulary. If statistical data is represented according to that vocabu-
lary, CubeViz exhibits a faceted browsing widget allowing to interactively filter
observations to be visualized in charts. Based on the selected structural part,
CubeViz offers suitable chart types and options for configuring the visualization
by users. We present the CubeViz visualization architecture and components,
sketch its underlying API and the libraries used to generate the desired output.

c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 90–107, 2014.
DOI: 10.1007/978-3-319-09846-3 5

Facilitating the Exploration and Visualization of Linked Data 91

By employing advanced introspection, analysis and visualization bootstrapping
techniques CubeViz hides the schema complexity of the encoded data in order
to support a user-friendly exploration experience.

Lastly, we present Facete in Sect. 4, which is an application tailored for the
exploration of SPARQL-accessible spatial data. Facete is built from a set of
newly developed, highly modular and re-usable components, which power the
following features:

• advanced faceted search with support of inverse properties and nested prop-
erties;

• automatic detection of property paths that connect the resources that matches
the facet selection with those resources that can be shown on the map; and

• a map component that operates directly on a SPARQL endpoint and auto-
matically adopts its data retrieval strategy based on the amount of available
spatial information.

2 Rsine - Getting Notified on Linked Data Changes

With the growing amount of content available on the Web of Data it becomes
increasingly difficult for human users to track changes of resources they are
interested in. This even holds true for “local” use cases where, e.g., contributors
are working on a dataset in a collaborative way, linking and annotating each
other’s resources.

For example, contributors who develop controlled vocabularies, typically want
to know whenever the meaning of a concept is fundamentally changed. This is
because the concept might have been used for indexing documents and the changed
meaning impairs search precision. However, with increasing frequency of change
and size of the curated information resources, pull-based approaches do not scale
anymore.

In this section we introduce the Resource SubscrIption and Notification
sErvice (rsine), a framework that notifies subscribers whenever assertions to
resources they are interested in are created, updated or removed. It is based on
the W3C standards RDF and SPARQL and designed to be used alongside with
existing triple storage solutions supporting these technologies. Multiple instances
of the framework can communicate dataset changes also among each other. This
allows to subscribe for changes of resources that are created or modified in other
datasets on the Web that are managed by rsine.

An application of rsine is for instance the support of integrated quality man-
agement in controlled vocabulary development. We have shown in our previous
work [8,9] that potential quality problems in controlled Web vocabularies can
be detected from patterns (“quality issues”) in the underlying RDF graph. We
believe that immediate notification of the responsible contributors after such
quality issues have been introduced will lead to faster development and higher
quality of the created vocabularies.

92 C. Mader et al.

2.1 Related Work

SparqlPuSH [13] is a subscription/notification framework that allows for “proac-
tive notification of data updates in RDF stores”. Users express the resources they
are interested in as SPARQL queries which are used by the service to create RSS
or Atom feeds. These feeds are published on “hubs” using the PubSubHubbub
protocol which handles the dissemination of notifications. Our approach is closely
related to SparqlPuSH but is designed to operate on a more general level. In par-
ticular, creation and subscription to feeds, as proposed in SparqlPuSH, is only
one of the possible options for notifying subscribers in rsine. Furthermore, Spar-
qlPuSH only relies on the extensiveness of the data contained in the underlying
RDF store. Thus, it is not possible to, e.g., find out about all resources deleted
in a certain period of time. Rsine supports these scenarios by using a standard
ontology for storing changeset metadata.

SDShare1 is a protocol for the distribution of changes to resources that are
represented in RDF. A server that exposes data provides four different Atom
feeds that provide information about the state of the data and update informa-
tion. The protocol is designed to support replications of linked data sources and
relies on clients actively monitoring the provided feeds. Furthermore, clients only
get information about the updated resource URIs and are expected to fetch the
actual changes of resources themselves.

In the course of the REWERSE [10] project, a “general framework for evo-
lution and reactivity in the Semantic Web” has been proposed that is based on
Event-Condition-Action (ECA) rules. The framework is designed to be indepen-
dent from the languages used to specify define events, conditions and actions. We
stick to this approach but utilize a custom RDF ontology to express the ECA
rules. Additionally we decided to use SPARQL for definitions of both events
and conditions because of its wide acceptance and our focus on RDF data. This
results in a light-weight approach, eliminating the need for custom event match-
ers and detection engines in favour of SPARQL endpoints and incremental RDF
changesets. Actions are represented in our rsine ECA rules by specifying one or
multiple notifiers.

2.2 Approach

Figure 1 describes the proposed architecture of the rsine service (Notification
Service frame). The service on the left side of the figure is intended to give
an overview on the components interacting internally, whereas the notification
service on the right side is a second instance of the framework installed on a
remote location on the Web.

Our approach uses a Change Handler that mediates between the Managed
RDF store and the rsine service. In our implementation we provide a Change
Handler (rsineVad2) that can be used for Virtuoso Servers. However, in environ-
ments that rely on different RDF storage backends such as openRDF Sesame,
1 Final Draft:http://www.sdshare.org/spec/sdshare-20120710.html
2 https://github.com/rsine/rsineVad

http://www.sdshare.org/spec/sdshare-20120710.html
https://github.com/rsine/rsineVad

Facilitating the Exploration and Visualization of Linked Data 93

Fig. 1. Conceptual overview

a custom Change Handler that fits to the internals of the used storage solution
must be implemented.

The rsine service continuously observes changes to the data held by a Man-
aged RDF Store on the triple level, i.e., every time a triple is added, updated or
removed the framework is triggered. The triple change events are then passed to
the Changeset Service which converts the received triple changes to changesets
expressed in the Changeset3 ontology and persists them to an internal Changeset
Store.

A subscriber who is interested in receiving notifications can subscribe by
sending a subscription document to the service that contains SPARQL queries
and information about the preferred notification channel (e.g., email, Twitter).
The queries from the subscription document select resources the subscriber is
interested in and access both the data contained in the Managed RDF Store
as well as in the Changeset Store. The results of these queries, can then be
disseminated through the desired channels. Before dissemination, the Results
Formatter formats the query results into human-readable form by using the
template provided in the subscription document.

Rsine can also send (“forward”) local dataset changes to remote rsine instances
on the Web (small Notification Service box). This feature is useful to get notifi-
cations whenever resources in datasets on different servers reference each other.
Due to space limitations we refer to deliverable D5.3.1 for a detailed coverage of
the workflows for both local and forwarded dataset changes.
3 http://vocab.org/changeset/schema.html

http://vocab.org/changeset/schema.html

94 C. Mader et al.

2.2.1 Subscribing for Notifications
Subscriptions are RDF documents that are sent to the rsine service by HTTP
POST. They consist of two mandatory parts: (i) a query which specifies the
resources the subscriber is interested to get notifications about and (ii) at least
one notifier that defines the way notification messages should be disseminated. A
basic example is provided in Listing 1 (prefixes omitted, for an in-depth coverage
we refer to the online documentation4).

1 [] a rsine:Subscription;
2 rsine:query [
3 spin:text"SELECT * WHERE {
4 ?cs a cs:ChangeSet .
5 ?cs cs:addition ?addition .
6 ?addition rdf:subject ?concept .
7 ?addition rdf:predicate skos:prefLabel .
8 ?addition rdf:object ?newLabel }";];
9

10 rsine:notifier [
11 a rsine:emailNotifier;
12 foaf:mbox <mailto:me@myoffice.com >].

Listing 1. Rsine Subscription.

2.3 Stack Integration

In order to showcase the capabilities of rsine, we integrated it with two exemplary
components of the LOD2 stack: The PoolParty Thesaurus Server (PPT) and
Pebbles. PPT is a tool for taxonomy experts to develop thesauri and publish
them as Linked Data using SKOS. Pebbles is a Web application that provides a
GUI to manage RDF metadata for XML documents. For testing the integration
we used the stack installation operated by Wolters Kluwer Germany (WKD).

PPT builds on OpenRDF Sesame infrastructure for persisting RDF data.
In order to provide interoperability between PPT and rsine, we implemented a
subclass of RepositoryConnectionListenerAdapter. It intercepts the triple
changes and, before handing them down to the triple store for persistence,
announces them to rsine’s HTTP interface.

Pebbles uses Virtuoso as storage backend. The only task for integrating rsine
with Pebbles was thus to deploy the rsineVad package from the rsine repository
to the Virtuoso instance. RsineVad is an extension to Virtuoso that configures
database triggers and stored procedures so that all triple changes Pebbles per-
forms to are communicated to rsine.

2.4 Notification Scenarios

WKD specified in total 13 scenarios for notifications that are described in detail
in deliverable D7.3. They are divided into scenarios that are important in a
thesaurus development process (e.g., to “follow all changes such as deletion,

4 https://github.com/rsine/rsine#subscriptions

https://github.com/rsine/rsine#subscriptions

Facilitating the Exploration and Visualization of Linked Data 95

linking or editing of concepts”) and scenarios from metadata editing with Peb-
bles (e.g., “Follow all changes of the document metadata”). We were able to
support all but one requirements from the thesaurus development scenario and
implemented one metadata editing scenario as a proof-of-concept. Furthermore,
we adapted 9 checks for potential controlled vocabulary quality problems from
our earlier work5 and converted them for use with rsine. Among them are, e.g.,
checks for cyclic hierarchical relations or concepts with conflicting (i.e., identical)
preferred labels.

3 CubeViz – Exploration and Visualization of Statistical
Linked Data

A vast part of the existing Linked Data Web consists of statistics (cf. LOD-
Stats6 [3]) being represented according to the RDF Data Cube Vocabulary [2].
To hide the inherently complex, multidimensional statistical data structures and
to offer a user-friendly exploration the RDF Data Cube Explorer CubeViz7 has
been developed. In this chapter we showcase how large data cubes comprising
statistical data from different domains can be analysed, explored and visualized.
CubeViz is based on the OntoWiki Framework [7] and consists of the following
OntoWiki extensions:

• The Integrity Analysis Component (cf. Sect. 3.2) evaluates the existence and
the quality of selected RDF graphs according to given integrity constraints.

• The Facetted Data Selection Component (cf. Sect. 3.3) is retrieving the struc-
ture of the selected Data Cube using SPARQL [5] in order to generate filter
forms. Those forms allow to slice the data cube according to user interests.

• The Chart Visualization Component (cf. Sect. 3.4) receives all observation as
input, that correspond to the given filter conditions, in order to generate a
chart visualization.

All components support the comprehensive CubeViz GUI shown in Fig. 2.
Before we introduce the three components in more detail, we give a brief intro-
duction of the RDF Data Cube Vocabulary in the next section. We conclude the
paper with links to publicly available deployments and a list of some upcoming
features planned for the next release. Further information about CubeViz can
be obtained in the repository wiki8 or via a recorded webinar9 comprising a
comprehensive screencast.

3.1 The RDF Data Cube Vocabulary

The RDF Data Cube vocabulary is a W3C recommendation for representing sta-
tistical data in RDF. The vocabulary is compatible with the Statistical Data and
5 qSKOS controlled vocabulary quality checker, https://github.com/cmader/qSKOS
6 http://stats.lod2.eu/rdf classes?search=Observation
7 http://aksw.org/Projects/CubeViz
8 https://github.com/AKSW/cubeviz.ontowiki/wiki
9 http://www.youtube.com/watch?v=ZQc5lk1ug3M#t=1510

https://github.com/cmader/qSKOS
http://stats.lod2.eu/rdf_classes?search=Observation
http://aksw.org/Projects/CubeViz
https://github.com/AKSW/cubeviz.ontowiki/wiki
http://www.youtube.com/watch?v=ZQc5lk1ug3M#t=1510

96 C. Mader et al.

Fig. 2. The CubeViz GUI visualizing a slice of a 2-dimensional RDF DataCube in a
combined polar-column chart.

Medadata eXchange XML format (SDMX) [4], which is defined by an initiative
chartered in 2001 to support the exchange of statistical data. Sponsoring insti-
tutions10 of SDMX are among others the Bank for International Settlements,
the European Central Bank, Eurostat, the International Monetary Fund, the
Organisation for Economic Co-operation and Development (OECD), the United
Nations Statistics Division and the World Bank. Experiences while publishing
statistical data on the Web using SDMX were summarized by the United Nations
in [11] and by the OECD in [12].

The core concept of the Data Cube vocabulary is the class qb:Observation11,
that is used to type all statistical observations being part of a Data Cube.
Every observation has to follow a specific structure that is defined using the
class qb:DataStructureDefinition (DSD) and referenced by a dataset resource
(DS) of type qb:DataSet. Since every observation should refer to one spe-
cific DS (which again refers to the corresponding DSD) the structure of the
observation is fully specified. DSD components are defined as set of dimensions
(qb:DimensionProperty), attributes (qb:AttributeProperty) and measures
(qb:MeasureProperty) to encode the semantics of observations. Those com-
ponent properties are used to link the corresponding elements of dimensions,
measure values and units with the respective observation resource. Furthermore,
it is possible to materialize groups and slices of observations as well as hierar-
chical orders of dimension elements using respective concepts.
10 http://sdmx.org/?page id=6
11 Prefix qb:http://purl.org/linked-data/cube#

http://sdmx.org/?page_id=6
http://purl.org/linked-data/cube

Facilitating the Exploration and Visualization of Linked Data 97

3.2 Integrity Analysis

As described in the W3C RDF Data Cube Recommendation document data cubes
are structurallywell-formed if they comply to specific integrity constraints12.Those
constraints can be used to validate and if necessary to improve the quality of a data
cube. For CubeViz, we translated those constraints into SPARQL queries using an
ASK-clause returning boolean values. The queries were integrated into the Integrity
AnalysisComponent ofCubeViz,whoseGUI is depicted inFig. 3. If a query returns
false, the corresponding constraint is marked in the GUI in red and can be selected
in order to reuse and modify them with a configured query editor. This function-
ality supports the discovery of potential modelling or conversion flaws.

Additionally, this component is used to introspect the selected RDF model for
all included data cubes. If the introspection query (given in Listing 2) returns a
positive result, the Faceted Data Selection and Chart Visualization components
are activated.

1 PREFIX qb:<http :// purl.org/linked -data/cube#>
2 ASK FROM <http :// example.org/> {
3 ?observation a qb:Observation .
4 ?observation qb:dataSet ?dataset .
5 ?observation ?dimension ?dimelement .
6 ?observation ?measure ?value .
7 ?dataset a qb:DataSet .
8 ?dataset qb:structure ?dsd .
9 ?dsd a qb:DataStructureDefinition .

10 ?dsd qb:component ?dimspec .
11 ?dsd qb:component ?measurespec .
12 ?dimspec a qb:ComponentSpecification .
13 ?dimspec qb:dimension ?dimension .
14 ?measurespec a qb:ComponentSpecification .
15 ?measurespec qb:measure ?measure}

Listing 2. Data cube introspection query.

3.3 Faceted Exploration

Given that the introspection was successful, specific structural parts of the iden-
tified data cube are queried in order to create a faceted search interface. All
components of a DSD have to be integrated into any observation of the respec-
tive DS. In order to discover those observations the user has to select values that
are referenced by those components. First the user needs to select a DS of a data
cube in order to analyse the DSD that is the basis for all further facets. Second
the user has to select the measure and attribute property used to identify the
representation of values. The last mandatory facet is used to offer the selection
of dimensions and its respective elements of interest. CubeViz is processing and
visualizing values exactly as they are represented in the data cube and does not
support aggregate functions such as SUM, AVG, MIN and MAX. As a consequence,
users have to select at least one element of each dimension. Furthermore, if
materialized slices are aggregated within the selected DS an optional facet will
be generated to offer a selection from the retrieved slices.
12 http://www.w3.org/TR/vocab-data-cube/#wf-rules

http://www.w3.org/TR/vocab-data-cube/#wf-rules

98 C. Mader et al.

Fig. 3. GUI presenting results of the statistical and integrity analysis.

3.3.1 Generation of Dialogues
The detected facets and their generated GUI representations are integrated into
a filter form. To select/deselect elements of facets for extracting subsets of the
DS, respective interface elements are dynamically created. According to the type
of facet (mandatory/optional) a configurable amount of elements (min/max) is
selectable. Additionally, the label and textual description of components are
retrieved using SPARQL queries and added to the interface. As illustrated in
Fig. 4 the selected amount of facet elements is displayed after confirmation.
Already discovered RDF resources are cached on the client-side and will be
re-used in the Chart Visualization component.

One of the major advantages of faceted exploration is the avoidance of pos-
sibly empty result sets. To avoid empty sets of observations after facet selec-
tion, the set of selectable elements of all further facets in combination with its
respective count of observations is being calculated using respective SPARQL
queries. Every selected combination of a component and its respective element
is represented by a triple pattern that is conditionally used to retrieve the set of
observations and all facet elements.

3.3.2 Initial Pre-selection
To lower the barrier of exploring a data cube from scratch, an initial pre-selection
algorithm is started after a positive introspection. As described in Sect. 3.4 it is
possible to integrate and configure charts visualizing one or multiple dimensions.
The determined maximum amount of dimensions respectively chart axis is used

Facilitating the Exploration and Visualization of Linked Data 99

Fig. 4. Facets and dialogues.

as input for the pre-selection algorithm. After extracting all obligatory facets
exactly one element per facet is pre-selected. According to the number of dis-
covered dimensions and the maximum amount of processable chart axis, dimen-
sions are randomly selected for which more than one element can be selected. To
avoid confusing visualizations the amount of pre-selected elements is limited to
10 respectively 30% of the set of elements. During manual selection these limits
are not relevant.

3.4 Chart Visualisation

In order to extract observations according to user interests, filter criteria from the
facet selection component are translated into a corresponding SPARQL query.
The resulting set of observation resources is serialized in JSON and sent back to
the client. On the client-side the result set will be analysed according the amount
of disjunctive dimensions and the respective amount of elements in order to select
suitable charts. After identifying suitable chart implementations the first one is
launched and renders the visualization using the received set of observations. All
further suitable charts can be selected using a respective GUI element without
querying the observations again.

APIs

CubeViz comprises an abstraction layer to mediate between the retrieval of
observations and the APIs used to generate and visualize charts. Currently,
charts such as pie, bar, column, line and polar chart are implemented using the

100 C. Mader et al.

APIs Data Driven Documents13 (D3js) and HighCharts14. Every chart is imple-
mented using a defined interface and comprises a mechanism to convert the set
of observations in combination with the meta data about dimension properties
into the chart-specific input format.

Chart Options

Most of the implemented chart visualizations can be adjusted using preconfig-
ured chart options. Hence, it is possible to enable the display of measure values
in addition to its graphical representation, to switch axis / dimensions, to switch
the value scale between linear and logarithmic or to enable a normal or percent-
age stacking. Additionally it is possible to combine charts such as a polar chart
with a column chart (see Fig. 2).

Element Recognition

On the Linked Data Web, URIs are used to identify resources. In a domain-
agnostic tool such as CubeViz, it is not feasible to integrate static mappings
between data items and their graphical representations. Most of the chart APIs
have a limited amount of pre-defined colors used for colouring dimension ele-
ments or select colors completely arbitrarily. In order to display dimension
elements in a deterministic manner and to support users to quickly recover
selected elements in different charts we integrated a colouring algorithm that
uniquely assigns URIs of each dimension element corresponding RGB color
codes15.

Interactive Legend

Below the generated charts an additional tabular representations of the selected
data items is given (cf. Fig. 5). On the one hand they can be used as legend
containing additional meta data. On the other hand this view offers support for
resolving data inaccuracies with functionality for editing values, that automati-
cally updates the chart representation.

Sharing Views

After exploring, configuring and possible adaption of values users are able to
share the created output. Sharing functionality is implemented via a button,
which triggers the gathering of all information necessary to reproduce the created
output, storing them server-side and returning a shareable link containing an
identifying hash code for the particular view configuration. Furthermore, it is
possible to export selected data as CSV and RDF in Turtle notation.
13 http://d3js.org/
14 http://www.highcharts.com/
15 http://cold.aksw.org/

http://d3js.org/
http://www.highcharts.com/
http://cold.aksw.org/

Facilitating the Exploration and Visualization of Linked Data 101

Fig. 5. Interactive CubeViz legend.

4 Facete - A Generic Spatial Facetted Browser for RDF

Facete is a web application for the exploration of SPARQL-accessible spatial
data, which offers several distinguishing features. First, there is the advanced
faceted search component which enables users to filter the data by inverse
properties and nested properties. Counts are provided for both facets and facet
values. Second, the system will always attempt to detect (possible indirectly)
related geometric information for the set of resources matched by the faceted
search. For example, if a user filters by the class Person, then the system could
detect that birthPlace and deathPlace provide geo-coordinates and appropriate
suggestions about what to display on the map would be shown to the user.
Third, Facete provides a map display capable of dealing with large amounts of
geometric information. Finally, users are able to customize a tabular view for
the data related to their facet selection. Information about Facete is available
on its project site16. All of Facete’s user interface components are based on the
popular AngularJS17 framework, and are published as a separate library called
JAvascript Suite for Sparql Access (Jassa)18. In the remainder of this section,
we give an overview of Facete’s components, which we partly published in [14].

4.1 User Interface

Facete is implemented as a Single Page Application (SPA) whose user interface
comprises several UI components, which are depicted in Fig. 6 and explained in
the following. In the top area, there are elements that enable the user to select a
SPARQL endpoint and chose from one or more of its contained named graphs.
The main panel is divided into three columns containing a set of widgets with
the following functionality:

1. Selection. The first widget, labeled Facet, shows a facet tree that corre-
sponds to the properties of all resources that match the set constraint. If there
16 http://aksw.org/Projects/Facete
17 http://angularjs.org/
18 https://github.com/GeoKnow/Jassa-UI-Angular

http://aksw.org/Projects/Facete
http://angularjs.org/
https://github.com/GeoKnow/Jassa-UI-Angular

102 C. Mader et al.

Fig. 6. Graphical user interface of facete

are no constraints, all resources that appear as a subject in the selected graphs
are matched. Three actions can be performed for node in the facet tree. A click on
the facet’s name lists the facet’s values in the Facet Value widget, where these
values can be used for defining constraints. Clicking the caret symbol toggles
the display of corresponding child facets. These are the properties of the selected
facet’s values. Lastly, a facet can be pinned as a column to the Table View. Note,
that the root of the facet tree is formed by a facet labelled Items. This facet’s
values correspond to the set of resources in subject positions of the selected RDF
graphs. The Facet Values widget enables a user to paginate through a selected
facet’s values and optionally filter these values by a search term. Furthermore,
clicking the checkbox next to a value creates a constraint. The Filters widget
lists all active constraints. Individual constraints can be removed by clicking
their entry, whereas the Clear Filters button purges them all.

2. Data. The middle area contains the Table View, which lists a table whose
content is based on resources that match the active constraints and the facets
that were pinned as columns. Columns can be sorted by clicking the caret icons.
Multiple orders are supported by holding the shift key down while clicking.

3. Geographical. The Geo-Link drop down menu enables the user to choose
from property paths connecting the resources that match the constraints with
those that can be shown on the map. By default, the option automatic is enabled,
which always picks the shortest path among the found ones. The Map widget
displays markers corresponding to the selected resources and the geo-link. Blue
boxes indicate areas that contain too many markers to be shown at once. These
boxes disappear when sufficiently zoomed in. Clicking a marker shows its details
in the Detail View. The Detail View shows the excerpt of the Table View that
corresponds to the selected marker(s).

Facilitating the Exploration and Visualization of Linked Data 103

4.2 Concepts

In this section we briefly outline the key concepts used in Facete, which are
related to faceted search, detection of property paths that connect concepts and
dealing with large amounts of spatial data.

4.2.1 Faceted Search
Facete’s approach to faceted search based on the following concepts.

• A SPARQL concept is a pair comprising a SPARQL graph pattern and a
variable thereof. As such, it intentionally describes a set of resources. For
instance, the pair ({?s a Person}, ?s) could be used to describe a set of
people. SPARQL concepts are a key enabler for indirect faceted search as they
can be used to represent virtually any set of resources (within the expressivity
of SPARQL), such as the set of facets, the set of child facets, the set of facet
values and the set of resources with geometric information.

• Property Steps are used to navigate from a set of resources to a related set
of resources by following a specific property. A direction attribute determines
whether to follow a property in forward or inverse direction. Hence, a destina-
tion SPARQL concept can be obtained from a given origin SPARQL concept
and a property step.

• A Property Path is a sequence of property steps.
• Constraint Specifications express constraints via references to property paths.

Constraint specifications are internally translated to corresponding SPARQL
graph patterns.

4.2.2 Finding Connections between SPARQL Concepts
Depending on how a dataset was modeled, the spatial dimension may not be
directly attached to instances of a certain type. In order to visualize the spatial
dimension of such objects efficiently and intuitively we need an approach to find
connecting property paths between two arbitrary SPARQL concepts efficiently.
These paths can become relatively long, and naive path discovery approaches
are not feasible. For example, in our RDFized version of the FP7 project funding
dataset19, projects are related to geometric information via paths of length 5.

Our approach is outlined as follows: because we are only interested in the
detection of property paths, we pre-compute a property join summary. The basic
SPARQL query for this purpose is:

1 CONSTRUCT
2 { ?p1 :joinsWith ?p2 }
3 {
4 { SELECT DISTINCT ?p1 ?p2 {
5 ?a ?p1 [?p2 ?b]
6 } }
7 }

19 http://fp7-pp.publicdata.eu/sparql

http://fp7-pp.publicdata.eu/sparql

104 C. Mader et al.

Conceptually, we could search for arbitrary complex paths, such as ones that
include cyclic (same property followed multiple times in the same direction) and
zig-zag (forward and backward on the same property traversals. However, for our
use cases the restriction to directed acyclic paths leading from a source concept
to a target concept was sufficient: we query the source concept for all of its
properties ?p, and conceptually add triples (:source :joinsWith ?p) to the join
summary. Thereby :source is a distinguished resource representing the source
concept. From a target concept’s graph pattern, such as (?s geo:long ?x ; geo:lat
?y, ?s), we can infer that we need to search for properties that according to the
join summary are connected to both geo:long and geo:lat. As a consequence, we
can query the joinsummary for a set of candidate target properties using:
1 SELECT DISTINCT ?p { ?p :joinsWith geo:long ; joinsWith geo:lat }

If the extensions of the source and target concepts have resources in common,
this query’s result set includes :source as a candidate.

We can now search for candidate paths on the join summary that connect
:source with each of the candidate properties. For each candidate path we then
fire an ASK query to check whether the given dataset contains an instance of it.
Those paths for which actually data exists, are then listed in Facete’s Geo-Link
drop down box.

Note, that this approach is independent of any concrete vocabulary.

4.3 Display of Large Amounts of Geometries

Some spatial RDF datasets, such as DBpedia or Freebase, contain significantly
more spatial information than can be reasonably retrieved and displayed on a
map in a web application considering bandwidth and performance restrictions.
Facete handles such cases using a quad tree data structure:

• Based on the users constraints on the facets and the geo-link, a corresponding
SPARQL concept, named geo-concept, is created. The geo-concept specifies
the set of resources to be shown on the map.

• A count of the number of instances matching the geo-concept is requested. If
the count is below a configured threshold, all instances are retrieved at once
and placed into the root node of the quad tree.

• If this count exceeds the threshold, the extent of the whole map is split recur-
sively into four tiles of equal size. The recursion stops if either a maximum
depth is reached, or if the tiles have reached a certain relative size when com-
pared to the map viewport (e.g. when about 4 × 4 tiles are visible). For each
tile, the geo-concept is then modified to only refer to resources within that
tiles’ bounding box. A tile’s resources are only retrieved, if the new count is
again below a configured threshold.

• Tiles that still contain too many geometries are rendered as boxes on the map.

An example of such display is shown in Fig. 7, which shows a subset of the
approx. 20.000 resources with geo-positions in Germany. For each set of con-
straints, Facete creates a new quad tree that acts as a cache for the user’s
current configuration.

Facilitating the Exploration and Visualization of Linked Data 105

Fig. 7. Display of Freebase instances in Germany.

4.4 Related Work

The RelFinder system [6] is capable of finding property paths connecting a pair
of resources, whereas Facete searches for paths between SPARQL concepts. Over
the past decade, faceted search has become omnipresent, such as in web shop
and content management systems. Apache Solr20 is a popular system that offers
extensive faceted search features, however, it does not offer native SPARQL
support and thus requires pre-processing of RDF data. Rhizomer [1] and the
Virtuoso faceted browser21 support changing the focus from one set of resources
to a related one (known as pivoting). However, with these systems, the user
actually navigates between related list views of resources, whereas in Facete the
user pins facets as new columns to the table view.

5 Conclusions and Future Work

In this chapter, we presented three tools as part of the LOD2 project that aim
at facilitating the exploration of Linked Open Data. Rsine is a tool that sends
notifications about changes in a RDF dataset. CubeViz is a data cube visual-
isation tool for statistical data. Facete is a faceted browser application with a
focus on spartial data.
20 http://lucene.apache.org/solr/
21 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/

VirtuosoFacetsWebService

http://lucene.apache.org/solr/
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VirtuosoFacetsWebService
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VirtuosoFacetsWebService

106 C. Mader et al.

We presented the design, implementation and integration of rsine, a service
that notifies subscribers on specific changes in an RDF data set. We integrated
the service with two LOD2 stack components and showed its applicability by
supporting requirements for notifications in a thesaurus and metadata editing
scenario at WKD.

Our immediate next steps are to evaluate the implemented thesaurus noti-
fications in the context of a thesaurus development project at WKD. We are
interested in the performance of our approach and the “usefulness” of the notifi-
cations, i.e., if and in what way they influence the quality of the created thesauri.
We furthermore plan to set up multiple rsine instances in this environment to
gain insights about how notifications can help when references between datasets
on distinct servers are created, modified or deleted.

We presented the architecture, analysis components and visualization inter-
faces of CubeViz, a RDF Data Cube browser. In addition to the exploration of
locally stored RDF data cubes it is possible to access remotely published ones
using a combination of the SPARQL backend and the SPARQL services compo-
nent. Such a setup was deployed on the European Commission’s IT infrastructure
as part of the European Data Portal22.

There are further deployments of CubeViz made online such as Linked-
Spending23, which contain government spendings from all over the world repre-
sented and published as Linked Data (more than 2.4 million observations in 247
datasets). Using LinkedSpending, interested users can gather information about
greek spending on police in certain regions in 2012 for instance (jump in using
the button Example Visualization 2 on the start page).

CubeViz is publicly available for download24 and its latest releases can be
evaluated using an online demonstrator25. CubeViz is under active development
and will be further extended with new features such as drill-down functional-
ity, additional interactive and customizable charts, further chart APIs such as
the Google Charts API 26, aggregate functions and mashup features to compare
observations from different domains.

Lastly, we gave an overview about Facete, a tool for browsing Linked Data in
a domain-agnostic way with a focus on spatial data. Its major goal is to ease the
navigation of RDF data in SPARQL endpoints using advanced faceted search
techniques and - in addition - the provision of corresponding visualization wid-
gets. Facete is published under the Apache 2.0, license and its development con-
tinues within the GeoKnow project27. Further information such as new releases,
links to the sources, demos and documentation can be found on the project
page28.
22 https://open-data.europa.eu/cubeviz/
23 http://linkedspending.aksw.org/
24 https://github.com/AKSW/CubeViz/
25 http://cubeviz.aksw.org/
26 https://developers.google.com/chart/
27 http://geoknow.eu
28 http://aksw.org/Projects/Facete

https://open-data.europa.eu/cubeviz/
http://linkedspending.aksw.org/
https://github.com/AKSW/CubeViz/
http://cubeviz.aksw.org/
https://developers.google.com/chart/
http://geoknow.eu
http://aksw.org/Projects/Facete

Facilitating the Exploration and Visualization of Linked Data 107

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution Noncommercial License, which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

References

1. Brunetti, J.M., Gil, R., Garcia, R.: Facets and pivoting for flexible and usable
linked data exploration. In: Interacting with Linked Data Workshop (ILD) (2012)

2. Cyganiak, R., Reynolds, D., Tennison, J.: The RDF data cube vocabulary. Tech-
nical report, W3C, 2013. http://www.w3.org/TR/vocab-data-cube/

3. Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats – an extensible
framework for high-performance dataset analytics. In: ten Teije, A., Völker, J.,
Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles,
N., Hernandez, N. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 353–362.
Springer, Heidelberg (2012)

4. International Organization for Standardization. Statistical data and metadata
exchange (SDMX). Technical report, Standard No. ISO/TS 17369:2005 (2005)

5. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language - W3C Recommendation.
Technical report, World Wide Web Consortium (W3C) (2013). http://www.w3.
org/TR/sparql11-query/

6. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder:
revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris,
Y., Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS,
vol. 5887, pp. 182–187. Springer, Heidelberg (2009)

7. Heino, N., Dietzold, S., Martin, M., Auer, S.: Developing semantic web applica-
tions with the OntoWiki framework. In: Pellegrini, T., Auer, S., Tochtermann, K.,
Schaffert, S. (eds.) Networked Knowledge - Networked Media. SCI, vol. 221, pp.
61–77. Springer, Heidelberg (2009)

8. Mader, C., Haslhofer, B., Isaac, A.: Finding quality issues in SKOS vocabularies.
In: Zaphiris, P., Buchanan, G., Rasmussen, E., Loizides, F. (eds.) TPDL 2012.
LNCS, vol. 7489, pp. 222–233. Springer, Heidelberg (2012)

9. Mader, C., Wartena, C.: Supporting web vocabulary development by automated
quality assessment: results of a case study in a teaching context. In: Workshop on
Human-Semantic Web Interaction (HSWI14), CEUR Workshop Proceedings, May
2014

10. May, W., Alferes, J.J., Amador, R.: An ontology- and resources-based approach
to evolution and reactivity in the semantic web. In: Meersman, R. (ed.) Coop-
IS/DOA/ODBASE 2005. LNCS, vol. 3761, pp. 1553–1570. Springer, Heidelberg
(2005)

11. United Nations: Guidelines for Statistical Metadata on the Internet. Technical
report, Economic Commission for Europe (UNECE) (2000)

12. Management of Statistical Metadata at the OECD (2006)
13. Passant, A., Mendes, P.: sparqlPuSH: Proactive notification of data updates in

RDF stores using PubSubHubbub. In: CEUR Workshop Proceedings ISSN 1613–
0073, February 2011

14. Stadler, C., Martin, M., Auer, S.: Exploring the web of spatial data with facete.
In: Companion proceedings of 23rd International World Wide Web Conference
(WWW), pp. 175–178 (2014)

http://www.w3.org/TR/vocab-data-cube/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

Supporting the Linked Data Life Cycle Using
an Integrated Tool Stack

Bert Van Nuffelen1(B), Valentina Janev2, Michael Martin3, Vuk Mijovic2,
and Sebastian Tramp3

1 TenForce, Leuven, Belgium
bert.van.nuffelen@tenforce.com

2 Institute Mihajlo Pupin, Pupin, Serbia
{valentina.janev,vuk.mijovic}@pupin.rs
3 University of Leipzig, Leipzig, Germany

{martin,tramp}@informatik.uni-leipzig.de

Abstract. The core of a Linked Data application is the processing of
the knowledge expressed as Linked Data. Therefore the creation, man-
agement, curation and publication of Linked Data are critical aspects
for an application’s success. For all of these aspects the LOD2 project
provides components. These components have been collected and placed
under one distribution umbrella: the LOD2 stack. In this chapter we
will introduce this component stack. We will show how to get access;
which component covers which aspect of the Linked Data life cycle and
how using the stack eases the access to Linked Data management tools.
Furthermore we will elaborate how the stack can be used to support a
knowledge domain. The illustrated domain is statistical data.

1 Introduction

Publishing Linked Data requires the existence of management processes that
ensure the quality. The management process passes through several stages; in
the Linked Data life cycle the main stages are ordered in their typical application
order. The starting point is very often the extraction stage in which data from the
source format is turned into RDF. The extracted RDF formatted data must be
stored in an appropriate storage medium, making the data available for further
processing. At this moment the data is ready to be queried and can be manually
updated to correct small mistakes. Within the linking stage the data is enriched
by interconnecting the data with external data sources. These data linkages
create new opportunities: the data can now be classified according to the external
data; information that is spread over two entities can be fused together, . . . All
these data manipulations can be monitored with quality metrics. When the
desired data quality is reached the data can be made public and be explored by
end-user applications.

Of-course the world is ever changing and hence data will reflect this. There-
fore, there is support for the evolution of the data from one structure into
another.
c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 108–129, 2014.
DOI: 10.1007/978-3-319-09846-3 6

Supporting the Linked Data Life Cycle Using an Integrated Tool Stack 109

For all these stages research institutes and companies around the world have
created tools. At the start of the LOD2 project these tools were scattered around
the Linked Data community. Specialists in the area shared lists of components
in various degree of completeness. The LOD2 project had the ambition to start
a platform in which all Linked Data components were collected. This common
distribution platform was called the LOD2 stack, and will continue to exist
after the LOD2 project has finished as the Linked Data stack1. Components in
the stack are easy to install and directly usable. Moreover, they come with pre-
configured setups that make the interplay between them easier. These additional
features cannot be offered by the individual component owners but requires
central coordination.

In the first part of this chapter, the LOD2 stack is elaborated in more detail.
The second part is dedicated to the specialization of the LOD2 stack for statis-
tical data. Indeed the LOD2 stack is in its own right is not dedicated towards
a particular use case. For particular kinds of data, such as statistical data, the
components of the stack can be further specialized and pre-configured to offer a
much better dedicated end user support.

2 The LOD2 Linked Data Stack

The LOD2 Linked Data stack is a distribution platform for software components
which support one or more aspects of the Linked Data life cycle. Each package
contains a pre-configured component that on installation results in a ready-to-
use application. The pre-configuration ensures that the deployed components
are able to interact with each other. The system architecture of the deployed
Linked data stack components is explained in Sect. 2.1. The subsequent sections
provide more details on the distribution platform and what the requirements are
for software to take part of it. Finally we provide an overview of the LOD2 stack
contents in Sect. 2.5.

2.1 Building a Linked Data Application

The LOD2 stack facilitates the creation of Linked Data applications according
to a prototypical system architecture. The system architecture is shown below
in Fig. 1. From top to bottom, one has first the application layer with which
the end-user is confronted. The applications are built with components from
the component layer. These components communicate between each other and
interact with the data in the data layer via the common data access layer.

The data access layer is build around the data representation framework
RDF. The data is exchanged in RDF and retrieved with SPARQL queries from
SPARQL end-points. All data format heterogeneity is hidden for the components
by this layer. This yields an uniform data view easing the configuration of the
data flow between the components. The RDF representation yields important

1 http://stack.linkeddata.org

http://stack.linkeddata.org

110 B. Van Nuffelen et al.

Fig. 1. Linked Data application system architecture

advantages making it suited for the role as common data representation formal-
ism. It is a W3C standard, domain neutral, and it is web enabled: all identifiers
are web addressable. And last but not least, data integration starts with just
merging the data together in one store.

Matching the Linked Data life cycle presented in the introduction to the
system architecture shows that the extraction and storage tools feature in the
data layer and most of the other are part of the component layer.

An application end user will seldom be directly in touch with the underlying
data layer. They are offered an application interface that shows the information
in a domain adapted intuitive interface. Few of the LOD2 stack browsing and
exploration components have been lifted and designed to this stage. Most of the
stack components are designed for the (Linked Data) data manager. The compo-
nents provide user interfaces that aid the data manager in its task. For instance,
the SILK workbench is a user interface for creating linking specifications. This
specification can then be used by the silk engine which might be embedded in
a larger application. That is the task of the last targeted audience: the Linked
Data application developer.

2.2 Becoming LOD2 Linked Data Stack Component

The system architecture defines minimal requirements for components to become
part of the LOD2 stack, they are that

• Information is exchanged in RDF format
• Business information is requested through SPARQL endpoint access
• Updates are provided as SPARQL updates

Supporting the Linked Data Life Cycle Using an Integrated Tool Stack 111

A typical example is the SILK workbench. The business data is retrieved via
querying SPARQL endpoints and the result (the link set) can be stored in a
SPARQL endpoint that is open to updates. Of course these requirements do not
hold for all communication channels of a component, for instance, extraction
components such as D2R. Those obviously have to communicate with the original
source of the information which is different than RDF, but the outcome is RDF.

A component is distributable via the LOD2 stack repository if it is provided
as a Debian package that installs on Ubuntu 12.04 LTS. The Debian packaging
system has been chosen because it is a well established software packaging sys-
tem that is used by the popular Linux distribution Ubuntu. We decided for a
reference OS release to ensure quality and reduce the maintenance efforts of the
components. This choice does not limit the deployment of the software on other
Linux distributions, whether they are Debian based or not. Using a tool called
alien, debian packages can be installed on a RedHat distribution.

The above mentioned requirements ensure there is a common foundation
between all components in the LOD2 stack. For application developers trained
in the Linked Data domain the creation of an information flow is hence always
possible. Because each data publishing editorial process is unique and the best
solution depends on the data publishing organizations needs, the stack does
not aim for a homogeneous LOD2 Linked Data publishing platform where all
components are hidden behind a single consistent user interface. The goal is
however on improving the information flow between components. In the first
place, this is done via making sure that deployed components have access to
each others output. Additionally, LOD2 has contributed supporting APIs and
vocabularies to the component owners. If they extend their components with
these, the data flow between the components will be further improved.

Using this approach, each component still has its individual identity but they
are interoperable with each other.

2.3 LOD2 Stack Repository

In order to guarantee stability of the available component stack, a multi stage
environment has been setup. There exist 3 stages currently:

• The developers’ area: here the developers put their packages.
• The testing stage: this is a collection of LOD2 packages that are subject to

integration tests. The goal is to detect with automatic testing problems in the
installation of the packages.

• The stable stage: this is a collection of LOD2 packages that pass the tests.

The LOD2 stack managers are responsible for moving packages from the devel-
opers’ area into the testing stage and then to the stable stage.

Orthogonally we have created 2 repositories that are OS-release dependent.
These contain components that are dependent on the OS. The typical exam-
ple is Virtuoso for which Ubuntu 12.04 64 bit builds are provided. Build and
installation instructions are present to support more recent and other Linux
distributions.

112 B. Van Nuffelen et al.

Developers have to contribute a Debian package with the correct LOD2 stack
configuration. The rationale behind this choice for this approach is to distribute
the knowledge on building packages to all partners, but more important to create
awareness for software deployment. When the component owners are responsi-
ble for building the Debian packages they face the imperfections that make their
software hard to deploy. That experience has as positive effect that deployment
issues are tackled early on. All necessary information for the developers is col-
lected in the contribution documentation2.

The LOD2 stack repository distributes software components. However in
addition to these components, there are more components or information sources
valuable to the LOD2 stack available online. These come in two categories:

• software components which are only accessible online due to various reasons:
special setup, license rules, etc. Examples are the Sindice search engine and
PoolParty.

• information sources: for example dbpedia.org and vocabulary.wolterskluwer.de.

2.4 Installing the LOD2 Linked Data Stack

The installation of a local version of the LOD2 stack3 is done in a few steps and
are available online4. In short, the next steps must be executed:

1. Setup a Ubuntu 12.04 64 bit LTS system.
2. Download the repository package (of the stage of interest) and install it.
3. Update the local package cache.
4. Install the whole LOD2 stack or selected components.

If during the installation issues occur, support-stack@lod2.eu can be contacted
for assistance. Background information and frequently occurring situations are
documented at documentation wiki5.

2.5 The LOD2 Linked Data Stack Release

In the following paragraphs all LOD2 stack components are summarized. First
we list those that are available as Debian package, followed by those that are
online available and finally we provide a table of online data sources that are of
interest and have been supported by the LOD2 project.

2.5.1 Available as Debian Packages
Components colanut, limes (ULEI). LIMES is a link discovery framework for
the Web of Data. It implements time-efficient approaches for large-scale link dis-
covery based on the characteristics of metric spaces. The COLANUT (COmplex
2 http://stack.linkeddata.org/how-to-contibute/
3 http://stack.linkeddata.org
4 http://wiki.lod2.eu/display/LOD2DOC/How+To+Start
5 http://wiki.lod2.eu/display/LOD2DOC/Known+issues

http://stack.linkeddata.org/how-to-contibute/
http://stack.linkeddata.org
http://wiki.lod2.eu/display/LOD2DOC/How+To+Start
http://wiki.lod2.eu/display/LOD2DOC/Known+issues

Supporting the Linked Data Life Cycle Using an Integrated Tool Stack 113

Linking in A NUTshell) interface resides on top of LIMES and supports the user
during the link specification process.
http://aksw.org/Projects/LIMES

Components d2r, d2r-cordis (UMA). D2R Server is a tool for publishing rela-
tional databases on the Semantic Web. It enables RDF and HTML browsers
to navigate the content of the database, and allows applications to query the
database using the SPARQL query language. The d2r-cordis package contains
an example setup.
http://d2rq.org/d2r-server

Components dbpedia-spotlight-gui, dbpedia-spotlight (UMA/ULEI). DBpedia
Spotlight aims to shed light on the Web of Documents. It recognizes and disam-
biguates DBpedia concepts/entities mentioned in natural language texts. There
is an online instance that can be used for experimenting.
https://github.com/dbpedia-spotlight/dbpedia-spotlight/

Components dl-learner-core, dl-learner-interfaces (ULEI). The DL-Learner
software learns concepts in Description Logics (DLs) from examples. Equiva-
lently, it can be used to learn classes in OWL ontologies from selected objects. It
extends Inductive Logic Programming to Descriptions Logics and the Semantic
Web. The goal of DL-Learner is to provide a DL/OWL based machine learn-
ing tool to solve supervised learning tasks and support knowledge engineers in
constructing knowledge and learning about the data they created.
http://dl-learner.org/

Component libjs-rdfauthor (ULEI). RDFauthor is an editing solution for dis-
tributed and syndicated structured content on the World Wide Web. The system
is able to extract structured information from RDFa-enhanced websites and to
create an edit form based on this data.
http://aksw.org/Projects/RDFauthor

Component LODRefine (Zemanta). Open Refine (http://openrefine.org/)
extended with RDF (http://refine.deri.ie/) and Zemanta API (http://developer.
zemanta.com) extensions.
http://code.zemanta.com/sparkica/

Component lod2demo (TenForce). The LOD2 demonstrator is a web applica-
tion which brings together all LOD2 stack components in one interface. Compo-
nents are loosely coupled through the Virtuoso store via which all information
is exchanged. It also serves as the top level meta package in order to install the
whole stack content on a machine. This is the top level meta package which
installs the whole stack on a machine.
https://lod2-stack.googlecode.com/svn/trunk/lod2demo

Component lod2-statistical-workbench (TenForce/IMP). A web interface that
aggregates several components of the stack organized in an intuitive way to sup-
port the specific business context of the statistical office. The workbench contains
several dedicated extension for the manipulation of RDF data according to the

http://aksw.org/Projects/LIMES
http://d2rq.org/d2r-server
https://github.com/dbpedia-spotlight/dbpedia-spotlight/
http://dl-learner.org/
http://aksw.org/Projects/RDFauthor
http://openrefine.org/
http://refine.deri.ie/
http://developer.zemanta.com
http://developer.zemanta.com
http://code.zemanta.com/sparkica/
https://lod2-stack.googlecode.com/svn/trunk/lod2demo

114 B. Van Nuffelen et al.

Data Cube vocabulary: validation, merging and slicing of cubes are supported.
Also the workbench has been used to explore authentication via WebID and
keeping track of the data manipulations via a provenance trail.
https://lod2-stack.googlecode.com/svn/trunk/lod2statworkbench

Component lod2webapi (TenForce). An REST API allowing efficient graph
creation and deletion as well as regex based querying. It also support a central
prefix management.
https://lod2-stack.googlecode.com/svn/trunk/lod2-webapi

Component unifiedviews (SWCG). UnifiedViews is Linked (Open) Data Man-
agement Suite to schedule and monitor required tasks (e.g. preform reoccur-
ring extraction, transformation and load processes) for smooth and efficient
Linked (Open) Data Management to support web-based Linked Open Data por-
tals (LOD platforms) as well as sustainable Enterprise Linked Data integrations
inside of organisations.
https://grips.semantic-web.at/display/UDDOC/Introduction

Components ontowiki, ontowiki-common, ontowiki-mysql, ontowiki-virtuoso,
owcli, liberfurt-php (ULEI). OntoWiki is a tool providing support for agile, distrib-
uted knowledge engineering scenarios. OntoWiki facilitates the visual presentation
of a knowledge base as an information map, with different views on instance data.
It enables intuitive authoring of semantic content. It fosters social collaboration
aspects by keeping track of changes, allowing to comment and discuss every single
part of a knowledge base.
http://ontowiki.net

Component ontowiki-cubeviz (ULEI). CubeViz is a facetted browser for statis-
tical data utilizing the RDF Data Cube vocabulary which is the state-of-the-art
in representing statistical data in RDF. Based on the vocabulary and the encoded
Data Cube, CubeViz is generating a facetted browsing widget that can be used
to filter interactively observations to be visualized in charts. On the basis of the
selected structure, CubeViz offer beneficiary chart types and options which can
be selected by users.
http://aksw.org/Projects/CubeViz

Component ontowiki-csv-import (ULEI). Statistical data on the web is often
published as Excel sheets. Although they have the advantage of being easily
readable by humans, they cannot be queried efficiently. Also it is difficult to
integrate with other datasets, which may be in different formats. To address those
issues this component was developed, which focusses on conversion of multi-
dimensional statistical data into RDF using the RDF Data Cube vocabulary.
https://github.com/AKSW/csvimport.ontowiki

Component ore-ui (ULEI). The ORE (Ontology Repair and Enrichment) tool
allows for knowledge engineers to improve an OWL ontology by fixing inconsis-
tencies and making suggestions for adding further axioms to it.
http://ore-tool.net/

https://lod2-stack.googlecode.com/svn/trunk/lod2statworkbench
https://lod2-stack.googlecode.com/svn/trunk/lod2-webapi
https://grips.semantic-web.at/display/UDDOC/Introduction
http://ontowiki.net
http://aksw.org/Projects/CubeViz
https://github.com/AKSW/csvimport.ontowiki
http://ore-tool.net/

Supporting the Linked Data Life Cycle Using an Integrated Tool Stack 115

Component r2r (UMA). R2R is a transformation framework. The R2R map-
ping API is now included directly into the LOD2 demonstrator application,
allowing users to experience the full effect of the R2R semantic mapping lan-
guage through a graphical user interface.

Component rdf-dataset-integration (ULEI). This tool allows the creation of
debian packages for RDF datasets. Installing a created package will autoload
the RDF dataset in the Virtuoso on the system.

Component sieve (UMA). Sieve is a Linked Data Quality Assessment and
Fusion tool. It performs quality assessment and resolves conflicts in a task-
specific way according to user configuration.
http://sieve.wbsg.de

Component sigmaee (DERI). Sigma EE is an entity search engine and browser
for the Web of Data. Sig.ma EE is a standalone, deployable, customisable version
of Sig.ma. Sig.ma EE is deployed as a web application and will perform on the
fly data integration from both local data source and remote services (including
Sindice.com).
http://sig.ma

Component silk (UMA). The Silk Linking Framework supports data publishers
in setting explicit RDF links between data items within different data sources.
Using the declarative Silk - Link Specification Language (Silk-LSL), developers
can specify which types of RDF links should be discovered between data sources
as well as which conditions data items must fulfil in order to be interlinked.
These link conditions may combine various similarity metrics and can take the
graph around a data item into account, which is addressed using an RDF path
language.
http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/

Component silk-latc (DERI). An improved version of SILK that has been used
in the LATC project.

Component siren (DERI). SIREn is a Lucene/Solr extension for efficient
schemaless semi-structured full-text search. SIREn is not a complete applica-
tion by itself, but rather a code library and API that can easily be used to
create a full-featured semi-structured search engine.
http://rdelbru.github.io/SIREn/

Component sparqled (DERI). SparQLed is an interactive SPARQL editor that
provides context-aware recommendations, helping users in formulating complex
SPARQL queries across multiple heterogeneous data sources.
http://sindicetech.com/sindice-suite/sparqled/

Component sparqlify (ULEI). Sparqlify is a SPARQL-SQL rewriter that enables
one to define RDF views on relational databases and query them with SPARQL.
https://github.com/AKSW/Sparqlify

http://sieve.wbsg.de
http://sig.ma
http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/
http://rdelbru.github.io/SIREn/
http://sindicetech.com/sindice-suite/sparqled/
https://github.com/AKSW/Sparqlify

116 B. Van Nuffelen et al.

Component sparqlproxy-php (ULEI). A PHP forward proxy for remote access
to SPARQL endpoints; forwards request/response headers and filters out non-
SPARQL URL arguments.
https://github.com/AKSW/SparqlProxyPHP

Component spatial-semantic-browser (). The spatial semantic browser
(recently labeled as Facete) project is comprised of a JavaScript library for
faceted browsing of RDF data and an application for browsing geo-related RDF
data. The application thereby offers filtering by facets, pivoting, and display of
the data on a map.

Component stanbol (External - ULEI). Apache Stanbol’s intended use is to
extend traditional content management systems with semantic services.
https://stanbol.apache.org/

Component valiant (TenForce). Valiant is an command line tool that auto-
mates the extraction of RDF data from XML documents. Intended for bulk
application on a large amount of XML documents.
https://github.com/tenforce/valiant

Component virtuoso-opensource (OGL). Virtuoso is a knowledge store and vir-
tualization platform that transparently integrates Data, Services, and Business
Processes across the enterprise. Its product architecture enables it to deliver tra-
ditionally distinct server functionality within a single system offering along the
following lines: Data Management & Integration (SQL, XML and EII), Appli-
cation Integration (Web Services & SOA), Process Management & Integration
(BPEL), Distributed Collaborative Applications.
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/

Components virtuoso-vad-bpel, virtuoso-vad-conductor, virtuoso-vad-demo,
virtuoso-vad-doc, virtuoso-vad-isparql, virtuoso-vad-ods, virtuoso-vad-rdfmappers,
virtuoso-vad-sparqldemo, virtuoso-vad-syncml, virtuoso-vad-tutorial (OGL). Vir-
tuoso Application Distributions as debian packages, These VAD packages extend
the functionality of Virtuoso, i.e. there is the web system admin interface (the
conductor), the interactive SPARQL interface and many more.
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/

Component EDCAT (TenForce). EDCAT is a service API for a DCAT based
Linked Data catalogue. It provides a json compatible view with the DCAT W3C
standard. The API is extendible via a plugin architecture. Its main purpose is
to serve as an integration layer for to establish dataset catalogues inside organi-
zations.
http://edcat.tenforce.com

Component CKAN (OKF). CKAN is a system for storing, cataloguing and
visualising data or other “knowledge” resources. CKAN aims to make it easy to
find, share and re-use open content and data, especially in ways that are machine
automatable.
http://ckan.org

https://github.com/AKSW/SparqlProxyPHP
https://stanbol.apache.org/
https://github.com/tenforce/valiant
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
http://edcat.tenforce.com
http://ckan.org

Supporting the Linked Data Life Cycle Using an Integrated Tool Stack 117

Component lod2stable-repository, lod2testing-repository. These packages
activate the repositories in order to get a coherent stack installation.
https://lod2-stack.googlecode.com/svn/trunk/lod2repository

2.5.2 Available as Online Component
Component Payola (UEP). Payola is a web application which lets you work
with graph data in a new way. You can visualize Linked Data using several
preinstalled plugins as graphs, tables, etc. Moreover, you can create an analysis
and run it against a set of SPARQL endpoints. Analysis results are processed
and visualized using the embedded visualization plugins.
http://www.payola.cz

Component PoolParty Thesaurus Manager (SWC). PoolParty is a thesaurus
management system and a SKOS editor for the Semantic Web including text
mining and linked data capabilities. The system helps to build and maintain
multilingual thesauri providing an easy-to-use interface. PoolParty server pro-
vides semantic services to integrate semantic search or recommender systems
into systems like CMS, DMS, CRM or Wikis.
http://poolparty.biz

Component PoolParty Extractor (SWC). The PoolParty Extractor (PPX)
offers an API providing text mining algorithms based on semantic knowledge
models. With the PoolParty Extractor you can analyse documents in an auto-
mated fashion, extracting meaningful phrases, named entities, categories or other
metadata. Different data or metadata schemas can be mapped to a SKOS the-
saurus that is used as a unified semantic knowledge model.
http://lod2.poolparty.biz/extractor/testextractor

Component Sindice (DERI, OGL). Sindice is a state of the art infrastructure
to process, consolidate and query the Web of Data. Sindice collates these billions
of pieces of metadata into an coherent umbrella of functionalities and services.
http://sindice.com

2.5.3 Available Online Data Sources
Table 1 provides an overview of the main data sources to which LOD2 has con-
tributed.

2.5.4 The LOD2 Stack Components Functional Areas Coverage
When distributing the components over the Linked Data Publishing cycle func-
tionalities the following Fig. 2 is obtained. In this figure the component is asso-
ciated with its main role in the data publishing cycle. In the middle are placed
the applications that are not dedicated to one area, such as the automatiza-
tion platform UnifiedViews, and the applications that exploit the LOD2 stack,
such as the lod2demo and LOD2 Statistical Workbench. Online components are

https://lod2-stack.googlecode.com/svn/trunk/lod2repository
http://www.payola.cz
http://poolparty.biz
http://lod2.poolparty.biz/extractor/testextractor
http://sindice.com

118 B. Van Nuffelen et al.

Table 1. Online Data Sources supported by LOD2

URL SparqlEndpoint

Sindice (DERI, OGL)

http://sindice.com

CKAN Repositories (OKFN)

http://publicdata.eu http://publicdata.eu/sparql

Dbpedia (ULEI, SWC, OGL)

http://dbpedia.org, http://dbpedia.org/sparql

http://live.dbpedia.org,

http://de.dbpedia.org

LODcloud (OGL)

http://lod.openlink.com http://lod.openlink.com/

sparql

WebDataCommons RDFa, Microdata and Microformat data sets (UMA)

http://webdatacommons.org/ http://webdatacommons.

structureddata/ structureddata/

German Courts and Labor Law taxonomies (WKD, SWC)

http://vocabulary.wolterskluwer.de/ http://vocabulary.

arbeitsrecht.html wolterskluwer.de/PoolParty/

sparql/arbeitsrecht

http://vocabulary.wolterskluwer.de/ http://vocabulary.

courts.html wolterskluwer.de/PoolParty/

sparql/court

marked with a globe icon. The cubed formatted components are dedicated com-
ponents for the statistical domain. They are embedded in the LOD2 Statistical
Workbench.

In this figure, we see that the current version of the stack has a high number of
components geared towards the extraction, storage and querying parts. This can
be explained by the large number of data formats that need to be transformed
to RDF. Every component tackles a specific subset of these formats. Most of the
other components contain a small selection of specialized tools for a specific task.
In the search/browsing/exploration stage, every component has its own way of
visualizing the data.

3 A Customized Linked Data Stack for Statistics

The work on the LOD2 Statistical Workbench was motivated by the need to
support the process of publishing statistical data in the RDF format using

http://sindice.com
http://publicdata.eu
http://publicdata.eu/sparql
http://dbpedia.org
http://dbpedia.org/sparql
http://live.dbpedia.org
http://de.dbpedia.org
http://lod.openlink.com
http://lod.openlink.com/sparql
http://lod.openlink.com/sparql
http://webdatacommons.org/structureddata/
http://webdatacommons.org/structureddata/
http://webdatacommons.org/structureddata/
http://webdatacommons.org/structureddata/
http://vocabulary.wolterskluwer.de/arbeitsrecht.html
http://vocabulary.wolterskluwer.de/PoolParty/sparql/arbeitsrecht
http://vocabulary.wolterskluwer.de/arbeitsrecht.html
http://vocabulary.wolterskluwer.de/PoolParty/sparql/arbeitsrecht
http://vocabulary.wolterskluwer.de/PoolParty/sparql/arbeitsrecht
http://vocabulary.wolterskluwer.de/courts.html
http://vocabulary.wolterskluwer.de/PoolParty/sparql/court
http://vocabulary.wolterskluwer.de/courts.html
http://vocabulary.wolterskluwer.de/PoolParty/sparql/court
http://vocabulary.wolterskluwer.de/PoolParty/sparql/court

Supporting the Linked Data Life Cycle Using an Integrated Tool Stack 119

Fig. 2. Distribution of the LOD2 stack components w.r.t. Linked Data Publishing cycle

common vocabularies such as the RDF Data Cube6. The aim here was to provide
support for performing different operations such as

• efficient transformation/conversion of traditional data stores (e.g. CSV, XML,
relational databases) into linked, machine readable formats;

• building and querying triple stores containing RDF Data Cubes;
• validating RDF Data Cubes;
• interlinking and adding meaning to data;
• visualization and exploration of multi-dimensional RDF Data Cubes;
• publishing statistical data using a LOD publication strategy and respective

metadata about the RDF data cube within a selected portal (i.e. a CKAN
instance).

The potential benefits of converting statistical data into Linked Data format
were studied through several scenarios for the National Statistical Office use
case (cf. Table 2) [1].

3.1 Application Architecture and Scenarios

The LOD2 Statistical Workbench7 implements the Linked Data application
architecture sketched in Sect. 2. The workbench introduces a number of new
components such as the RDF Data Cube Validation tool, the RDF Data Cube
Slicing tool and the RDF Data Cube Merging tool dedicated for the statistical

6 http://www.w3.org/TR/vocab-data-cube
7 http://demo.lod2.eu/lod2statworkbench

http://www.w3.org/TR/vocab-data-cube
http://demo.lod2.eu/lod2statworkbench

120 B. Van Nuffelen et al.

Table 2. Potential goals and benefits of converting statistical data into Linked Data.

Scenario Benefits/expected added value

Goal: Metadata management

Code lists - creating and maintaining Standardization on the metadata level:

(a) will allow harmonization of specific con-
cepts and terminology,

(b) will improve interoperability and

(c) will support multilinguality in statistical
information systems across Europe

Goal: Export

Export to different formats Data exchange with other semantic tools, as
well as other commonly used spreadsheet tool
e.g. Microsoft Excel

Goal: RDF Data Cube - Extraction, Validation and Initial Exploration

Standardization of the extraction process

(a) CSV Data Extraction CSV2DataCube

(b) XML Data Extraction XML2DataCube

(c) SDMX-ML 2 RDF/XML SDMX2RDFDataCube

Goal: RDF Data Cube Quality Assessment (validation and analysis of integrity
constraints)

Building well-formed RDF Data
Cubes, where statistical data has been
assigned an unique URI, meaning and
links to similar data. This approach
facilitates search and enables re-use of
public statistical data

The well-formed RDF Data Cubes satisfy a
number of integrity constraints and contain
metadata thus enabling automation of dif-
ferent operations (exchange, linking, explo-
ration)

Goal: RDF Data Cube - Transformation, Exploratory Analysis and Visualization

(a) Merging RDF Data Cubes Data fusion i.e. creation of a single dataset
and different graphical charts that supports
the exploratory analysis (e.g. indicator com-
parison)

(b) Slicing RDF Data Cubes Facilitate creation of intersections in multidi-
mensional data

(c) Visualization of RDF Data Cubes Efficient analysis and search for trends in sta-
tistical data

Goal: Interlinking

(a) Code lists - Interlinking Assigning meaning, improved interoperabil-
ity of data with similar governmental agen-
cies

(b) CSV Data Extraction and Recon-
ciliation with DBpedia

Assigning meaning

Goal: Publishing

Publishing to CKAN Increased transparency, improved accessibil-
ity of statistical data

Supporting the Linked Data Life Cycle Using an Integrated Tool Stack 121

domain. The workbench has also been augmented with extensions to explore
other aspects: the LOD2 authentication component, the LOD2 provenance com-
ponent and the CKAN Publisher.

In order to support the end-user, a new graphical user interface as been
created wherein the LOD2 components are more intuitively organized for the
statistical domain. There are grouped in the five topics: Manage Graph, Find
more Data Online, Edit & Transform, Enrich Datacube, and Present & Publish.

Import features. The LOD2 Statistical Workbench is a framework for man-
aging Linked Data stored in the RDF Data Cube format. Because statistical
data is often provided in tabular format, it supports importing data from CSV.
The CSV2RDF component allows the end users to transform tabular data from
a CSV file into a multidimensional RDF Data Cube. Alternatively, LODRefine
can be used. LODRefine is capable to import all kinds of structured formats
including CSV, ODS and XSL(X) and transform them to RDF graphs based on
arbitrary vocabularies.

Also the import from XML files is supported. The main international stan-
dard for exchanging statistical data is SDMX8. The users have the possibility to
pass XML data as input to the XSLT processor and transform into RDF. The
workbench provides ready to use XSLT scripts to deal with SDMX formatted
data.

Additionally, using the Find more Data Online submenu, the user is able to
find and import more data into the local RDF store using the respective tool of
Statistical Workbench.

Semantic integration and storage. Linked Data applications are based on
server platforms that enable RDF triple storage, semantic data integration and
management, semantic interoperability based on W3C standards (XML, RDF,
OWL, SOA, WSDL, etc). The Virtuoso Universal Server is used for this purpose
in the LOD2 Statistical Workbench.

RDF Data Cube transformation features. Specialized components have
been developed to support the most common operations for manipulating sta-
tistical data such as merging datasets, creating slices and data subsetting (Edit
& Transform submenu). As each dataset defines components (e.g. dimensions
used to describe the observations), the merging algorithm checks the adequacy
of the input datasets for merging and compiles a new RDF Data Cube to be
used for further exploration and analysis. Additionally, the slicing component
can be used to group subsets of observations where one or more dimensions are
fixed. This way, slices are given an identity (URI) so that they can be annotated
or externally referenced, verbosity of the data set can be reduced because fixed
dimensions need only be stated once, and consuming applications can be guided
in how to present the data.

8 http://sdmx.org

http://sdmx.org

122 B. Van Nuffelen et al.

RDF Data Cube validation. The RDF Data Cube Validation tool [8] sup-
ports the identification of possibly not well-formed parts of an RDF Data Cube.
The therein integrated analysis process consists mostly of integrity constraints
rules represented as SPARQL queries as are defined in RDF Data Cube standard.
The validation operation is applicable at several steps in the Linked Data pub-
lishing process e.g. on import/extraction/transformation from different sources
or after fusion and creation of new RDF Data Cubes.

Authoring, querying and visualization. The OntoWiki authoring tool facil-
itates the authoring of rich semantic knowledge bases, by leveraging Seman-
tic Wiki technology, the WYSIWYM paradigm (What You See Is What You
Mean [3]) and distributed social, semantic collaboration and networking tech-
niques. CubeViz, an extension of OntoWiki, is a facetted browser and visualiza-
tion tool for statistical RDF data. It facilitates the discovery and exploration of
RDF Data Cubes while hiding its complexity from users. In addition to using
the browsing and authoring functionality of OntoWiki, advanced users are able
to query the data directly (SPARQL) using one of the following offered SPARQL
editors: OntoWiki query editor, Sindices SparQLed component and the Open-
Link Virtuoso SPARQL editor.

Enrichment and interlinking. Linked Data publishing isn’t just about putting
data on the web, but also about creating links, so that a person or machine can
explore the web of data. Therefore, the enrichment and interlinking features
are very important as a pre-processing step in the integration and analysis of
statistical data from multiple sources. LOD2 tools such as SILK and Limes facil-
itate mapping between knowledge bases, while LOD Open Refine can be used
to enrich the data with descriptions from DBpedia or to reconcile with other
information in the LOD cloud. PoolParty allows users to create their own high
quality code lists and link the concepts therein to external sources as well. Once
the code lists have been established, they can be reused as dimension values in
Data Cubes or linked to Cubes that have been created separately.

Export and Linked Data publishing. The LOD2 Statistical Workbench
export features are reachable via the Manage Graph and Present & Publish
submenus. The Manage Graph option allows exporting of a graph with all its
content in RDF/XML, RDF/JSON, Turtle, Notation 3. CubeViz supports sub-
setting of the data and extraction of a portion that is interesting for further
analysis in CSV and RDF/XML format. The CKAN Publisher component aims
at automating the upload and registration of new data with existing CKAN
instances.

The use of the LOD2 Statistical Workbench for different data management
operations is illustrated with online tutorials9 for the scenarios summarized in
Table 2.

9 http://wiki.lod2.eu/display/LOD2DOC/LOD2+Statistical+Workbench

http://wiki.lod2.eu/display/LOD2DOC/LOD2+Statistical+Workbench

Supporting the Linked Data Life Cycle Using an Integrated Tool Stack 123

Fig. 3. RDF Data Cube - graphical representation

3.2 LOD2 Statistical Workbench in Use

This section provides some basic concepts of the Data Cube Vocabulary and how
these were adapted in the Statistical Workbench, followed by some examples of
using the workbench.

3.2.1 The RDF Data Cube Vocabulary
A statistical data set comprises a collection of observations (see Fig. 3) made at
some points across some logical space. Using the RDF Data Cube vocabulary, a
resource representing the entire data set is created and typed as qb:DataSet10

and linked to the corresponding data structure definition via the qb:structure
property.

The collection must be characterized by a set of dimensions (qb: Dimen-
sionProperty) that define what the observation applies to (e.g. time rs: time,
observed sector rs:obsSector, country rs:geo)11 along with metadata describing
what has been measured (e.g. economic activity, prices) through measurements.
Optionally, additional information can be provided on how the observation or
cube was measured and how the observations are expressed through the use of
attribute (qb:AttributeProperty) elements (e.g. units, multipliers, status).

The qb:dataSet property (see excerpt below) indicates that a specific
qb:Observation instance is a part of a dataset. In this example, the primary
measure, i.e. observation value (represented here via sdmx-measure:obsValue),
is a plain decimal value. To define the units the observation in question is mea-
sured in, the sdmx-attribute:unitMeasure property which corresponds to the
SDMX-COG concept of UNIT MEASURE was used. In the example, the code
MIO NAT RSD corresponds to millions of national currency (Serbian dinars).
The values in the time and location dimensions (rs:geo and rs:time), indicate
that the observation took place in the Republic of Serbia (geographic region
code RS), and in 2003 (time code Y2003), respectively.
10 qb is the prefix http://purl.org/linked-data/cube#.
11 rs is the prefix http://elpo.stat.gov.rs/lod2/RS-DIC/rs/.

http://purl.org/linked-data/cube
http://elpo.stat.gov.rs/lod2/RS-DIC/rs/

124 B. Van Nuffelen et al.

Each data set has a set of structural metadata (see Table 3). These descrip-
tions are referred to in SDMX and the RDF Data Cube Vocabulary as Data
Structure Definitions (DSD). Such DSDs include information about how con-
cepts are associated with the measures, dimensions, and attributes of a data
cube along with information about the representation of data and related meta-
data, both identifying and descriptive (structural) in nature. DSDs also specify
which code lists provide possible values for the dimensions, as well as the possi-
ble values for the attributes, either as code lists or as free text fields. A DSD can
be used to describe time series data, cross-sectional and multidimensional table
data. Because the specification of a DSD is independent of the actual data that
the data cube is about, it is often possible to reuse a DSD over multiple data
cubes.

3.2.2 Example 1: Quality Assessment of RDF Data Cubes
Prior to publishing the resulting RDF data on an existing data portal and thus
enabling other users to download and exploit the data for various purposes, every
dataset should be validated to ensure it conforms to the RDF Data Cube model.

Table 3. Example values for a Data Cube structure representing the Serbian economic
statistics

Component property Concept description Identifier Code list

Dimension Geographical region rs:geo cl:geo

Dimension Time rs:time cl:time

Dimension Economic activity rs:activityNACEr2 cl:nace rev2

Attribute Unit of measurement sdmx-
attribute:unitMeasure

cl:esa95-unit

Measure Observed value sdmx-measure:obsValue

Supporting the Linked Data Life Cycle Using an Integrated Tool Stack 125

Fig. 4. RDF Data Cube - quality assessment

The data validation step is covered by the LOD2 stack, i.e. through the following
software tools:

• The RDF Data Cube Validation Tool12;
• CubeViz, a tool for visualization of RDF Data Cubes13.

The RDF Data Cube Validation Tool aims at speeding-up the processing and
publishing of Linked Data in RDF Data Cube format. Its main use is validating
the integrity constraints defined in the RDF Data Cube specification. It works
with the Virtuoso Universal Server as a backend and can be run from the LOD2
Statistical Workbench environment.

The main benefits of using this component are improved understanding of the
RDF Data Cube vocabulary and automatic repair of identified errors. Figure 4
shows the component in action: the integrity constraints and their status are
shown on the left side, while the results of analysis are shown on the right. A list
of resources that violate the constraint, an explanation about the problem, and
if possible, a quick solution to the problem is offered to the user. Once an RDF
Data Cube satisfies the Data Cube integrity constraints, it can be visualized
with CubeViz. More details can be found in the LOD2 Stack Documentation14.

3.2.3 Example 2: Filtering, Visualization and Export of RDF Data
Cubes

The facetted browser and visualization tool CubeViz can be used to filter obser-
vations to be visualized in charts interactively. Figure 5 shows an exploration
session that comprises of the following steps:

12 http://wiki.lod2.eu/display/LOD2DOC/RDF+Data+Cube+Quality+Assessment
13 http://wiki.lod2.eu/display/LOD2DOC/Data+Subsetting+and+Export+Scenario
14 http://wiki.lod2.eu/display/LOD2DOC/LOD2+Statistical+Workbench

http://wiki.lod2.eu/display/LOD2DOC/RDF+Data+Cube+Quality+Assessment
http://wiki.lod2.eu/display/LOD2DOC/Data+Subsetting+and+Export+Scenario
http://wiki.lod2.eu/display/LOD2DOC/LOD2+Statistical+Workbench

126 B. Van Nuffelen et al.

Fig. 5. RDF Data Cube - exploration and analysis

1. Select one out of the available datasets in the RDF graph;
2. Choose observations of interest by using a subset of the available dimensions;
3. Visualize the statistics by using slices, or
4. Visualize the statistics in two different measure values (millions of national

currency and percentages).

3.2.4 Example 3: Merging RDF Data Cubes
Merging15 is an operation of creating a new dataset (RDF Data Cube) that
compiles observations from the original datasets (two or more), and additional
resources (e.g. data structure definition, component specifications). In order to
obtain meaningful charts the observed phenomena (i.e. serial data) have to be
described on the same granularity level (e.g. year, country) and expressed in
same units of measurement (e.g. euro, %). Therefore alignment of the code lists
used in the input data is necessary before the merging operation is performed.

3.3 Towards a Broader Adoption

Linked Data principles have been introduced into a wide variety of applica-
tion domains, e.g. publishing statistical data and interpretation of statistics [5],
improving tourism experience [6], pharmaceutical R&D data sharing [7], crowd-
sourcing in emergency management [4], etc. A few years ago, our analysis of
the adoption of Semantic Web technologies by enterprises [2] has shown that
companies benefit from features that improve data sharing and re-use (57 %),
improve searching (57 %), allow incremental modelling (26 %), explicit content

15 http://wiki.lod2.eu/display/LOD2DOC/Eurostat+Merge+and+Enhance+Scenario

http://wiki.lod2.eu/display/LOD2DOC/Eurostat+Merge+and+Enhance+Scenario

Supporting the Linked Data Life Cycle Using an Integrated Tool Stack 127

relation (24 %), identifying new relationships (17 %), dynamic content gener-
ation (14 %), personalization (10 %), open modeling (12 %), rapid response to
change (10 %), reducing time to market (5 %), and automation (5 %). Of the
features the LOD2 Statistical Workbench provides functionality improving the
following areas: data share and re-use, improved search, explicit content relation,
identifying new relationships, open model and automation. The LOD2 Statis-
tical Workbench supports both publishers and consumers of Linked Data such
as national statistical offices (institutes), national banks, publication offices, etc.
Some of those collaborated with us as an early adopter of the approach.

3.3.1 Use Case 1: Digital Agenda Scoreboard
In the course of the LOD2 PUBLINK 2010 activities, the digital agenda score-
board16 has been created as the first web portal exploiting the RDF Data Cube.
The Digital Agenda Scoreboard provides insight on how ‘digital’ Europa is. By
using an early version of CubeViz the trends are visualized embedded in human
readable scenario. Behind the scenes the data is provided and aggregated in
a Virtuoso store according to the Data Cube vocabulary. This data is made
available to the public in different formats including the RDF representation.

3.3.2 Use Case 2: Statistical Office of the Republic of Serbia (SORS)
In the course of the LOD2 PUBLINK 2011 activities, the SORS public data
was integrated into the LOD cloud via the Serbian CKAN [1]. The Serbian
CKAN is a metadata repository to be used for dissemination purposes by Serbian
national institutions. Maintenance activities include identifying changes in the
dissemination data (new public data, changes on metadata level) and fixing
the mapping process (from XML to RDF) accordingly. The SORS is in the
process of adopting the LOD2 Statistical Workbench17 that will allow the users
to automatically publish data (in the existing and new packages) to the Serbian
CKAN.

3.3.3 Use Case 3: Business Registers Agency
In the course of the LOD2 PUBLINK 2012 activities, example data from the
Regional Development Measures and Incentives Register was triplified using the
LOD2 Statistical Workbench and registered with the Serbian CKAN. The data
is reachable via the Serbian CKAN18 and can be explored through a prototype
application19.

16 http://digital-agenda-data.eu/
17 http://lod2.stat.gov.rs/lod2statworkbench
18 http://rs.ckan.net/dataset/apr-register-of-regional-development-measures-and

-incentives
19 http://rs.ckan.net/esta-ld/

http://digital-agenda-data.eu/
http://lod2.stat.gov.rs/lod2statworkbench
http://rs.ckan.net/dataset/apr-register-of-regional-development-measures-and-incentives
http://rs.ckan.net/dataset/apr-register-of-regional-development-measures-and-incentives
http://rs.ckan.net/esta-ld/

128 B. Van Nuffelen et al.

3.3.4 Challenges Faced by Early Adopters
For each early adopter the publishing of the statistical data as Linked Data has
influenced their data publishing process. The Linked Data vision impacts the
publication process typically more deeply as it sees data from a more universal
perspective and not as an isolated piece of information. When the statistical
observations becomes real Linked Data, it means that also the dimensions have
to become Linked Data, and this typically means that other organizations that
maintain the dimensions have to be consulted.

Therefore in addition to our technological support in the identifying the set
of applicable vocabularies and specifying the transformation flow to be setup,
there has been an important activity in supporting the early adopters with their
relationship with their data suppliers.

Over time the technological support has been improved. Whereas for the first
case, the Digital Agenda Scoreboard, many of the transformation steps and data
cleaning steps had to be done manually, they are for the more recent applications
semi-automated.

Our approach to customize the LOD2 stack not only holds for the statistical
domain, but can be applied other domains as well. For instance in the GeoKnow20

project the GeoKnow Generator is being created for the support of geo-spatial
Linked Data.

4 Conclusion

The LOD2 stack has successfully established a dissemination platform for Linked
Data software. After the incubation period inside the LOD2 project the Linked
Data community continues to be supported via http://stack.linkeddata.org. The
success of the Linked Data stack is in the first place due to the quality and the
progress of the software components it distributes. The inclusion of new and
updated software is the oxygen that keeps the Linked Data stack alive. This
oxygen will be provided by the core contributors as they keep on improving
their components and are devoted to provide regular improvement releases to
the stack.

The Statistical Workbench shows that starting from the LOD2 stack, the
foundations are present to create applications tuned for a particular information
domain. With the current state of the LOD2 stack, data managers can prototype
the required data information streams. Although there is no uniform homogenous
end-user interface, exactly this prototyping ability is crucial in bootstrapping the
design of the desired end-user interfaces.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution Noncommercial License, which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

20 http://geoknow.eu/

http://stack.linkeddata.org
http://geoknow.eu/

Supporting the Linked Data Life Cycle Using an Integrated Tool Stack 129

References

1. Janev, V., Milosevic, U., Spasic, M., Vranes, S., Milojkovic, J., Jirecek, B.: Inte-
grating serbian public data into the LOD cloud. In: Ivanovic, M., Budimac, Z.,
Radovanovic, M. (eds.) BCI, pp. 94–99. ACM (2012)

2. Janev, V., Vranes, S.: Applicability assessment of semantic web technologies. Inf.
Process. Manage. 47(4), 507–517 (2011)

3. Khalili, A., Auer, S.: WYSIWYM authoring of structured content based on
Schema.org. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE
2013, Part II. LNCS, vol. 8181, pp. 425–438. Springer, Heidelberg (2013)

4. Ortmann, J., Limbu, M., Wang, D., Kauppinen, T.: Crowdsourcing linked open data
for disaster management. In: Terra Cognita Workshop 2011 at ISWC2011. CEUR
WS Proceedings (2011)

5. Paulheim, H.: Generating possible interpretations for statistics from linked open
data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 560–574. Springer, Heidelberg (2012)

6. Sabou, M., Brasoveanu, A.M.P., Arsal, I.: Supporting tourism decision making with
linked data. In: Presutti, V., Pinto, H.S. (eds.) I-SEMANTICS, pp. 201–204. ACM
(2012)

7. Samwald, M., Jentzsch, A., Bouton, Ch., Kallesoe, C., Willighagen, E.L., Hajagos,
J., Scott Marshall, M., Prud’hommeaux, E., Hassanzadeh, O., Pichler, E., Stephens,
S.: Linked open drug data for pharmaceutical research and development. J. Chem-
inform. 3, 19 (2011)

8. Mijovic, V., Janev, V., Vrane, S.: LOD2 tool for validating RDF data cube models.
In: Conference Web Proceedings of the ICT Innovation Conference 2013 (2013)

Use Cases

LOD2 for Media and Publishing

Christian Dirschl1(&), Tassilo Pellegrini2, Helmut Nagy2, Katja Eck1,
Bert Van Nuffelen3, and Ivan Ermilov4

1 Wolters Kluwer Deutschland GmbH, Unterschleißheim, Germany
cdirschl@wolterskluwer.de

2 Semantic Web Company GmbH, Vienna, Austria
3 TenForce, Leuven, Belgium

4 Institute of Computer Science, Leipzig University, Leipzig, Germany

Abstract. It is the core business of the information industry, including tradi-
tional publishers and media agencies, to deal with content, data and information.
Therefore, the development and adaptation of Linked Data and Linked Open
Data technologies to this industry is a perfect fit. As a concrete example, the
processing of legal information at Wolters Kluwer as a global legal publisher
through the whole data life cycle is introduced. Further requirements, especially
in the field of governance, maintenance and licensing of data are developed in
detail. The partial implementation of this technology in the operational systems
of Wolters Kluwer shows the relevance and usefulness of this technology.

Keywords: Data transformation � Data enrichment � Metadata management �
Linked data visualization � Linked data licensing � IPR � Wolters Kluwer �
Media � Publishing � Legal domain

1 Introduction

1.1 Rationale for the Media and Publishing Use Case

The media and publishing use case within the LOD2 project1 aims at enabling large-
scale interoperability of (legal) domain knowledge based on Linked Data. This is a
necessary precondition in the media industry to profit from the benefits of distributed
and heterogeneous information sources (DBpedia, EuroVoc) on the Semantic Web.
Hence, this use case aims at improving access to high-quality, machine-readable
datasets generated by publishing houses for their customers.

This attempt is accompanied by several challenges: Traditional official content such
as laws and regulations or court case proceedings are increasingly publicly available on
the web and are directly published by the respective issuing bodies. Social networks
and platforms, such as Wikipedia, aggregate professional knowledge and publish it at
no charge. At the same time e.g. news media generate large amounts of relevant
information about events and people that are complementary to conventional content of
specialized publishers, but hardly integrated (exception is e.g. integration between BBC
and DBpedia2). In addition, the amount of relevant information is still growing

1 http://lod2.eu/Welcome.html, accessed May 10, 2014.
2 Kobilarov et al. [7].

© Ths Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 133–154, 2014.
DOI: 10.1007/978-3-319-09846-3_7

http://lod2.eu/Welcome.html

exponentially; this amount cannot be incorporated and structured by using traditional
manual annotation mechanisms. Finally, the customer expects more and more exact
and to-the-point information in her actual professional workflow that covers individual
interests, personal preferences and one central trusted access to distributed data sources.
Interests and preferences of a professional can even change over time and tasks to be
completed.

From the perspective of Wolters Kluwer, the relevance of using schema-free data
models like RDF and SKOS as well as accessing external content for their data-driven
business is obvious.3 By interlinking quality-approved proprietary data sources and
“tapping” classification resources from the community and existing references in the
LOD cloud, Wolters Kluwer is exploring diversification scenarios for existing assets as
well as business opportunities under new licensing regimes. These efforts must lead to
a win-win situation, where, on the one hand, additional revenues can be created by
adding value to existing products and, on the other hand, customers of Wolters Kluwer
and the public can benefit from well-licensed datasets, new tools and customized
services to pursue their professional and personal goals.

The tasks within the use case can be organized according to three main areas:

• Making the Wolters Kluwer data available in a machine-readable form and then
executing the interlinking and data enrichment tools of the LOD2 Stack on it.

• Creating a semantic knowledge layer based on this data and executing the editorial
part of data management as well as general data visualization tools of the LOD2
Stack on it.

• Describing in more detail the business impact of this new kind of data in the media
and publishing industry, especially with respect to expected hurdles in usage like
governance and licensing issues.

1.2 Wolters Kluwer Company Profile

Wolters Kluwer Germany (WKD) is an information services company specializing in
the legal, business and tax sectors. Wolters Kluwer provides pertinent information to
professionals in the form of literature, software and services. Headquartered in
Cologne, it has over 1,200 employees located at over 20 offices throughout Germany,
and has been conducting business on the German market for over 25 years.

Wolters Kluwer Germany is part of the leading international information services
company, Wolters Kluwer n.v., located in Alphen aan den Rijn (The Netherlands). The
core market segments, targeting an audience of professional users, are legal, business,
tax, accounting, corporate and finance services, and healthcare. Its shares are quoted on
the Euronext Amsterdam (WKL), and are included in the AEX and the Euronext 100
indices. Wolters Kluwer has annual sales of €3.56 billion (2013), employs approxi-
mately 19,000 people worldwide and operates in over 40 countries throughout Europe,
North America, the Asia Pacific region and in Latin America.

3 For more detailed information see [5].

134 C. Dirschl et al.

1.3 Data Transformation, Interlinking and Enrichment

This task has two main goals. The first goal is to adopt and deploy the LOD2 Stack4 to
the datasets of Wolters Kluwer. These datasets cover all document types being nor-
mally used in legal publishing (laws and regulations, court decisions, legal commen-
tary, handbooks and journals). The documents cover all main legal fields of law like
labor law, criminal law, construction law, administration law, tax law, etc. The datasets
also cover existing legal taxonomies and thesauri, covering each a specific field of law,
e.g. labor law, family law or social law. The overall amount of data (e.g. 600.000 court
decisions) is large enough to make sure that the realistic operational tasks of a publisher
can be executed with the data format and tools developed within the LOD2 project to
support the respective use case. The datasets were analyzed according to various
dimensions, e.g. actors, origin, geographical coverage, temporal coverage, type of data
etc. relevant to the domain of legal information. Within the LOD2 project, all datasets
were made available in formats adhering to open-standards, in particular RDF and
Linked Data. Note that the datasets already existed in XML format at the start of the
project and were transformed to RDF via XSLT script. The second goal is to auto-
matically interlink and semantically enrich the Wolters Kluwer datasets. In order to
achieve this, we leveraged the results from the LOD2 research work packages 3 and 4
(Chaps. 3 and 4) on the automated merging and linking of related concepts defined
according to different ontologies using proprietary and open tools. Data from external
sources (German National Library5, DBpedia, STW6, TheSoz7 & EuroVoc8) were used
to enrich the Wolters Kluwer datasets to leverage their semantic connectivity and
expressiveness beyond the state of the art. This effort resulted in operational
improvements at Wolters Kluwer Germany (WKG) as well as added-value for WKG
customers. WKG was expecting that high current internal (manual) efforts concerning
taxonomy and thesaurus development and maintenance would partly be substituted by
integrating external LOD sources. This held also true for specific metadata like geo-
graphical information, detailed information about organizations and typical legal
content itself from public issuing bodies. The internal workflow at WKG would
therefore be enhanced as automated alerting (e.g. push notifications, see Chap. 5) could
be executed to inform internal editors of data changes based on the underlying inter-
linked data. This would be a major gain as this process is currently labor intensive as it
requires editors to physically monitor changes to content.

1.4 Editorial Data Interfaces and Visualization Tools

This task provided the main functionality for publishing, searching, browsing and
exploring interlinked legal information. This included querying and facet-based

4 See Chap. 6 and http://stack.linkeddata.org/, accessed May 10, 2014.
5 http://www.dnb.de/DE/Standardisierung/GND/gnd_node.html, accessed June 10, 2014.
6 http://zbw.eu/stw/versions/latest/about, accessed June 10, 2014.
7 http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/social-science-thesaurus/,
accessed June 10, 2014.

8 http://eurovoc.europa.eu/, accessed June 10, 2014.

LOD2 for Media and Publishing 135

http://dx.doi.org/10.1007/978-3-319-09846-3_3
http://dx.doi.org/10.1007/978-3-319-09846-3_4
http://dx.doi.org/10.1007/978-3-319-09846-3_5
http://dx.doi.org/10.1007/978-3-319-09846-3_6
http://stack.linkeddata.org/
http://www.dnb.de/DE/Standardisierung/GND/gnd_node.html
http://zbw.eu/stw/versions/latest/about
http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/social-science-thesaurus/
http://eurovoc.europa.eu/

browsing of dataset metadata along various dimensions (dataset type, spatial/temporal
coverage, origin etc.), as well as authoring of new metadata and data. It also investi-
gated issues, such as access control and user rights management, to enable customized
access levels for various user roles and clients. Additionally, different visualizations of
e.g. geo location and statistical information were implemented (see LOD2 work
package 5, Chap. 5).

1.5 Business Impact and Relevant Pre-conditions for Success

This task investigated into Intellectual Property Rights (IPR) management (licensing
and management of usage rights) as well as business value of interoperable metadata.
While traditional regimes, especially in the private sector, mostly rely on a Strong-IPR
philosophy, by which the use and commercial exploitation of metadata is strictly reg-
ulated and governed, interoperable metadata requires more flexible licensing arrange-
ments that take advantage of openness- and commons-based approaches. While the
continuum between and the interplay of strong and light intellectual property rights for
interoperable metadata is still a young and unexplored research field, it is the licensing
strategy that defines the legal framework in which asset diversification and value cre-
ation takes place. The application of the uniform data model of RDF to metadata enables
syntactic and semantic interoperability and leverages the network characteristics of
metadata. While the lack of a uniform data model leads to proprietary lock-ins with
respect to metadata assets like schemata, vocabularies, ontologies, indices, queries etc.,
interoperable metadata transcend these boundaries and open up possibilities for asset
creation under the circumstances of economies of scale and positive feedback (Met-
calfe’s Law) as well as the social dynamics behind it (Reed’s Law). Diversification for
interoperable metadata can be looked at from a resource-based and a market-based point
of view. The resource-based approach investigates how economically valuable
resources are created and commercially exploited. The market-based approach looks at
new customers and market segments that can be entered and secured.

2 Processing Data

The core challenge in this use case was to develop the (legal) data ecosystem by using
the tools from the LOD2 Stack. Since the whole Semantic Web paradigm was new to
WKD, we chose an iterative approach to learn and to optimize and smoothen the
workflows and processes that come with it [4].

In order to focus on the highlights, we will not report on this iterative part here, but
more on the results of every task. First, we built a knowledge framework based on the
information we already stored in the XML documents. This led to an initial version of
the knowledge graph describing our domain. We then executed LOD2 Stack tools [1]
on this graph in order to enrich this information using data extraction technologies as
well as executing data curation for cleansing; and linking tools for ingesting knowledge
from external sources. Finally, we added a visualization layer (i) to support the editorial
team in metadata management and (ii) to help our customers with visualizations
supporting data analytics capabilities (see also [8]).

136 C. Dirschl et al.

http://dx.doi.org/10.1007/978-3-319-09846-3_5

2.1 Transformation from XML to RDF

One major goal of the “Media and publishing” use case was to develop a stable
transformation process for the WKG XML data. The development of the mapping
schema from XML to RDF was based on the provided WKG DTD – so that the
ontology was chosen to express the WKG data. The development of the schema for the
transformation has been done in the following steps:

• Define vocabularies used for the WKD RDF schema (see Table 1)
• Define the URI pattern used for the WKD RDF schema
• Mapping definition
• Develop the XSLT style sheet based on the vocabularies and the URI patterns

In addition, a WKD schema description (http://schema.wolterskluwer.de) was
developed, extending the used vocabularies to cover specific classes and properties. For
the transformation of the WKD XML data to RDF various URI patterns had to be
developed to cover the various types of data/information created:

• Resources (The transformed documents and document parts themselves)
e.g. labor protection law http://resource.wolterskluwer.de/legislation/bd_arbschg

• Vocabularies (used to harmonize parts of the used metadata e.g. taxonomies, authors,
organizations, etc.)

e.g. labor law thesaurus http://vocabulary.wolterskluwer.de/kwd/Arbeitsschutz
• WKD Schema Vocabulary (Specific properties defined for the mapping schema)

e.g. keyword http://schema.wolterskluwer.de/Keyword

The mappings between the WKD DTD and the WKD schema were implemented as
XSLT functions. The WKD XML data was then transformed into RDF triples by
applying the functions related to the relevant XML elements. Note that the output of the
transformation was using the RDF/XML serialization.

Table 1. Schemas that have been evaluated and are used in the WKD RDF schema (applied
vocabularies)

Vocabulary Prefix Namespace

BIBO bibo http://purl.org/ontology/bibo/
Dublin core dc http://purl.org/dc/elements/1.1/
Dublin core terms dcterms http://purl.org/dc/terms/
FOAF foaf http://xmlns.com/foaf/0.1/
Metalex metalex http://www.metalex.eu/metalex/2008-05-02#
OWL owl http://www.w3.org/2002/07/owl#
RDF rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
RDF schema rdfs http://www.w3.org/2000/01/rdf-schema#
SKOS skos http://www.w3.org/2004/02/skos/core#
XHTML vocabulary xhtml http://www.w3.org/1999/xhtml/vocab#

LOD2 for Media and Publishing 137

http://schema.wolterskluwer.de
http://resource.wolterskluwer.de/legislation/bd_arbschg
http://vocabulary.wolterskluwer.de/kwd/Arbeitsschutz
http://schema.wolterskluwer.de/Keyword
http://purl.org/ontology/bibo/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/
http://xmlns.com/foaf/0.1/
http://www.metalex.eu/metalex/2008-05-02
http://www.w3.org/2002/07/owl
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2004/02/skos/core
http://www.w3.org/1999/xhtml/vocab

The transformation resulted in a number of triples, stored in a named graph per
document (see Fig. 1). In this way, a provenance relationship between the existence of
the triple, the XSLT template and the original XML document was created. If either the
XSLT template or the XML document was updated, then the set of triples to be updated
was uniquely identified with the graph name.

Valiant9, a command line processing tool written in JAVA supporting XSLT2.0,
has been developed for the transformation process within the work package . As a first
step, Virtuoso Sponger Cartridge was explored, as Virtuoso10 was part of the LOD2
Stack, but this track was abandoned due to the lack of support for XSLT 2.0. For the
management of the taxonomies and vocabularies PoolParty11 was used. Additionally,
Venrich was developed to support the batch process for the alignment of the document
metadata and the vocabularies and taxonomies. All the data was stored in Virtuoso.

The initial transformation resulted in:

• 785,959 documents transformed to RDF graphs with a total of 46,651,884 triples
• several taxonomies and vocabularies that have been created based on the data

Fig. 1. RDF graph for a document URI

9 https://github.com/bertvannuffelen/valiant, accessed June 10, 2014.
10 http://virtuoso.openlinksw.com/, accessed June 10, 2014.
11 http://www.poolparty.biz/, accessed June 10, 2014.

138 C. Dirschl et al.

https://github.com/bertvannuffelen/valiant
http://virtuoso.openlinksw.com/
http://www.poolparty.biz/

Additionally, two of the developed vocabularies have been released as linked open
data under an open source license by WKG12,13.

2.2 Metadata Management Process

In the past, publishers have focused their content management systems around printed
products: books, leaflets, journals, etc. A document centric approach, in which meta-
data and content are combined in one document, is well suited. Electronic publishing
offers new opportunities, but also provides challenges for existing content management
systems. For instance, it has changed the way people find information: instead of
following the imposed structure and taking advantage of the printed index and the
footnote system, electronic publishing allows jumping arbitrary through the publication
following more closely a person’s processes of thought. Without quality metadata this
is unrealizable.

Having quality data is crucial for a publisher’s business. Incomplete, erroneous or
inaccurate information reduce the customers trust in the data, and hence in the pub-
lishing body. Consequently a large amount of effort in this work package was around
improving and controlling the quality of the data. We will elaborate how the Linked
Data representation of the extracted metadata is an enabler in the data quality processes.

The editorial process of a publisher like Wolters Kluwer Germany is today driven
by 3 key stakeholders:

• The content editor creates the content: comments on law or jurisdictions, news, etc.
Often the content editor is not part of the publisher organization, but an expert in the
field who is using the publisher’s dissemination channels to reach its audience. In the
Use case contents are also partly harvested from legal institutions.

• The metadata editor manages the metadata of the content provided by the content
editor.

• The taxonomist is responsible for the coherency and completeness of the controlled
vocabularies used to create the metadata.

While applying the Linked Data paradigm on the editorial process a fourth role has
emerged:

• the enrichment manager is a role which naturally emerges from the Linked Data
paradigm. She is responsible for selecting external data sources that are thrust worthy
and which contain data that provides added value to the content.

These stakeholders interact with each other via the content management system of
the publisher (Fig. 2). The prototypical interaction pattern is the following. The content
editor uploads a (new) version of a document. Via automated extractions, metadata is
added. Inside the publishers organization the metadata editor is validating and

12 See http://vocabulary.wolterskluwer.de/, accessed June 10, 2014.
13 See further information about this in 3 Licensing Semantic Metadata and Deliverable 7.1.1 http://

static.lod2.eu/Deliverables/Deliverable-7.1.1.pdf.

LOD2 for Media and Publishing 139

http://vocabulary.wolterskluwer.de/
http://static.lod2.eu/Deliverables/Deliverable-7.1.1.pdf
http://static.lod2.eu/Deliverables/Deliverable-7.1.1.pdf

augmenting the attached metadata to make sure the document is ready for publication.
In that process the metadata editor is using the controlled vocabularies that the tax-
onomist is maintaining. Controlled vocabularies need constant curation (responsibility
of the taxonomist) in order to meet the ever changing world.

To explore how Linked Data can transform and support the metadata quality
management and editorial process, a dedicated LOD2 Stack instance was setup. Since
metadata quality is the center of the problem statement, the central component is formed
by an adapted version of Ontowiki14, called Pebbles. Pebbles supports the editing of the
metadata independently of the content, and it is aimed for the metadata editors. For the
taxonomists, software support is given by the PoolParty suite. And finally the enrich-
ment manager is supported by a whole arsenal of tools of which Silk15 and LOD
Management Suite16 – also called UnifiedViews (with the automated annotation pro-
cesses for DBpedia Spotlight17 and PoolParty Extractor18) - are the most notable.

Pebbles, a Metadata Editor
The user is welcomed in Pebbles with a dashboard overview showing the most recent
updated documents and the documents with the most outstanding issues.

Fig. 2. Metadata management workflow

14 http://aksw.org/Projects/OntoWiki.html, accessed June 10, 2014.
15 http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/, accessed June 10, 2014.
16 https://grips.semantic-web.at/display/public/LDM/Introduction, accessed June 10, 2014.
17 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki, accessed June 10, 2014.
18 http://www.poolparty.biz/portfolio-item/poolparty-extractor/, accessed June 10, 2014.

140 C. Dirschl et al.

http://aksw.org/Projects/OntoWiki.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/
https://grips.semantic-web.at/display/public/LDM/Introduction
https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
http://www.poolparty.biz/portfolio-item/poolparty-extractor/

Such dashboard view aids to focus on the most important items, but also it reflects the
users’ current state of work. After the user selects a document, Pebbles shows the
document view on which the textual document content is shown together with its
metadata. It is important that the metadata editor sees the document content in order to
being able to validate the correctness of the associated metadata. Here the metadata can
be updated, but also new metadata properties can be added according to the WKD
schema. New properties can be added by hand, or result from the suggestions that are
associated with the document (Fig. 3).

A suggestion is an association of some value with the document that has been
added via an external process. This external process is controlled by the enrichment
manager. The enrichment manager uses a linking environment (e.g. Silk) or an
annotation engine (e.g. DBpedia Spotlight) to create these associations. At this point in
time the enrichment manager has two options: either she directly adds the resulting
associations to the metadata store, or the associations are reviewed through the quality
assurance process. The quality assurance process is performed by the metadata editor
by accepting/rejecting suggestions in the Pebbles environment. As the metadata editor
that has the ownership of the documents metadata, she is the right person to make that
decision. In case of the acceptance of a concept, the associated default metadata
property can also be updated. This creates flexibility in the process: the enrichment
manager can suggest new associations without deciding upfront the property which is
handy in the case an annotation engine is being used. Such annotation engines often
return related concepts belonging to a wide variety of domains (persons, countries,
laws,…) It is however advised for the smoothness of the process to make the properties
as concrete as possible.

The provided collection of documents by Wolters Kluwer forms an interconnected
network. Journal articles refer to laws and court cases, and so on. In a document centric
environment, these links are typically stored inside the document container. It is easy
given a document to follow the outgoing references, whereas the reverse search (i.e.
finding all documents that refer the current document) is much harder. Applying this

Fig. 3. Pebbles document metadata view

LOD2 for Media and Publishing 141

search on data in a RDF store simply requires inverting patterns in the SPARQL query.
The non-directionality of the RDF graph model allows creating quickly any exploration
path that is desired. Often exploration paths are quite generic: for instance to show the
list of documents that belong to a particular document category is very similar to
showing the list of documents for an author. By configuring the tree navigation widget
with the values for a taxonomy, Pebbles offers a faceted approach to explore docu-
ments. The usability of the faceted browsing is determined by the quality of the
taxonomies being used and the quality of the metadata that are tagging the documents.

Issues Identified in Existing Metadata, Based on Developed Vocabularies
During transformation of WKD data to RDF, several metadata properties were defined
as having skos:Concepts as their range. The rationale behind that was that this data may
be organized and managed in a next step in taxonomies or thesauri. In a second
iteration after processing all the data, missing concepts have been detected and were
added to the vocabularies.

During the review of the generated data, besides missing mappings to taxonomies
the following issues in the existing metadata transformed to RDF were found:

• Transformation errors (e.g. concept generated with “” labels): To avoid this, the
schema transformation has to be adapted to ignore empty metadata entries.

• Wrong Metadata (e.g. job titles or page numbers instead of organization name
concerning the organizations taxonomy): This needs to be cleaned up manually.
Rules can be provided to detect such kind of data during transformation; and the
same rules could be applied to exclude this data from display in the metadata editor
(Pebbles). Since this data can also be managed (changed/edited/deleted) in Pebbles,
no additional efforts for a rule based cleaning have been made.

• Same concepts with different label: We decided that automatic mapping of metadata
representing the same concepts (e.g. different spelling for persons, see Table 2 for
different reasons) could not be done during schema transformation, because no
quality assurance could be provided that way. So an interface for disambiguation of
concepts based on label similarity was developed to provide a semi-automatic way of
cleaning up those concepts.

Notification Service
We developed a scenario, where several vocabularies were developed and partly
published as Linked Open Data (labor law thesaurus and courts thesaurus) with
PoolParty. Furthermore, Pebbles was developed as an environment designed to manage
RDF metadata for the WKD documents. To stay up-to-date with the latest changes in
these datasets, the resource subscription and notification service (rsine19, published
under an open-source license at GitHub) was developed, allowing dataset curators to
subscribe for specific changes that they are interested in and to get a notification as
soon as such changes occur.

19 https://github.com/rsine/rsine, accessed June 10, 2014.

142 C. Dirschl et al.

https://github.com/rsine/rsine

Rsine is a service that tracks RDF triple changes in a triple store and creates a
history of changes in a standardized format by using the change set ontology20. Users
wanting to receive notifications can express the kind of changes they are interested in
via SPARQL queries. These queries are sent to rsine, encapsulated in a subscription
document that can also contain further information such as how the notification mes-
sage should be formatted. Notifications were sent via mail.

The implemented scenarios focused on the following three main use cases:

• vocabulary management
• vocabulary quality
• metadata management

For all main use cases, several scenarios21 have been implemented.

2.3 Enrichment of WKD Data

In a first step, the enrichment of WKD Data has been applied to the vocabularies
published by WKD. The WKD Arbeitsrechtsthesaurus (labor law thesaurus) was linked
(skos:exactMatch) with DBpedia22, STW23, Thesoz24 and Eurovoc25. The WKD

Table 2. Possible issues for different author names

Confusions First version Second version Third version

Family name change after
marriage

Gritt Diercks Gritt Dierks-Oppler –

Andrea Banse Andrea Schnellbacher
geb. Banse

Andrea
Schnellbacher

Second forename Bernd
Schneider

Bernd Peter Schneider –

Initials Detlev
Müllerhoff

D.Müllerhoff –

Typos Cornelius
Prittwitz

Cornelins Prittwitz –

Punctuation Hans-Dieter
Becker

Hans Dieter Becker –

Different writings Detlev
Burhoff

Detlef Burhoff –

Different characters Østerborg Österborg Osterborg

20 http://vocab.org/changeset/schema.html, accessed June 10, 2014.
21 Scenarios are listed in Deliverable 5.3.2.
22 http://de.dbpedia.org/, accessed June 10, 2014.
23 Thesaurus for economics of the Leibniz Information Centre for Economics http://zbw.eu/stw/

versions/latest/about, accessed June 10, 2014.
24 Social science thesaurus of the Leibniz Institute of Social Sciences, http://www.gesis.org/en/

services/research/thesauri-und-klassifikationen/social-science-thesaurus/, accessed April 18, 2014.
25 Multilingual thesaurus of the European Union, http://eurovoc.europa.eu/, accessed June 15, 2014.

LOD2 for Media and Publishing 143

http://vocab.org/changeset/schema.html
http://de.dbpedia.org/
http://zbw.eu/stw/versions/latest/about
http://zbw.eu/stw/versions/latest/about
http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/social-science-thesaurus/
http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/social-science-thesaurus/
http://eurovoc.europa.eu/

Gerichtsthesaurus (courts thesaurus) was linked to DBpedia. In addition to linking to
the respective sources, the WKD vocabularies have been enriched by including data
from the respective sources (see Table 3). The provenance of the included data has
been preserved, storing the added data in separate graphs.

The mapping to those resources was based on the similarity of concept labels and
has been done in a semi-automatic process using Silk. Figure 4 shows the evaluation
workspace where the user can check and accept or decline the suggested links. The
enrichment with additional data as shown in Table 3 has been done automatically using
the LOD Management Suite.

The published vocabularies are publicly available under CC BY 3.0. The frontend
uses the data from the external datasets to enhance the user experience. For instance,
the geographic location of courts can be leveraged to be displayed on a map (Fig. 5).
The map is also available on the detail pages of the courts, where images, showing
from DBpedia are also displayed, showing mostly the court building.

Table 3. Data added to the concepts of the WKD vocabulary

DBpedia STW TheSoz EuroVoc

skos:altLabel Alternative wording X X X

skos:scopeNote Note X X X

dbpedia-owl:abstract Abstract/short
definition

X

dcterms:subject Subject X

rdfs:label Wording X

foaf:page Related pages X

dbpedia-owl:
thumbnail

Picture X

geo:long Longitude X

geo:lat Latitude X

Fig. 4. Mapping results in Silk

144 C. Dirschl et al.

In a second step, WKD document data has been enriched by linking to external
resources. Legislations were matched (skos:exactMatch) with DBpedia information –
data coming from Wikipedia info boxes (especially scope and practice area) could be
used to enrich the documents further. Authors were linked to persons in the GND26

dataset (Integrated Authority File of the German National Library) – links to these
external sources are included in Pebbles. The GND dataset contains more metadata
about authors than WKD does collect. Both mappings to DBpedia and GND were done
using Silk (Table 4). A third enrichment project took place with the EU Publication
Office to match documents from the EU Cellar platform with documents from Pebbles.

Entity Extraction was another approach to enrich the metadata of documents. It was
tested randomly with two tools: DBpedia Spotlight and the PoolParty Extractor.

Fig. 5. Court maps of courts within Germany and a specific court

Table 4. Overview of WKD concept linking to external and internal sources

Links to external/internal sources Links

Courts thesaurus to DBpedia 997
Extended version of courts thesaurus –

Labor law thesaurus to DBpedia 776
Labor law thesaurus to Thesoz 443
Labor law thesaurus to STW 289
Labor law thesaurus to EuroVoc 247
Legislations to DBpedia 155
Authors to GND 941
WKD Labor Law Thesaurus to WKD subjects 70

26 http://www.dnb.de/DE/Standardisierung/GND/gnd_node.html, accessed June 10, 2014.

LOD2 for Media and Publishing 145

http://www.dnb.de/DE/Standardisierung/GND/gnd_node.html

Spotlight uses DBpedia concepts as an extraction base, whereas PoolParty uses the
predefined controlled vocabularies. Both solutions provided a good overview on the
topics and main issues of the tested documents. Nonetheless, the main problem of
ambiguity appeared in both approaches and resulted in terms that came from different
contexts (e.g. “deadline” that could mean the application deadline or the deadline of a
labor agreement and therefore address different areas of labor law).

2.4 Visualization

Special features and visualization functionalities are crucial as part of the activities
related to the publishing content supply chain. Visualizations are not only created for
the internal management of data, but also for enabling product developments for the
customers of information services of WKD. Therefore, we investigated options for
presenting the created data in an appealing manner.

The visualization of controlled vocabularies provides different interfaces depending
on the dataset. For instance, courts are visualized in form of a map in the Linked Data
frontend27, where the geographical information is used either to visualize courts as pins
on a map of Germany or a local map presenting the geolocation information for each
individual court (see Fig. 5).

For the labor law thesaurus we chose the visualization in form of a semantic
network. Concepts are shown with related concepts within the same context of labor
law (Fig. 6).

Fig. 6. Semantic net of labor law

27 At http://lod2.wolterskluwer.de/, accessed May 10, 2014.

146 C. Dirschl et al.

http://lod2.wolterskluwer.de/

The visualization of overall datasets is possible with CubeViz28 and gives an
insight to the amount of available data for specific document types, practice areas, time
frames and courts (Fig. 7).

Visualizing the data has proven to be an important step to give the user deeper
understanding of the underlying data and to provide contextual information that can
give new insights.

3 Licensing Semantic Metadata

Data is not an easy subject to talk about, especially when doing it from an economic
perspective. From all intangible assets imaginable, data is a highly controversial one,
given that its economic characteristics are hard to describe and even more difficult to
protect. But to own, to control, and to share data one needs to define policies that
describe the conditions under which data can be (re-)used in various contexts and for
various purposes. Licensing is one such policy that allows us to define data as an
economic good. Accordingly, data licensing is crucial in the development of data-
driven businesses as it defines the properties of data in a generic economic sense in the
dichotomies of scarcity-abundance, private-public and rivaling-complementary.
Licenses are an enabler and a barrier for economic transactions. They set the bound-
aries in which economic actions take place and they define the legitimate or illegitimate
usage of data for commercial or non-commercial purposes.

Beside licensing, technology as a constructivist framework for the creation and
utilization of data plays an important role. Technology defines the good characteristics
of data. According to this premise, it makes a difference whether data is generated
manually or algorithmically; or optimized for syndication or storage within a silo etc.
Technology influences the context in which data is being generated and utilized, thus
changing the hermeneutic conditions under which data is being defined. It makes a
difference, whether data is being treated as a solitary thing or linked for purposes of
knowledge discovery and targeted insights. Hence it is crucial to gain a good

Fig. 7. Laws of specific practice areas per year; jurisdictions per court per year

28 http://aksw.org/Projects/CubeViz.html, accessed June 10, 2014.

LOD2 for Media and Publishing 147

http://aksw.org/Projects/CubeViz.html

understanding of the technology with which data has been generated to make economic
sense out of it.

3.1 Traditional Protection Instruments for Intellectual Property

Semantic metadata is a fairly new kind of intellectual asset that is still subject to debate
– concerning the adequate protection instruments [12]. Table 5 gives an overview on
the applicability of various protection instruments. The table illustrates the complex
nature of semantic metadata as intellectual property. Various instruments can be
applied to various assets; while copyright, database right and competition right are the
most relevant ones.

Copyright basically protects the creative and original nature of a literary work and
gives its holder the exclusive legal right to reproduce, publish, sell, or distribute the
matter and form of the work. Hence, any literary work that can claim a sufficient degree
of originality can be protected by copyright.

Database Right protects a collection of independent works, data or other materials,
which have been created with considerable financial investment, are arranged in a
systematic or methodological way and are individually accessible by electronic or other
means. Databases are also protected as literary works and need to have a sufficient
degree of originality that requires a substantial amount of investment.

An Unfair Practices Act protects rights holders against certain trade practices,
which are considered unfair in terms of misappropriation, advertising, sales pricing or
damages to reputation. Especially the first aspect is relevant to semantic metadata,
which actually occurs, when data is being reused without appropriate compensation i.e.
in terms of attribution or financial return.

Patenting protects the inventory aspects of a novel technical artefact. Hence it does
not directly impact the protection of semantic metadata as – at least in Europe – patents
can just be acquired for hardware-related inventions. But as soon as semantic metadata
becomes an indispensable subject of a methodology that generates physical effects, has
a sufficient level of inventiveness and can be exploited commercially, these compo-
nents can be protected under Patent Law.

Table 5. IPR instruments for semantic metadata [9]

Copyright Database right Unfair practice Patents

Documents YES YES YES NO
Dataset NO YES PARTLY NO
Description YES NO YES NO
Identifier NO NO NO NO
Name space YES YES YES NO
Vocabulary PARTLY YES YES NO
Classification PARTLY PARTLY PARTLY NO
Ontology PARTLY YES YES PARTLY
Rules PARTLY YES YES PARTLY

148 C. Dirschl et al.

This overview conceals the fact that there exist regional differences in the practical
application of IPR instruments. These differences and specificities of so called IPR
regimes make the licensing of Linked Data a complex and sometimes confusing issue.
I.e. while in the USA data is generally protected under the US copyright law29, the
European Union additionally provides the instrument of Database Right30 to fill certain
gaps between the various national copyrights of the EU member states. Additionally
while the US Patent Act31 allows the patenting of software, which also includes col-
lections of data as output of an algorithmic process; this is formally forbidden in
Europe under Article 52 of the European Patent Convention32.

This situation has long been scrutinized by critics of traditional IPR practices. On
the one hand, the differences between the various regional regimes lead to judicial
uncertainty. On the other hand, the overlapping and complementary protection
instruments tend to favor an “overprotection” of intellectual assets that stifle compe-
tition and innovation and prevent the development of business models and new ways of
value creation (i.e. [2, 3, 6, 11]).

As a reaction to these structural externalities of the traditional IPR system, new
licensing instruments have emerged over the past few years that deliberately focus on
the creative and self-governed re-purposing of intellectual property with the aim to
foster innovation, collaborative creation of value and finally the public domain. These
so called commons-based instruments – well known under Creative Commons and
lately Open Data Commons – play an important role in the commercial and non-
commercial appropriation of Linked Data and are an important part of a Linked Data
licensing policy. Additionally, we will discuss the purpose of so called “community
norms” as a third important component in Linked Data licensing policy.

3.2 Licensing Policies for Linked Data

The open and non-proprietary nature of Linked Data design principles allow to easily
share and reuse data for collaborative purposes. This also offers new opportunities for
data publishers to diversify their assets and nurture new forms of value creation (i.e. by
extending the production environment to open or closed collaborative settings) or
unlock new revenue channels (i.e. by establishing highly customizable data syndication
services on top of fine granular accounting services based on SPARQL).

To meet these requirements, commons-based licensing approaches like Creative
Commons33 or Open Data Commons34 have gained popularity over the last few years,
allowing maximum re-usability while providing a framework for protection against
unfair usage practices and rights infringements. Nevertheless, to meet the requirements

29 See http://www.copyright.gov/title17/, accessed July 10, 2013.
30 See http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31996L0009:EN:HTML, acces-

sed July 10, 2013.
31 See http://www.law.cornell.edu/patent/patent.overview.html, accessed July 10, 2013.
32 See http://www.epo.org/law-practice/legal-texts/html/epc/2010/e/ma1.html, accessed July 10, 2013.
33 See http://creativecommons.org/, visited April 22, 2012.
34 See http://opendatacommons.org/, visited April 22, 2012.

LOD2 for Media and Publishing 149

http://www.copyright.gov/title17/
http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31996L0009:EN:HTML
http://www.law.cornell.edu/patent/patent.overview.html
http://www.epo.org/law-practice/legal-texts/html/epc/2010/e/ma1.html
http://creativecommons.org/
http://opendatacommons.org/

of the various asset types, a Linked Data licensing strategy should make a deliberate
distinction between the database and the content stored in it (see Table 5). This is
necessary as content and databases are distinct subjects of protection in intellectual
property law and therefore require different treatment and protection instruments. An
appropriate commons-based protection strategy for a data provider could look as
follows:

The contents of a linked dataset, which are comprised of the terms, definitions and
its ontological structure, are protected by a CC-By v3.0 License35, which allows the
commercial and non-commercial reuse of any published artefact as long as the owner is
mentioned.

The underlying database, which is comprised of all independent elements and
works that are arranged in a systematic or methodological way and are accessible by
electronic or other means, are protected by a ODC-By v1.0 License36, which also
allows the commercial and non-commercial reuse of any published artefact as long as
the owner is mentioned.

Additionally to these two aspects, the licensing strategy also should incorporate a
Linking Policy Community Norm, which explicitly defines the expectations of the
rights holder towards good conduct when links are made to the various artefacts
provided in the dataset.37 This norm should provide administrative information (i.e.
creator, publisher, license and rights); structural information about the dataset (i.e.
version number, quantity of attributes, types of relations) and recommendations for
interlinking (i.e. preferred vocabulary to secure semantic consistency).

All in all the three elements of a commons-based licensing policy – the CC-By v3.0
License, the ODC-By v1.0 License and the Community Norm – provide a secure and
resilient judicial framework to protect against the unfair appropriation of open datasets.

3.3 Rights Expression Languages for Linked Data Licenses

The basic idea of Linked Data is to create an environment where information can flow
freely and can be repurposed in multiple ways, not necessarily evident at the time of
content creation. This holds true for open and closed settings alike. Hence a clear
machine-readable explication of prohibits and permits associated with the usage rights
of linked datasets is a necessary precondition to realize the promises of the Linked Data
vision.

Open Digital Rights Language (ODRL): With the emergence and mass adoption of
Digital Rights Management Systems since the end of the 1990s, several attempts have
taken place to define machine-readable standards for the expression of rights over
digital assets. One of these endeavors was ODRL, an XML vocabulary to express
rights, rules, and conditions – including permissions, prohibitions, obligations, and

35 See http://creativecommons.org/licenses/by/3.0/, visited April 20, 2012.
36 See http://opendatacommons.org/category/odc-by/, visited April 20, 2012.
37 See for example the community norm provided by the Leibniz Information Centre for Economics:

http://zbw.eu/stw/versions/8.08/mapping/gnd/, accessed April 20, 2012.

150 C. Dirschl et al.

http://creativecommons.org/licenses/by/3.0/
http://opendatacommons.org/category/odc-by/
http://zbw.eu/stw/versions/8.08/mapping/gnd/

assertions – for interacting with online content.38 The corresponding ODRL Standards
Group39, a member of the World Wide Web (W3C) Community and Business
Groups40 since 2011, acts as an international initiative to define the specifications for
expressing policy information over digital content residing on the Open Web Platform
(OWP)41.

ODRL utilizes an Entity-Attribute-Value Model to express a policy about rights
and restrictions associated with a digital artefact. The legal information about allowed
actions with a media asset (i.e. copying, sharing, modifying, attributing etc.) can be
expressed within the ODRL vocabulary. Hence ODRL basically provides a machine-
readable policy framework that supports the flexible and fine-granular definition of
usage rights within dynamic usage settings like the web and other multi-channel
environments. In 2013, the International Press and Telecommunications Council
(IPTC) adopted ODRL as the basis for its Rights Markup Language (RightsML)42,43.
Still in an experimental phase, the RightsML has mainly been applied to specify rights
and restrictions with respect to photos44, but its application goes beyond this specific
asset type.

Besides ODRL, the Creative Commons Community has developed Creative
Commons Rights Expression Language45 (CCREL) to represent the various CC
licenses in a machine-readable format. CCREL is the product of an informal W3C
working group that issued its specifications in 2008. Since then, CCREL is being
recommended by the Creative Commons Foundation as a standard for the machine-
readable provision of Creative Commons licensing information to the public. Although
never acknowledged as an official W3C recommendation, CCREL has evolved into a
de facto standard for the special domain of Creative Commons Licenses and is
expected to spread with the increasing need to provide explicit licensing information
for automated processing on the web.

CCREL basically complements the ODRL vocabulary. It provides a condensed and
hierarchically ordered set of properties that define the actions allowed with certain
licenses. These properties can be seamlessly integrated into the ODRL vocabulary and
allow to define fine-grained usage policies and constraints associated with a certain
asset that falls into the legal domain of Creative Commons.

Generally it is important to mention that a combination of ODRL and CCREL is
not obligatory to provide machine-readable licensing information on the web. The
semantic expressivity of CCREL is sufficient to simply annotate existing assets with
licensing information for automated processing. But in case of very complex and

38 A comparable endeavour to create a data model for machine-readable statements on IPR in
e-commerce transactions can be traced back to the year 1999. For details see [10].

39 http://www.w3.oeg/cumunity/odrl/, accessed June 17, 2013.
40 http://www.w3.org/community/, accessed June 17, 2013.
41 http://www.w3.org/wiki/Open_Web_Platform, accessed June 17, 2013.
42 http://dev.iptc.org/RightsML, accessed June 17, 2013.
43 http://dev.iptc.org/RightsML-Introduction-to-ODRL, accessed July 1, 2013.
44 http://dev.iptc.org/RightsML-10-Implementation-Examples, accessed June 17, 2013.
45 http://www.w3.org/Submission/CCREL/, accessed July 1, 2013.

LOD2 for Media and Publishing 151

http://www.w3.oeg/cumunity/odrl/
http://www.w3.org/community/
http://www.w3.org/wiki/Open_Web_Platform
http://dev.iptc.org/RightsML
http://dev.iptc.org/RightsML-Introduction-to-ODRL
http://dev.iptc.org/RightsML-10-Implementation-Examples
http://www.w3.org/Submission/CCREL/

differentiated usage scenarios, a combination of ODRL and CCREL will be necessary,
as ODRL provides the necessary semantic expressivity to define fine-granular usage
policies associated with a certain asset that goes beyond the simple explication of
licensing information, i.e. for the purposes of Digital Rights Management.

Beside Creative Commons, which is basically an extension of copyright, the Open
Data Commons initiative46 has started to provide legal tools for the protection of
commons-licensed data assets. This is necessary as diverging regional judicial regimes
require different IPR instruments to fully protect the various assets involved in the
digital processing of information. For instance, data sources are protected by copyright
in the USA, while in the European Union the protection of data sources is additionally
complemented by so called database rights as defined in the Database Directive (96/9/
EC)47. Hence to fully protect datasets in the European Union, it is actually necessary to
provide legal information on various asset types from which certain parts can be
licensed under Creative Commons, while others require Open Data Commons.

In contrast to ODRL and CCREL, the Open Data Commons initiative has not yet
provided a REL of its own and it is to question whether this is necessary as licenses of
Open Data Commons can be easily integrated in the vocabulary of other RELs.

4 Conclusion

The “Media and Publishing” use case has shown – based on real requirements from a
global information service provider – that the expected added value to legal products
and company processes can be achieved when using Linked Data and the accompa-
nying Semantic Web technologies.

As a major outcome of this project, some tools from the LOD2 Stack like PoolParty
and Virtuoso are already implemented and used in the operational systems of WKD. In
that sense, the LOD2 Stack has shown its value for enterprises even before the project
terminated.

The steps taken, described in this chapter, are most likely representative for many
use case scenarios where Linked Data comes into play. First, existing internal and
external data must be transformed into standard formats like RDF and SKOS. Then
tools need to be utilized for further enrichment and linking and the resulting enhanced
domain knowledge network needs to be further maintained and its content translated
into functionalities in products48. This also covers different areas of visualization,
which we investigated. Finally, governance and licensing of data need to be properly
addressed, which is still at the end of the project a major issue. Potential business
impact could be shown, but when the data is not usable in professional environments, it
will not be taken up in the end.

46 http://opendatacommons.org/, accessed July 1, 2013.
47 http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31996L0009:EN:HTML, accessed

July 4, 2013.
48 https://www.jurion.de, accessed June 10, 2014.

152 C. Dirschl et al.

http://opendatacommons.org/
http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31996L0009:EN:HTML
https://www.jurion.de

However, the steps taken are not at all easy. Already during transformation, the
paradigm shift from a content to a data centric point of view raised a lot of questions
and issues around quality, especially around normalization and granularity of infor-
mation. This included the generation and maintenance of valid and stable identifiers.
This challenge continued during enrichment phase, where the importance of identifi-
able and comparable contexts became obvious in order to link things properly and not
to compare apples and oranges. During visualization activities, an important aspect,
which was new to us in its consequence, was the need for consistent and complete data,
which is normally not available when coming from a content based approach. So
actually, the process that we faced was not only a technical and data driven one, it also
changed our mindset when looking at data and its importance for our future business.
In this respect, an important aspect we were not able to cover in this chapter is that of
new business models based on Linked Data. Detailed information will be available at
the end of the project at the project website.

All the major cornerstones for success mentioned above need to be further elab-
orated in the future.

Wolters Kluwer will actively participate in further research projects to make more
data – and more clean (!) data – publicly available; to add more sophisticated tools to
the open source tool stack of LOD2; and to address the licensing challenge within a
growing community of data providers and customers of this data. First conversations
with public information providers (e.g. with the Publications Office of the European
Union or the German National Library) indicate common interests across and beyond
traditional company boundaries.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are credited.

References

1. Auer, S., Bühmann, L., Dirschl, C., Erling, O., Hausenblas, M., Isele, R., Lehmann, J.,
Martin, M., Mendes, P.N., van Nuffelen, B., Stadler, C., Tramp, S., Williams, H.: Managing
the life-cycle of linked data with the LOD2 stack. In: Cudré-Mauroux, P., Heflin, J.,
Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber,
G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 1–16.
Springer, Heidelberg (2012)

2. Barton, J.H.: Adapting the intellectual property system to new technologies. In: Wallerstein,
M.B., Mogee, M.E., Schoen, R.A. (eds.) Global Dimensions of Intellectual Property Rights
in Science and Technology, pp. 256–283. National Academic Press, Washington (1993)

3. Bessen, J., Meurer, M.: Patent Failure: How Judges Bureaucrats and Lawyers Put Innovators
at Risk. Princeton University Press, Princeton (2008)

4. Dirschl, C., Eck, K., Lehmann, J., Bühmann, L., Auer, S.: Facilitating data-flows at a global
publisher using the LOD2 stack. Submitted to the Semant. Web J.

5. Hondros, C.: Standardizing legal content with OWL and RDF. In: Wood, D. (ed.) Linking
Enterprise Data, pp. 221–240. Springer, New York (2010)

LOD2 for Media and Publishing 153

6. Klemens, B.: Math You can’t Use: Patents, Copyright and Software. Brookings Institution
Press, Washington (2006)

7. Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer, C.,
Lee, R.: Media meets semantic web – how the BBC uses DBpedia and linked data to make
connections. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E.,
Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554,
pp. 723–737. Springer, Heidelberg (2009)

8. Lee, S., Kim, P., Seo, D., Kim, J., Lee, J., Jung, H., Dirschl, C.: Multi-faceted navigation of
legal documents. In: 2011 International Conference on and 4th International Conference on
Cyber, Physical and Social Computing (2011)

9. Pellegrini, T.: Linked data licensing – Datenlizenzierung unter netzökonomischen
Bedingungen. In: Schweighofer, E., Kummer, F., Hötzendorfer, W. (Hg.) Transparenz.
Tagungsband des 17. Internationalen Rechtsinformatik Symposium IRIS 2014. Wien:
Verlag der Österreichischen Computergesellschaft, S. 159–168 (2014)

10. Rust, G., Bide, M.: The <indecs> metadata framework - principles, model and data
dictionary. http://www.doi.org/topics/indecs/indecs_framework_2000.pdf (2000). Accessed
18 July 2013

11. Sedlmaier, Roman: Die Patentierbarkeit von Computerprogrammen und ihre Folgeprobleme.
Herbert Utz Verlag, München (2004)

12. Sonntag, M.: Rechtsschutz für Ontologien. In: Schweighofer, E., Liebwald, D., Drachsler,
M., Geist, A. (eds.) e-Staat und e-Wirtschaft aus rechtlicher Sicht, pp. 418–425. Richard
Boorberg Verlag, Stuttgart (2006)

154 C. Dirschl et al.

http://www.doi.org/topics/indecs/indecs_framework_2000.pdf

Building Enterprise Ready Applications
Using Linked Open Data

Amar-Djalil Mezaour1(B), Bert Van Nuffelen2, and Christian Blaschke3

1 Dassault Systemes, Vélizy-Villacoublay, France
amardjalil.mezaour@3ds.com
2 Tenforce, Leuven, Belgium

bert.van.nuffelen@tenforce.com
3 SWCG, Vienna, Austria

blaschkec@semantic-web.at

Abstract. Exploiting open data in the web community is an estab-
lished movement that is growing these recent years. Government public
data is probably the most common and visible part of the later phenom-
ena. What about companies and business data? Even if the kickoff was
slow, forward-thinking companies and businesses are embracing semantic
technologies to manage their corporate information. The availability of
various sources, be they internal or external, the maturity of semantic
standards and frameworks, the emergence of big data technologies for
managing huge volumes of data have fostered the companies to migrate
their internal information systems from traditional silos of corporate
data into semantic business data hubs. In other words, the shift from
conventional enterprise information management into Linked Opened
Data compliant paradigm is a strong trend in enterprise roadmaps. This
chapter discusses a set of guidelines and best practices that eases this
migration within the context of a corporate application.

1 Introduction

Linked Data, Open Data and Linked Open Data (LOD) are three concepts
that are very popular nowadays in the semantic community. Various initiatives,
like openspending.org, are gaining ground to promote the openness of data for
more transparency of institutions. But what is the difference between these three
concepts?

Linked Data refers to the way of structuring the data and creates relation-
ships between them. Open Data similar to open-source, opens content to make it
available to citizens, developers, etc. for use with as limited restrictions as possi-
ble (legal, technological, financial, license). Linked Open Data, that we refer to
as LOD, is the combination of both: to structure data and to make it available
for others to be reused.

The LOD paradigm democratized the approach of opening data sources and
interlinking content from various locations to express semantic connections like
similarity or equivalence relationships for example. In business environment,
c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 155–174, 2014.
DOI: 10.1007/978-3-319-09846-3 8

http://openspending.org

156 A.-D. Mezaour et al.

data interlinking practice is highly recommended for lowering technological and
cost barriers of data aggregation processes. In fact, semantic links between data
nuggets from separate corporate sources, be they internal or external, facilitate
the reconciliation processes between data references, enhance semantic enrich-
ment procedures of data like for example propagating annotations from similar
references to incomplete data, etc.

In the context of enterprises, the LOD paradigm opens new scientific and
technical challenges to answer emerging semantic requirements in business data
integration. The impact of LOD in enterprises can be measured by the deep
change that such an approach brings in strategic enterprise processes like domain
data workflows. In fact, semantic enrichment and data interlinking contribute
to optimize business data lifecycle as they shorten the data integration time
and cost. Moreover, when data is semantically managed from its source, i.e.
from its acquisition or creation, less time and efforts are required to process
and integrate it in business applications. This semantic management implies a
set of procedures and techniques like data identification as resources using uris,
metadata annotations using w3c standards, interlink with other data preferably
from authority sources or domain taxonomies, etc.

On the other hand, LOD techniques foster the creation of advanced data
applications and services by mashing up various heterogeneous content and data:

• from internal sources like crm, erp, dbms, filesystems;
• from external sources like emails, web sources, social networks, forums.

As a consequence, new perspectives are open to offer innovative channels to con-
sume, exploit and monetize business data and assets. To understand the rationale
behind this new perspectives, Fig. 1 depicts a generic enterprise semantic data
lifecycle from the acquisition to the final consumption.

Fig. 1. Data workflow in enterprise application

2 The Landscape of Enterprise and Corporate
Data Today

Data integration and the efficient use of the available information in a business
context are major challenges. A typical enterprise has critical applications from

Building Enterprise Ready Applications Using Linked Open Data 157

different vendors running on various technologies, platforms and communicat-
ing via different routes and protocols within and outside an Enterprise. These
applications create disparate data sources, data silos and introduce enormous
costs. To manage this complexity, an enterprise it eco-system is viewed as a
set of interconnected (or partially connected) applications managing different
processes of the enterprise, where separation of the applications often means
replication of the same data in different forms. Each process manipulates differ-
ent kinds of data and produces new data in a structured or unstructured fashion
as it is depicted in Fig. 2.

Fig. 2. Classical Enterprise Information System

Existing technological approaches such as Enterprise Application Integration
(eai) create middleware between all these diverse information sources making use
of several architectural models with examples being Event Driven Architecture
(eda) or Service Oriented Architecture (soa) which are usually implemented
with web services and soap. Common approaches in the enterprises typically
include Data Warehousing and Master Data Management.

Simple xml messages and other b2b standards ensure the “flow” of informa-
tion across internal systems in an easy-to-use and efficient manner. In some cases
this is enough but, for example, with a portfolio of over 30,000 offered products
and services it is not possible to describe complex components with a handful
of simple xml elements. There is a clear need for providing clear definitions or
semantics to the data to facilitate integration at the data layer.

158 A.-D. Mezaour et al.

However, integration in the data layer is far from being a straightforward task
and the Linked Data paradigm provides a solution to some of the common prob-
lems in data integration. The two technological approaches, i.e. eai and LOD,
are not contradictory but rather complementary. soa architecture deployed in an
eai approach works with service oriented whereas LOD works with hyperlinked
resources (data, data sets, documents, . . .). Note that soa architecture needs
many custom services where LOD uses only a few services (sparql, rest) and
hyperlinking with the referenced resources. Both approaches have complemen-
tary standardization efforts (on metadata vs. services) which makes them better
suited for different tasks. eai-soa approach is well suited for well-defined tasks
on well-defined service data whereas LOD is more targeted for innovative tasks
involving semantics (integrations, mappings, reporting, etc.).

3 Why Should My Company Assets Go Linked
Open Data?

The benefit of the adoption of Linked Data technologies in enterprises is multi-
dimensional:

• address the problem of data heterogeneity and integration within the business;
• create value chains inside and across companies;
• meaning on data enables search for relevant information;
• increase value of existing data and create new insights using bi and predictive

analytics techniques;
• Linked Data is an add-on technology which means no need to change the

existing infrastructure and models;
• get a competitive advantage by being an earlier adaptor of LOD technologies.

These benefits are better detailed in Fig. 3 taken from Deloitte report “Open
data: Driving growth, ingenuity and innovation”1.

4 LOD Enterprise Architectures

When adopting LOD principles, the Classical Enterprise it Architecture (Fig. 2)
is enhanced for working over the Internet with means to overcome the technical
barriers of the format and semantic differences of exchanged and manipulated
data. This generates a data processing workflow that is described in the following
three figures:

1. Figure 4 evolves the legacy or classic architecture by replacing the Enterprise
Software Bus (esb) with Linked Open Data protocols for data published on
an external server.

1 http://www.deloitte.com/assets/Dcom-UnitedKingdom/
Local%20Assets/Documents/Market%20insights/Deloitte%20Analytics/
uk-insights-deloitte-analytics-open-data-june-2012.pdf

http://www.deloitte.com/assets/Dcom-UnitedKingdom/Local%20Assets/Documents/Market%20insights/Deloitte%20Analytics/uk-insights-deloitte-analytics-open-data-june-2012.pdf
http://www.deloitte.com/assets/Dcom-UnitedKingdom/Local%20Assets/Documents/Market%20insights/Deloitte%20Analytics/uk-insights-deloitte-analytics-open-data-june-2012.pdf
http://www.deloitte.com/assets/Dcom-UnitedKingdom/Local%20Assets/Documents/Market%20insights/Deloitte%20Analytics/uk-insights-deloitte-analytics-open-data-june-2012.pdf

Building Enterprise Ready Applications Using Linked Open Data 159

Fig. 3. Benefits for businesses to go LOD

2. Figure 5 evolves the legacy or classic architecture by replacing the Enterprise
Software Bus with Linked Open Data protocols among the enterprise LOD
publishing servers.

3. Figure 6 zooms-in on a publishing workflow, a transformation pipeline that is
added on top of the legacy enterprise services (crm, erp, . . .). Some legacy
systems may evolve and upgrade to include LOD publishing or they may
provide feeds into the LOD publishing workflow.

4.1 LOD Enterprise Architecture with a Publishing Workflow

Figure 4 illustrates the LOD Enterprise architecture where the middleware frame-
work (esb) of the Classical it architecture (Fig. 2) is replaced with the LOD
cloud. This architecture shows two types of data publishing, with the enterprise
putting their rdf data on an external LOD server (server 5 in Fig. 4) according
to one of two scenarios:

1. An rdf data set is produced from various data sources and subsystems (box
1 in Fig. 4) and is transferred to an external central LOD server.

2. Metadata is added to a classic web site using semantic metadata annotations
(e.g. rdfa, Schema.org) on the html pages (box 3 in Fig. 4). An LOD server

160 A.-D. Mezaour et al.

Fig. 4. LOD Enterprise Architecture

Fig. 5. LOD Enterprise Integration Architecture

Building Enterprise Ready Applications Using Linked Open Data 161

Fig. 6. Transformation pipeline

extracts this metadata, organizes it and makes it accessible as a central service
(box 4 in Fig. 4).

The Ontology Schema Server (box 2 in Fig. 4) hosts the used ontologies
capturing the semantics of the Linked Open Data. It may be standard (preferred)
or custom designed. Other application services or platforms (server 4 in Fig. 4)
may use the central LOD services to build specific calculations and reports.
Business niches or completely new business opportunities can be created with
visualizations and aggregations of data.

Example
A head-hunter can crawl job postings and match with cvs. Aggregations of
offered vacancies in real-estates can create new insights. Search engines may use
the data for advanced searching while portals2 can harvest data sets from other
portals and publish them from a single point of access in a LOD server (server
5 in Fig. 4).

4.2 LOD Enterprise Architecture Integration

In the previous LOD Enterprise Architecture (Fig. 4 on p. 160) the business
operations are described where Linked Data were produced or semantic annota-
tions were made to the corporate content. The data produced (or extracted from
crawling through websites) was not published by the enterprise but was made
available to the community. Any external LOD server could be used for the
publishing of the data, depending on the needs and requirements of the re-users.
2 Such as ODP: http://open-data.europa.eu/en/data/

http://open-data.europa.eu/en/data/

162 A.-D. Mezaour et al.

In Fig. 5 the highlight is put on the operation of an enterprise that publishes
its own data on a LOD server. Furthermore, the enabled integration is illustrated
between various networks whether they belong to different branches of the same
enterprise or entirely different companies. Figure 5 on p. 160 shows two company
owned LOD publishing services (box 1 and 3 in Fig. 5). The published rdf is
put on the company owned (corporate or enterprise) server platform. Other
application services or platforms (server 4 in Fig. 5) may use the owned LOD
services to build specific calculations and reports. Such application services may
be on a dedicated external platform or they may be on one or more of the
corporate owned LOD platforms/end-points. The Ontology Schema Server (box
2 in Fig. 5) hosts the used ontologies capturing the semantics of the Linked Open
Data. It may be standard (preferred) or custom designed.

4.3 Transformation Pipeline to LOD Enterprise Architecture

The implementation of the previously described types of LOD architectures
(shown in Figs. 4 and 5) is based on a transformation pipeline that is added on
top of the legacy enterprise services (e.g. crm, erp, etc.). The pipeline includes:

1. Identification of the types of data which are available, i.e. separate data into
public and private and define access security strategy, identify data sources,
design retrieval procedures, setting data versions, provide data provenance;

2. Modelling with domain-specific vocabularies;
3. Designing the uri Strategy for accessing the information, i.e. how the model

and associated data should be accessed;
4. Publishing the data which includes extraction as rdf, storage and querying;
5. Interlinking with other data.

5 Best Practices

5.1 Data Sources Identification

Corporate information can be defined as the data that is used and shared by the
different employees, departments, processes (it or not) of a company. Depending
on the information security policy, corporate data can be accessed, processed
and published via different business applications of the enterprise it system.
Note that it may be spread across different locations (internal departments and
entities, regional or cross countries subsidiaries, etc.).

When integrating LOD technologies into an existing enterprise it system
or application, the first recommendation is to perform an audit on the differ-
ent business data sources used by the company. This audit should include the
following elements:

• Classification of business data sources according to their importance to the
operation of strategic business processes.

Building Enterprise Ready Applications Using Linked Open Data 163

• Cartography of data workflow between the identified data sources to discover
missing, redundant or incomplete information exchanged, the type of data
(structured, unstructured), etc.

• Mapping table between native business data formats and the corresponding
standard formats (preferably w3c rdf like formats) and the impact from
shifting from the native to the standard format.

This audit allows the data architects to better understand the corporate
applications’ functioning and help them evaluating the cost of integrating LOD
technology. According to the required effort and cost, the first best practice
consists on migrating as much as possible native formats to standards, preferably
rdf-like w3c standards when possible. This considerably eases the publishing,
annotation and interlinking of business data.

To comply with the openness criterion of LOD paradigm, publishing data is
a major recommendation in the “LODification” process of corporate data. To
do so, a licensing scheme must be released to define how the opened data can be
reused and exploited by third-party users, applications and services. Considering
the company interest, a compromise must be found to open as much data as
possible and maintaining a good balance between keeping strategic enterprise
data confidential, like the know-how for example, and the rest of data open. Lot
of reusable licensing schemes can be considered.

Last but not least, the opened data license scheme must guarantee the reuse
principle of data by third-party applications with as few technical, financial and
legal restrictions as possible. One way of achieving these goals is to provide
rich metadata descriptions of the opened data with appropriate vocabularies,
like DCAT3, VoID4, DublinCore5, etc. To make the opened and published data
understandable and retrievable, the metadata description must provide key ele-
ments like the copyright and associated license, update frequency of data, pub-
lication formats, data provenance, data version, textual description of the data
set, contact point when necessary to report inconsistencies or errors for example,
etc.

5.2 Modelling for the Specific Domain

In order to transform the existing model of an enterprise to a more interoperable
schema, best practices focus on the use of common vocabularies. Using terms
of existing vocabularies is easier for the publisher and contributes a lot in the
re-use and the seamless information exchange of enterprise data.

As a first step, the inherent structure of the legacy data has to be analysed. If
no specified hierarchy exists, it can often be created based on expert knowledge
of the data. If such an organization of the data is not possible, then only a list of
concepts, basically a glossary, can be constructed. Depending on the complexity
3 http://www.w3.org/TR/vocab-dcat/
4 http://www.w3.org/TR/void/
5 http://dublincore.org/

http://www.w3.org/TR/vocab-dcat/
http://www.w3.org/TR/void/
http://dublincore.org/

164 A.-D. Mezaour et al.

of the data and how the entities are related, different data schemas can be used
to express them.

5.3 Migration of Legacy Vocabularies

The migration of an existing vocabulary to an rdf scheme varies in complexity
from case to case, but there are some steps that are common in most situations.
Transforming enterprise data to rdf requires:

• Translating between the source model and the rdfmodel is a complex task with
many alternative mappings. To reduce problems, the simplest solution that pre-
serves the intended semantics should be used.

• The basic entity of rdf is a resource and all resources have to have a unique
identifier, a uri in this case. If the data itself does not provide identifiers that
can be converted to URIs, then a strategy has to be developed for creating
uri for all the resources that are to be generated (see Sect. 5.4).

• Preserve original naming as much as possible. Preserving the original nam-
ing of entities results in clearer and traceable conversions. Prefix duplicate
property names with the name of the source entity to make them unique.

• Use xml support for data-typing. Simple built-in xml Schema datatypes such
as xsd:date and xsd:integer are useful to supply schemas with information on
property ranges.

• Themeaningofaclassorpropertycanbeexplicatedbyaddingan“rdfs:comment”,
preferably containing a definition from the original documentation. If documen-
tation is available online, “rdfs:seeAlso” or “rdfs:isDefinedBy” statements can
be used to link to the original documentation and/or definition.

Domain specific data, can be modelled with vocabularies like Org6 or
GoodRelations7. Only when existing vocabularies do not cover ones needs new
schemas should be developed. Data sets that will be published on the web should
be described with metadata vocabularies such as VoiD, so that people can learn
what the data is about from just looking at its content.

Where suitable vocabularies to describe the business data do not exist, one
possibility is to develop a skos thesaurus instead of an rdfs model (e.g. tax-
onomies, organizations, document types). This approach is easier to follow for
organisations new to rdf. Tools such as PoolParty8 exist and support users in
such a task. The most recent international standard regarding thesaurus devel-
opment is the ISO 259649. This standard provides detailed guidelines and best
practices that interested readers should consider.

Once the data is in this format it can be loaded in a triple store like Virtuoso
and published internally or on the web.
6 http://www.w3.org/TR/2014/REC-vocab-org-20140116/
7 http://www.heppnetz.de/projects/goodrelations/
8 http://www.poolparty.biz
9 http://www.niso.org/schemas/iso25964/

http://www.w3.org/TR/2014/REC-vocab-org-20140116/
http://www.heppnetz.de/projects/goodrelations/
http://www.poolparty.biz
http://www.niso.org/schemas/iso25964/

Building Enterprise Ready Applications Using Linked Open Data 165

5.4 Definition of the URI Strategy

To meet high quality standards for managing business data, a company must
define a persistent data representation policy for identifying each data item from
the enterprise data universe. Such a policy must include the addressing schemes
for locating data resources within the enterprise space. An uri10 is a relevant
mechanism for defining a global representation scheme of the enterprise business
data space.

Identification of Business Items as Resources Referenced by URIs

The first recommendation in building a coherent and persistent representation
policy is to identify business data items as resources, which can be individu-
ally referenced. To conform to the LOD principles, uris should be used as the
identification mechanism for referencing the business information resources.

Use HTTP/DNS Based URIs

A uri is a mechanism that can be used for identifying different objects and
concepts. Some of these objects and concepts may have a physical existence like
books for example with ISBN, web page with URL locations. Other concepts are
abstract and represent conceptual things like ontology concepts or data items.
Different schemes of uris exist for representing a resource: uris based on dns
(Domain Name Server) names, ark (Archival Resource Key) and uris based on
names and ids like isbn (International Standard Book Number), doi (Digital
Object Identifiers), Barcodes, etc. Some of the schemes described above can
be inadequate to implement basic Linked Open Data features like publishing,
referencing and interlinking. Therefore, it is strongly recommended to use uris
based on http protocol and dns names (like urls and ark) to ensure visibility,
accessibility and reuse of business items in external applications and to third
party users.

Use De-referenceable URIs

Human users associate mechanically http based uris to urls and expect to
have a web page when pasting a uri into a browser address bar. Unfortunately,
the association of a uri to a web page is not always true and automatic. For
some businesses, such a situation may generate confusion and frustration. To
avoid such misunderstanding, it is highly recommended to provide means to have
“dereferenceable” and resolvable uris, i.e. uris that return meaningful responses
when pasted into a browser’s address bar. A typical meaningful response could
be an html page containing a complete or partial description, including the
properties of the corresponding resource.

Separate Resource and Resource Representation
Making business items accessible and dereferenceable through the http protocol
may generate a conceptual confusion between the resource itself and the docu-
ment describing it (the html answer for example when requesting the resource
over http). The resource itself as a business data item should be identified by

10 Uniform Resource Identifier: RFC3986 http://tools.ietf.org/html/rfc3986

http://tools.ietf.org/html/rfc3986

166 A.-D. Mezaour et al.

a uri that is different from the possible representations that one could generate
to describe the resource (an html, rdf, xml or json description document, a
document in a given language, a document using a given technology: php, html,
etc.). w3c proposes two technical solutions to avoid the previous confusion: use
of hash uris and use of 303 uris:

• Hash uris - This solution consists in using fragment uris to reference a
non-document business resource. A fragment uri is a uri that separates the
resource identifier part from the DNS server path location part using the hash
symbol ‘#’. For example, a book reference 2-253-09634-2 in a library busi-
ness application could be dissociated from its description using a hash uri as
follows: http://www.mylibrary.com/books/about#2-253-09634-2. With this
example, the library can manage a repository of books in one single big rdf
file containing all the books references and their properties. When accessing
2-253-09634-2 book, a selection query can be applied on that rdf document
to extract the rdf fragment corresponding to 2-253-09634-2 triples. The http
server managing the de-referencement of uris will apply business specific rules
to render the rdf fragment in the desired technology (as json, html, xml,
etc.).

• 303 uris - This solution consists in implementing a redirection mechanism
represented by the http response code 303 to indicate that the resource has
been identified and the server is redirecting the request to the appropriate
description option. In the example of the library, the uri could be http://
www.mylibrary.com/books/2-253-09634-2. The http server will answer to the
request of that uri by a redirect (HTTP code 303) to a new location; let’s
say http://www.library.com/books/2-253-09634-2.about.html, to provide the
description of the requested resource.

Both techniques have advantages and drawbacks as discussed by Sir Tim Berners
Lee here: http://www.w3.org/Provider/Style/URI. Whereas hash uri technique
may look restrictive due to the same root part uri (before the hash) for differ-
ent resources, the 303 uri technique introduces latency in requests due to the
redirection mechanism.

Design Cool URIs

On the conceptual design side of uris, Sir Tim Berners Lee proposes the notion
of Cool uris to guarantee that uris are maintainable, persistent and simple
(see http://www.w3.org/TR/cooluris/). To ensure sustainable uris, it is impor-
tant to design a “cool” uri scheme that doesn’t change over time. To do so one
has to follow these basic rules, resumed in Fig. 7:

• Make the uri independent from the underlying technology used to generate
or describe the resource. This means avoid extensions such as .php, .cgi and
.html in the uri path. To know what to return when a resource is requested
(without any extension), it is recommended to implement a content negotia-
tion mechanism in the http server that is able to outstream the appropriate
content.

http://www.mylibrary.com/books/about#2-253-09634-2
http://www.mylibrary.com/books/2-253-09634-2
http://www.mylibrary.com/books/2-253-09634-2
http://www.library.com/books/2-253-09634-2.about.html
http://www.w3.org/Provider/Style/URI
http://www.w3.org/TR/cooluris/

Building Enterprise Ready Applications Using Linked Open Data 167

• Make also the uri independent of the physical location of the file describing
the resource. Never forget that physical locations are subject to change.

• Make sure that resource metadata are not included in the uri because of their
evolution over time. In other words, one has to not encode the following in
the uri the authorship, the status of the resource (final, old, latest, etc.), the
access rights (public, private, etc.) since this may change over time.

Fig. 7. URI Design rules

Opaque vs. Non opaque URIs

Designing mnemonic and readable uris for identifying business resources can
help human users to get preliminary knowledge on the targeted item. However,
from a business point of view, this readability may have side effects if it also
reveals an internal organisation system structure. Non Opaque uri may reveal
conceptual structure but never should reveal physical or logical data structures.
In fact, third party users or external applications can attempt to hack the uri
scheme, reverse engineer all business resources and abuse the access to some
strategic assets. When there are security risks, it is recommended to use opaque
uris instead of readable ones. An opaque uri is a uri conforming to a scheme
that satisfies the following conditions:

• Addressable and accessible resources should be referenced by identifiers instead
of human readable labels.

168 A.-D. Mezaour et al.

• The resource uri should not contain explicit path hierarchy that can be hacked
to retrieve sibling resources for example.

• The uri content should not provide means to gain information on the ref-
erenced resource, i.e., a third party client cannot analyse the uri string to
extract useful knowledge on the resource.

For non-opaque uri, only the first constraint is not followed.

5.5 Publishing

Publishing procedures in Linked Data follows the identification of data sources
and the modelling phase and actually refers to the description of the data as rdf
and the storing and serving of the data. A variety of tools have been created
to assist the different aspects of this phase from different vendors and include
a variety of features. According to the needs of each specific business case and
the nature of the original enterprise data, shorter publishing patterns can be
created.

5.5.1 Publishing Pattern for Relational Data
Relational databases (rdb) are the core asset in the existing state-of-art of data
management and will remain a prevalent source of data in enterprises. Therefore
the interest of the research community11,12 has gathered around the development
of mapping approaches and techniques in moving from rdb to rdf data. These
approaches will enable businesses to:

• Integrate their rdb with another structured source in rdb, xls, csv, etc. (or
unstructured html, pdf, etc.) source, so they must convert rdb to rdf and
assume any other structured (or unstructured) source can also be in rdf.

• Integrate their rdb with existing rdf on the web (Linked Data), so they must
convert to rdf and then be able to link and integrate.

• Make their rdb data to be available for sparql or other rdf-based query-
ing, and/or for others to integrate with other data sources (structured, rdf,
unstructured).

Two key points should be taken into consideration and addressed within the
enterprise (see Fig. 8):

Definition of the Mapping Language from RDB2RDF
Automatic mappings provided by tools such as d2r13 and Virtuoso rdf Views
provide a good starting point especially in cases when there is no existing Domain
Ontology to map the relational schema to. However, most commonly the man-
ual definition of the mappings is necessary to allow users to declare domain-
semantics in the mapping configuration and take advantage of the integration
11 http://www.w3.org/2011/10/rdb2rdf-charter.html
12 http://www.w3.org/DesignIssues/RDB-RDF.html
13 http://d2rq.org/d2r-server

http://www.w3.org/2011/10/rdb2rdf-charter.html
http://www.w3.org/DesignIssues/RDB-RDF.html
http://d2rq.org/d2r-server

Building Enterprise Ready Applications Using Linked Open Data 169

Fig. 8. rdb2rdf publishing pattern

and linking facilities of Linked Data. r2rml14, a w3c recommendation language
for expressing such customized mappings, is supported from several tools includ-
ing Virtuoso rdf Views and d2r.

Materializing the Data
A common feature of rdb2rdf tools is the ability to create a “semantic view”
of the contents of the relational database. In these cases, an rdf version of the
database is produced so that content can be provided through a sparql endpoint
and a Linked Data interface that works directly on top of the source relational
database, creating a virtual “view” of the database. Such a “semantic view”
guarantees up-to-date access to the source business data, which is particularly
important when the data is frequently updated. In contrast, generating and
storing rdf requires synchronization whenever either the source data model,
the target rdf model, or the mapping logic between them changes. However,
if business decisions and planning require running complicated graph queries,
maintaining a separate rdf store becomes more competitive and should be taken
under consideration.

5.5.2 Publishing Pattern for Excel/CSV Data
When the original data reside in Excel or CSV format, describing them with
rdf would be a first step of a publishing pattern while hosting and serving it
on the Web follows. LODRefine is a stack component, well-suited to automating
and easing the “RDFizing” procedure. Usage brings direct added business value:

• powerful cleaning capabilities on the original business data.
14 http://www.w3.org/TR/r2rml/

http://www.w3.org/TR/r2rml/

170 A.-D. Mezaour et al.

• reconciliation capabilities, in case it is needed, to find similar data in the LOD
cloud and make the original business data compatible with well-known Linked
Data sources.

• augmenting capabilities, where columns can be added from DBpedia or other
sources to the original data set based on the previous mentioned reconciliation
services.

• extraction facilities when entities reside inside the text of the cells.

5.5.3 Publishing Pattern for XML Data
When the original data is in xml format an xslt transformation to transform the
xml document into a set of rdf triples is the appropriate solution. The original
files will not change; rather a new document is created based on the content
of the existing one. The basic idea is that specific structures are recognized and
they are transformed into triples with a certain resource, predicate and value.
The LOD2 stack supports xml to rdf/xml xslt transformations. The resulting
triples are saved as an rdf/xml graph/file that can follow the same hosting and
serving procedures explained in the previous section.

5.5.4 Publishing Pattern for Unstructured Data
Despite the evolution of complex storage facilities, the enterprise environment is
still a major repository paradigm for unstructured and semi-structured content.
Basic corporate information and knowledge is stored in a variety of formats such
as pdf, text files, e-mails, classic or semantic annotated websites, may come
from Web 2.0 applications like social networks or may need to be acquired from
specific web API’s like Geonames15, Freebase16 etc. Linked Data extraction and
instance data generation tools maps the extracted data to appropriate ontolo-
gies en route to produce rdf data and facilitate the consolidation of enterprise
information. A prominent example of a tool from the LOD2 stack that facilitate
the transformation of such types of data to rdf graphs is Virtuoso Sponger.

Virtuoso Sponger17 is a Linked Data middleware that generates Linked Data
from a big variety of non-structured formats. Its basic functionality is based on
Cartridges, that each one provides data extraction from various data source and
mapping capabilities to existing ontologies. The data sources can be in rdfa for-
mat18, GRDDL19, Microsoft Documents, and Microformats20 or can be specific
vendor data sources and others provided by API’s. The Cartridges are highly
customizable so to enable generation of structured Linked Data from virtually
any resource type, rather than limiting users to resource types supported by the
default Sponger Cartridge collection bundled as part of the Virtuoso Sponger.
15 http://www.geonames.org/
16 http://www.freebase.com/
17 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger
18 http://rdfa.info
19 http://www.w3.org/TR/grddl/
20 http://microformats.org/

http://www.geonames.org/
http://www.freebase.com/
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtSponger
http://rdfa.info
http://www.w3.org/TR/grddl/
http://microformats.org/

Building Enterprise Ready Applications Using Linked Open Data 171

The PoolParty Thesaurus Server21 is used to create thesauri and other con-
trolled vocabularies and offers the possibility to instantly publish them and dis-
play their concepts as html while additionally providing machine-readable rdf
versions via content negotiation. This means that anyone using PoolParty can
become a w3c standards compliant Linked Data publisher without having to
know anything about Semantic Web technicalities. The design of all pages on
the Linked Data front-end can be controlled by the developer who can use his
own style sheets and create views on the data with velocity templates.

DBpedia Spotlight22 is a tool for automatically annotating mentions of DBpe-
dia resources in text, providing a solution for linking unstructured information
sources to the Linked Open Data cloud through DBpedia. DBpedia Spotlight
recognizes that names of concepts or entities have been mentioned. Besides
common entity classes such as people, locations and organisations, DBpedia
Spotlight also spots concepts from any of the 320 classes in the DBpedia Ontol-
ogy. The tool currently specializes in English language, the support for other
languages is currently being tested, and it is provided as an open source web
service.

Stanbol23 is another tool for extracting information from CMS or other web
application with the use of a Restful API and represents it as rdf. Both Dbpe-
dia Spotlight and Stanbol support NIF implementation (NIF will soon become
a w3c recommendation) to standardise the output rdf aiming on achieving
interoperability between Natural Language Processing (NLP) tools, language
resources and annotations.

5.5.5 Hosting and Serving
The publishing phase usually involves the following steps:

1. storing the data in a Triple Store,
2. make them available from a sparql endpoint,
3. make their uris dereferenceable so that people and machines can look them

up though the Web, and
4. provide them as an rdf dump so that data can easily be re-used.

The first three steps can be fully addressed with a LOD2 stack component
called Virtuoso, while uploading the rdf file to CKAN24 would be the procedure
to make the rdf public.

OpenLink Virtuoso Universal Server is a hybrid architecture that can run as
storage for multiple data models, such as relational data, rdf, xml, and text
documents. Virtuoso supports a repository management interface and faceted
browsing of the data. It can run as a Web Document server, Linked Data server
and Web Application server. The open source version of Virtuoso is included
in the LOD2 stack and is widely used for uploading data in its Quad store, it
21 http://www.poolparty.biz
22 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
23 http://stanbol.apache.org/
24 http://ckan.org/

http://www.poolparty.biz
https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
http://stanbol.apache.org/
http://ckan.org/

172 A.-D. Mezaour et al.

Fig. 9. Publishing pattern for registering data sets

offers a sparql endpoint and a mechanism called URL-Rewriter to make uris
dereferenceable.

According to the fourth step, sharing the data in a well-known open datahub
such as CKAN will facilitate their discovery from other businesses and data pub-
lishers. The functionality of CKAN is based on packages where data sets can be
uploaded. CKAN enables also updates, keeps track of changes, versions and author
information. It is advised as good practice to accompany the data sets with infor-
mation files (e.g. VOID file) that contain relevant metadata (Figs. 9, 10).

5.6 Interlinking - The Creation of 5-Star Business Data

5-Star business data25 refers to Linked Open Data, the 5 stars being:

1. data available on the web with an open-data license,
2. the data is available in a machine readable form,
3. the machine readable data is in a non-proprietary form (e.g. CSV),
4. machine readable, non-proprietary using open standards to point to things,
5. all the above, linked with other data providing context.

To get the full benefits of linked data with the discovery of relevant new data
and interlinking with it, requires the 5th star, but that does not mean that bene-
fits are not derived from the Linked Data approach before that point is reached.
A good starting point can be business registers such as Opencorporates26 or
25 http://5stardata.info/
26 https://opencorporates.com/

http://5stardata.info/
https://opencorporates.com/

Building Enterprise Ready Applications Using Linked Open Data 173

Fig. 10. 5 star data

UK Companies House27 that contain the metadata description of other com-
panies. The discovery of more related business data can further be facilitated
with Linked Data browsers and search engines like SigmaEE28. However, the
implementation of interlinking between different data sources is not always a
straightforward procedure. The discovery of joint points and the creation of
explicit rdf links between the data in an automated way can be supported with
tools both included in the Interlinking/Fusion LOD2 life cycle.

The process that is referred to as interlinking is the main idea behind the Web
of Data and leads to the discovery of new knowledge and their combinations in
unforeseen ways. Tools such as silk29 offer a variety of metrics, transformation
functions and aggregation operators to determine the similarity of the compared
rdf properties or resources. It operates directly on sparql endpoints or rdf
files and offers a convenient user interface namely Silk Workbench.

5.7 Vocabulary Mapping

Sometimes, an enterprise may need to develop a proprietary ontology when
applying Linked Data principles. Mapping the terms that were used for pub-
lishing the triples with terms in existing vocabularies will facilitate the use of
the enterprise data from third-party applications. A tool that supports this kind
of mapping is r2r30.
27 http://www.companieshouse.gov.uk/
28 http://sig.ma
29 http://lod2.eu/Project/Silk.html
30 http://wifo5-03.informatik.uni-mannheim.de/bizer/r2r/

http://www.companieshouse.gov.uk/
http://sig.ma
http://lod2.eu/Project/Silk.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/r2r/

174 A.-D. Mezaour et al.

r2r searches the Web for mappings and apply the discovered mappings to
translate Web data to the application’s target vocabulary. Currently it provides
a convenient user interface that facilitates the user in a graphical way to select
input data from a sparql endpoint as well as from rdf dumps, create the
mappings and write them back to endpoints or rdf files.

6 Conclusion

In this chapter, we discussed the best practices to deploy in an enterprise appli-
cation to ensure a full LOD paradigm compliant semantic dataflow. We also saw
that deploying LOD tools and procedures does not necessary requires to start
the IT design from scratch but can be deployed on top of existing applications.
This guarantees low cost deployment and integration.

Open Access. This chapter is distributed under the terms of the Creative Commons

Attribution Noncommercial License, which permits any noncommercial use, distribu-

tion, and reproduction in any medium, provided the original author(s) and source are

credited.

Lifting Open Data Portals to the Data Web

Sander van der Waal1(B), Krzysztof W ↪ecel
2(B), Ivan Ermilov3,

Valentina Janev4, Uroš Milošević4, and Mark Wainwright1

1 Open Knowledge Foundation, Cambridge, UK
{sander.vanderwaal,mark.wainwright}@okfn.org

2 I2G, Poznań, Poland
krzysztof.wecel@i2g.pl

3 University of Leipzig, Leipzig, Germany
iermilov@informatik.uni-leipzig.de

4 Institute Mihajlo Pupin, Belgrade, Serbia
{valentina.janev,uros.milosevic}@pupin.rs

Abstract. Recently, a large number of open data repositories, catalogs
and portals have been emerging in the scientific and government realms.
In this chapter, we characterise this newly emerging class of informa-
tion systems. We describe the key functionality of open data portals,
present a conceptual model and showcase the pan-European data portal
PublicData.eu as a prominent example. Using examples from Serbia and
Poland, we present an approach for lifting the often semantically shallow
datasets registered at such data portals to Linked Data in order to make
data portals the backbone of a distributed global data warehouse for our
information society on the Web.

1 Public Data and Data Portals

Although there are many different sources of data, government data is particu-
larly important because of its scale, breadth, and status as the canonical source
of information on a wide range of subjects. Governments gather data in many
areas: demographics, elections, government budgets and spending, various types
of geospatial data, environmental data, transport and planning, etc. While the
data is gathered to support the functions of government, it is increasingly recog-
nised that by publishing government data under permissive open licences (with
due precautions to avoid publishing sensitive or personal data), huge amounts
of value can be unlocked.

The growth of open government data has been particularly striking in Europe.
The EU recognised its advantages very early, and issued the PSI (Public Sector
Information) Directive in December 2003. This encouraged governments to make
their data available, without restrictions on its use. However, though forward-
looking at the time, the directive did allow for charging for use of data, provided
that the charges did not exceed those calculated on a cost-recovery basis. It there-
fore did not require what would now be considered ‘open’ data. The Directive
was revised in 2013, bringing more public bodies within scope and encouraging
c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 175–195, 2014.
DOI: 10.1007/978-3-319-09846-3 9

176 S. van der Waal et al.

free or marginal-cost, rather than recovery-cost, pricing – reflecting what was by
then already practice in many EU states. A study in 2011 for the EU estimated
the economic value of releasing public sector data throughout the EU at between
30–140 billion EUR.

Except the economical importance, there are additional issues concerning
public data that we briefly characterise below: discoverability, harvesting, inter-
operability, and community engagement.

Discoverability. One of the first problems to be solved when working with any
data is where to find it. In using data, one needs exactly the right dataset – with
the right variables, for the right year, the right area, etc. – and web search engines,
while excellent at finding documents relevant to a given term, do not have enough
metadata to find datasets like this, particularly since their main use case is for
finding web pages rather than data. There is little point in publishing data if no-
one can find it, so how are governments to make their data ‘discoverable’? One
possibility would be to link it from an on-line tree-structured directory, but such
structures are hard to design and maintain, difficult to extend, and do not really
solve the problem of making nodes findable when there is a very large number of
them (governments typically have at least tens of thousands of datasets).

To solve this problem of discoverability, in the last few years, an increasing
number of governments have set up data portals, specialised sites where a pub-
lishing interface allows datasets to be uploaded and equipped with high-quality
metadata. Using this metadata, users can then quickly find the data they need
with searching and filtering features. One good example is the European Open
Data portal1, which is developed by LOD2 partners, using LOD2 stack tools.
Numerous countries, including a good number of EU member states, have fol-
lowed, along with some local (e.g. city) governments.

Harvesting. Many of these portals use CKAN2, a free, open-source data portal
platform developed and maintained by Open Knowledge. As a result they have
a standard powerful API, which raises the possibility of combining their cata-
logues to create a single Europe-wide entry point for finding and using public
data. This has been done as part of the LOD2 project: the result is Public-
Data.eu3, a data portal also powered by CKAN which uses the platform’s ‘har-
vesting’ mechanism to copy metadata records of many thousands of datasets
from government data portals in over a dozen countries, with new ones added
when they become available. Some other portals are also harvested (e.g. city
level portals or community-run catalogues of available government data). Sites
are regularly polled for changes, ensuring that the aggregate catalogue at Pub-
licData.eu stays roughly in sync with the original catalogues. The PublicData.eu
portal is described in more detail in Sect. 2.

1 http://open-data.europa.eu
2 http://ckan.org
3 http://publicdata.eu

http://open-data.europa.eu
http://ckan.org
http://publicdata.eu

Lifting Open Data Portals to the Data Web 177

Interoperability. Non-CKAN portals can also be harvested if they provide a
sufficiently powerful API, but for each different platform, some custom code
must be written to link the platform’s API to CKAN’s harvesting mechanism.
A few such sites are included in those harvested by PublicData.eu, but rather
than writing endless pieces of code for custom harvesting, effort has instead been
directed to working towards defining a standard simple interface which different
data catalogues can use to expose their metadata for harvesting. This work in
progress can be seen at http://spec.datacatalogs.org.

Community Engagement. If governments want to realise the potential bene-
fits of open data, it is not enough just to publish data and make it discoverable.
Even the most discoverable data will not be actually discovered if no-one knows
that it exists. It is therefore recognised that best practice in data publishing
includes an element of ‘community engagement’: not just waiting for poten-
tial users to find data, but identifying possible re-users, awareness raising, and
encouraging re-use.

2 Using PublicData.eu

2.1 Data Publishing

Since PublicData.eu harvests datasets from national portals, it is not used
directly by civil servants to publish data. Rather, an entire portal, such as the
Romanian portal data.gov.ro, is added to PublicData.eu as a ‘harvest source’,
after which it will automatically be regularly polled for updates. If the portal
being added is CKAN-based, then the process of setting up harvesting for it takes
only a few minutes. However, it is worth briefly explaining the process of pub-
lishing data on a source portals. Government employees have individual accounts
with authorisations depending on their department. A web user interface guides
an authorised user through the process of publishing data, either uploading or
linking to the data itself and adding metadata such as title, description, key-
words, licence, etc., which enable users to find and identify it. A published dataset
may have a number of data files and displays the publishing department as well
as the other added metadata. For most common data formats (including CSV,
XLS, PDF, GeoJSON and others), users can not only see the metadata but also
preview the data in tables, maps and charts before deciding to download it. The
process described is for using a CKAN portal, but other data portals will have
similar functionality.

Importantly, publishers are not constrained to publish only linked data, or
only data in a particular format. While publication of linked data may be desir-
able, it is far more desirable for data to be published than to be not published.
Pragmatically, this often means governments making data available in whatever
form they have. One of the ways in which PublicData.eu adds value to published
data is with a feature (described in more detail in Sect. 3) to lift data in the simple
CSV spreadsheet format into linked data’s native RDF. Two projects by gov-
ernments to publish well-modelled, high-quality linked data are also described
later in this chapter.

http://spec.datacatalogs.org

178 S. van der Waal et al.

2.2 Data Consumption

Users on PublicData.eu can search for data from any of the harvested por-
tals4. A search is made by specifying particular words or terms. CKAN searches
for matching terms anywhere in a metadata record, including for example the
description, and returns results (datasets) ordered by relevance or date modi-
fied. The user can add filters to the search to find only datasets from particular
countries, or with particular tags or available file formats. A top-level set of
nine topic areas (Finance & Budgeting, Transport, Environment, etc.) is also
displayed and can be used for filtering search results. As with the source portals
described above, they can preview the data in various ways before deciding to
download it. Users can search, preview and download without registering, but
registering enables a user to follow particular datasets or topics, being notified
when the dataset changes or when new datasets are published.

The user interface of CKAN has been translated into a wide range of lan-
guages, and users can choose the language in which they interact with the site.

Like all CKAN instances, PublicData.eu can be accessed via an RPC-style
API5, as well as via the web interface. Metadata for each dataset is also available
as linked data, in N3 or RDF-XML format6. It is also possible to get a dump of
the entire catalogue as linked data. As mentioned above, the site also includes a
feature for lifting data published in CSV spreadsheets to RDF.

3 Semantic Lifting of CSV to RDF

3.1 Lifting the Tabular Data

Integrating and analysing large amounts of data plays an increasingly important
role in today’s society. Often, however, new discoveries and insights can only
be attained by integrating information from dispersed sources, which requires
considerable amounts of time and can be error prone if information is stored in
heterogeneous representations.

The Semantic Web and Linked Data communities are advocating the use of
RDF and Linked Data as a standardized data publication format facilitating
data integration and visualization. Despite its unquestionable advantages, only
a tiny fraction of open data is currently available as RDF. At the Pan-European
data portal PublicData.eu, which aggregates dataset descriptions from numerous
other European data portals, only 1,790 out of more than 49,000 datasets (i.e.
just 4 %) were available as RDF. This can be mostly attributed to the fact, that
publishing data as RDF requires additional effort in particular with regard to
identifier creation, vocabulary design, reuse and mapping.

4 As of June 2014, there was 1 pan-European, 13 national level, 15 regional data
portals, where some of the national portals where community-supported.

5 http://docs.ckan.org/en/latest/api/index.html
6 For example http://publicdata.eu/dataset/chemical-water-quality-by-distance-1990
to2006.rdf.

http://docs.ckan.org/en/latest/api/index.html
http://publicdata.eu/dataset/chemical-water-quality-by-distance-1990to2006.rdf
http://publicdata.eu/dataset/chemical-water-quality-by-distance-1990to2006.rdf

Lifting Open Data Portals to the Data Web 179

Various tools and projects (e.g. Any23, Triplify, Tabels, Open Refine) have
been launched aiming at facilitating the lifting of tabular data to reach semanti-
cally structured and interlinked data. However, none of these tools supported a
truly incremental, pay-as-you-go data publication and mapping strategy, which
enabled effort sharing between data owners and consumers. The lack of such an
architecture of participation with regard to the mapping and transformation of
tabular data to semantically richer representations hampers the creation of an
ecosystem for open data publishing and reuse. In order to realize such an ecosys-
tem, we have to enable a large number of potential stakeholders to effectively and
efficiently collaborate in the data lifting process. Small contributions (such as
fine-tuning of a mapping configuration or the mapping of an individual column)
should be possible and render an instant benefit for the respective stakeholder.
The sum of many such small contributions should result in a comprehensive
Open Knowledge space, where datasets are increasingly semantically structured
and interlinked.

The approach presented in this section supports a truly incremental, pay-
as-you-go data publication, mapping and visualization strategy, which enables
effort sharing between data owners, community experts and consumers. The
transformation mappings are crowd-sourced using a Semantic MediaWiki7 and
thus allow incremental quality improvement. The transformation process links
related tabular data together and thus enables the navigation between hetero-
geneous sources. For visualization, we integrate CubeViz for statistical data and
Facete for spatial data, which provide the users with the ability to perform sim-
ple data exploration tasks on the transformed tabular data. The application of
our approach to the PublicData.eu portal results in 15,000 transformed datasets
amounting to 7.3 Billion triples8, thus adding a sizeable part to the Web of Data.

3.2 Tabular Data in PublicData.eu

At the time of writing (May 2014) PublicData.eu comprised 20,396 datasets.
Each dataset can comprise several data resources and there are overall 60,000+
data resources available at PublicData.eu. These include metadata such as
categories, groups, license, geographical coverage and format. Comprehensive
statistics gathered from the PublicData.eu are described in [3].

A large part of the datasets at PublicData.eu (approx. 37 %) are in tabu-
lar format, such as, for example, CSV, TSV, XLS, XLSX. These formats do
not preserve much of the domain semantics and structure. Also, tabular data
represented in the above mentioned formats can be syntactically quite hetero-
geneous and leaves many semantic ambiguities open, which make interpreting,
integrating and visualizing the data difficult. In order to support the exploitation
of tabular data, it is necessary to transform the data to standardized formats
facilitating the semantic description, linking and integration, such as RDF.

7 http://wiki.publicdata.eu/
8 The dynamic dump is available at http://datahub.io/dataset/publicdata-eu-rdf-data.

http://wiki.publicdata.eu/
http://datahub.io/dataset/publicdata-eu-rdf-data

180 S. van der Waal et al.

Other formats represented on the PublicData.eu portal comprise: 42 of the
datasets have no format specified, 15 % are human-readable representations (i.e.
HTML, PDF, TXT, DOC), the other 6 % are geographical data, XML docu-
ments, archives as well as various proprietary formats. Thus for a large fraction
(i.e. 42 %) of the datasets a manual annotation effort is required, and at the
time of writing they can not be converted automatically due to the absence of
the format descriptions. Discussion of the conversion of human-readable datasets
(i.e. 15 %) to RDF is out of scope of this book. The known fact is that such con-
version has been proven to be time-consuming and error-prone. The other 6 %
of the datasets are tackled partially in other projects, for instance, GeoKnow
project9 is aimed at converting geographical data to RDF, whereas statistical
data from XML documents are converted within Linked SDMX project10.

3.3 User-Driven Conversion Framework

The completely automatic RDF transformation as well as the detection and cor-
rection of tabular data problems is not feasible. In [3] we devised an approach
where the effort is shared between machines and human users. Our mapping
authoring environment is based on the popular MediaWiki system. The result-
ing mapping wiki located at wiki.publicdata.eu operates together with Public-
Data.eu and helps users to map and convert tabular data to RDF in a meaningful
way. To leverage the wisdom of the crowd, mappings are created automatically
first and can then be revised by human users. Thus, users improve mappings
by correcting errors of the automatic conversion and the cumbersome process of
creating mappings from scratch can be avoided in most cases. An overview of
the entire application is depicted in Fig. 1.

Fig. 1. Architecture of our CSV2RDF extension for PublicData.eu.

Our application continuously crawls CSV resources from PublicData.eu and
validates them. Around 20 % of CSV resources are filtered out, mostly because
of response timeouts, server errors or missing files. After the validation default

9 http://geoknow.eu
10 http://csarven.ca/linked-sdmx-data

http://geoknow.eu
http://csarven.ca/linked-sdmx-data

Lifting Open Data Portals to the Data Web 181

mappings are created and resources are converted to RDF. In order to obtain an
RDF graph from a table T we essentially use the table as class approach [1], which
generates triples as follows: subjects are generated by prefixing each row’s ID (in
the case of CSV files this by default is the line number) with the corresponding
CSV resource URL. The headings become properties in the ontology namespace.
The cell values then become the objects. Note that we avoid inferring classes from
the CSV file names, as the file names often turned out to be simply labels rather
than meaningful type names.

Conversion toRDF is performedby the Sparqlify-CSV.Although the Sparqlify-
ML syntax should not pose any problems to users familiar with SPARQL, it is
too complicated for novice users and therefore less suitable for crowd-sourcing.
To lower the barrier, we define a simplified mapping format, which releases users
from dealing with the Sparqlify-ML syntax. Our format is based on MediaWiki
templates and thus seamlessly integrates with MediaWiki. To define mappings we
created a template called RelCSV2RDF. The complete description for the tem-
plate is available on the mapping wiki.

At the end of the transformation a page is created for each resource on
the mappings wiki at wiki.publicdata.eu. The resource page comprises links
to the corresponding resource and dataset on PublicData.eu as well as one or
several mappings and visualization links. Each mapping is rendered using the
RelCSV2RDF template into a human-readable description of the parameters
including links for transformation rerun and RDF download.

Sharing the effort between the human users and machines is never a simple
task. The trade-off between human involvement and machine automatic process-
ing should be balanced in a way, that the most precision is achieved with the
least time expense from the user side. After automatic mapping generation and
resource conversion, user is supposed to find the relevant RDF schema for the
given CSV table with third-party tools such as LOV search engine. This task
required the background knowledge in the field of Semantic Web, that is the
knowledge about existence of specific RDF processing tools. To eliminate this
requirement we developed special interface for the finding relevant properties for
linking table schema to existing RDF terms.

Additionally, the mapping wiki uses the Semantic MediaWiki [4] (SMW)
extension, which enables semantic annotations and embedding of search queries
over these annotations within wiki pages. The RelCSV2RDF template utilizes
SMW and automatically attaches semantic links (using has property) from map-
pings to respective property pages. This allows users to navigate between dataset
resources which use the same properties, so that dataset resources are connected
through the properties used in their mappings.

3.4 Conversion Results

We downloaded and cleaned 15,551 CSV files, that consume in total 62 GB of
disk space. The vast majority (i.e. 85 %) of the published datasets have a size
less than 100 kB. A small amount of the resources at PublicData.eu (i.e. 14.5 %)
are between 100 kB and 50 MB. Only 44 resources (i.e. 0.5 %) are large and very

182 S. van der Waal et al.

large files above 50 MB, with the largest file comprising 3.3 GB. As a result, the
largest 41 out of the 9,370 converted RDF resources account for 7.2 (i.e. 98.5 %)
out of overall 7.3 billion triples.

The results of the transformation process are summarized in Table 1. Our effi-
cient Sparqlify RDB2RDF transformation engine is capable to process CSV files
and generate approx. 4.000 triples per second on a quad core 2.2 GHz machine.
As a result, we can process CSV files up to a file size of 50 MB within a minute.
This enables us to re-transform the vast majority of CSV files on demand, once
a user revised a mapping. For files larger than 50 MB, the transformation is
currently queued and processed in batch mode.

Table 1. Transformation results summary

CSV res. converted 9,370 Avg. no. properties per entity 47

CSV res. volume 33GB Generated default mappings 9,370

No. generated triples 7.3 billions Overall properties 80,676

No. entity descriptions 154millions Distinct properties 13,490

4 Statistical Data in Serbia

The National Statistical Office is a special professional organisation in the sys-
tem of state administration that performs expert tasks related to: organisation
and conduction of statistical surveys, preparing and adopting unique statisti-
cal standards; cooperation with international organisations in order to provide
standardisation and data comparability (e.g. EUROSTAT11), establishment and
maintenance of the system of national accounts, cooperation and expert coor-
dination with bodies and organisations that are in charge of carrying out the
statistical surveys, as well as other tasks stipulated by the law.

National statistical offices across the world already possess an abundance of
structured data, both in their databases and files in various formats, but lack the
means for exposing, sharing, and interlinking this data on the Semantic Web.
Statistical data underpins many of the mash-ups and visualisations we see on
the Web, while also being the foundations for policy prediction, planning and
adjustments. Making this data available as Linked Open Data would allow for
easy enrichment, advanced data manipulation and mashups, as well as effortless
publishing and discovery. More specifically, publishing statistical data using RDF
comes with the following benefits:

• The individual observations, and groups of observations, become (web)
addressable, allowing for third party annotations and linking (e.g. a report can
reference the specific figures it is based on, allowing for fine grained provenance
trace-back).

11 http://ec.europa.eu/eurostat

http://ec.europa.eu/eurostat

Lifting Open Data Portals to the Data Web 183

• In RDF, the fact that the data is decoupled from the layout means the layout
has no effect on the interpretation of the data, unlike the table approach,
where the layout has significant influence on the way the information can be
read and interpreted.

• As RDF does not rely on the data being properly laid out, this separation
makes it possible to re-contextualize the dataset by embedding or integrating
it with another dataset. This further extends to combination between statis-
tical and non-statistical sets within the Linked Data web.

• Datasets can be manipulated in new ways, due to the fine grained represen-
tation enabled by the Linked Data approach.

• For publishers who currently only administer static files, Linked Data offers a
flexible, non-proprietary, machine readable means of publication that supports
an out-of-the-box web API for programmatic access.

4.1 Relevant Standards

We can think of the statistical dataset as a multi-dimensional space, or hyper-
cube, indexed by those dimensions. This space is commonly referred to as a cube
for short; though the name should not be taken literally, it is not meant to imply
that there are exactly three dimensions (there can be more or fewer), nor that
all the dimensions are somehow similar in size.

The Statistical Data and Metadata eXchange (SDMX)12 is an ISO stan-
dard used by the U.S. Federal Reserve Board, the European Central Bank,
Eurostat, the WHO, the IMF, and the World Bank. The United Nations and the
Organization for Economic Cooperation and Development expect the national
statistics offices across the world to use SDMX to allow aggregation across
national boundaries. However, the fact that the concepts, code lists, datasets,
and observations are not named with URIs or routinely exposed to browsers
and other web-crawlers, makes SDMX not web-friendly, which, in turn, makes it
more difficult for third parties to annotate, reference, and discover that statistical
data.

The Data Cube RDF vocabulary13 is a core foundation, focused purely on
the publication of multi-dimensional data on the Web. It supports extension
vocabularies to enable publication of other aspects of statistical data flows. As
this cube model is very general, Data Cube can also be used for other datasets
(e.g. survey data, spreadsheets and OLAP data cubes).

SDMX-RDF is an RDF vocabulary that provides a layer on top of Data Cube
to describe domain semantics, dataset’s metadata, and other crucial information
needed in the process of statistical data exchange. More specifically, it defines
classes and predicates to represent statistical data within RDF, compatible with
the SDMX information model.

12 http://sdmx.org
13 http://www.w3.org/TR/vocab-data-cube/

http://sdmx.org
http://www.w3.org/TR/vocab-data-cube/

184 S. van der Waal et al.

4.2 Working with Statistical Linked Data

Within LOD2 a specialized version of the Stack – the Statistical Workbench – has
been developed to support the need of experts that work with statistical data.
Figure 2 shows the main menu of the software environment where the operations
are organized into five subgroups called Manage Graph, Find more Data Online,
Edit & Transform, Enrich Datacube, and Present & Publish respectively. Once
the graph is uploaded into the RDF store, it can be further investigated with the
Validation Tool, or with the OntoWiki semantic browser. The validation compo-
nent checks if the supplied graph is valid according to the integrity constraints
defined in the RDF Data Cube specification. Each constraint in the document is
expressed as narrative prose, and where possible, SPARQL ASK queries are pro-
vided. These queries return true if the graph contains one or more Data Cube
instances which violate the corresponding constraint. If the graph contains a
well-formed RDF Data Cube, it can be visualized with the CubeViz tool.

Fig. 2. LOD2 Statistical Workbench

4.3 Serbian Statistical Office Use Case

The information published by the Statistical Office of the Republic of Serbia
(SORS)14 on monthly, quarterly and yearly basis is mostly available as open,
downloadable, free of charge documents in PDF format, while raw data with
short and long-term indicators is organized in a central statistics publication
database. The SORS publication list includes press releases, a monthly statistical
bulletin, statistical yearbook, working documents, methodologies and standards,
trends, etc. Serbia’s national statistical office has shown strong interest in being
able to publish statistical data in a web-friendly format to enable it to be linked
and combined with related information. A number of envisioned main actors,

14 http://www.stat.gov.rs

http://www.stat.gov.rs

Lifting Open Data Portals to the Data Web 185

Fig. 3. Simplified workflow for an end-user case

and a sample scenario, were used to elaborate the requirements for the Linked
Open Data tools to be included in the Statistical Workbench.

The SORS data publishing process with the Linked Open Data extension is
shown in Fig. 3. The data prepared by a Statistician are published through the
SORS Dissemination database. Using the LOD2 Statistical Workbench, reports
can be transformed into a machine processable format and published to a local
governmental portal (e.g. the Serbian CKAN). The IT Administrator maintains
the necessary infrastructure for storing and publishing statistical data in different
formats (Excel, XML, RDF). Public data are retrieved by a Data analyst that
wants to use the data in his research.

An in-depth analysis of the SORS dissemination database has shown that
there are a number of standard dimensions that are used to select and retrieve
information. The Linked Data principles suggest modeling these dimensions as
code lists in accordance with the recommendation for publishing RDF data using
the RDF Data Cube vocabulary. In order to formalize the conceptualisation of
each of the domains in question, the Simple Knowledge Organisation System
(SKOS) was used. The concepts are represented as skos:Concept and grouped
in concept schemes that serve as code lists (skos:ConceptScheme) the dataset
dimensions draw on to describe the data (Fig. 4).

As the direct central database access is restricted, all input data is pro-
vided as XML files. The SORS statistical data in XML form is passed as input
to the Statistical Workbench’s built-in XSLT (Extensible Stylesheet Language
Transformations) processor and transformed into RDF using the aforementioned
vocabularies and concept schemes. Listing 1 shows an example RDF/XML code
snippet from a transformed dataset.

186 S. van der Waal et al.

Fig. 4. Representing SORS code lists

The above example describes the setup, the overall process and the outcome
of the use case. It shows how (local) raw statistical data can be moved to (globally
visible) rich collections of interrelated statistical datasets. A future-proof novel
method is used for data representation, compatible with international statistical
standards. The resulting data relies on both international and domestic code
lists, allowing for easy comparison, interlinking, discovery and merging across
different datasets. Finally, the results are cataloged in a local metadata repos-
itory, and periodical harvesting at an international level is scheduled, thereby
increasing transparency and improving public service delivery, while enriching
the Linked Data Cloud.

5 Multidimensional Economy Data in Poland

The Polish Ministry of Economy (MoE) publishes various types of yearly, quar-
terly, monthly and daily economical analyses, based on the data coming from
the Ministry of Finance, Central Statistical Office, Warsaw Stock Exchange,

Lifting Open Data Portals to the Data Web 187

Ministry’s own data and other governmental agencies resources. There are also
other larger data sets made available either on-line or for download which could
be made more easily processable without human intervention. The data as of
today is being published in the formats and presentation forms intended for
direct consumption by humans, but with very limited possibilities for automated
processing or analysis conducted by custom software. Within the LOD2 project
the data was lifted to the semantic level.

5.1 Polish Open Economy Data

The primary source of data, subject to publication using the LOD2 tools, was
the warehouse for macroeconomic information, namely the INSIGOS database.
The data stored by INSIGOS, concerns the Polish economy as well as the inter-
national trade of Poland (import and export). The INSIGOS database was built
using the internal database of the MoE, namely the Business Information Knowl-
edge Base, maintained since 2001.

The INSIGOS contains the following datasets:

• HZ/GEO – foreign trade broken down by countries
• HZ/CN – foreign trade broken down by type of goods traded, as reported

using the Common Nomenclature codes (CN)
• POLGOS – several economic indicators broken down by type of activity, as

reported by companies in Poland using F-01 statistical form, using PKD –
Polish Classification of Activities. POLGOS was later divided into POLGO-
S/PKD2004 and POLGOS/PKD2007, because there was no simple way to
convert the data to one of the classifications.

5.2 Modelling Multidimensional Data with Data Cube Vocabulary

The most important artefacts that we used from RDF Data Cube Vocabulary
include: qb:DimensionProperty, qb:ComponentSpecification, qb:DataSet
and qb:DataStructureDefinition. The model prepared for INSIGOS HZ mod-
ule is presented in Fig. 5.

In INSIGOS HZ module there are only two indicators: import and export.
SKOS concept scheme was created to facilitate the use of measures in dimensions
and then in observations. The name of the skos:ConceptScheme is HZ and it was
assigned by qb:CodedProperty. Both measure properties were defined according
to pattern presented in Listing 2.

188 S. van der Waal et al.

Fig. 5. INSIGOS HZ modelled in Data Cube vocabulary

5.3 Slices Generation

After conversion of source data to data cube we still have just detailed data. In
order to show some useful statistics, and in particular to visualise in CubeViz,
we need to provide slices and aggregations. Such artefacts need to be modelled
and included along with RDF data.

In order to generate slices we provided a Python script for materialisation
of datasets. It first queries for a list of dimensions enumerated in data structure
definition (DSD). Then, all elements (members) of dimensions are retrieved. We
assume that slice contains two dimensions (for use in two-dimensional charts),
therefore pairwise combination of all dimensions is generated. Finally, respective
links between observations, datasets and slices are generated.15

Listing 3 presents relevant parts of our generated data. In this example, a
slicekey with fixed dimensions for indicator and unit is defined – slicekey-indi-
cator-unit. Using this structure, several slices are generated, one for each com-
bination of free variables. One of them is the slice with values fixed on ‘export’
(indicator) and ‘EUR’ (unit) – export-EUR. The last line by qb:observation
contains ellipsis because there are in fact 1330 observations attached.

15 A mechanism should be introduced to allow querying for observations instead of
explicit assignments. Currently, such assignments require materialisation of a big
number of additional triples, which makes solution questionable in enterprise data
warehouse settings when considering the volume of data.

Lifting Open Data Portals to the Data Web 189

5.4 Aggregations

Aggregations are commonly used in reporting using multidimensional data. The
most prominent example is a data warehouse with OLAP cubes. Aggregations
are selected and calculated in such a way that speeded up reporting is possible.
By analogy, aggregations may be deemed also useful for cubes defined as linked
data.

In our case aggregation is necessary for drill-down operations. For example,
daily data can be aggregated on a monthly basis to better observe a phenomenon.
Also, we can display data in yearly sums, and allow drill-down to be even more
precise. SPARQL is capable of calculating sums on-the-fly, but it takes time and
sometimes time-out is reached.16 Materialisation is then necessary for quicker
operations.

Our first idea was to prepare aggregations using Python script, similar to slic-
ing. That would require too much querying and would be inefficient. In the end,
we found a way to implement the method for aggregation as a set of SPARQL
queries.

One of the issues was generation of URIs for new observations as aggregation
is in fact a new observation – the same dimensions but values are on higher
level, e.g. month → year. For INSIGOS/POLGOS observations we have defined a
pattern for identifiers. We used the capabilities of Virtuoso to generate identifiers
directly in SPARQL.

16 For example, a query calculating the value of public procurement contracts by
voivodeships takes 100 seconds, which is outside of acceptable response times.

190 S. van der Waal et al.

Before aggregation is done, a correct hierarchy should be prepared. The prereq-
uisite for the script is that dimensions are represented as SKOS concept scheme,
and elements of dimension are organised in hierarchy with skos:narrower property.

6 Exploration and Visualisation of Converted Data

In the following we describe two scenarios to showcase benefits of the presented
framework. The first one is about statistical data discovery using CubeViz. The
second scenario is about discovering geospatial information by the use of Facete.

6.1 Statistical Data Exploration

CubeViz, the RDF Data Cube browser, depicted in Fig. 6 allows to explore data
described by RDF Data Cube vocabulary [2]. CubeViz generates facets accord-
ing to the RDF Data Cube vocabulary artefacts such as Data Cube DataSet,
Data Cube Slice, a specific measure and attribute (unit) property and a set of
dimension elements that are part of the dimensions.

Fig. 6. Screenshot of CubeViz with faceted data selection and chart visualization
component.

Based on the selected facets, CubeViz retrieves data from a triplestore and
suggests possible visualizations to the user. Users or domain experts are able
to select different types of charts such as a bar chart, pie chart, line chart and
polar chart that are offered depending on the selected amount of dimensions and
respective elements.

6.2 Geospatial Data Discovery

Facete, depicted in Fig. 7, is a novel web application for generic faceted browsing
of data that is accessible via SPARQL endpoints. Users are empowered to create

Lifting Open Data Portals to the Data Web 191

custom data tables from a set of resources by linking their (possibly nested)
properties to table columns. A faceted filtering component allows one to restrict
the resources to only those that match the desired constraints, effectively filtering
the rows of the corresponding data table. Facete is capable of detecting sequences
of properties connecting the customized set of resources with those that are
suitable for map display, and will automatically show markers for the shortest
connection it found on the map, while offering all further connections in a drop
down list. Facete demonstrates, that meaningful exploration of a spatial dataset
can be achieved by merely passing the URL of a SPARQL service to a suitable
web application, thus clearly highlighting the benefit of the RDF transformation.

Fig. 7. Screenshot of Facete showing data about allotments in South East London.

6.3 Drill-Down Choropleth Maps

Import and export statistics of Poland collected in INSIGOS HZ/GEO dataset
are best visualised on the globe. The globe itself is part of D3 library17. Some
work was, however, necessary in order to allow display of data from triple
store. Several parameters are defined in the graphical interface, and based on it
SPARQL queries are prepared. Then, the legend is defined in such a way that
colours are more or less equally distributed. Normally the numbers for import
and export are subject to power law, therefore the legend scale cannot be linear.
The map is coloured according to values assigned to selected countries. A sample
map is presented in Fig. 8 shows 20 countries with the greatest value of export
in 2012 expressed in PLN (Polish currency), with the unit being millions.

Not only technical communication with Virtuoso had to be solved. We first
needed to integrate data on semantic level, i.e. map of the world in D3 had
17 Data-Driven Documents, D3.js, http://d3js.org/.

http://d3js.org/

192 S. van der Waal et al.

Fig. 8. Export statistics of Poland in 2012 presented on a globe

country codes consisting of three letters. Countries in INSIGOS dataset had
just names, and therefore additional mapping was necessary. It should be noted
that list of countries changed for the period analysed but the map has not been
updated.

More popular is visualisation of data on the country level. For this purpose
we need a map of country available in SVG and compatible with D3 library. It
can also be derived from open data. For example, a map of Poland has been
prepared based on OpenStreetMap and administrative division included there.

On the map of Poland we visualise data concerning public contracts. Several
measures can be visualised like: number of contractors, number of contracts or
value of contracts. All measures are sliced by geographical dimensions reflecting
administrative division of Poland. There are 16 voivodeships (województwo) and
380 districts (powiat) in Poland. Showing 380 entities on the map is not very
useful for interpretation. Therefore we have applied the drill-down approach.
First, a user is presented with a map of the whole Poland with 16 voivodeships.
Then, after clicking on selected region, the user goes to detailed map of districts
in a given region. There is also another administrative level – county (gmina) –
which can be included when needed. Analogous maps can be prepared for other
countries as well.

6.4 Drill-Down Tables

In terms of the drill-down functionality, we need to remember that datasets can
be aggregated on various level of detail and very often they are offered as the

Lifting Open Data Portals to the Data Web 193

same package. Geography is not the only dimension. There are several others
that cannot be visualised within the map, hence the need to develop a drill-
down table. Some examples include (in the case of Polish data): time dimension;
Polish classification of activities (PKD, NACE): sections and chapters; common
nomenclature (CN): several levels; various economic indicators in energy-related
data (e.g. production total → from renewable sources → from solar plants).

Due to required integration with triple store we prepared our own drill-down
table from scratch. The prerequisite is that the dimension to be used for drill-
down is described as SKOS concept scheme. It is an industry standard and
allows to represent hierarchies conveniently. It has also mechanism for labels
in various languages. Alternative labels make mapping to this headers more
flexible when heterogeneous sources are considered. All vocabularies, including
time dimension, were prepared with this prerequisite in mind.

There are in fact three queries necessary to prepare a drill-down table. The
approach is thus similar to multidimensional queries against OLAP cubes in
MDX18. First, we need to get headers of rows and columns, then data itself. Not
only labels for headers are necessary but also interdependencies between headers
and their level. When a drill-down table is first loaded, rows and columns are
collapsed, so that only most aggregated data is shown. It is then possible to click
on the respective row or column marked with ‘plus’ sign to expand one level.
Figure 9 presents expanded columns.

Fig. 9. Drill-down table with expanded columns

7 Conclusions and Future Work

Opening up governmental data requires two elements: discoverability – where
more data portals are available, harvesting is used to gather data; and qual-
ity machine readable data – where data can be trusted. LOD2 tools support
development of these functionalities.

We have addressed the general challenge where data currently being pub-
lished is in formats and presentation forms intended for direct consumption
by humans, but with limited possibilities for automated processing or analysis
18 MultiDimensional eXpressions, a query and manipulation language for OLAP

databases.

194 S. van der Waal et al.

conducted by a custom software. As one of the important issues for data dis-
coverability we have identified the need for providing data catalogues. CKAN
is a reference solution in this area but it requires further extensions. Working
implementations include: http://publicdata.eu and http://open-data.europa.eu.
The quality of data has been demonstrated by providing Polish and Serbian data
first automatically converted and then carefully improved.

One of the missing features is cross-language searching. Although the user
interface can be used in multiple languages, metadata for datasets can of course
be read only in the language in which it was input. A limitation of search on
PublicData.eu is that as the source catalogues are naturally in different lan-
guages, a single search term in any given language will usually not find all the
relevant datasets.

For wider adoption of CKAN we also need better metadata management. The
current harvesting arrangement does not preserve all the original metadata. In
particular, even where the harvest source is CKAN-based and datasets have iden-
tifiable publishing departments, this information is not preserved in the record on
PublicData.eu. Adding this information to the harvesting system would enable
users on PublicData.eu to ‘follow’ individual departments and see dashboard
notifications when departments published new or updated data. An example
of an alternative harvesting process (built on top of LOD2 stack tools) that
preserves the original metadata is available at http://data.opendatasupport.eu.

Several other tools, not mentioned in the chapter, have been particularly use-
ful for making data accessible for machines: Virtuoso, Ontowiki (with CubeViz
plug-in), SILK, Open Refine and PoolParty. Various datasets have been elabo-
rated in detail manually, particularly those using the RDF Data Cube vocab-
ulary. Some examples include: national accounts, foreign trade, energy-related,
and public procurement data. We have increased the openness of the data by
preparing respective vocabularies and providing linking to other data sources
available on the Web.

A significant amount of time was absorbed by data quality issues. Even
though data was available in ‘machine processable’ XML, it were users who
entered incorrect data. These are, however, typical problems of integration
projects and should not under any circumstances be considered to be related
to the linked data paradigm. On the contrary, applying tools that we had at our
disposal allowed to spot quality problems even faster than we would have been
able to otherwise.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution Noncommercial License, which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

http://publicdata.eu
http://open-data.europa.eu
http://data.opendatasupport.eu

Lifting Open Data Portals to the Data Web 195

References

1. Berners-Lee, T.: Relational databases on the semantic web, 09 1998. Design Issues.
http://www.w3.org/DesignIssues/RDB-RDF.html

2. Cyganiak, R., Reynolds, D., Tennison, J.: The RDF Data Cube vocabulary. Tech-
nical report, W3C (2013)

3. Ermilov, I., Auer, S., Stadler, C.: Csv2rdf: user-driven csv to rdf mass conversion
framework. In: ISEM ’13, 04–06 September 2013, Graz, Austria (2013)

4. Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic Wikipedia.
J. Web Semant. 5, 251–261 (2007)

http://www.w3.org/DesignIssues/RDB-RDF.html

Linked Open Data for Public Procurement

Vojtěch Svátek1(B), Jindřich Mynarz1, Krzysztof W ↪ecel
2, Jakub Kĺımek3,

Tomáš Knap4, and Martin Nečaský5

1 University of Economics, Prague, Czech Republic
{Svatek,jindrich.mynarz}@vse.cz

2 I2G, Poznań, Poland
krzysztof.wecel@i2g.pl

3 Czech Technical University and University of Economics, Prague, Czech Republic
4 Charles University and University of Economics, Prague, Czech Republic

5 Charles University, Prague, Czech Republic
{klimek,knap,necasky}@ksi.mff.cuni.cz

Abstract. Public procurement is an area that could largely benefit from
linked open data technology. The respective use case of the LOD2 project
covered several aspects of applying linked data on public contracts: onto-
logical modeling of relevant concepts (Public Contracts Ontology), data
extraction from existing semi-structured and structured sources, support
for matchmaking the demand and supply on the procurement market,
and aggregate analytics. The last two, end-user oriented, functionalities
are framed by a specifically designed (prototype) web application.

1 Public Procurement Domain

Among the various types of information produced by governmental institutions
as open data, as obliged by the law, are descriptions of public contracts, both
at the level of requests for tenders (RFT, also ‘calls for bids’ or the like)—open
invitations of suppliers to respond to a defined need (usually involving precise
parameters of the required product/s or service/s)—and at the level of awarded
contract (revealing the identity of the contractor and the final price). The whole
process is typically denoted as public/government procurement. The domain of
public procurement forms a fundamental part of modern economies, as it typ-
ically accounts for tens of percents of gross domestic product.1 Consequently,
due to the volume of spending flows in public procurement it is a domain where
innovation can have significant impact. Open disclosure of public procurement
data also improves the transparency of spending in the public sector.2

An interesting aspect of public contracts from the point of view of the seman-
tic web is the fact that they unify two different spheres: that of public needs and
that of commercial offers. They thus represent an ideal meeting place for data
models, methodologies and information sources that have been (often) indepen-
dently designed within the two sectors. Furthermore, the complex life cycle of
1 For example, as of 2010 it makes up for 17.3 % of the EU’s GDP [8].
2 See, e.g., http://stopsecretcontracts.org/.

c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 196–213, 2014.
DOI: 10.1007/978-3-319-09846-3 10

http://stopsecretcontracts.org/

Linked Open Data for Public Procurement 197

public contracts gives ample space for applying diverse methods of data analyt-
ics, ranging from simple aggregate statistics to analyses over complex alignments
of individual items. On the other hand, using linked data technology is beneficial
for the public contract area since it allows, among other, to increase interoper-
ability across various formats and applications, and even across human language
barriers, since linked data identifiers and vocabularies are language-independent.

As three major views of the e-procurement domain we can see those of domain
concepts, data and user scenarios. Plausible and comprehensive conceptualization
of the domain is a prerequisite for correct design of computerized support as
well as for ensuring data interoperability. Management of the large amounts of
data produced in the procurement domain has to take into account its varying
provenance and possibility of duplicities and random errors. Finally, the activities
of users, i.e., both contract authorities and bidders/suppliers, along the different
phases of the public contract lifecycle, have to be distinguished. Linked data
technology provides a rich inventory of tools and techniques supporting these
views. The last, user-oriented view is least specific of the three; typically, the
user front-end does not differ much from other types of (web-based) applications,
except that some functionality, such as autocompletion of user input, exhibits
online integration to external linked data repositories.

Public procurement domain has already been addressed by projects stem-
ming from the semantic web field. The most notable ones are probably LOTED3

and MOLDEAS [1]. LOTED focused on extraction of data from a single procure-
ment source, simple statistical aggregations over a SPARQL endpoint and, most
recently, legal ontology modeling [5]. MOLDEAS, in turn, primarily addressed
the matchmaking task, using sophisticated computational techniques such as
spreading activation [2] and RDFized classifications. However, the effort under-
taken in the LOD2 project is unique by systematically addressing many phases of
procurement linked data processing (from domain modeling through multi-way
data extraction, transformation and interlinking, to matchmaking and analytics)
as well as both EU-level and national sources with diverse structure.

The chapter structure follows the above views of public procurement. First,
the Public Contract Ontology (PCO) is presented, as a backbone of the sub-
sequent efforts. Then we review the original public contract data sources that
have been addressed in our project, and describe the process of their extraction,
cleaning and linking. Finally, the end user’s view, in different business scenarios,
supported by a Public Contract Filing Application (PCFA for short) is presented.
It is further divided into the matchmaking functionality and the analytic func-
tionality (the full integration of the latter only being in progress at the time of
writing the chapter).

2 Public Contracts Ontology

The ontology developed within the use case covers information related to public
contracts that is published by contracting authorities during the procurement
3 http://loted.eu/

http://loted.eu/

198 V. Svátek et al.

process. We built the ontology on the basis of analysis of the existing public pro-
curement portals (especially TED4 as the European one, but also national ones)
and information published by contracting authorities on these portals. We did
not consider all information but primarily the information relevant for match-
ing public contracts with potential suppliers. Therefore, for the most part we
consider the information that is produced in the tendering phase (description
of the public contract, received tenders and the eventually accepted tender).
From the evaluation phase we consider the actual final price for the contract,
as its modeling is identical to that of estimated (in the contract notice) as
well as agreed price; no further complexity is thus added to the ontology by
including it.

2.1 Ontologies Reused by the PCO

Reusing existing, established ontologies when building one’s own ontology is
crucial for achieving interoperability on the semantic web, since applications
capable of working with the original ontologies can then also process the reused
elements (and even their derivatives, such as subclasses and subproperties) in
the new ontology as well. The PCO reuses the following models:

• GoodRelations Ontology5 (gr prefix) – to model organizations and price spec-
ifications

• VCard Ontology6 (vcard prefix) – to express contact information
• Payments Ontology7 (payment prefix) – to express subsidies
• Dublin Core8 (dcterms prefix) – to express descriptive metadata (e.g., title,

description)
• Simple Knowledge Organization System (SKOS)9 (skos prefix) – to express

code lists and classifications
• Friend-of-a-friend Ontology (FOAF)10 (foaf prefix) – to express agents, espe-

cially persons and relationships between them
• schema.org11 (s prefix) – to express locations and other generic kinds of

entities
• Asset Description Metadata Schema (ADMS)12 (adms prefix) – to express

identifiers.
4 http://ted.europa.eu/TED/
5 http://purl.org/goodrelations/v1#
6 http://www.w3.org/2006/vcard/ns#
7 http://reference.data.gov.uk/def/payment#
8 http://purl.org/dc/terms/
9 http://www.w3.org/2004/02/skos/core#

10 http://xmlns.com/foaf/0.1/
11 http://schema.org/
12 http://www.w3.org/ns/adms#

http://ted.europa.eu/TED/
http://purl.org/goodrelations/v1
http://www.w3.org/2006/vcard/ns
http://reference.data.gov.uk/def/payment
http://purl.org/dc/terms/
http://www.w3.org/2004/02/skos/core
http://xmlns.com/foaf/0.1/
http://schema.org/
http://www.w3.org/ns/adms

Linked Open Data for Public Procurement 199

2.2 Core Concepts of the PCO

Figure 1 depicts the ontology in the form of a UML class diagram. The core
concept of the ontology is that of public contract represented by the class
pc:Contract. We understand a public contract as a single object that groups
pieces of information related to the contract. These pieces of information gradually
arise during the public procurement process. They are published by
contracting authorities on various public procurement portals in the form of differ-
ent kinds of notification documents, e.g., call for tenders (sometimes also called
contract notice), contract award notice, contract cancellation notice, or the like.
Another important concept of the ontology are business entities, i.e., in this con-
text, contracting authorities and suppliers. Business entities are not represented
via a new class in the ontology; we rather reuse the class gr:BusinessEntity from
the GoodRelations ontology.

Fig. 1. Public Contracts Ontology – UML class diagram

2.2.1 Tendering Phase Modeling
In this phase the contracting authority publishes initial information about a
public contract. This includes basic information, e.g., contract title, description,
and the reference number assigned to the contract by the authority (which is
usually unique only in the scope of the authority itself). If the contract is too
large or too complex, the authority can split it into two or more sub-contracts,
which are called lots. Each lot is a contract on its own but it is a part of its par-
ent contract. In the ontology, lots are represented using the class pc:Contract.
A lot is associated with its superior contract via the property pc:lot.

The authority also publishes basic information about itself, e.g., its legal
name, official number or contact information. An important piece of information

200 V. Svátek et al.

is the so-called buyer profile, which is a web page where the contracting authority
publishes information about its public contracts.

Moreover, the authority publishes various requirements and restrictions on
the contract. The restrictions include the specification of the kind and objective
areas of the contract (Supplies, Works and Services), deadline for tenders, time
to realize the contract (in a form of estimated end date or required duration in
days or months), estimated price and non-structured specification documents.
The objective areas restrict potential suppliers to only those operating in the
objective areas. The authority also specifies the procedure by which an awarded
tender will be selected from the received tenders. We consider the following pro-
cedure types in the core, which are primarily defined by the EU legislation but
can be applied world-wide: Open, Restricted, Accelerated Restricted, Negoti-
ated, Accelerated Negotiated, and Competitive Dialogue.

The requirements include two kinds of information. First, the authority
specifies the items (i.e., products or services) that constitute the contract. The
ontology reuses the class gr:Offering to represent items. Basically, the items are
characterized by their name, description and price, but other kinds of characteris-
tics can be used as well, which we however do not cover in the domain model (e.g.,
references to various product or service classification schemes). Second, it speci-
fies a combination of award criteria. The class pc:AwardCriteriaCombination
is the representation of this feature in the ontology. For each award criterion,
expressed in the ontology using class pc:WeightedCriterion, a textual descrip-
tion (or, we can say, name) and weight percentage of the criterion is specified.
Usually, a specific combination is distinguished. For instance, it may specify that
tenders are only compared on the basis of the price offered and that the tender
offering the lowest price has to be selected.

After the authority receives the tenders, it publishes either the number of
tenders or details of each particular tender received. For each tender, details
about the tendering supplier and the offered price are published. A tender may
also comprise information about particular items (similarly to contract items,
i.e. products or services) offered. Tenders are represented in the ontology using
a class called pc:Tender. Then, according to the award criteria, the authority
selects and awards the best tender. In this stage, the authority publishes the
date of the award and marks the selected tender as the awarded tender.

During the tendering phase, the contract can be cancelled by the authority.
If so, the authority publishes the date of cancellation.

2.2.2 Pre-realization, Realization and Evaluation Phase Modeling
In the pre-realization phase, the contracting authority signs an agreement
with the supplier and publishes the agreement on the Web. The agreement is
a non-structured text document. The ontology reuses the class foaf:Document
to represent unstructured textual documents. We only consider one particular
structured information published – the price agreed by both the authority and
supplier. The agreed price should be the same as the price offered in the awarded
tender but it can differ in some specific cases.

Linked Open Data for Public Procurement 201

After the realization, the authority evaluates how the supplier fulfilled the
requirements. This includes various sub-processes that we do not cover in our
analysis. We are only interested in the actual end date and the actual final price
of the contract. Moreover, the authority could cover the price of the contract or
its part by subsidy from an external source (e.g., EU structural funds). Subsidies
are usually provided in the form of one or more payments to the authority.

3 Procurement Data Extraction and Pre-processing

Although procurement data are published in a certain form in most countries in
the world, we focused on three groups of sources:

1. The European TED (Tenders Electronic Daily) portal,13 which contains data
from a number of countries (thus allowing for cross-country comparisons, as
shown in [9]), although only a subset of these (typically for contracts above
a certain price level).

2. The Czech and Polish procurement data portals; the lead partners in the
procurement linked data activity of the LOD2 project are based in these two
countries, and therefore have both good contacts to the national publishing
agencies, knowledge of the local regulations, and fluency in the languages in
which the unstructured part of the data is written.

3. US and UK procurement data portals, as these are the countries where the
open government publishing campaign started first and therefore even the
procurement data sources are likely to be found sufficiently rich and well
curated.

Regarding the source format of the data, the TED and Czech data were
initially only available as HTML, and only at a later phase became also published
in XML. In contrast, the Polish, US and UK data have been available in XML
from the beginning. Data extraction (and RDFization) methods for both formats
have therefore been investigated.

3.1 Data Extraction from HTML

TED and the Czech national portal ISZVUS (later renamed to Public Procure-
ment Bulletin) had been the prime targets in the initial phase of the project. At
that time, only the HTML pages were available for these resources. In Fig. 2, we
can see two HTML fragments with information about one lot; we can demon-
strate different flavors of HTML-based data extraction on them. Both contain
red-labelled sections numbered 1 to 4 (the related properties are in Table 1).

The left side of Fig. 2 depicts a fragment of a TED HTML document. The
data is stored in div elements combined with additional textual information.
Section 1 of the document contains combined information about the lot ID and
the lot name, so it is necessary to split these properties. Section 2 only contains
13 http://ted.europa.eu/TED/

http://ted.europa.eu/TED/

202 V. Svátek et al.

Table 1. PCO property mapping to HTML fragments

PCO property # PCO property

1 dc:title + adms:identifier 3 pc:supplier

2 pc:numberOfTenders 4 pc:offeredPrice

one property, with a textual label that has to be removed. In the Sects. 3 and 4
the fields are separated by br tags combined with additional labels.

In contrast, the data in ISVZUS is strictly structured using input elements
with unique id attributes (see the right side of Fig. 2), which allows to access
the data fields without any additional transformation.

Technologically, the extraction was based on CSS selectors, and (where the
CSS selectors did not suffice) pseudo-selectors14 allowing to search for elements
containing a defined substring. In some cases the element content had to be
modified or shortened, which led us to applying regular expressions.

The HTML-based ETL activities for both resources were later suspended
when the future availability of full data in XML (rather than mere HTML)
was announced. The processing was resumed in Spring 2014 based on XML
dumps (and, for the Czech data, also an XML-based SOAP API), which are more
reliable than data obtained via information extraction from semi-structured text
embedded in HTML.

Fig. 2. TED fragment (left) and ISVZUS fragment (right)

14 Provided by the JSoup library http://jsoup.org/.

http://jsoup.org/

Linked Open Data for Public Procurement 203

3.2 Data Extraction from Structured Formats

The extraction from structured formats, namely, XML and CSV, started at dif-
ferent phases of the project and was carried out by different groups, therefore the
used technology slightly varied. The first XML data addressed was the (British)
Contracts Finder,15 for which a standalone XSLT script for transforming all
fields to RDF triples was developed in early 2012. Later, however, the main
focus was on the European (TED), Czech, Polish, and also U.S. data (to have
an extra-European source for comparison).

3.2.1 TED Data
In March 2014 the Publications Office of the EU opened access to the data from
TED and ceased to charge licensing fees for data access. Current public notices
for the past month are available to download for registered users of the TED
portal and also via an FTP server. Archived notices dating back to 2010 can be
obtained in monthly data exports. Data is published in 3 formats, including a
plain-text one and 2 XML formats.

We created an XSL transformation script to convert the TED data into RDF.
Using this XSLT script we performed a bulk extraction of the TED archival data
via the Valiant tool16) from the LOD2 Stack. In parallel, using the UnifiedViews
ETL framework,17 we set up an automatic, continuously running extraction of
the increments in TED data. In the further treatment of the extracted RDF
data we focused on deduplication and fusion of business entities participating in
the EU public procurement market, in order to provide a more integrated view
on the dataset.

3.3 Czech Data

We developed an extractor data processing unit18 for the UnifiedViews ETL
framework, which is capable of incremental extraction of data from the Czech
public procurement register19 using its SOAP API. During the time we discussed
the possibility of publishing raw open data in bulk with the company running the
register. As a result of these discussions we were provided with an XML dump
of historical data from the register to be used for research purposes. Combining
the historical data dump with the access to current data via the SOAP API
we were able to reconstruct the complete dataset of public contracts from the
registry converted to RDF.

The second source of Czech public procurement data that we processed was a
set of profile feeds of individual contracting authorities. As per the amendments
in the Czech public procurement law, public sector bodies involved in public
15 http://contractsfinder.businesslink.gov.uk
16 https://github.com/bertvannuffelen/valiant
17 https://github.com/UnifiedViews/Core
18 https://github.com/opendatacz/VVZ extractor
19 http://vestnikverejnychzakazek.cz/

http://contractsfinder.businesslink.gov.uk
https://github.com/bertvannuffelen/valiant
https://github.com/UnifiedViews/Core
https://github.com/opendatacz/VVZ_extractor
http://vestnikverejnychzakazek.cz/

204 V. Svátek et al.

procurement are required to publish their own XML feed of data about pub-
lic contracts they issue, including both public notices and award information.
The set of public contracts that are published on profile feeds is a superset of
what is available via the central Czech public procurement registry because the
feeds also cover some lower price public contracts, which are not required to be
published in the central register. The content of these feeds mostly mirrors the
content of the central register, although for individual public contracts it is less
comprehensive. While the data from the register is richer and more descriptive,
the profile feeds contain information about unsuccessful tenders, which is missing
from the register that only reveal information about winning tenders. We deem
having data about both successful and unsuccessful tenders as vital in several
analytical tasks over public procurement data, which is one of the reasons why
we have invested effort into acquiring the data from feeds of contracting author-
ities. Since early autumn 2013 we have been scraping an HTML list of URLs of
profile feeds and periodically convert each feed’s XML into RDF using an ETL
pipeline developed using the UnifiedViews framework. By using code-based URIs
the data is linked to several external datasets. Company identifiers connect it to
the Czech business register20 that we also periodically convert to RDF. Common
Procurement Vocabulary (CPV) codes21 link it to the RDF version of CPV that
we produced.

3.3.1 Polish Data
Public procurement data is published by The Public Procurement Office (Urzad
Zamowien Publicznych22) in the Public Procurement Bulletin (Biuletyn Zamowien
Publicznych – BZP23).

There are several means to access the data: browsing the BZP portal, sub-
scription mechanism with some restricted number of criteria, and the download
of XML files, which we employed in the RDFization. The structure of XML
is basically flat: even though some attributes can be grouped that are put on
the same level. This has implications for the parsing and conversion mecha-
nisms. On the one hand, no subset of XML data can be selected for further
processing. On the other hand, the extraction expressions as well as XML paths
are shorter. Conversion of XML files containing notices about public contracts
has been carried out by means of Tripliser.24 The RDFization had to overcome
some issues in the XML structure, such as the use of consecutive numbers for
elements describing the individual suppliers (in Polish ‘’wykonawca’) awarded

20 http://www.czso.cz/eng/redakce.nsf/i/business register
21 By its definition from http://simap.europa.eu/codes-and-nomenclatures/codes-cpv/

codes-cpv en.htm, “CPV establishes a single classification system for public pro-
curement aimed at standardising the references used by contracting authorities and
entities to describe the subject of procurement contracts.”

22 http://uzp.gov.pl
23 http://uzp.gov.pl/BZP/
24 A Java library and command-line tool for creating triple graphs from XML, https://

github.com/daverog/Tripliser.

http://www.czso.cz/eng/redakce.nsf/i/business_register
http://simap.europa.eu/codes-and-nomenclatures/codes-cpv/codes-cpv_en.htm
http://simap.europa.eu/codes-and-nomenclatures/codes-cpv/codes-cpv_en.htm
http://uzp.gov.pl
http://uzp.gov.pl/BZP/
https://github.com/daverog/Tripliser
https://github.com/daverog/Tripliser

Linked Open Data for Public Procurement 205

the different lots of a contract: wykonawca 0, wykonawca 1, wykonawca 2 and so
on. We also had to write our own extension functions for Tripliser allowing us
to generate new identifiers for addresses, as data structures, from their parts:
locality, postal code and street.

Automatic linking, using Silk25 as one of the LOD2 stack26 tools, was car-
ried out for the problem of mapping the contact information of a given con-
tracting authority or supplier to a classification of Polish territorial units called
TERYT.27

3.3.2 U.S. Data
The dataset was created by combining data from two complementary sources:
USASpending.gov28 and Federal Business Opportunities (FBO).29 USASpend-
ing.gov offers a database of government expenditures, including awarded public
contracts, for which it records, e.g., the numbers of bidders. On the other hand,
FBO publishes public notices for ongoing calls for tenders. USASpending.gov
provides data downloads in several structured data formats. We used the CSV
dumps, which we converted to RDF using SPARQL mapping30 executed by
tarql.31 Data dump from FBO is available in XML as part of the Data.gov
initiative.32 To convert the data to RDF we created an XSLT stylesheet that
outputs RDF/XML.33 As an additional dataset used by both USASpending.gov
and FBO, we converted the FAR Product and Service Codes34 to RDF using
LODRefine,35 an extraction tool from the LOD2 Stack.

Data resulting from transformation to RDF was interlinked both internally
and with external datasets. Internal linking was done in order to fuse equivalent
instances of public contracts and business entities. Deduplication was performed
using the data processing unit for UnifiedViews that wraps the Silk link discov-
ery framework.36 The output links were merged using the data fusion component
of UnifiedViews.37 Links to external resources were created either by using code-
based URI templates in transformation to RDF or by instance matching based on
converted data. The use of codes as strong identifiers enabled automatic gener-
ation of links to FAR codes and North American Industry Classification System
2012,38 two controlled vocabularies used to express objects and kinds of public
25 See Chap. 1 of this book.
26 http://stack.linkeddata.org
27 http://teryt.stat.gov.pl/
28 http://usaspending.gov/
29 https://www.fbo.gov/
30 https://github.com/opendatacz/USASpending2RDF
31 https://github.com/cygri/tarql
32 ftp://ftp.fbo.gov/datagov/
33 https://github.com/opendatacz/FBO2RDF
34 http://www.acquisition.gov/
35 http://code.zemanta.com/sparkica/
36 http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/
37 Developed previously for ODCleanStore, the predecessor of UnifiedViews [6].
38 http://www.census.gov/eos/www/naics/index.html

http://dx.doi.org/10.1007/978-3-319-09846-3_1
http://stack.linkeddata.org
http://teryt.stat.gov.pl/
http://usaspending.gov/
https://www.fbo.gov/
https://github.com/opendatacz/USASpending2RDF
https://github.com/cygri/tarql
ftp://ftp.fbo.gov/datagov/
https://github.com/opendatacz/FBO2RDF
http://www.acquisition.gov/
http://code.zemanta.com/sparkica/
http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/
http://www.census.gov/eos/www/naics/index.html

206 V. Svátek et al.

contracts. Instance matching was applied to discover links to DBpedia39 and
OpenCorporates.40 Links to DBpedia were created for populated places referred
to from postal addresses in the U.S. procurement dataset. Furthermore, Open-
Corporates was used as target for linking the bidding companies. The task was
carried out using the batch reconciliation API of OpenCorporates via interface
in LODRefine.

4 LOD-Enabled Public Contract Matchmaking

4.1 Public Contracts Filing Application

Seeking the best possible match is an activity repeatedly undertaken by both
sides of the procurement market: buyers (contracting authorities) and suppliers
(bidders). Since most of the underlying computation, and even a considerable
part of the GUI components, are similar for both cases, it makes sense to provide
a single, web-based interface for them, which can be characterized as a content-
management system for public contracts (and associated tenders). We denote the
prototype developed41 simply as Public Contract Filing Application (PCFA). Its
features are (partly dynamically) derived from the Public Contracts Ontology.

4.1.1 Buyer’s and Supplier’s View
The buyers can use PCFA to create and manage their calls for tenders, publish
them when they are ready, and wait for tenders from the candidate suppliers, as
seen in Fig. 3. PCFA allows the buyer to compare the proposed call for tenders
with other public contracts (published by the same buyer or by others) using
the matchmaking functionality. The buyers can thus take into account, e.g., the
cost or duration of similar contracts in the past, and adjust the proposed price
or time schedule accordingly.

PCFA can help the buyers even further by allowing them to find suitable
suppliers for their proposed call for tenders, as seen in Fig. 4. They can thus
explicitly invite such potential suppliers via email and thus increase the compe-
tition for the given call. A published call for tenders can also be withdrawn; if the
buyer later publishes a withdrawn call again, it is published as a new call, which
ensures that the whole history of the procurement process is recorded properly.
When the deadline for tenders passes, the buyers can easily reject the tenders
that do not meet the criteria of the call, and they can also award the tender that
offers the best conditions. Finally, when the public contract has been fulfilled,
the buyer can briefly evaluate the progress and the outcome of the contract and
record it in the application. This typically amounts to providing the actual price
of the contract (which may be significantly higher than the price proposed in
the awarded tender), the actual date when the contract was finished, and the
39 http://dbpedia.org
40 https://opencorporates.com/
41 The code of the PCFA is maintained at https://github.com/opendatacz/

pc-filing-app.

http://dbpedia.org
https://opencorporates.com/
https://github.com/opendatacz/pc-filing-app
https://github.com/opendatacz/pc-filing-app

Linked Open Data for Public Procurement 207

Fig. 3. Open calls for tenders from a buyer’s perspective

overall experience of the buyer with this particular supplier. This information
can later help the same buyer or other buyers in the future.

The interested suppliers can see the open calls for tenders suitable for them.
This functionality is again provided by the matchmaking module. As mentioned
above, a potential supplier can also be invited, by a contracting authority, to
submit a tender to a certain call. The supplier can see and manage the received
invitations in the PCFA as well. The invitations can be rejected or accepted; the
latter automatically creates a tender. Alternatively, suppliers can find an open
call for tenders on their own, and create a tender for it. The tender can be edited
by the supplier and, when ready, submitted to the contracting authority. The
suppliers are always informed by email when some update takes place for the
call for tenders for which they submitted a tender.

Fig. 4. Suitable suppliers for a call for tenders

208 V. Svátek et al.

4.1.2 Application Architecture
The architecture of the PCFA is modular, as can be seen in Fig. 5. Each mod-
ule consists of both the client and the server side, which gives the developers
freedom in what their module can do, making the application extensible. All
the modules are based on a module template, which contains the code for user
and context management as well as for quad store42 access, so that the devel-
oper can focus on the added functionality. The modules use a shared relational
database, which contains user information, user preferences and stored files,
and can be used for caching of results of more complex SPARQL queries for
faster response time when, for example, paging through a longer list of results.
The public procurement data itself is stored in two instances of a quad store.
The public quad store contains published data accessible to everyone (part of
the LOD cloud). The private quad store contains unpublished data for each user
of the application and for application management.

Public

Server

Client

System
Manager

HTML5, CSS,
JavaScript

Twitter Bootstrap

Java
Apache Tomcat

Filing app

HTML5, CSS,
JavaScript

Twitter Bootstrap

Java
Apache Tomcat

Matchmaker

HTML5, CSS,
JavaScript

Twitter Bootstrap

Java
Apache Tomcat

Database
Server

Relational
database

Configurator

HTML5, CSS,
JavaScript

Twitter Bootstrap

Java
Apache Tomcat

H
TT

P

JS
O

N

SP
A

RQ
L

RD
F

SQ
L

TA
BL

ES

Buyers
&

Suppliers
USE

LOD Cloud

TED DBpedia

OpenStreetMap

Public
RDF Quad Store

Private
RDF Quad Store RD

F

SP
A

RQ
L

SP
A

RQ
L

RD
F

Fig. 5. PCFA architecture

The current implementation consists of the following modules. The system
manager module handles registrations, logging in and out, and user preferences
management. The filing module implements the lifecycles of calls for tenders,
tenders and invitations to tenders. The matchmaking module implements the
functionality behind the search for similar calls for tenders and suitable suppli-
ers for contracting authorities (buyers) and suitable open calls for tenders for
42 A database which stores RDF quads - subject, predicate, object and named graph,

e.g., Openlink Virtuoso or Jena Fuseki.

Linked Open Data for Public Procurement 209

suppliers. Finally, the configurations module allows the users to specify a more
detailed configuration for individual types of public procurement (cars, IT, etc.).

There are two separate quad stores used in the application.43 There is a pri-
vate space for each user, where unpublished calls for tenders, tenders themselves
and invitations for suppliers to submit a tender to a call are kept. This quad store
is not accessible from the internet and is managed solely by the PCFA, which
makes the private data secure. Additionally, there is the public space quad store,
as part of the LOD cloud, where all the published information is kept and where
also the calls for tenders to be compared by the matchmaker reside. This quad
store is accessible to everyone on the internet for querying and downloading.

4.2 Matchmaking Functionality Internals

The core operation upon which others are based is the discovery of contracts
similar to a given contract. To accomplish that, we first filter all contracts based
on the similarity of CPV codes according to the hierarchical tree.

Then we refine these results by applying additional comparers, specialized,
e.g., in:

1. Tender deadlines: the shorter the interval between the two tender deadlines,
the higher the similarity

2. Publication dates: the shorter the interval between the two public contract
publication dates, the higher the similarity

3. Geographical distance: we measure the distance between the places where the
public contracts were (or are to be) executed. For this purpose, the addresses
are automatically converted to geo-coordinates.

4. Textual similarity: we compare the titles of contracts using the SoftTFIDF
[3] algorithm.

The overall match score is then a weighted sum of the scores returned by all
comparers.

When looking for suitable suppliers for a given call for tenders, the above
approach is used in order to filter suppliers that have been previously awarded
a contract similar to the current one. Similarly, when looking for suitable calls
for tenders from the point of view of a supplier, the information (including CPV
codes) from the supplier’s profile is assembled into a virtual tender, which is
matched against the open calls for tenders.

5 Aggregated Analysis of Procurement Linked Data

5.1 Analysis Scenarios

The data on public contracts, in combination with external data retrieved from
the linked data cloud, can be submitted to aggregated analysis. The beneficiaries
of such analysis can be:
43 They can be possibly replaced with two named graphs within a single quad store,

each with a separate setting of access rights.

210 V. Svátek et al.

• Journalists and NGOs: the data may help them reveal corruption and clien-
telism in public sector.

• Official government bodies: both specific supervisory bodies that address the
issues of transparency and fair competition and statistical offices that collect
data as part of aggregated information on the national economy.

• Bidders: analysing the previous successful and unsuccessful tenders may be
helpful when preparing a new one; in long term, the companies may also
actively plan their bidding strategies based on procurement market trends
(revealed by automated analysis).

• Contracting authorities: they want to understand the supply side in order to
know how to formulate the contract conditions, in view of successful match-
making. Good progress of a future contract may be derived from previous
experience with certain bidders. An additional goal may be to attract an ade-
quate number of bidders; excessively many bidders bring large overheads to
the awarding process, while too low a number may reduce competition (and,
under some circumstances, even lead to contract canceling by a supervisory
body, due to an anti-monopoly action).

5.2 Analytical Methods

A straightforward approach to aggregated analysis is via summary tables and
charts expressing the relationship between, e.g., the number of contracting
authorities, contractors, contracts, tenders, lots, or geographical localities. The
value of contracts can be calculated as a sum or average per authority, contrac-
tor, region, kind of delivery, classification of goods etc. Charts can be generated
for presentation of these statistics split by various dimensions (e.g. bar charts) or
showing the evolution (e.g. line charts, timeline). The geographical dimension is
best presented on maps: detailed data can be shown as points on the map, e.g.,
pointers with shaded tooltips on OpenStreetMap. The data for such analysis are
normally provided by SPARQL SELECT queries, which allow to both retrieve
the data and perform basic aggregation operations.

More sophisticated analysis can be provided by data mining tools, which
automatically interrelate multiple views on data, often based on contingency
table. As an example, see a fragment of analysis of U.S. procurement data with
respect to the impact various attributes of a contract notice may have on the
subsequent number of tenders (Fig. 6).

The association rules listed in the table fragment regard both a CPV code of
the contract object (mainObject attribute), originating from one of the core pro-
curement dataset, and the population density attribute, originating from DBpe-
dia. It indicates that contracts for ‘Research and Development in the Physical,
Engineering, and Life Sciences’ in localities with higher population density tend
to attract a high number of tenders (as higher interval values for the former
mostly coincide with higher values for the latter, in the individual rules).

Linked Open Data for Public Procurement 211

Fig. 6. Discovered factors correlated with number of tenders

5.3 Integration of Analytical Functionality into PCFA

Although the central role in the PCFA scenarios is reserved to matchmaking,
there are also reserved slots for invocation of analytical features. Since this part
of implementation has been ongoing till the final months of the project, it is not
yet functional at the time of completing this chapter of the book. The analytical
functionality will be at the disposal of the buyer (contracting authority), and
will amount to:

• Interactively exploring, in graphical form, the linked data about
– the current notice
– a (matching) historical notice/contract
– a relevant supplier, including its contracts.

• Viewing suggested values for the remaining pieces of contract notice informa-
tion based on the already provided ones. The values will be provided by an
inductively trained recommender.

• Getting an estimate of the number of bidders for (as complete as possible)
contract notice information. For this, a predictive ordinal classifier will be
developed.

When the integration of analytical functionality has been completed, usabil-
ity testing by several contract authorities’ representatives will take place.

6 Conclusions

The chapter outlined some of the promises and intricacies of using linked
open data in the area of public procurement. It went through the different, yet
interrelated partial tasks: data extraction and publishing (leveraging on Pub-
lic Contracts Ontology as domain-specific, externally interlinked vocabulary),
buyer/supplier matchmaking, and aggregated analytics.

212 V. Svátek et al.

Despite the numerous technical difficulties, especially as regards the coverage
and quality of existing open data sources, it is clear that handling procurement
data in RDF format and linking them to other (government, geographic, com-
mercial, encyclopedic, etc.) data opens novel avenues for their matchmaking and
aggregate analytics. The use of common data format (RDF), as well as common
domain vocabulary (PCO) and classifications (such as CPV and TERYT) allow
for integration of external data; furthermore, as the data are separated from
their initial applications, they can be consumed by third-party applications orig-
inally developed for matchmaking over other procurement datasets. The often
implicit model of legacy data can also be compared with a carefully crafted onto-
logical domain model and ambiguities can be discovered. Finally, the data itself
potentially becomes cleaner during the extraction and transformation process,
so, even if some of the analytic tools require it to be downgraded back to simpler
formats such as CSV, its value may be higher than the initial one.

Future work in this field will most likely concentrate on the last two tasks
(matchmaking and analytics), however, with implication on extraction and pub-
lishing, too. Namely, precise matchmaking will require RDFization and publi-
cation of further information, some of which (such as detailed specifications of
procured goods or services) will have to be extracted from free text. Exploita-
tion of product ontologies such as those developed in the OPDM project44 could
then be beneficial. The analytic functionality should more systematically exploit
external linked data as predictive/descriptive features [7]. Given the size and
heterogeneity of the LOD cloud, smart methods of incremental data crawling
rather than plain SPARQL queries should however be employed.

Finally, while the current research has been focused on the primary intended
users of the PCFA, i.e. contract authorities and (to lesser extent) bidders, the
remaining stakeholders should not be forgotten. While the generic features of
contracts, products/services and bidders, captured by the generalized features
(such as price intervals, geographic regions or broad categories of products) in
data mining results, are important for these parties, directly participant in the
matchmaking process, there are also NGOs and supervisory bodies that primar-
ily seek concrete corruption cases. To assist them, graph data mining methods
should be adapted to the current state of linked data cloud, so as to detect, in
particular, instances of suspicious patterns over the (RDF) graph representing
organizations (contract authorities, bidders and others), contracts and people
engaged in them.

Open Access. This chapter is distributed under the terms of the Creative Commons

Attribution Noncommercial License, which permits any noncommercial use, distribu-

tion, and reproduction in any medium, provided the original author(s) and source are

credited.

44 http://www.ebusiness-unibw.org/ontologies/opdm/

http://www.ebusiness-unibw.org/ontologies/opdm/

Linked Open Data for Public Procurement 213

References

1. Alvarez, J.M., Labra, J.E.: Semantic methods for reusing linking open data of the
european public procurement notices. In: ESWC Ph.D. Symposium (2011)

2. Alvarez-Rodŕıguez, J.M., Labra-Gayo, J.E., Calmeau, R, Maŕın, A., Maŕın, J.L.:
Innovative services to ease the access to the public procurement notices using link-
ing open data and advanced methods based on semantics. In: 5th International
Conference on Methodologies, Technologies and enabling eGovernment Tools (2011)

3. Cohen, W.M., Ravikumar, P., Fienberg, S.E.: A comparison of string distance met-
rics for name-matching tasks. In: Workshop on Information Integration on the Web,
pp. 73–78 (2003)

4. d’Amato, C., Berka, P., Svátek, V., Wecel, K., (eds.): Proceedings of the Interna-
tional Workshop on Data Mining on Linked Data, with Linked Data Mining Chal-
lenge collocated with the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECMLPKDD 2013), Prague,
Czech Republic, 23 September 2013, vol. 1082 of CEUR Workshop Proceedings,
CEUR-WS.org (2013)

5. Distinto, I., d’Aquin, M., Motta, E.: LOTED2: an ontology of European public
procurement notices. Semant. Web Interoper. Usability Appl. (2014) (Under review,
IOS Press)

6. Michelfeit, J., Knap, T.: Linked data fusion in ODCleanStore. In: Glimm, B., Huynh,
D. (eds.) International Semantic Web Conference (Posters and Demos), volume 914
of CEUR Workshop Proceedings (2012). http://CEUR-WS.org

7. Paulheim, H.: Exploiting linked open data as background knowledge in data mining.
In: d’Amato, C. et al. [4]

8. Siemens: Study on the evaluation of the action plan for the implementation of
the legal framework for electronic procurement (phase ii): analysis, assessment and
recommendations. Technical report, July 2010

9. Valle, F., d’Aquin, M., Di Noia, T., Motta, E.: LOTED: exploiting linked data in
analyzing European procurement notices. In: 1st Workshop on Knowledge Injection
into and Extraction from Linked Data collocated with EKAW’10, Madrid, Spain
(2010). http://CEUR-WS.org

http://CEUR-WS.org
http://CEUR-WS.org

Author Index

Auer, Sören 1

Bizer, Christian 70
Blaschke, Christian 155
Boncz, Peter 21
Bryl, Volha 45, 70
Bühmann, Lorenz 45

Choi, Key-Sun 70

Dirschl, Christian 133
Dojchinovski, Milan 45

Eck, Katja 133
Erling, Orri 21
Ermilov, Ivan 133, 175

Hellmann, Sebastian 45
Hong, Soon Gill 70

Isele, Robert 70

Janev, Valentina 108, 175
Jang, Sammy 70

Klímek, Jakub 196
Knap, Tomáš 196
Kontokostas, Dimitris 45

Lehmann, Jens 45

Mader, Christian 90
Martin, Michael 90, 108
Mezaour, Amar-Djalil 155
Mijovic, Vuk 108
Milošević, Uroš 45, 175
Mynarz, Jindřich 196

Nagy, Helmut 133
Nečaský, Martin 196

Pellegrini, Tassilo 133
Petrovski, Petar 45
Pham, Minh-Duc 21

Stadler, Claus 90
Stanojević, Mladen 45
Svátek, Vojtěch 45, 196

Tramp, Sebastian 108

Van der Waal, Sander 175
Van Nuffelen, Bert 108, 133, 155
Verlic, Mateja 70

Wainwright, Mark 175
Węcel, Krzysztof 175, 196

Yi, Mun Yong 70

Zamazal, Ondřej 45

	Preface
	Contents
	Introduction to LOD2
	1 The Linked Data Life-Cycle
	2 The Linked Data Paradigm
	2.1 Resource Identification with IRIs
	2.2 De-referencability
	2.3 RDF Data Model
	2.4 RDF Serializations

	3 Integrating Heterogeneous Tools into the LOD2 Stack
	3.1 Deployment Management Leveraging Debian Packaging
	3.2 Data Integration Based on SPARQL, WebID and Vocabularies
	3.3 REST Integration of User Interfaces

	4 Conclusion and Outlook
	References

	Technology
	Advances in Large-Scale RDF Data Management
	1 General Objectives
	2 Virtuoso Column Store
	2.1 Vectored Execution
	2.2 Vector Optimizations
	2.3 Query Optimization
	2.4 State of the RDF Tax

	3 Virtuoso Cluster Parallel
	3.1 Performance Dynamics
	3.2 Subsequent Development

	4 BSBM Benchmark Results
	4.1 Cluster Configuration
	4.2 Bulk Loading RDF
	4.3 Notes on the BI Workload
	4.4 Benchmark Results

	5 Emergent Schemas
	5.1 Step1: Basic CS Discovery
	5.2 Step2: Dimension Tables Detection
	5.3 Step3: Human-Friendly Labels
	5.4 Step4: CS Merging
	5.5 Step5: Schema and Instance Filtering
	5.6 Final Schema Evaluation

	6 Conclusion
	References

	Knowledge Base Creation, Enrichment and Repair
	1 Linked Data Creation and Extraction
	1.1 DBpedia, a Large-Scale, Multilingual Knowledge Base Extracted from Wikipedia
	1.2 RDFa, Microdata and Microformats Extraction Framework
	1.3 Rozeta

	2 Analysis, Enrichment and Repair of Linked Data with ORE Tool
	2.1 Logical Debugging
	2.2 Schema Enrichment
	2.3 Constraint Based Validation

	3 Ontology Repair with PatOMat
	4 Linked Data Quality Assessment with RDFUnit
	5 Analysis of Link Validity
	5.1 Web Linkage Validator
	5.2 Data Graph Summary Model
	5.3 Link Analysis
	5.4 Provenance
	5.5 How to Improve Your Dataset with the Web Linkage Validator

	6 Benchmarking Semantic Named Entity Recognition Systems
	7 Conclusion
	References

	Interlinking and Knowledge Fusion
	1 Introduction
	2 Vocabulary Mapping
	3 The Silk Link Discovery Framework
	3.1 Silk: Functionality and Main Concepts
	3.2 The GenLink Algorithm
	3.3 The ActiveGenLink Algorithm

	4 Data Cleansing and Reconciliation with LODRefine
	4.1 LODRefine
	4.2 Use Cases
	4.3 Quality Evaluation of Crowdsourcing Results

	5 Data Quality Assessment and Fusion
	5.1 Quality Assessment Metrics
	5.2 Fusion Functions

	6 Data Interlinking and Fusion for Asian Languages
	6.1 Interlinking Korean Resources in the Korean Alphabet: Korean Phoneme Distance
	6.2 Interlinking Korean Resources in Korean and English: Korean Transliteration Distance
	6.3 Interlinking Asian Resources in Chinese Alphabet: Han Edit Distance
	6.4 Asian Data Fusion Assistant

	7 Conclusion
	References

	Facilitating the Exploration and Visualization of Linked Data
	1 Introduction
	2 Rsine - Getting Notified on Linked Data Changes
	2.1 Related Work
	2.2 Approach
	2.3 Stack Integration
	2.4 Notification Scenarios

	3 CubeViz -- Exploration and Visualization of Statistical Linked Data
	3.1 The RDF Data Cube Vocabulary
	3.2 Integrity Analysis
	3.3 Faceted Exploration
	3.4 Chart Visualisation

	4 Facete - A Generic Spatial Facetted Browser for RDF
	4.1 User Interface
	4.2 Concepts
	4.3 Display of Large Amounts of Geometries
	4.4 Related Work

	5 Conclusions and Future Work
	References

	Supporting the Linked Data Life Cycle Using an Integrated Tool Stack
	1 Introduction
	2 The LOD2 Linked Data Stack
	2.1 Building a Linked Data Application
	2.2 Becoming LOD2 Linked Data Stack Component
	2.3 LOD2 Stack Repository
	2.4 Installing the LOD2 Linked Data Stack
	2.5 The LOD2 Linked Data Stack Release

	3 A Customized Linked Data Stack for Statistics
	3.1 Application Architecture and Scenarios
	3.2 LOD2 Statistical Workbench in Use
	3.3 Towards a Broader Adoption

	4 Conclusion
	References

	Use Cases
	LOD2 for Media and Publishing
	Abstract
	1 Introduction
	1.1 Rationale for the Media and Publishing Use Case
	1.2 Wolters Kluwer Company Profile
	1.3 Data Transformation, Interlinking and Enrichment
	1.4 Editorial Data Interfaces and Visualization Tools
	1.5 Business Impact and Relevant Pre-conditions for Success

	2 Processing Data
	2.1 Transformation from XML to RDF
	2.2 Metadata Management Process
	2.3 Enrichment of WKD Data
	2.4 Visualization

	3 Licensing Semantic Metadata
	3.1 Traditional Protection Instruments for Intellectual Property
	3.2 Licensing Policies for Linked Data
	3.3 Rights Expression Languages for Linked Data Licenses

	4 Conclusion
	References

	Building Enterprise Ready Applications Using Linked Open Data
	1 Introduction
	2 The Landscape of Enterprise and Corporate Data Today
	3 Why Should My Company Assets Go Linked Open Data?
	4 LOD Enterprise Architectures
	4.1 LOD Enterprise Architecture with a Publishing Workflow
	4.2 LOD Enterprise Architecture Integration
	4.3 Transformation Pipeline to LOD Enterprise Architecture

	5 Best Practices
	5.1 Data Sources Identification
	5.2 Modelling for the Specific Domain
	5.3 Migration of Legacy Vocabularies
	5.4 Definition of the URI Strategy
	5.5 Publishing
	5.6 Interlinking - The Creation of 5-Star Business Data
	5.7 Vocabulary Mapping

	6 Conclusion

	Lifting Open Data Portals to the Data Web
	1 Public Data and Data Portals
	2 Using PublicData.eu
	2.1 Data Publishing
	2.2 Data Consumption

	3 Semantic Lifting of CSV to RDF
	3.1 Lifting the Tabular Data
	3.2 Tabular Data in PublicData.eu
	3.3 User-Driven Conversion Framework
	3.4 Conversion Results

	4 Statistical Data in Serbia
	4.1 Relevant Standards
	4.2 Working with Statistical Linked Data
	4.3 Serbian Statistical Office Use Case

	5 Multidimensional Economy Data in Poland
	5.1 Polish Open Economy Data
	5.2 Modelling Multidimensional Data with Data Cube Vocabulary
	5.3 Slices Generation
	5.4 Aggregations

	6 Exploration and Visualisation of Converted Data
	6.1 Statistical Data Exploration
	6.2 Geospatial Data Discovery
	6.3 Drill-Down Choropleth Maps
	6.4 Drill-Down Tables

	7 Conclusions and Future Work
	References

	Linked Open Data for Public Procurement
	1 Public Procurement Domain
	2 Public Contracts Ontology
	2.1 Ontologies Reused by the PCO
	2.2 Core Concepts of the PCO

	3 Procurement Data Extraction and Pre-processing
	3.1 Data Extraction from HTML
	3.2 Data Extraction from Structured Formats
	3.3 Czech Data

	4 LOD-Enabled Public Contract Matchmaking
	4.1 Public Contracts Filing Application
	4.2 Matchmaking Functionality Internals

	5 Aggregated Analysis of Procurement Linked Data
	5.1 Analysis Scenarios
	5.2 Analytical Methods
	5.3 Integration of Analytical Functionality into PCFA

	6 Conclusions
	References

	Author Index

