
Shelve in
Mobile Computing

User level:
Beginning–Advanced

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

Android Application Development
for the Intel® Platform
The number of Android devices running on Intel processors has increased since
Intel and Google announced, in late 2011, that they would be working together
to optimize future versions of Android for Intel Atom processors. Today, Intel
processors can be found in Android smartphones and tablets made by some of
the top manufacturers of Android devices, such as Samsung, Lenovo, and Asus.

The increase in Android devices featuring Intel processors has created
a demand for Android applications optimized for Intel architecture: Android
Application Development for the Intel® Platform is the perfect introduction for
software engineers and mobile app developers. Through well-designed app
samples, code samples, and case studies, the book teaches Android application
development based on the Intel platform—including smartphones, tablets, and
embedded devices—covering performance tuning, debugging, and optimization.

This book is jointly developed for individual learning by Intel Software College
and China Shanghai JiaoTong University.

What You’ll Learn:

• Comprehensive introduction to the Intel® embedded and mobile
hardware platform

• Android app GUI design principles and guidelines
• The latest Intel Android development tools, including Intel

Beacon Mountain version 0.6 and the Intel Compiler
• NDK and C/C++ optimization
• Designing and optimizing for low power consumption

Cohen
Wang

9 781484 201015

53999
ISBN 978-1-4842-0101-5

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Lead Project Editor��� xvii

About the Lead Contributing Author�� xix

About the Technical Reviewer��� xxi

Introduction��� xxiii

�Chapter 1: Overview of Embedded Application Development ■■
for Intel Architecture��� 1

Chapter 2: Intel Embedded Hardware Platform■■ ����������������������������� 19

�Chapter 3: Android Application Development Processes ■■
and Tool Chains for Intel® Architecture���47

Chapter 4: Real Device Environment Installation■■ �������������������������� 85

Chapter 5: The Android OS■■ �� 131

Chapter 6: Customization and Installation of Android■■ ����������������� 191

�Chapter 7: GUI Design for Android Apps, Part 1: ■■
General Overview�� 203

�Chapter 8: GUI Design for Android Apps, Part 2: ■■
The Android-Specific GUI��� 235

�Chapter 9: GUI Design for Android Apps, Part 3: ■■
Designing Complex Applications��� 271

�Chapter 10: GUI Design for Android Apps, Part 4: ■■
Graphic Interface and Touchscreen Input������������������������������������ 305

■ Contents at a Glance

vi

�Chapter 11: Performance Optimization for Android ■■
Applications on x86�� 335

Chapter 12: NDK and C/C++ Optimization■■ ����������������������������������� 391

�Chapter 13: The Low-Power Design of Android Application ■■
and Intel Graphics Performance Analyzers (Intel GPA):
Assisted Power Optimization�� 445

Index��� 483

xxiii

Introduction

The number of Android devices running on Intel processors has gradually increased ever
since Intel and Google announced, in late 2011, that they would be working together to
optimize future versions of Android for Intel Atom processors. Today, Intel processors can
be found in Android smartphones and tablets made by some of the top manufacturers of
Android devices, such as Samsung, Lenovo, and Asus.

The increase in Android devices featuring Intel processors has created a demand
for Android applications optimized for Intel architecture. This book was written to help
introduce developers of all skill levels to the tools they need to develop and optimize
applications for the Intel platform.

Chapter 1
This chapter discusses principles for embedded systems, the architecture of SoC, and some
pros and cons of platforms such as ARM and x86/x64.

Chapter 2
This chapter goes into detail about specific Intel hardware platforms. It covers Intel Atom
processors, Intel SoCs, and retail devices.

Chapter 3
This chapter introduces Android application development on Intel hardware platforms. It
also covers installing the development environment tools for an emulator target machine
by showing each tool and application and how to download and install them.

Chapter 4
This chapter discusses how to set up and configure the application development software
on a host system and install USB drivers for a real Android device, so that you can build
the connection between the device and host system to allow testing and debugging of
applications. It also discusses how to use the Intel emulator and the steps required to
accelerate the emulator and work with it.

■ Introduction

xxiv

Chapter 5
This chapter covers the Android OS and helps build your understanding for subsequent
development of embedded applications.

Chapter 6
This chapter discusses customization in an embedded OS and then explains how to
customize Android, specifically.

Chapter 7
This chapter introduces the general GUI design method for desktop systems and then
shows how designing the UI and UX for embedded systems is different. It also discusses
general methods and principles of GUI design for Android applications.

Chapter 8
This chapter introduces Android interface design by having you create a simple application
called GuiExam. You learn about the state transitions of activities, the Context class, intents,
and the relationship between applications and activities. Finally, the chapter shows how to
use the layout as an interface by changing the layout file activity_main.xml, and how the
button, event, and inner event listeners work.

Chapter 9
In this chapter, you learn how to create an application with multiple activities. This
application is used to introduce the explicit and implicit trigger mechanisms of activities.
Next, you see an example of an application with parameters triggered by an activity in a
different application, which will help you understand of the exchange mechanism for the
activity’s parameters.

Chapter 10
This chapter introduces the basic framework of drawing in the view, how the drawing
framework responds to touchscreen input, and how to control the display of the view as
well as the multi-touch code framework. Examples illustrate the multi-touch programming
framework and keyboard-input responses. You also learn how to respond to hardware
buttons on Android devices, such as Volume +, Volume –, Power, Home, Menu, Back,
and Search. After that, you see the three different dialog boxes for Android, including the
activity dialog theme, specific dialog classes, and toast reminders. Finally, you learn how to
change application property settings.

■ Introduction

xxv

Chapter 11
This chapter introduces the basic principles of performance optimization, optimization
methods, and related tools for Android application development.

Chapter 12
This chapter introduces the Android NDK for C/C++ application development, along
with related optimization methods and optimization tools. It talks about how the Intel
mobile hardware and software provide a basis for low-power design and how the Intel
Atom processor provides hardware support for low power, which is a major feature of the
Android operating system.

Chapter 13
This chapter provides an overview of and introduction to low-power design, followed by a
discussion of Android power-control mechanisms. Finally, it covers how to achieve the goal
of low-power application design.

The hope is that this book will help developers to create amazing Android applications
that are optimized for the Intel platform. You can find further information on developing
applications for Intel architecture at the Intel Developer Zone web site
(https://software.intel.com/en-us/android).

https://software.intel.com/en-us/android

1

Chapter 1

Overview of Embedded
Application Development
for Intel Architecture

Embedded systems, an emerging area of computer technology, combine multiple
technologies, such as computers, semiconductors, microelectronics, and the Internet,
and as a result, are finding ever-increasing application in our modern world. With the
rapid development of computer and communications technologies and the growing use
of the Internet, embedded systems have brought immediate success and widespread
application in the post-PC era, especially as the core components of the Internet of
Things. They penetrate into every corner of modern life from the mundane, such as an
automated home thermostat, to industrial production, such as in robotic automation
in manufacturing. Embedded systems can be found in military and national defense,
healthcare, science, education, and commercial services, and from mobile phones, MP3
players, and PDAs to cars, planes, and missiles.

This chapter provides the concepts, structure, and other basic information about
embedded systems and lays a theoretical foundation for embedded application
development, of which application development for Android OS is becoming the top
interest of developers.

Introduction to Embedded Systems
Since the advent of the first computer, the ENIAC, in 1946, the computer manufacturing
process has gone from vacuum tubes, transistors, integrated circuits, and large-scale
integration (LSI), to very-large-scale integration (VLSI), resulting in computers that are more
compact, powerful, and energy efficient but less expensive (per unit of computing power).

After the advent of microprocessors in the 1970s, the computer-using world
witnessed revolutionary change. Microprocessors are the basis of microcomputers, and
personal computers (PCs) made them more affordable and practical, allowing many
private users to own them. At this stage, computers met a variety of needs: they were
sufficiently versatile to satisfy various demands such as computing, entertainment,
information sharing, and office automation. As the adoption of microcomputers was

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

2

occurring, more people wanted to embed them into specific systems to intelligently
control the environment. For example, microcomputers were used in machine tools in
factories. They were used to control signals and monitor the operating state through the
configuration of peripheral sensors. When microcomputers were embedded into such
environments, they were prototypes of embedded systems.

As the technology advanced, more industries demanded special computer systems.
As a result, the development direction and goals of specialized computer systems for
specific environments and general-purpose computer systems grew apart. The technical
requirement of general-purpose computer systems is fast, massive, and diversified
computing, whereas the goal of technical development is faster computing speed and
larger storage capacity. However, the technical requirement of embedded computer
systems is targeted more toward the intelligent control of targets, whereas the goal of
technical development is embedded performance, control, and reliability closely related
to the target system.

Embedded computing systems evolved in a completely different way. By
emphasizing the characteristics of a particular processor, they turned traditional
electronic systems into modern intelligent electronic systems. Figure 1-1 shows an
embedded computer processor, the Intel Atom N2600 processor, which is 2.2 × 2.2 cm,
alongside a penny.

Figure 1-1.  Comparison of an embedded computer chip to a US penny. This chip is an Intel
Atom processor

The emergence of embedded computer systems alongside general-purpose
computer systems is a milestone of modern computer technologies. The comparison of
general-purpose computers and embedded systems is shown in Table 1-1.

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

3

Today, embedded systems are an integral part of people’s lives due to their mobility.
As mentioned earlier, they are used everywhere in modern life. Smartphones are a great
example of embedded systems.

Mobile Phones
Mobile equipment, especially smartphones, is the fastest growing embedded sector
in recent years. Many new terms such as extensive embedded development and mobile
development have been derived from mobile software development. Mobile phones not
only are pervasive but also have powerful functions, affordable prices, and diversified
applications. In addition to basic telephone functions, they include, but are not limited to,
integrated PDAs, digital cameras, game consoles, music players, and wearables.

Consumer Electronics and Information Appliances
Consumer electronics and information appliances are additional big application sectors
for embedded systems. Devices that fall into this category include personal mobile
devices and home/entertainment/audiovisual devices.

Personal mobile devices usually include smart handsets such as PDAs, as well
as wireless Internet access equipment like mobile Internet devices (MIDs). In theory,
smartphones are also in this class; but due to their large number, they are listed as a
single sector.

Home/entertainment/audiovisual devices mainly include network television like
interactive television; digital imaging equipment such as digital cameras, digital photo
frames, and video players; digital audio and video devices such as MP3 players and
other portable audio players; and electronic entertainment devices such as handheld
game consoles, PS2 consoles, and so on. Tablet PCs (tablets), one of the newer types of
embedded devices, have become favorites of consumers since Apple released the iPad
in 2010.

The affordability of consumer electronics truly reflects the cost-effectiveness of
embedded system design.

Table 1-1.  Comparison of General-Purpose Computers and Embedded Systems

Item General-purpose
computer systems

Embedded systems

Hardware High-performance hardware,
large storage media

Diversified hardware,
single-processor solution

Software Large and sophisticated OS Streamlined, reliable, real-time
systems

Development High-speed, specialized
development team

Broad development sectors

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

4

Definition of an Embedded System
So far, you have a general understanding of embedded systems from the examples given.
But what is the embedded system? Currently, there are different concepts for embedded
system in the industry.

According to the Institution of Engineering and Technology (IET), embedded
systems are devices used to control, monitor, or assist the operation of equipment,
machinery, or plants. Smartphones, as an important sector of embedded systems, have
the following characteristics:

Limited Resources
The majority of embedded systems have extremely limited resources. On one hand,
the resources referred to here are hardware resources, including computing speed and
processing capability of the CPU, size of the available physical memory, and capacity of
the ROM or flash memory that stores code and data. On the other hand, resources are
also the functions provided by the software. Compared with general operating systems,
embedded operating systems have comparatively simple functions and structure.
Embedded systems’ resource constraints lead to designs that are sufficient, instead of
powerful.

Real-Time Performance
The real-time aspect of embedded systems means tasks must usually be executed in
a certain, predictable amount of time, and maximum execution time limits must
be ensured.

Real time is divided into soft real time and hard real time. Soft real time has less-
stringent requirements; even if the time limit cannot be met in some cases, it won’t
have a fatal impact on the system. For example, a media player system is soft real time.
The system is supposed to play 24 frames in one second, but it is also acceptable when the
system fails in some overloaded conditions. Hard real time has strict requirements.
The execution of tasks must be absolutely ensured in all situations; otherwise the
consequences will be catastrophic. For example, aircraft autopilot and navigation system
are hard real-time systems. They must accomplish a specific task within the certain time
limit; otherwise a major accident, collision, or crash could occur.

Many embedded systems (mobile phones, game consoles, and so on) do not need
real-time guarantees. But real time is the key for some embedded systems, such as
a steel-rolling system in a large steel mill and the real-time alarm system in a large
electrical substation. In these applications, the system must respond to a specific
signal at a given time.

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

5

Robustness
Some embedded systems require high reliability. Reliability is also known as robustness,
which is the ability to continue operating in abnormal or dangerous situations. For
example, when an embedded system encounters input errors, network overload, or
intentional attacks, the system must be robust enough that it doesn’t hang or crash, but
operates as usual.

Integrated Hardware and Software
General-purpose computers install software dynamically. The software can be installed
and uninstalled according to the users’ demands. But for embedded systems, software
and hardware are often integrated and sold as a package. This trend is shifting for devices
that are always connected via the Internet, such as smartphones and the Internet of
Things (wearables, for example). In these cases, original device manufacturers (ODMs)
can do regular software updates.

Embedded software is usually built into the hardware ROM and runs automatically
when the system is started. Under normal circumstances, the user cannot easily modify
or delete the software without the aid of special tools to ensure the integrity of the
embedded system. Due to the integration of hardware and software, embedded systems
usually do not have the intellectual property rights issues that general computer systems
have to address. For example, software piracy on consumer electronics such as mobile
phones and digital cameras is almost impossible due to the way the software is installed.
However, this feature also leads to slow upgrading of system software, because it is
difficult to do so.

Power Constraints
General-purpose computers are often directly connected to AC power. Therefore,
general-purpose computer hardware and software designers can assume that the power
supply is inexhaustible. But for embedded systems that cannot be directly connected
to AC power—for example, mobile phones, electric toys, and cameras—the only power
source is the battery. This means their power consumption is constrained, and so
energy efficiency is important. Cooling is another key factor. In general, more power
consumption within a certain time period causes more heat to be generated, which can
cause problems in some cases such as battery fires, malfunctioning components due to
overheating, and quick losses of electricity.

Difficult Development and Debugging
Compared to hardware and software development of general-purpose computers,
embedded system development has higher technical requirements. For example,
developers of embedded software often must understand the working principles and
mechanisms of the hardware and hardware layers during the development stage. To
debug the code, these developers often must use online simulations, ROM monitors, and
ROM programming tools, which don’t occur in the desktop development.

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

6

Typical Architecture of an Embedded System
Figure 1-2 shows a configuration diagram of a typical embedded system consisting of
two main parts: embedded hardware and embedded software. The embedded hardware
primarily includes the processor, memory, bus, peripheral devices, I/O ports, and various
controllers. The embedded software usually contains the embedded operating system
and various applications.

Embedded system

Application Embedded OS

Software

Hardware

Input Output

Embedded
microprocessor

Peripheral
device

Figure 1-2.  Basic architecture of an embedded system

Input and output are characteristics of any open system, and the embedded system
is no exception. In the embedded system, the hardware and software often collaborate
to deal with various input signals from the outside and output the processing results
through some form. The input signal may be an ergonomic device (such as a keyboard,
mouse, or touch screen) or the output of a sensor circuit in another embedded system.
The output may be in the form of sound, light, electricity, or another analog signal, or a
record or file for a database.

Typical Hardware Architecture
The basic computer system components—microprocessor, memory, and input and
output modules—are interconnected by a system bus in order for all the parts to
communicate and execute a program (see Figure 1-3).

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

7

In embedded systems, the microprocessor’s role and function are usually the same
as those of the CPU in a general-purpose computer: control computer operation, execute
instructions, and process data. In many cases, the microprocessor in an embedded
system is also called the CPU. Memory is used to store instructions and data. I/O modules
are responsible for the data exchange between the processor, memory, and external
devices. External devices include secondary storage devices (such as flash and hard disk),
communications equipment, and terminal equipment. The system bus provides data
and controls signal communication and transmission for the processor, memory, and I/O
modules.

There are basically two types of architecture that apply to embedded systems: Von
Neumann architecture and Harvard architecture.

Von Neumann Architecture
Von Neumann architecture (also known as Princeton architecture) was first proposed
by John von Neumann. The most important feature of this architecture is that the
software and data use the same memory: that is, “The program is data, and the data is the
program” (as shown in Figure 1-4).

Main memory

CPU (Microprocessor)

Register System bus

Execution unit

I/O modules

Buffer

External device 1 External device 2

Instruction

Instruction

Data

Data

Figure 1-3.  Computer architecture

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

8

In the Von Neumann architecture, an instruction and data share the same bus. In
this architecture, the transmission of information becomes the bottleneck of computer
performance and affects the speed of data processing; so, it is often called the Von
Neumann bottleneck. In reality, cache and branch-prediction technology can effectively
solve this issue.

Harvard Architecture
The Harvard architecture was first named after the Harvard Mark I computer. Compared
with the Von Neumann architecture, a Harvard architecture processor has two
outstanding features. First, instructions and data are stored in two separate memory
modules; instructions and data do not coexist in the same module. Second, two
independent buses are used as dedicated communication paths between the CPU and
memory; there is no connection between the two buses. The Harvard architecture is
shown in Figure 1-5.

Memory

Instruction
Instruction register

Controller

Data channel
Input Output

CPU

Instruction 0

Instruction 1

Instruction 2

Instruction 3

Data

Data 0

Data 1

Data 2

Data 3

Figure 1-4.  Von Neumann architecture

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

9

Because the Harvard architecture has separate program memory and data memory,
it can provide greater data-memory bandwidth, making it the ideal choice for digital
signal processing. Most systems designed for digital signal processing (DSP) adopt the
Harvard architecture. The Von Neumann architecture features simple hardware design
and flexible program and data storage and is usually the one chosen for general-purpose
and most embedded systems.

To efficiently perform memory reads/writes, the processor is not directly connected
to the main memory, but to the cache. Commonly, the only difference between the
Harvard architecture and the Von Neumann architecture is single or dual L1 cache. In the
Harvard architecture, the L1 cache is often divided into an instruction cache (I cache) and
a data cache (D cache), but the Von Neumann architecture has a single cache.

Microprocessor Architecture of Embedded Systems
The microprocessor is the core in embedded systems. By installing a microprocessor
into a special circuit board and adding the necessary peripheral circuits and expansion
circuits, a practical embedded system can be created. The microprocessor architecture
determines the instructions, supporting peripheral circuits, and expansion circuits. There
are a wide range of microprocessors: 4-, 8-, 16-, 32-, and 64-bit, with performance from
MHz to GHz, and ranging from a few pins to thousands of pins.

In general, there are two types of embedded microprocessor architecture: reduced
instruction set computer (RISC) and complex instruction set computer (CISC). The RISC
processor uses a small, limited, simple instruction set. Each instruction uses a standard
word length and has a short execution time, which facilitates the optimization of the
instruction pipeline. To compensate for the command functions, the CPU is often
equipped with a large number of general-purpose registers. The CISC processor features

Program memory

Instruction register

Controller

Data channel
Input Output Address

Data

Address

Instruction

CPU

Instruction 0

Instruction 1

Instruction 2

Instruction 3

Data memory

Data 0

Data 1

Data 2

Data 3

Figure 1-5.  Harvard architecture

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

10

a powerful instruction set and different instruction lengths, which facilitates the pipelined
execution of instructions. A comparison of RISC and CISC is given in Table 1-2.

Table 1-2.  Comparison of RISC and CISC

RISC CISC

Instruction system Simple and efficient instructions.
Realizes uncommon functions
through combined instructions.

Rich instruction system.
Performs specific
functions through special
instructions; handles
special tasks efficiently.

Memory operation Restricts the memory operation
and simplifies the controlling
function.

Has multiple memory
operation instructions and
performs direct operation.

Program Requires a large amount of
memory space for the assembler
and features complex programs
for special functions.

Has a relatively simple
assembler and features
easy and efficient
programming of scientific
computing and complex
operations.

Interruption Responds to an interrupt only at
the proper place in instruction
execution.

Responds to an
interruption only at the end
of execution.

CPU Features fewer unit circuits, small
size, and low power consumption.

Has feature-rich circuit
units, powerful functions, a
large area, and high power
consumption.

Design cycle Features a simple structure, a
compact layout, a short design
cycle, and easy application of new
technologies.

Features a complex
structure and long design
cycle.

Usage Features a simple structure,
regular instructions, simple
control, and easy learning and
application.

Features a complex
structure, powerful
functions, and easy
realization of special
functions.

Application scope Determines the instruction
system per specific areas, which
is more suitable for special
machines.

Becomes more suitable for
general-purpose machines.

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

11

RISC and CISC have distinct characteristics and advantages, but the boundaries
between RISC and CISC begin to blur in the microprocessor sector. Many traditional CISCs
absorb RISC advantages and use a RISC-like design. Intel x86 processors are typical of
them. They are considered CISC architecture. These processors translate x86 instructions
into RISC-like instructions through a decoder and comply with the RISC design and
operation to obtain the benefits of RISC architecture and improve internal operation
efficiency. A processor’s internal instruction execution is called micro operation, which is
denoted as micro-OP and abbreviated mu-op (or written m-op or mop). In contrast, the x86
instruction is called macro operation or macro-op. The entire mechanism is shown
in Figure 1-6.

Macro-ops

Processor

Decoder
Micro-ops

(Internal instruction)(x86 instruction)
Execution unit

Execution

result

Figure 1-6.  Micro and macro operations of an Intel processor

Normally, a macro operation can be decoded into one or more micro operations to
execute, but sometimes a decoder can combine several macro operations to generate a
micro operation to execute. This process is known as x86 instruction fusion (macro-ops
fusion). For example, the processor can combine the x86 CMP (Compare) instruction and
the x86 JMP (Jump) instruction to produce a single micro operation—the compare and
jump instruction. This combination has obvious benefits: there are fewer instructions,
which indirectly enhances the performance of the processor execution. And the fusion
enables the processor to maximize the parallelism between the instructions and
consequently improve the implementation efficiency of the processor.

Currently, microprocessors used in most embedded systems have five architectures:
RISC, CISC, MIPS, PowerPC, and SuperH. The details follow.

RISC: Advanced RISC Machines (ARM) Architecture
Advanced RISC Machines (ARM) is a generic term for a type of RISC microprocessor.
ARM is designed by the British company ARM Holdings. The company specializes
in the design and development of RISC chips. As a supplier of intellectual property,
the company itself does not manufacture its chips, but licenses its designs to other
partners to produce them. The world’s major semiconductor manufacturers buy ARM
microprocessor cores designed by ARM, add the appropriate external circuits as per
different application sectors, and create their own ARM microprocessor chips.

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

12

CISC: x86 Architecture
The x86 series CPUs are the most popular CPUs for desktop PCs. The x86 architecture is
considered CISC. The instruction set was specially developed by Intel for its first 16-bit
CPU (i8086), which was adopted by IBM when it launched the world’s first PC in 1981.
As Intel launched the i80286, i80386, i80486, Pentium, and other products, it continued
to use the x86 instruction set to ensure that legacy applications could be run and protect
and integrate diversified software resources. Therefore, those CPUs are called the x86
architecture.

In addition to Intel, AMD, Cyrix, and other manufacturers have also produced CPUs
based on the x86 instruction set. Those CPUs can run a variety of software developed for
Intel processors, so they are called x86-compatible products in the industry and belong
to the x86 architecture. Intel specifically launched the Intel Atom x86 32-bit processor for
embedded systems. Chapter 2 describes and presents the benefits of the 64-bit Intel Atom
processor, code-named Bay Trail.

Note■■  IA -32, IA-64, Intel 64, IA-32, IA-64, and Intel64 are Intel’s architecture types,
which apply to its processors as well as compatible CPUs.

IA-32 (Intel Architecture-32) means Intel’s 32-bit architecture processor. The
number 32 is the working width of a processor; it can process 32 bits of binary data at
a time. If other processors (for example, the AMD 32-bit CPU) are compatible with this
architecture, they belong to the IA-32 architecture.

IA-64 (Intel Architecture-64) is Intel’s 64-bit architecture. With the 64-bit working
width, its microarchitecture is completely different from the x86 architecture. IA-64 is not
compatible with x86 software, so the x86 software must use various forms of emulation to
run on IA-64, often leading to low efficiency. The architecture is created by HP and
co-developed by HP and Intel. Intel Itanium is a typical IA-64 processor.

Intel64 is a 64-bit x86 architecture with a 64-bit working width. After it was
introduced by AMD, Intel launched a compatible processor named EM64T, officially
renamed Intel64. Almost all Intel CPUs are now Intel64: Xeon, Core, Celeron, Pentium,
and Atom. Contrary to the IA-64 architecture, it can also run x86 instructions.

MIPS Architecture
Microprocessor without Interlocked Piped Stages (MIPS) is also a RISC processor. Its
mechanism is to make full use of the software to avoid data issues in the pipeline. It was
first developed by a research team led by Professor John Hennessy of Stanford University
in the early 1980s and later was commercialized by MIPS Technologies.

Like ARM, MIPS Technologies provides MIPS microprocessor cores to
semiconductor companies through intelligence property (IP) cores and allows them
to further develop embedded microprocessors in the RISC architecture. The core
technology is a multiple-issue capability: split the idle processing units in the processor to
virtualize as another core and improve the utilization of processing units.

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

13

PowerPC Architecture
PowerPC is a CPU in the RISC architecture. It derives from the POWER architecture,
and its basic design comes from the IBM PowerPC 601 microprocessor Performance
Optimized with Enhanced RISC (POWER). In the 1990s, IBM, Apple, and Motorola
successfully developed the PowerPC chip and created a PowerPC-based multiprocessor
computer. The PowerPC architecture features scalability, convenience, flexibility, and
openness: it defines an instruction set architecture (ISA), allows anyone to design
and manufacture PowerPC-compatible processors, and freely uses the source code of
software modules developed for PowerPC. PowerPC has a broad range of applications
from mobile phones to game consoles, with wide application in the communications
and networking sectors such as switches, routers, and so on. The Apple Mac series used
PowerPC processors for a decade until Apple switched to the x86 architecture.

SuperH
SuperH (SH) is a highly cost-effective, compact, embedded RISC processor. The
SH architecture was first developed by Hitachi and was owned by Hitachi and ST
Microelectronics. Now it has been taken over by Renesas. SuperH includes the SH-1, SH-
2, SH-DSP, SH-3, SH-3-DSP, SH-4, SH-5, and SH-X series and is widely used in printers,
faxes, multimedia terminals, TV game consoles, set-top boxes, CD-ROM, household
appliances, and other embedded systems.

Typical Structure of an Embedded System
The typical hardware structure of an embedded system is shown in Figure 1-7.
A microprocessor is the center of the system, with storage devices, input and output
peripherals, a power supply, human-computer interaction devices, and other necessary
supporting facilities. In an actual embedded system, the hardware is generally tailor-
made for the application. To save cost, the peripherals may be quite compact, and only
the basic peripheral circuits are retained for the processor and applications.

D/A, A/D Embedded
microprocessor

Universal
interface

I/O ROM

Power supply RAM

Human-computer interaction interface

Figure 1-7.  Typical hardware structure of an embedded system

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

14

With the development of integrated circuit design and manufacturing technology,
integrated circuit design has gone from transistor integration, to logic-gate integration,
to the current IP integration or system on chip (SoC). The SoC design technology
integrates popular circuit modules on a single chip. SoC usually contains a large number
of peripheral function modules such as microprocessor/microcontroller, memory, USB
controller, universal asynchronous receiver/transmitter (UART) controller, A/D and D/A
conversion, I2C, and Serial Peripheral Interface (SPI). Figure 1-8 is an example structure
of SoC-based hardware for embedded systems.

MicroprocessorJTAG

SoC

Storage device

Peripheral device

Mouse/keyboard

LCD/touch screen

Network device

Sensor

DA/AD conversion

Flash

ROM

SDRAM

Processor core

MMU Cache

Bus control/
arbitration

USB controller

Power management

Interruption
controller

Memory controllerLCD controller

Clock generator

UART

USB device

SPI

12C

Real-time clock

Timer/PWM

Bridge and DMA

A
H
B
b
u
s

A
H
B
b
u
s

Figure 1-8.  Example of an SoC-based hardware system structure

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

15

A system on a programmable chip (SoPC) advocates that an electronic system be
integrated onto a silicon chip with programmable logic technology. Therefore, SoPC
is a special type of SoC, in that the main logic function of the entire system is achieved
by a single chip. Because it is a programmable system, its functions can be changed via
software. It can be said that the SoPC combines the benefits of the SoC, programmable
logic device (PLD), and field-programmable gate array (FPGA).

One of the development directions of embedded system hardware is centered
on SoC/SoPC, where a hardware application system through the minimum external
components and connectors is built to meet the functional requirements of applications.

Typical Software Architecture
Like embedded hardware, embedded software architecture is highly flexible. Simple
embedded software (such as electronic toys, calculators, and so on) may be only a few
thousand lines of code and perform simple input and output functions. On the other
hand, complex embedded systems (such as smartphones, robots, and so on) need
more complex software architecture, similar to desktop computers and servers. Simple
embedded software is suitable for low-performance chip hardware, has very limited
functionality, and requires tedious secondary development. Complex embedded systems
provide more powerful functions, need more convenient interfaces for users, and require
the support of more powerful hardware. With the improvement of hardware integration
and processing capabilities, the hardware bottleneck has gradually loosened and even
broken, so embedded system software now tends to be fully functional and diversified.
Typical, complete embedded system software has the architecture shown in Figure 1-9.

Application Application layer

System service layer

OS layer

Hardware abstraction layer

File system

Bootloader Board support
packages

Device drivers

Hardware

Task managementGUI

OS

Figure 1-9.  Software architecture of an embedded system

An embedded software system is composed of four layers, from bottom to top:

1.	 Hardware abstraction layer

2.	 Operating system layer

3.	 System service layer

4.	 Application layer

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

16

Hardware Abstraction Layer
The hardware abstraction layer (HAL), as a part of the OS, is a software abstraction layer
between the embedded system hardware and OS. In general, the HAL includes the
bootloader, board support package (BSP), device drivers, and other components. Similar
to the BIOS in PCs, the bootloader is a program that runs before the OS kernel executes. It
completes the initialization of the hardware, establishes the image of memory space, and
consequently enables the hardware and software environment to reach an appropriate
state for the final scheduling of the system kernel. From the perspective of end users,
the bootloader is used to load the OS. The BSP achieves the abstraction of the hardware
operation, empowering the OS to be independent from the hardware and enabling the OS
to run on different hardware architectures.

A unique BSP must be created for each OS. For example, Wind River VxWorks BSP
and Microsoft Windows CE BSP have similar functions for an embedded hardware
development board, but they feature completely different architectures and interfaces.
The concept of a BSP is rarely mentioned when various desktop Windows or Linux
operating systems are discussed, because all PCs adopt the unified Intel architecture;
the OS may be easily migrated to diversified Intel architecture-based devices without
any changes. The BSP is a unique software module in embedded systems. In addition,
device drivers enable the OS to shield the differences between hardware components and
peripherals and provide a unified software interface for operating hardware.

Operating System Layer
An OS is a software system for uniformly managing hardware resources. It abstracts
many hardware functions and provides them to applications in the form of services.
Scheduling, files synchronization, and networking are the most common services
provided by the OS. Operating systems are widely used in most desktop and embedded
systems. In embedded systems, the OS has its own unique characteristics: stability,
customization, modularity, and real-time processing.

The common embedded OS contains embedded Linux, Windows CE, VxWorks,
MeeGo, Tizen, Android, Ubuntu, and some operating systems used in specific fields.
Embedded Linux is a general Linux kernel tailored, customized, and modified for mobile
and embedded products. Windows CE is a customizable embedded OS that Microsoft
launched for a variety of embedded systems and products. VxWorks, an embedded real-
time operating system (RTOS) from Wind River, supports PowerPC, 68K, CPU32, SPARC,
I960, x86, ARM, and MIPS. With outstanding real-time and reliable features, it is widely
used in communications, military, aerospace, aviation, and other areas that require
highly sophisticated, real-time technologies. In particular, VxWorks is used in the Mars
probes by NASA.

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

17

System Service Layer
The system service layer is the service interface that the OS provides to the application.
Using this interface, applications can access various services provided by the OS. To some
extent, it plays the role of a link between the OS and applications. This layer generally
includes the file system, graphical user interface (GUI), task manager, and so on. A GUI
library provides the application with various GUI programming interfaces, which enables
the application to interact with users through application windows, menus, dialog boxes,
and other graphic forms instead of a command line.

Application Layer
The application, located at the top level of the software hierarchy, implements the system
functionality and business logic. From a functional perspective, all levels of modules in the
application aim to perform system functions. From a system perspective, each application
is a separate OS process. Typically, applications run in the less-privileged processor mode
and use the API system schedule provided by the OS to interact with the OS.

Special Difficulties of Embedded Application
Development
As mentioned earlier in this chapter, embedded systems are generally resource
constrained, real time, and robust. These characteristics make application development
on embedded systems more difficult than development on general-purpose computers.

The resource-constrained nature of embedded systems means they have fewer
resources, lower CPU operation speed and processing, and less RAM than general-
purpose systems. Embedded systems store code and data in ROM or flash instead of on
hard drives and have less capacity than hard disks. Most dedicated-purpose embedded
systems, especially embedded operating systems, also feature very simple functions
compared to general-purpose computers. These resource constraints require developers
of embedded hardware to select more rational configurations for chips and peripherals.
They must consider resource utilization more carefully than they would when developing
for the desktop environment.

The embedded interaction poses special requirements for application development.
General desktop computers use the GUI windows, icons, menus, and pointers (WIMP),
including common interactive elements such as buttons, toolbars, and dialog boxes.
WIMP has strict requirements for interactive hardware; for example, it requires the
display to be a certain resolution and size, and the mouse or similar devices must support
the pointing operation. However, the interactive hardware of many embedded systems
does not meet WIMP’s requirements. For example, an MP3 player’s display is too small,
with inadequate resolution; ABS has no display; and most embedded systems do not have
a mouse or touch screen to complete the pointing operation (for example, basic mobile
phones do not have touch screens). Because the interaction for embedded applications is
very special, we cannot completely adopt the WIMP interface.

Chapter 1 ■ Overview of Embedded Application Development for Intel Architecture

18

The special user experience and reliability features of embedded systems add to the
difficulty of the application development. For example, users expect the startup time for
embedded systems to be much shorter than for general-purpose computers. Compared
with general-purpose computer systems, it is also more difficult for embedded systems
to ensure reliability. When a task problem occurs, embedded systems do not have the
Task Manager, Kill command, or similar tools to terminate the faulty process. Obviously,
embedded systems have less tolerance for errors than general systems.

Embedded systems generally do not support native code development. Software
development on general-purpose computers usually has native development, compiling,
and operation. It is not suitable for embedded systems because they do not have enough
resources to run development and debugging tools. Therefore, embedded system
software usually uses cross-compile development, which generates execution code on
another hardware platform.

The cross-compile development environment is built on the host, whereas the
embedded system is called the target machine. The cross-compile, assemble, and link
tools on the host create the executable binary code, which is not executable on the host:
only on the target machine. The executable file is downloaded to the target machine. The
development environment on the host doesn’t completely reflect the environment on
the target machine, so debugging and fault diagnosis of the target machine can be time
consuming. The nonnative development model of embedded systems leads to certain
challenges for application development.

Summary
This chapter discussed principles for embedded systems, the architecture of SoC, and
some pros and cons of platforms such as ARM and x86/x64. Application developers for
PCs often ignore the hardware and focus completely on their software, because the two
entities are quite independent. However, developers cannot ignore embedded system
hardware. Due to the unique features of SoC, constrained resources, and integration
of hardware and software, developers need to understand the working principles and
mechanisms of the hardware and hardware layers in order to design efficient applications
for the SoC (for example, ARM and x86 have different hardware). The next chapter
presents a detailed discussion on the Intel embedded hardware platform including the
Intel Atom processor, the Intel embedded chipset, SoC, and the reference platform.

19

Chapter 2

Intel Embedded Hardware
Platform

Application developers on general-purpose computers can often ignore the hardware and
focus completely on their software because the two entities have become quite independent.
However, developers cannot ignore embedded system hardware. Due to the embedded
system’s specialized features, constrained resources, and integration of hardware and
software, you need to understand the working principles and mechanisms of the hardware
and hardware layers in order to design efficient applications for the embedded environment.

As the world’s leader in silicon innovation, Intel has been designing high-performance
processors and related hardware for general-purpose computers and embedded systems.
This chapter focuses on Intel technologies for embedded systems, paving the way for the
subsequent application development.

Intel Atom Processor
Intel specifically designed Intel Atom processors for embedded and mobile devices
starting in 2008. As the smallest and lowest-power processor, it uses an entirely new
microarchitecture for embedded devices to reduce power consumption and yet maintain
instruction-set compatibility with Intel Core 2 processors.

The Intel Atom processor is the current Intel-based architecture for embedded
systems. It is compatible with Intel architecture instruction software. Compared to Intel
processors for desktop systems, its size, power consumption, and other features are more
suitable for embedded applications.

Today’s generation of Intel Atom processors delivers energy-efficient performance
to power a range of computing devices. Thin and light smartphones and tablets.
Intelligent cars. Innovative healthcare devices. Smart city infrastructure monitoring.
High-performance microservers for the cloud. These are just some of the ways Intel Atom
processor innovation drives higher performance at ultra-low power—connecting people,
enriching lives, and fueling the Internet of Things.

The Intel Atom processor E3800 product family (formerly Bay Trail) offers a range
of multi-core system-on-chip (SoC) options. Based on industry-leading 22 nm process
technology, these SoCs integrate the Intel architecture core, graphics, memory, and I/O
interfaces into a one-chip solution that delivers outstanding compute, graphics, and
media performance.

Chapter 2 ■ Intel Embedded Hardware Platform

20

Intel Atom Processor Architecture
Until the Intel Atom Clover Trail platform, the Intel Atom processor is based on a
microarchitecture code-named Saltwell that applies the two-issue wide and in-order
pipeline; it also supports Intel Hyper-Threading Technology. The microarchitecture is
shown in Figure 2-1.

Figure 2-1.  Intel Atom architecture

The front-end area is an optimized pipeline, including

32 KB, 8-way set-associative, L1 Cache•	

Branch-prediction unit and instant translation look-aside •	
buffer (ITLB)

Two instruction decoders, each of which decodes two instructions •	
at most per cycle

Chapter 2 ■ Intel Embedded Hardware Platform

21

In each cycle, the front end may transmit two instructions at most to the instruction
queue for scheduling. Also in each cycle, the scheduler may transmit two instructions
at most to the integer or SIMD/floating-point execution area through the two-way port.
(Single instruction, multiple data [SIMD]) is introduced in the next section.)

The ports for the integer or SIMD/floating-point areas have the following binding
features:

Integer execution area

1.	 Port 0: Arithmetic logic unit 0 (ALU0), shift/rotate unit, and
load/store unit.

2.	 Port 1: Arithmetic logic unit 1, bit-processing unit, jump unit,
and LEA.

3.	 Effective waiting time of “load-to-use” in cycle 0.

SIMD/floating-point execution area

4.	 Port 0: SIMD arithmetic logic unit, shuffle unit, SIMD/
floating-point multiplication unit, and division unit.

5.	 Port 1: SIMD arithmetic logic unit and floating-point adder.

6.	 In the SIMD/floating-point execution areas, the SIMD
arithmetic logic unit and shuffling unit are 128 bits wide,
but the 64-bit integer SIMD calculation is limited to port 0.

7.	 The floating-point adder can perform Add packed
single-precision (ADDPS)/ Subtract packed single-precision
(SUBPS) in the 128-bit data path, whereas other floating-point
addition operations are performed in the 64-bit data path.

8.	 The security-instruction-recognition algorithm of
floating-point/SIMD operations can directly execute new,
shorter integer arithmetic instructions without waiting for
old floating-point/SIMD instructions (which may cause some
abnormality).

9.	 The floating-point multiplication pipeline also supports the
storage load.

10.	 The floating-point addition instruction with load/store
reference is distributed through two ports.

The instruction queue conducts the static partition in order to schedule the
execution instructions from the two threads. The scheduler can select an instruction from
two threads and assign them to port 0 or port 1 for the execution. The hardware selects
the pre-fetch/decode/dispatch on the two threads and performs the next execution based
on the readiness of each thread.

Chapter 2 ■ Intel Embedded Hardware Platform

22

Silvermont: Next-Generation Microarchitecture
Intel’s Silvermont microarchitecture was designed and co-optimized with Intel’s 22 nm
SoC process using 3D tri-gate transistors. By taking advantage of this industry-leading
technology, Silvermont microarchitecture includes

A new out-of-order execution engine that enables best-in-class, •	
single-threaded performance.

A new multi-core and system fabric architecture scalable up •	
to eight cores and enabling greater performance for higher
bandwidth, lower latency, and more efficient out-of-order
support for a more balanced and responsive system.

New Intel architecture instructions and technologies bringing •	
enhanced performance, virtualization, and security management
capabilities to support a wide range of products. These
instructions build on Intel’s existing support for 64-bit and the
breadth of the Intel architecture software installed base.

Enhanced power-management capabilities including a new •	
intelligent burst technology, low-power C states, and a wider
dynamic range of operation taking advantage of Intel’s 3D
transistors. Intel Burst Technology 2.0 support for single- and
multi-core offers great responsiveness scaled for power efficiency.

The microarchitecture is shown in Figure 2-2.

Chapter 2 ■ Intel Embedded Hardware Platform

23

Figure 2-2.  Silvermont microarchitecture

Chapter 2 ■ Intel Embedded Hardware Platform

24

Silvermont provides the following benefits and features:

•	 High performance without sacrificing power efficiency: Out-of-
order execution pipeline, macro-operation execution pipeline
with improved instruction latencies and throughput, and smart
pipeline resource management

•	 Power and performance: Efficient branch processing, accurate
branch predictors, and fast-recover pipeline

•	 Faster and more efficient access to memory: Low latency,
high-bandwidth caches, out-of-order memory transactions, and
multiple advanced hardware prefetchers, balanced-core, and
memory subsystems

Features of the Intel Atom Processor
Intel Atom processors have features for mobile Internet device (MID), netbook, nettop,
and embedded systems, as outlined in this section.

Small Form Factor
The latest Intel Atom processor Z3740 (code name Bay Trail) has a package size of
only 17 mm × 17 mm and is a multi-core SoC that integrates the next generation Intel
processor core, graphics, memory, and I/O interfaces into one solution. It is also Intel’s
first SoC that is based on the 22 nm processor technology (see Figure 2-3).

Figure 2-3.  Intel Atom processor Z3xxx Series

Chapter 2 ■ Intel Embedded Hardware Platform

25

Low Power Consumption
As mentioned earlier, embedded systems are power constrained. The Intel Atom
processor features energy-saving technologies such as Enhanced Intel SpeedStep
Technology (EIST),1 low thermal design power, dynamic cache sizing, and deeper sleep.
Devices with Intel Atom processors feature very limited heat dissipation, much less than
common “full power” devices.

It should be noted that different Intel Atom processor series have different low-power
processing strategies. For example, the N series does not support EIST, nor does it conduct
automatic frequency reduction in standby state.

Dynamic Low-Voltage Technology for Mobile and Embedded
Devices
Many mobile and embedded systems are powered by battery; so the voltage doesn’t
have the stability of systems with AC power supplies, for which the voltage maintains a
certain range. Intel Atom processors also have adopted the technology to dynamically
adjust operating voltage per processor activity states and support the Intel Mobile Voltage
Positioning (IMVP)-6 standard for mobile and embedded systems.

High Performance
The Intel Atom processor is an embedded microprocessor, delivers the performance
of traditional general-purpose processors, and provides a performance similar to Intel
Pentium 4 processors. The high performance is mainly reflected in the following aspects:

Quad core supports four-core / four-thread out-of-order •	
processing and 2 MB of L2 cache, which makes the device run
faster and more responsively by allowing multiple apps and
services to run at the same time.

Intel Burst Technology 2.0 lets the system tap extra cores when •	
necessary, which allows CPU-intensive applications to run faster
and more smoothly

Performance improved by using the 22 nm processor technology:•	

Maximizes current flow during ON state for better •	
performance

Minimizes leaks during OFF state, leading to more energy •	
efficiency

1�See the Processor Spec Finder at http://ark.intel.com, or contact your Intel representative for
more information.

http://ark.intel.com

Chapter 2 ■ Intel Embedded Hardware Platform

26

64-bit OS capable•	

Supports dynamic power sharing between the CPU and IP •	
(graphics), allowing for higher peak frequencies

Total SoC energy budget is dynamically assigned according to •	
application needs

Supports fine-grained low-power states, which provides better •	
power management and leads to longer battery life

Supports cache retention during deep sleep states, leading to •	
lower idle power and shorter wakeup times

Offers more than 10 hours of active battery life•	

SSE3 Instruction Set Enhances the Processing Power
of Digital Media

Software applications like CAD tools, 3D/2D modeling, video editing, digital music,
digital photography, and games all require massive floating-point parallel computing.
They are called floating-point-intensive applications. For example, video processing often
requires multiplication of two data sets of n length, so the common arithmetic instruction
has to operate n times (n cycle). To that end, the SIMD architecture was created.
Compared with traditional processors, SIMD processors have more arithmetic units,
which are controlled by a controller, while conducting the same data operation in each
data set (also known as vector data) to achieve spatial parallelism. In the example shown
in Figure 2-4, if the CPU uses the eight processing elements, the n/8 SIMD instructions
can complete the calculation so the operation time is shortened to 1/8 of the original
time, and the speed is increased 8 times. The essence of SIMD is to transfer from one data
process to a data set process.

Figure 2-4.  Realization procedure of SIMD instructions

Chapter 2 ■ Intel Embedded Hardware Platform

27

Streaming SIMD Extensions (SSE) in Intel processors accelerate the streaming
floating-point calculations and greatly improve the performance in floating-point-
intensive applications. Intel Atom processors support SSE3 and SSSE3 (Supplemental
Streaming SIMD Extension 3; Supplement SSE 3). The version history of the SSE
instruction set is shown in Table 2-1.

Table 2-1.  Development History of the SSE Instruction Set

Version SSE SSE2 SSE3 SSSE3 SSE4 AVX

Date 1999 2000 2004 2006 2007 2008

Instructions 70 144 13 32 47 256

Enhancement Single-
precision
vector

Flow •	
opera-
tion

Dual-
precision
vector

128-bit •	
vector
integer

Complex
arithmetic

Decoding Video
acceleration

Graphics •	
module

Coprocessor •	
acceleration

SSE
extension
float-point
operations

Intel Virtualization Technology (Intel VT)

Intel Atom processors support Intel VT, which is a kind of CPU virtualization technology.
Intel VT allows one CPU to simulate the parallel operation of multiple CPUs, lets a
platform run multiple operating systems, and enables applications to run independently
in separate spaces, thereby increasing application efficiency.

Intel Hyper-Threading Technology (Intel HT Technology) and
Multi-Core Technologies

The new Intel Z3xxx Atom processors support Intel HT Technology, which produces an
overhead of less than 10% additional power consumption. Meanwhile, the N series adopted
the dual-core architecture. Intel HT Technology and multi-core technologies enable
processors to execute two instruction threads in parallel and provide thread-level concurrent
applications to improve performance and system response in today’s multitasking
environment. Intel HT Technology and multi-core technologies found in Intel Atom
processors create higher execution efficiency than a single-thread microprocessor.

Chapter 2 ■ Intel Embedded Hardware Platform

28

Other Technologies Used by the Intel Atom Processor
In addition, Intel Atom processors use a few other technologies that often go unnoticed
but that increase processor performance:

Smart cache: Intel Atom processors use the more intelligent,
more efficient cache and bus technologies to effectively
support data sharing and provide enhanced performance,
response, and energy-saving capability.

Power-optimized FSB: Intel Atom processors support up to
1910 MHz frequency (E3845) to meet the needs of demanding
applications. In addition, the Intel architecture instruction
(macro-ops) fusion technology allows faster execution of
instructions in the low-power state.

Enhanced data pre-fetch technology: This technology can
effectively predict which data will specifically be used and
automatically load it into the L2 cache in advance.

Burst mode: Burst mode, as enhanced hardware technology,
is used in Intel Atom processors after the Z5xx series. It
automatically sets the processor performance level based on
system load without compromising the thermal design so that
the user can select processor performance on demand.

Low cost: To meet the needs of embedded systems, Intel
Atom processors use low-cost design strategies, one of which
is applying the in-order execution of Intel architecture.
Compared with the out-of-order execution of general
desktop processors, the in-order execution design in Intel
Atom processors can reduce the number of transistors and
manufacturing costs, but results in lower performance. To
compensate for the lower performance involved, Intel Atom
processors use the higher operating frequency.

In addition to these features, Intel Atom processors have some unique benefits
compared to other embedded processors. Because they are based on Intel architecture,
Intel Atom processors have a huge number of compatible Intel architecture-based
software applications. Many of these applications can be easily and seamlessly migrated
to Intel Atom processor-based devices.

In general, low-power consumption, small size, low cost, low thermal coefficient,
and high performance enable Intel Atom processors to be more suitable for embedded
system applications. Due to the low-power, lead-free, halogen-free manufacturing
process, Intel Atom processors are also very eco-friendly.

Chapter 2 ■ Intel Embedded Hardware Platform

29

Intel Embedded Chipset
A chipset, one of the core components of computer motherboards, maximizes the integration
of complex circuits and components within a few chips. The chipset determines the
functions, level, and grade of the motherboard. If it fails to work correctly with the CPU, the
chipset seriously affects overall performance and can even cause hardware failure. If the
CPU or microprocessor is the brain, the chipset is the nervous system of the device.

A typical example of a computer system structure is shown in Figure 2-5. The CPU
is connected to the main memory RAM, graphics, and other components through FSB,
which has high frequency. The network adapter and other components are connected
to a medium-speed bus (PCI bus with much lower frequency than FSB). North Bridge
(the host bridge chip) realizes the connection of high-speed FSB and the medium-speed
bus. Low-speed devices, such as COM, LPT, and USB, as well as the lower-speed ISA bus,
are connected to the low-speed bus through South Bridge (the standard bus bridge chip).

Figure 2-5.  Example of computer system architecture

Variations on this architecture include, for example, computers with no ISA bus.
North Bridge and South Bridge are integrated in some Intel Atom series of processors,
as specified in subsequent sections. The system architecture in Figure 2-5 can help you
understand the main components of the chipset and their functions.

Chapter 2 ■ Intel Embedded Hardware Platform

30

Tip■■   PCI and ISA The two types of PC bus standards are PCI and ISA. Peripheral
Component Interconnect (PCI) is the standard for the local bus and was launched by Intel in
1992. PCI buses are either 32-bit or 64-bit, and 33 MHz or 66 MHz in speed. A 32-bit, 33
MHz PCI bus has a bandwidth of 32/8 × 33 MHz = 132 MB/s. Industry Standard Architecture
(ISA) is based on the IBM PC bus and is the bus standard developed in the early 1980s. The
bus has a width of 8/16 bits and an operating frequency of 8 MHz, which are far below PCI.
Most new computers do not support the ISA bus.

The main chips in the chipset and their functions are as follows:

North Bridge chip: Determines the type of CPU, clock speed,
bus frequency of the motherboard system, type of memory,
maximum capacity, performance, graphics slot specifications
(ISA/PCI/AGP slot), ECC error correction support, and so on.
North Bridge plays a leading role in the chipset, so it is also
known as the host bridge.

South Bridge chip: The South Bridge chip provides the support
for the keyboard controller (KBC), real-time clock controller
(RTC), Universal Serial Bus (USB), Ultra DMA/33 (66) EIDE data
transmission mode, advanced energy management (ACPI), and
so on. It determines the type and quantity of expansion slots
and expansion interface (such as USB2.0/1.1, IEEE1394, serial
port, parallel port, and VGA output interface of a notebook).
South Bridge is also known as the standard bus bridge.

Other chips: Some chipsets combine a 3D acceleration display
(integrated graphics chip), AC’97 audio decoding, and other
functions, and determine the display performance and audio
playback performance of the computer system.

The latest Intel Atom processor includes a seventh-generation Intel GPU with burst
technology to provide an improved graphics and media experience. The new processor
supports high-resolution displays up to 2,560 × 1,600 at 60 Hz and supports Intel Wireless
(Intel WiDi) technology through Miracast. Seamless video playback is supported by
high-performance, low-power hardware acceleration of media encode and decode.

Intel System on Chip (SoC)
Unlike desktop devices, the processor, chipset, graphics, motherboard, and other
components cannot be independently manufactured, configured, and then assembled in
embedded systems due to constraints of volume and space; otherwise, they would be too
large, consume too much power, have impractically complex designs, and have unstable
layouts similar to desktops. Therefore, most current embedded systems adopt SoC
designs. By integrating peripheral function modules of microprocessor/microcontroller,

Chapter 2 ■ Intel Embedded Hardware Platform

31

memory, bus, frequency generator, and A/D or D/A conversion on a single chip,
SoC provides the benefits of small size, energy efficiency, high reliability, and simple
peripheral circuit design. Intel has gradually embarked on SoC as the development
direction for Intel Atom processors. A description of the recent designs follows.

Medfield
Medfield, released in 2012, is Intel’s first SoC processor for smartphones. The core of
the Medfield platform is the SoC chip (code-named Penwell). In fact, the previous
Moorestown platform requires a two-chip solution to achieve the same functionality. As a
true SoC, Medfield is different from the single-chip layout of Intel Atom processors but is
equivalent to previous chipsets. As a result, it becomes a more compact, energy-efficient
processor. The Medfield SoC processor adopts package on package (POP), and the entire
chip area is about 12 × 12 mm. The internal architecture of Medfield SoC is shown in
Figure 2-6.

Figure 2-6.  Internal architecture of Penwell SoC

The first Medfield SoC, built for smartphones, has an Intel Atom processor Z2460.
The plan is to use the latest Intel Atom processors in future Medfield SoCs. For example,
the plan for the second Medfield SoC is to adopt the Intel Atom processor Z2610 and has
applications for mainstream tablets. Medfield SoC uses a 32 nm processor; integrates a
single-core Intel Atom processor, 512 KB L2 cache, PowerVR SGX540 GPU by Imagination
Technologies, and dual-channel LPDDR2 memory controller; and supports 30 fps 1080p
video decoding. The highest frequency of Intel Atom processors is limited to 1.6 GHz.

Chapter 2 ■ Intel Embedded Hardware Platform

32

The Z2460 may reduce the minimum frequency to 100 MHz, features 1.3 GHz standard
operating frequency, and only operates in 1.6 GHz during acceleration mode. As the
second Medfield SoC core, the Z2610 maintains operation at 1.6 GHz clock speed.

The Intel Atom processor Z2460 consumes 50 mW of power at 100 MHz clock
speed (lowest frequency); 175 mW at 600 MHz clock speed; 500 mW at 1.3 GHz clock
speed (standard frequency); and 750 mW at 1.6 GHz clock speed (highest frequency).
Compared with desktop processors, the Z2460 has very low power consumption.

Today, the Android OS completely supports Medfield. Intel works with Google to
develop software for compiling applications for ARM and Intel architectures.

Bay Trail
Bay Trail, the new Intel multi-core SoC built on the Silvermont architecture, is from Intel’s
powerful processor family for mobile and desktop devices. Bay Trail is manufactured on
Intel’s industry-leading tri-gate 22 nm process technology.

Bay Trail is a multi-core SoC that integrates the next-generation Intel processor core,
graphics, memory, and I/O interfaces into one solution. It is also Intel’s first SoC that is
based on the 22 nm processor technology. This multi-core Intel Atom processor provides
outstanding computing power and is more power efficient compared to its predecessors.
In addition to the latest Intel architecture core technology, it provides extensive platform
features such as graphics, connectivity, security, and sensors, which enable developers to
create software with unlimited user experiences.

64-Bit Android OS on Intel Architecture
On a generic level, there are not many significant differences between 64-bit and 32-bit
processors. But compute-intensive applications (later, the chapter discusses software
workloads that run faster on 64-bit processors) can see significant improvements when
moved from 32-bit to 64-bit. In almost all cases, 64-bit applications run faster in a 64-bit
environment than 32-bit applications in a 64-bit environment, which is a good enough
reason for developers to care about it. Utilizing platform capabilities can improve the
speed of applications that perform a large number of computations.

64 Bits vs. 32-bit Android
A 64-bit architecture means the width of the integer registers and pointers is 64 bits. The
three main advantages of a 64-bit operating system are as follows:

Increased number of registers•	

Extended address space•	

Increased RAM•	

Chapter 2 ■ Intel Embedded Hardware Platform

33

It’s not hard to imagine Android phones with 64-bit chips in the not-too-distant
future. Because the Android kernel is based on a Linux kernel, and Linux has supported
64-bit technology for years, the only thing Android needs to fully support 64-bit
processing is to make the Dalvik VM 64-bit compatible. A Dalvik application (written
only in Java) will work without any changes on a 64-bit device because the bytecode is
platform independent.

Native application developers can take full advantage of the capabilities offered by
the underlying processor. For example, Intel Advanced Vector Extensions (Intel AVX) has
been extended to support a 256-bit instruction size on 64-bit processors.

Memory and CPU Register Size
Memory is extremely slow compared to the CPU, and reading from and writing to
memory can take a long time compared to how long it takes the CPU to process an
instruction. CPUs try to hide this with layers of caches, but even the fastest layer of cache
is slow compared to internal CPU registers. More registers means more data can be kept
purely CPU-internal, reducing memory accesses and increasing performance.

Just how much difference this makes depends on the specific code in question, as
well as how good the compiler is at optimizing the code to make the best use of available
registers. When the Intel architecture moved from 32-bit to 64-bit, the number of registers
doubled from 8 to 16, and this made for a substantial performance improvement.

Sixty-four-bit pointers allow applications to address larger RAM address spaces:
typically, on a 32-bit processor, the addressable memory space available to a program is
between 1 and 3 GB because only 4 GB is addressable. Even if 1–3 GB is available, a single
program cannot use all the memory that is addressable unless it resorts to a technique
like splitting the program into multiple processes, which takes a lot of programming
effort. On a 64-bit operating system, this is of no concern because the addressable
memory space is pretty large.

Memory-mapped files are becoming more difficult to implement on 32-bit
architectures because files over 4 GB are increasingly common. Such large files cannot be
memory-mapped easily to 32-bit architectures—only part of the file can be mapped into
the address space at a time. To access such a file, the mapped parts must be swapped into
and out of the address space as needed. This is a problem because memory mapping, if
properly implemented by the OS, is one of the most efficient disk-to-memory methods.

Sixty-four-bit pointers also come with a substantial downside: most programs use
more memory because pointers need to be stored and they consume twice as much
memory. An identical program running on a 64-bit CPU takes more memory than on a
32-bit CPU. Because pointers are very common in programs, this can increase cache sizes
and have an impact on performance.

Register count can strongly influence performance of an application. RAM is slow
compared to on-CPU registers. CPU caches help to increase the speed of applications, but
accessing cache does result in a performance hit.

The amount of the performance increase is dependent on how well the compiler can
optimize for a 64-bit environment. Compute-intensive applications that are able to do the
majority of their processing in a small amount of memory see significant performance
increases because a large percentage of the application can be stored on the CPU registers.

Chapter 2 ■ Intel Embedded Hardware Platform

34

Contrast this with an unoptimized application that might see a decrease in computer
performance because 64-bit pointers require twice the bandwidth. However, in a mobile
environment, the OS and installed applications should be engineered to avoid this. A famous
example of a large program that runs slower on a 64-bit environment is the Oracle JVM.

Both ARM and Intel 64-bit CPUs have a 32-bit compatibility mode. Although 32-bit
applications will run on 64-bit processors, compiling with a 64-bit optimizing compiler
allows them to take advantage of the architectural benefits of a 64-bit environment.

Reference Platform for Intel Embedded Systems
The so-called reference platform for Intel embedded systems is a wide range of hardware
devices that use the Intel Atom processor and SoC. This hardware combination features
compact size, low power consumption, high performance, low cost, and an excellent
chipset for graphics processing and other specialized sectors. Thus it can be widely used in
diversified embedded devices such as netbooks, nettops, tablets, mobile phones, and MIDs.

Internet of Things (IoT) and Next Unit of
Computing (NUC)
The Internet of Things (IoT) and Next Unit of Computing (NUC) are recent application
sectors for Intel Mobile processors. The Intel NUC Kit DE3815TYKHE, shown in Figure 2-7, is
built with an Intel Atom processor for intelligent systems and is a pint-sized unit for
value-conscious businesses and organizations. This low-cost, low-power solution
introduces many firsts to the Intel NUC form factor: a fanless thermal solution for the
ultimate silence and reliability, onboard flash storage for small-footprint software
solutions, internal flat-panel display connectivity for built-in screens, a video graphics
array (VGA) port for monitor compatibility in legacy installations, a serial ports header
for peripherals requiring the robustness of hardware handshaking, a watchdog timer for
resilient system availability, and inter-integrated circuit (I2C) and pulse-width modulation
(PWM) signals for interfacing with sensors and other embedded devices enabling the
IoT. And with its three-year supply availability, the Intel NUC Kit DE3815TYKHE will be
around to support long development and production ramp cycles.

Chapter 2 ■ Intel Embedded Hardware Platform

35

With its vertical industrial design and support for Linux and Windows embedded
operating systems, this Intel NUC was designed as the essential building block to power
the thin-client market. A fanless kit with flash storage built in, USB3 support, and audio
headset support, this Intel NUC fits right at home in schools, call centers, and other
locations with a large installed base of VGA monitors.

Powered by the Intel Atom processor E3815, the Intel NUC Kit DE3815TYKHE also
provides an ideal combination of power consumption, performance, affordability, and
software compatibility to drive light digital signage, point-of-sale, and kiosk solutions,
among other usages. With 4 GB of embedded MultiMediaCard (eMMC) storage built in,
many embedded applications will benefit from a lower overall system-level BOM cost. The
high-availability resilience can also be enabled for these and other unattended solutions
via the built-in watchdog timer, providing protection against downtime. This Intel NUC
provides a discrete Trusted Platform Module device onboard for hardware-based data
encryption—a must-have for applications where confidential information is at stake.

Intel Galileo Development Kit for IoT
The Intel Galileo development board, shown in Figure 2-8, is Intel’s first product in a new
family of Arduino-compatible development boards featuring Intel architecture. The platform
is easy to use for new designers and for those looking to take designs to the next level.

Figure 2-7.  Intel NUC Kit DE3815TYKHE

Chapter 2 ■ Intel Embedded Hardware Platform

36

The Intel Galileo board is a microcontroller board based on the Intel Quark SoC
X1000 application processor, a 32-bit Intel Pentium brand SoC. It is the first board based
on Intel architecture designed to be hardware and software pin-compatible with shields
designed for the Arduino Uno R3.

This platform provides the ease of Intel architecture development through support
for the Microsoft Windows, Mac OS, and Linux host operating systems. It also brings the
simplicity of the Arduino integrated development environment (IDE) software.

The Intel Galileo board is also software-compatible with the Arduino software
development environment, which makes usability and introduction a snap. In addition
to Arduino hardware and software compatibility, the Intel Galileo board has several PC
industry standard I/O ports and features to expand native usage and capabilities beyond
the Arduino shield ecosystem. A full-sized mini-PCI Express slot, a 100 Mb Ethernet port,
a Micro-SD slot, an RS-232 serial port, a USB host port, a USB client port, and 8 MB NOR
Flash come standard on the board.

The genuine Intel processor and surrounding native I/O capabilities of the SoC
provides for a fully featured offering for both the maker community and students alike.
It will also be useful to professional developers who are looking for a simple and cost
effective development environment to the more complex Intel Atom processor and Intel
Core processor-based designs.

Smartphones
As smartphones have become ubiquitous, customer demands for top-of-the-line devices
have increased, with design and usability growing in importance.

Figure 2-8.  The Intel Galileo board

Chapter 2 ■ Intel Embedded Hardware Platform

37

Figure 2-9.  Lenovo K900 smartphone

Lenovo K900
The Lenovo K900, shown in Figure 2-9, is the first large-screen smartphone that is
powered by the Intel Atom processor. The K900 is one of the first smartphones in the
world to combine a 5.5-inch IPS display with 1,080-pixel full high-definition resolution
performance at 400+ pixels per inch, all under the latest, touch-capacitive Gorilla Glass 2.

The Lenovo K900 runs on the Intel Atom Z2580 processor, a dual-core chip, which
runs up to 2.0 GHz and utilizes Intel Hyper-Threading Technology to boost performance
efficiency. The Intel-powered device also features an Intel Graphics Media Accelerator
engine running a PowerVR SGX 544MP2 GPU. Lenovo has equipped the K900 with a
large-aperture f1.8 lens, making it the first smartphone to offer such a wide aperture on its
camera. Combined with its other specifications, the K900 is now a legitimate stand-in for
a digital camera in a smartphone.

Chapter 2 ■ Intel Embedded Hardware Platform

38

ZTE Grand X2*
The ZTE Grand X2, shown in Figure 2-11, provides instant performance with its advanced
dual-core Intel Atom Processor Z2580 with hyper-threading running on the Android OS.
Users can enjoy faster web-page loads, application launch times, and content download
times, as well as graphics capabilities and responsive multitasking.

Figure 2-10.  Vexia Zippers phone

Vexia Zippers Phone
The Vexia Zippers phone, shown in Figure 2-10, runs on Android 4 OS and is powered
by the Intel Atom processor. It also packs dual SIM and a 5 MP camera so you can take
photos and capture video in high definition. Its Zippers interface makes this smartphone
unique, and you can personalize it to suit your lifestyle.

Chapter 2 ■ Intel Embedded Hardware Platform

39

ZTE’s new flagship smartphone is also equipped with an 8 MP socially smart camera
with one of the shortest shot-to-shot times on the market, capable of up to 24 frames per
second and no shutter lag. It secures a high image quality in challenging environments
with real-time 2x axis stabilization, and face and smart scene recognition.

Tablets
Tablets are one of the major application sectors for Intel Atom processors. As a complete
computer with a flat touch screen, tablets don’t have common keyboard and mouse input
devices, but instead have stylus, digital pen, and finger input on the touch screen. Tablets
have commanded a huge share of the market since Apple released the iPad in 2010. A few
notable tablets featuring Intel Atom processors are detailed next.

Figure 2-11.  ZTE Grand X2 Smartphone

Chapter 2 ■ Intel Embedded Hardware Platform

40

Samsung Galaxy Tab 3 10.1
The Samsung Galaxy Tab 3 10.1, shown in Figure 2-12, was announced by Samsung at
Computex 2013 and launched in the United States in July of 2013. Its screen is 10.1 inches
and has a resolution of 1,280 × 800. The Tab 3 10.1 features an Intel Atom Z2560 dual-core
processor clocked at 1.6 GHz and 1 GB RAM, and comes with 16 GB of storage. The tablet
has a 3.2 MP rear camera and a 1.3 MP front-facing camera. It also has an SD card slot. At
the time of this writing, the device runs Android 4.2.2.

Dell Venue 7/8" Tablet
The Dell Venue 7, shown in Figure 2-13 and launched in early 2014, features a 7" screen
with a resolution of 1,280 × 800. It runs on the Intel Atom Z2560 dual-core processor,
clocked at 1.6 GHz, and includes 2 GB RAM and 16 GB of internal storage. The device
includes an SD card slot for expandable storage and has a 3 MP rear-facing camera as well
as a VGA front-facing camera. At the time of this writing, the tablet runs Android 4.3.

Figure 2-12.  Samsung Galaxy Tab 3 10.1

Chapter 2 ■ Intel Embedded Hardware Platform

41

Acer Iconia A1-830*
The Acer Iconia A1-830 has a 7.9" display with a resolution of 1,024 × 768 and was
launched in early 2014. It features the Intel Atom Z2560 dual-core processor, clocked at
1.6 GHz. The device has 1 GB RAM and 16 GB of internal storage. It includes an SD card
slot for expandable storage. The front-facing camera is 5 MP and the rear-facing camera is
2 MP. At the time of this writing, the tablet runs Android 4.4.2.

ASUS MeMO Pad FHD 10*
ASUS MeMO Pad FHD 10, shown in Figure 2-14, delivers vivid visuals with the latest Intel
Atom Z2560 processor (1.6 GHz), 2 GB memory, a 178° wide view angle, 1920 × 1200 full
HD IPS display, and 10-point multi-touch display for an improved gaming experience.
The ASUS MeMO Pad FHD 10 weighs 580 g and has a thin 9.5 mm profile. It has a
microSD expansion slot.

Figure 2-13.  Dell Venue 7/8" Tablet

Chapter 2 ■ Intel Embedded Hardware Platform

42

With Intel’s and Google’s partnership, more and more Android-based tablets with
Intel Atom processors are released every year.

In-Vehicle Infotainment
In-Vehicle Infotainment (IVI) systems are devices that deliver navigation, entertainment,
and networked computing services in vehicles such as cars, trucks, and planes.
Automotive manufacturers in particular are increasingly viewing IVI systems as a key
differentiator in their products. Drivers and passengers are coming to expect to see in
their vehicles the same type of innovations they see in other devices, such as mobile
computers and handsets. BMW, Infiniti, Nissan, and certainly others already announced
platforms using Intel Atom. Undoubtedly, the Intel Atom processor will be a key player in
this promising sector.

Other Application Platforms and Fields
In addition to the sectors described previously, Intel Atom processors and corresponding
chips can be applied in a wide range of sectors, platforms, and devices.

Figure 2-14.  ASUS Memo Pad

Chapter 2 ■ Intel Embedded Hardware Platform

43

Cloud Computing
In cloud computing mode, content and infrastructure are resident in the cloud
(network). Cloud content consumers need only a lightweight, thin-client viewer device to
participate. The essence of cloud computing is that if infrastructure cost is amortized over
a sufficiently large population, many more people can participate and benefit from cloud
content and services. With their relatively low price points, devices based on Intel Atom
processors will be suitable for the clients of cloud computing.

Devices powered by Intel Atom processors will also contribute to expansion of
cloud-content consumer audiences due to their ability to use the Intel architecture
code base. The second generation 64-bit Intel Atom C2000 product family of SoC is
designed for microservers and cold-storage platforms (code-named Avoton) and for
entry networking platforms (code named Rangeley). These new SoCs are the company’s
first products based on the Silvermont microarchitecture, the new design in the leading
22 nm tri-gate SoC process delivering significant increases in performance and energy
efficiency.

Intel also introduced the Intel Ethernet Switch FM5224 silicon, which, when
combined with the Wind River Open Network Software suite, brings software-defined
networking (SDN) solutions to servers for improved density and lower power.

Robotics
Robotics is the acknowledged key to improve production processes, promote the production
capability of customized products, and ensure product quality. Robotic automation has
historically been extremely costly, with very long term cost-benefit payback and significant
barriers to entry. Fortunately, high-performance Intel Atom processors satisfy most of
the automation calculation requirements of robotics and boast a leadership in robotics
applications due to their cost-effective and low-power features. Lab tests have shown that
with a battery life of up to eight hours for unconnected operation, devices based on Intel
Atom processors can easily work a full shift powering mobile robotic devices.

Smith Childs Farms, Inc. in Wisconsin has empowered robot tractors powered by
Intel Atom processors. Several of these smaller, more agile tractors can work a field at
one time, controlled by a farmer sitting at a desk. They use GPS navigation equipment,
onboard sensors, and a series of complex algorithms while sampling the soil and
dispensing the precise amount of seed and fertilizer needed. Dennis Smith, owner of
Smith Childs Farms, Inc. said, “During prime planting season, you can even see farmers
working during the night hours without worrying about available light because sensors
on the tractors can ‘see’ quite clearly in the dark.”

Wireless Sensor Networks
Intel Atom processors are used to create intelligent wireless sensor networks, a major
application sector of embedded systems.

Chapter 2 ■ Intel Embedded Hardware Platform

44

Intel has deployed a wireless sensor network in its Chandler, Arizona plant. Many
battery-powered wireless sensor nodes monitor power consumption and environmental
parameters such as temperature, humidity, illumination, and space in the laboratory.
The large number of small wireless sensors form a self-configuring, dynamic routing
network. These sensors communicate with the server-router that intelligently processes
and analyzes the sensor data. Each server-router is a small wireless computing platform
with processor, memory, flash memory, I/O, and radio components based on the Intel
Atom processor, which processes network data from up to 40 sensors.

This flexible, self-configuring network architecture is easy and cost-effective to
install. It can also be easily expanded across office buildings, commercial facilities, and
factories or changed per the floor area. The system gives Intel facility managers a new
perspective, helping them to minimize electricity costs.

Learning
Intel Atom processors and related hardware enable the production of low-power,
cost-effective, and eco-friendly mini/micro computing devices that are readily being
adopted in developing countries and markets that have been underserved in the past.
These systems support localized and distance learning to contribute to the national
education in these countries and regions.

Backpack Journalism and Portable Video Recording
Devices based on Intel Atom processors featuring long battery life, sufficient storage
capacity, and convenient Internet connectivity are the ideal devices for the new
generation of amateur and ad hoc video journalists to deliver live coverage (such as
online webcasts of sporting events, speech and debate contests, and special topic
seminars). Editing and processing of recorded video cannot be implemented directly
on such devices but can easily be transferred to back-end desktop or servers through
the outstanding Internet connectivity of Intel Atom processors, thus realizing rapid and
economic video recording using a distributed processing solution.

RFID Field Tools
Radio-frequency ID (RFID) is a promising industry. Used for inventory control and
chain-of-custody tracking, such tagging will play a significant role in healthcare,
pharmaceutical management and delivery, and the transportation industry. One of the
advantages of RFID tags over traditional barcodes is that a tag interrogator can both
read and write a tag from a distance of tens of meters or more. To date, tag interrogators
have been custom devices that require costly, vendor-specific integration with back-end
inventory systems. Devices with Intel Atom processors not only could provide the
mobility and connectivity of handheld interrogators but also offer seamless compatibility
with Intel architecture back-end inventory and management systems, considerably
lowering cost of ownership for these systems.

Chapter 2 ■ Intel Embedded Hardware Platform

45

Summary
Chapters 1 and 2 discussed the history of the embedded platform, the SoC architecture and
hardware platform with different categories available for system and application developers.
Starting with the next chapter, this book introduces Android application development
on Intel hardware platforms. Developing Android system applications requires some
special development, debugging, and performance analysis tools. Before developing
Android applications, you need to learn about the development process of Android system
applications, and so that is where you begin.

47

Chapter 3

Android Application
Development Processes
and Tool Chains for Intel®
Architecture

This chapter introduces Android† application development on Intel hardware
platforms. Developing Android system applications requires some special development,
debugging, and performance analysis tools, and the development environment and
object formats are different from those of general-purpose desktop computers. Before
developing Android applications, we need to learn about the development process of
Android system applications.

Android provides a whole set of tool chains (toolsets) for application development.
Early versions of the Android OS supported ARM hardware platforms and started supporting
Intel® Atom™ hardware platforms from Android 2.3 (Gingerbread). To support application
development on Intel Atom architecture, Intel has added important plug-ins, libraries, and
other auxiliary modules to work in conjunction with Android tool chains. In addition, to help
developers to get the performance advantages of Intel hardware, Intel has made available
development tools such as compilers and Intel® Graphic Performance Analyzer.

This chapter describes the general processes and methods for Android
application development on Intel Atom platforms. The methods to achieve optimized
performance and low energy consumption using special Intel tools will be introduced
in subsequent chapters.

Android Application Development
The following sections describe the development environment, development process,
debugging, and simulation of Android systems.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

48

Development Environment of Android Applications
As we mentioned earlier, software development for general-purpose computers is always
achieved through native compilation or development. In general, embedded systems are
not compatible with the local development environment and so software development is
usually done with cross-development.

Cross-Development
The typical cross-development configuration is shown in Figure 3-1. The cross-
development environment is built on the development, or host, machine. Usually the
host machine is a general-purpose computer such as a PC. The corresponding embedded
system is called the target machine. Target machines can be any of the numerous kinds
of embedded devices such as mobile phones, tablets, and so on. They may also be
special evaluation boards or software-based emulators for development provided by
embedded system manufacturers. During development, cross-compilation, assembly,
and linking tools on the host machine are used to produce binary code that is executable
on the target machine; then the executable files are downloaded and run on the target
machine. The cross-development method is not only required for compilation but also
for debugging.

Figure 3-1.  Cross-development configuration of embedded systems

The main reason why cross-development was adopted for embedded systems
is that native compilation usually cannot be done effectively on the target machine.
First, the hardware of the target machine is often unavailable or unstable during the
development process. Second, there is a lack of complete native compilation tools on the
target machine platform. Third, the performance of the target machine is insufficient,
resulting in slow compilation. Software compilation on embedded systems is more time
consuming than on desktop computers because it requires not only compilation of
applications but also compilation of library dependencies and OS kernels. For example,
compiling a Linux† kernel on an Intel® Pentium® 4 processor-based PC takes more than
10 minutes. The main hardware factors determining the compiling speed include CPU
speed, memory capacity, and file system I/O speed. On these factors, embedded systems

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

49

usually perform worse than PCs. This results in low efficiency of native compilation
on target machines. The cross-development method is always adopted for embedded
systems, such as cross-compilation (including cross-linking) and cross-debugging.

Because of the differences between the host machine and the target machine in their
configurations, functions, system structure, and operating environments, they are usually
connected via serial port, parallel port, USB, or Ethernet connection cables. Toolsets,
including encoder, compiler, connector, debugging tool, and software configuration
management tool, are installed on the host machine.

Generally, the host machine and the target machine are different in the
following aspects:

Different structure: usually, the host machine is an Intel •	
architecture system while the target machine might be Intel or
non-Intel architecture system structure such as ARM or MIPS.

Different processing capacities: usually, the processing speed and •	
storage capacity of the host machine are better than those of the
target machine.

Different operating systems: usually, a general OS runs on the •	
host machine while an Android OS runs on the target machine.

Different output methods: compared with the host machine, the •	
input and output functions of the target machine are less capable.

For some Android systems, these characteristics may not exist or are insignificant.
Take the development of an Intel Atom system for example. The host machine and
the target machine use the same system Intel architecture structure. Of course, the
instruction sets might be different. For example, the host machine (such as the Intel®
Core™ 2 Duo processor) might be compatible with SSE4, while the Intel Atom processor
only supports SSE3 .We should consider the instruction set for the target machine
during compilation. Considering the limited resources of most Intel Atom systems, we
recommend the cross-development method.

Programming Languages
During the past four decades, dozens of programming languages have been developed
for general-purpose computer applications. From FORTRAN, C/C++, ADA, and Java†
to C#NET. Many factors determine a programming language’s suitability. Each has its
own characteristics, and comprehensive comparisons are impossible. Each language’s
performance depends on the execution environment. Considering multiple factors and
actual development status, the common languages for Android systems include
C/C++, Java, and Python†, and occasionally assembly language is used. A combination
of languages is needed for programming a sophisticated Android system. The common
programming languages are shown in Table 3-1.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

50

Java, launched by Sun Microsystems in May 1995, is a cross-platform object-oriented
programming language and includes the Java programming language and Java platforms
(JavaSe, JavaEE, JavaME). Java’s style is very similar to that of C and C++. It is a pure
object-oriented programming language that has inherited the core contents of the
object-oriented C++ and abandoned the pointer (replaced by reference), operator
overloading, and multiple inheritance (replaced by interface) in the C++ language, which
caused frequent errors. The added Garbage Collector is used for collecting memory
occupied by unreferenced objects so the programmer does not need to worry about
memory management. In the Java 1.5 version, Sun added other language features such as
generic programming, type-safe enum class, variable-length augment, and autoboxing/
auto-unboxing.

Java is different from ordinary compilation and execution computer languages in
that it is an interpretive computer language. The Java compiler produces binary byte
code instead of machine code, which can be executed directly and locally. Compiled Java
programs are interpreted into directly executable machine code via Java virtual machine
(JVM). The JVM can interpret execution byte code on different platforms to realize the
cross-platform feature of “one-time compilation for all executions.” However, it takes
some time to interpret byte code, which will to some degree reduce the running efficiency
of Java programs. To reduce this burden, Google introduced Android Run Time (ART)
in 2014 as a Dalvik version 2, which first became available as a preview feature in KitKat
(Android 4.4). Future 64-bit Android will be based on ART. In general, Java is a simple,
object-oriented, distributed, interpretive, and stalwart. It is an implantable,
high-performance, multi-threaded and dynamic programming language. Considering
various advantages of Java, it is the first choice for Android application development.

Having chosen a language, you may not necessarily use all of its functions. Although
we have selected Java as the development tool for Android, the development process for
Android systems is different from traditional (desktop) Java SDK. The Android SDK uses
most of the Java SDK, but has abandoned some portions. For example, for the interface,
the java.awt package is only referenced by java.awt.font. If a Java game is migrated to the
Android platform, it might need to be ported.

We have mentioned that Java is a cross-platform interpretive computer language.
This feature has enabled the high migration capability regardless of platform, but it
also has some drawbacks, one of which is that the developer cannot use platform- or
architecture-related features or potential. But this can be achieved by machine-related

Table 3-1.  Commonly Selected Programming Languages

Level Common Programming Languages

Application software C/C++, Java, .NET, script, Python

OS level C/C++, Assembly

Driver program level C/C++, Assembly

Boot code, Hardware Abstract Layer (HAL) Assembly, C/C++

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

51

target code by compiling C/C++ and assembly languages. This is more obvious during
performance optimization. To use the features of the machine hardware and tap into
their performance potential, we usually need to use C/C++ and assembly languages for
writing optimized applications. Although such code accounts for a small proportion of all
code, the programming complexity is much higher than Java. Therefore, such code is only
used in some rare cases. We’ll see that Android application development has adopted
a mixed programming mode based mainly on improved Java and supported by C and
assembly languages.

We’re going to discuss this programming method in two parts. For developing
general functions of Android applications, we are going to use Java. But for performance
optimization, we’re going to use a mixed-language programming approach.

The Android Application Development Process
Generally speaking, developing Android software requires the same steps as general-
purpose software: designing, encoding, compiling, linking, packaging, deploying,
debugging, and optimizing. For some Android systems, testing and verification steps
are also required. In terms of process, it can be divided into five stages: encoding,
construction, deployment, debugging, and tuning. The typical development process is
shown in Figure 3-2.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

52

Start

Write code

Cross compiling, linking

Packaging

Deployment

Running

Debugging &
optimization

End

Write source code

Use specialized compilers and
linkers to generate target code

Compress target code and
affiliated files into file packages

Install target files from host
machine to target device

Execute and check
the results of code

Debug programs and
optimize performance

Figure 3-2.  Development process for Android software

Encoding
Encoding is the first step in the software development process. Software source code can
be written using various editors. During Android development, this work is mainly editing
.java code and .xml source files.

Construction
The task during the construction stage is to convert code into executable programs
on Android hardware. This stage includes sub-steps such as compiling, linking, and
packaging as shown in Figure 3-3.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

53

The first step of construction is the build, which means to translate all source code
files into target files. Some target files are machine-related such as C/C++ target files that
correspond to the execution instructions of the machine. But some are not specific to the
machine, such as Java target source code that is not machine-executable instructions.
During Android application development, these files usually have the suffix .class.
On Android, .classes are translated to .dex files.

The second step is packaging. The purpose of packaging is to combine and install all
target files and affiliated files into one folder on the target machine. As for Android, .dex
files and resource files are all packaged into an .apk file that can be stored outside the
target machine. The packaging operation is usually done with special packaging tools.

Deployment
Deployment, the last stage of software development, is where the installation package
is copied from the host machine, decompressed, and installed into the memory of the
Android device.

Android has adopted USB cable-based ISP deployment. As shown in Figure 3-4, the
host machine is connected to the target machine via USB cable. The Android OS runs
on the target machine while the Windows† or Linux OS runs on the host machine.
The file packages generated (.apk) are copied to one directory of the file system in the
target machine before being decompressed and installed to finish deployment. The
process can be done using command line terminals or the DDMS inside Eclipse.

Source program

Compiler & linker

Target files

Package maker

File package

Other affiliated files

Figure 3-3.  Software construction stage

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

54

Under the online programming model, the copying direction of the files between the
host machine and the target machine is different. And different terminologies are used for
file copying. For example, download/upload is called push/pull in Android. Push means
to copy files from the host machine to the target machine, while pull means copy files
from the target machine to the host machine.

Debugging and Optimizing Stage
This stage is mainly debugging and optimizing operations on software.

Even the most experienced software engineers cannot totally avoid mistakes in
their programs. Mastering debugging techniques is critical for software development.
Debugging Android software code is not very efficient because even if you only need
to change one line of code, you still need to go through all the build, packaging, and
deployment procedures. PC users might be okay with one crash per day. But just imagine
the severe consequences if a bug exists in the final Android system product on ATMs,
medical operation systems, or satellites.

There are many debugging technologies and techniques for Android software
discussed in subsequent sections. Many of the methods are rarely used in general-
purpose computer software.

The minimum target for a software product is to ensure its normal running. But this
target is not good enough for Android software, which is resource-constrained and has
more stringent space and performance requirements than desktop systems. To satisfy
these requirements, Android software has to ensure normal running in a performance-
optimized way. These goals might be contradictory and developers can hardly realize all
of them. So they make compromises usually highlighting the performance requirement.

Improving the performance of an application program is a time-consuming process.
It is usually not obvious which functions are consuming most of the execution time.
So we need to use specialized tools to analyze the code to accurately understand the
performance bottlenecks and advise us on improvements. This process is usually called
code profiling, and the tool used is called a profiler or performance analyzer.

The principle of using a profiler for improving performance is to optimize the
frequently called portions of the software. For example, if 50 percent of the time is spent
on string functions and we optimize such functions by 10 percent, then we can reduce the
execution time of the software by about 5 percent. By using a profiler you can accurately
measure the various portions of time spent during the execution process to understand

Figure 3-4.  Android application deployment

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

55

which areas can be optimized. Some profilers can bring about improvement suggestions
specific to the type of processor. For example, the Intel® Vtune™ Amplifier identifies
hotspots in the code that can be further optimized to improve overall performance.

Debugging and Simulation of Android Systems
Debugging Android software has some special challenges, so some methods and devices
have been developed to assist developers with the debugging procedure. The most
common debugging methods include those described in the following sections.

System Simulator
Early system simulators were realized with instruction set emulators, that is, the
technology of simulating a system architecture using software. In other words, software
is used to interpret machine codes to simulate a certain processor. Modern system
simulators include analog peripherals except CPU simulation. The analog peripherals
are used to achieve system simulation results. Some books call the simulator a virtual
machine or emulator.

Instruction set emulation includes homogenous emulation and heterogeneous
emulation. Homogenous emulation means using software on one processor to emulate
a virtualized machine that has the same architecture. At present, the common Microsoft
Virtual PC or VMware† emulates the execution of processors based on Intel architecture,
making it a type of homogenous emulation. Heterogeneous emulation means emulating
the execution of another processor on one processor. Most of the instruction set
emulators are types of heterogeneous emulation. For example, Device Emulator emulates
the execution of ARM processors on Intel architecture processors. Some common system
simulators are shown in Table 3-2.

Table 3-2.  Common System Simulators

Name of Emulator Simulated Target Platform Remarks

Microsoft Virtual PC/
Virtual Server

Intel® architecture

VMware Intel architecture Compatible with Windows,
Mac†, Linux

Bochs Intel architecture Open source projects

Device Emulator ARM Simulation of SMDK2410
development board

SkyEye ARM Made in China

VirtualBox Advance ARM Simulating Nintendo GBA
gamer

Oracle VM Virtualbox X86 and AMD64/Intel64
Virtualization

GPL license, and freely
available

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

56

When debugging programs on Android systems, the host machine (usually the PC)
runs the system simulator and the software of the target machine is run in the system
simulator, so no extra hardware is required. The host machine and the target machine
are realized on the same machine, which is known as “two uses on one machine.” Now
remember the cross-development environment mentioned previously? We said the target
machine is not necessarily a real device because it might be a software-based emulator.
The emulator replaces the actual target machine during cross-development. Emulators
not only save overhead on hardware but make debugging more convenient.

Android development tools bundles Android Virtual Device, a manager that is
used to create ARM and x86 emulators. Emulators mimic the hardware and software
configuration of a target device. Figure 3-5 shows a screenshot of an AVD running in
Windows.

Figure 3-5.  AVD (Android Virtual Device) interface

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

57

The Android emulator is also called goldfish. Each AVD simulates a set of mobile
devices that run the Android platform, which includes the kernel, system image, and data
partitioning as well as the SD card, user data, and the display. Android emulators are
based on Qemu, which is a popular open source virtualizer project. The source code for
Android emulators is under the external/qemu directory.

AVD simulates the common components of the target machine such as the CPU,
screen, keyboard, audio output, camera, and also sensors such as GPS, touch, and gravity
acceleration. For example, AVDs with Intel architecture include Intel x86 system images
corresponding to each API level. Of course compared to the real device, an AVD has
certain shortcomings, which include:

Inability to place or accept actual calls; but it can simulate phone •	
calls (incoming and outgoing) via control station

No USB connection•	

Inability to capture digital photos or videos•	

Inability to capture audio input, but does support output (replay)•	

Lack of support for extended earphones•	

Inability to determine the battery level or charging status of AC •	
power

Inability to determine whether an SD card has been inserted or •	
removed

Lack of support for Bluetooth†•	

In addition, AVD can simulate USB and network connections between the host
machine and the target machine. AVD uses the host machine as the default gateway and
NAT (address translator) to connect to the network. In other words, if you can access the
Internet on the host machine, you can also do so on the AVD-simulated target machine.

Other Debugging Tools
Android systems have other debugging tools besides system emulators. Although these
tools are not used in Android, you should have a basic understanding of them to get a
complete picture.

Cross-Debugging
When the OS supports cross-debugging Android applications, you should try to use this
method. Cross-debugging is similar to cross-compilation: the program being debugged
runs on the target machine while the display, monitor, and control of debugging are done
on the host machine.

Cross-debugging can only be performed in the online mode. The host machine
needs to be connected to the target machine by USB cable, network, or JTAG-ICE. A
debugging server is usually run on the target machine and is called a stub in the GNU

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

58

tool chain. The front end running the debugging procedure on the host machine is
actually the client. The front end interacts with the developer who makes requests to
debugging server. The debugging server receives the commands from the front end,
controls application execution, and sends the results to the front end for display, as
illustrated in Figure 3-6.

Host Machine Target Machine

Debugging Front End/Client

Host Machine OS

Serial port,
network, etc

Debugged Programs

Debugging Server/Proxy

Figure 3-6.  Software environment for cross-debugging

For example, if you set a breakpoint at the front end to observe the values of a variable,
the debugging server receives the breakpoint setup request and inserts an interruption at
corresponding place in the program. When the application reaches the breakpoint, the
debugging server takes over control, suspends the application, and sends back the values of
the corresponding variable to the front end, which then displays the value.

Many development tools support cross-debugging, such as, for example, GNU
debugger. Android Debug Bridge (adb), a common debugging tool, also supports
cross-debugging. The adb debugger is based on the client/server model. It works on
the principle that the local working platform serves as the debugging client while the
machine on which remote applications are installed serves the role of the debugging
server. When using adb, the debugging process of the remote applications (on the target
machine) may be different from local debugging. Adb manages the device, emulates
status, and carries out the following operations:

Fast code updating in the device and emulators, such as •	
applications or Android system updates

Running shell commands on the device•	

Managing predetermined ports of the devices or emulators•	

Copying or pasting files on the devices or emulators•	

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

59

Some common operations of adb include the following:

adb shell

This command allows you to enter the Linux shell environment of the device or emulator
where you can execute many Linux commands. If you want to execute just one shell
command, you can enter:

adb shell[command]

For [command], enter the particular command you want to execute, for example: adb
shell dmesg, which outputs the debugging information of the kernel. Note: the Linux shell
for Android adb has been simplified, so it is not compatible with many of the common
Linux commands. We’re going to discuss the command line in the subsequent sections.

Adb can be run independently in command line form or integrated as a plug-in into
your favorite IDE (integrated development environment) such as Eclipse†. Figure 3-7
shows a screenshot of debugging an Android application in Eclipse. Adb provides many
common debugging tools such as breakpoint setup, observing variables, single-step
execution, and checking debugging output. The debugging process is the same as the
debugging process for local applications. Many developers cannot even tell that the
application is running on the target machine and not the host machine.

Figure 3-7.  Android application debugging in Eclipse

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

60

In the next sections we’re going to show examples of using adb commands and
Eclipse debugging.

Typical Development Tool Chains
All stages of Android software development have corresponding tools to help developer
complete tasks. Groups of development tools are called tool chains, or toolsets. The typical
tool chains are listed in Table 3-3.

Table 3-3.  Typical Tool Chains for Android Software Development

Development Stage Function Description Typical Examples

Editing Writing and editing source code vi, Emacs, Windows
Notepad

Compiling and
linking

Compiling and linking source
programs into executable binary
files

gcc, icc (Intel Compiler)

Flashing Burning executable binary
programs into the Android
system’s ROM or flash to ensure
the system automatically starts up

J-fFlash, Sjflash

Debugging Dynamic follow-up on the
running status of the programs;
checking on execution of
programs and identifying causes
behind program errors

Gdb, adb, Kernel Debugger

Optimizing Analyzing program performance
and helping developers create
faster and more efficient programs
with little occupied space

gprof, Intel Vtune™
Amplifier

Testing Helping testing personnel to
identify mistakes in the programs
and reduce HR costs

CETK

Verifying Verifying logical correctness and
common errors of programs,
especially under harsh testing and
debugging environments

Application Verifier

Simulating/Emulating Simulating and emulating the
running environment of Android
hardware to help developers
develop and debug

Qemu, VirtualBox and
VMware Player

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

61

Many toolsets are available, provided by different companies and organizations,
each with its own characteristics. Icc, the Vtune Amplifier, and idb are provided by Intel,
while gcc, gdb, and gproof by the free software organization GNU; and CETK, Application
Verifier, Device Emulator are provided by Microsoft. Some of these tools are free like the
GNU toolsets. Others, such as the Microsoft toolsets, must be purchased. These tools run
on different platforms. For example, Jflash runs on the Linux platform while most of the
Microsoft tools are based on Windows (including desktop Windows OS and Android
OS-Windows CE/Mobile). And some are even cross-platform tools; for example, GNU
toolsets can run on multiple platforms such as Linux, Windows, and Mac operating systems.

The way in which these toolsets are used falls into two categories: one is command
line and the other is integrated development environment (IDE). Command line
toolsets are executed by single commands entered in their command lines. In the case
of IDEs, all functions are integrated into one tool, including editing, compiling, linking,
deploying, and debugging, so that the full development process can be performed
in one application. Most of the GNU tools run on command lines. Probably the most
widely used IDE is Microsoft Visual Studio†. Anjuta DevStudio is a Linux-based IDE. The
Android development tool, Eclipse, is an IDE that can run on multiple operating systems
including Windows and Linux. In this book, we’re going to use the Windows version.

GNU toolsets can run on multiple platforms; their openness, large usage scope, and
compatibility with other tools have made them a common choice for Android application
development.

Tip■■   GNU, GPL, and LGPL GNU is by far the largest, most famous, and influential free
software organization. It was created by Richard Stallman in 1985 who founded the Free
Software Foundation (FSF) to break away from commercial software. You must comply with
GNU software license before using GNU software.

GPL, short for GNU General Public License, is one of the GNU software licenses. GPL allows
the public to enjoy the freedom of running, copying, and sharing software, obtaining source
code, and improving the software and sharing it with the public. GPL also stipulates that as
long as one part or the entirety of the altered content comes from the programs complied
by GPL, then the sharing of the altered software must comply with GPL requirements,
which means that you need to publish the changed source code and refrain from adding
restrictions on the sharing of the improved software. GPL was the catalyst for developing
and publishing the Linux OS and related software.

LGPL, which means Lesser GPL, is also one of the GNU software licenses. It is a variant of
GPL. What’s different is that users enjoy private usage on LGPL-authorized free software.
And the new software developed can be proprietary instead of free. Before using the free
software, users must obtain LGPL or other variants of GPL. LGPL was initially used for some
GNU program libraries (software libraries). So it was called Library GPL. Mozilla and
OpenOffice.org are examples of software developed under LGPL.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

62

GNU development tools are free. Anyone who agrees to GPL license can download
them. GNU has also provided complete tool chains for software development on Android
systems and Intel architecture systems. Such tools include compiler, assembly, linker, and
debugging tools. They can be run independently from command lines or integrated into
an IDE such as Eclipse. The GNU tool chains are listed in Table 3-4.

Table 3-4.  GNU Tool Chains

Function Component Description

Editing vi, Emacs, ed Text editor used for editing source code

Compiling & linking gcc A set of multi-programming language
compilers

Debugging gdb Debugger

Optimizing gproof Optimization tool for analyzing program
performance and helping developers to
create faster-running programs

Project Management make Auto management tool for software
compilation

System Building autotools All materials and files required for build
projects

The components are further explained below.

Editor
Any text editing tool can be used to write and edit source code. The Linux platform has
two categories of editors: one includes line editors such as ed and ex; the other includes
full-screen editors such as vi, Emacs, and gedit. Line editors can only operate on one
line, while full-screen editors can edit an entire screen of code and the edited files are
displayed, thus overcoming the shortcomings of line editing and making it easier to use.
Full-screen editors have a larger feature set than line editors.

In an IDE, editors are integrated into the tool and need not be used separately to
write source code.

Compiler and Linker
The editing process involves grammar, semantic, and lexical analyses, generation and
optimization of intermediate codes, symbol table management and error management.
The GNU editor is gcc. Gcc is considered the standard compiler of Linux.

Gcc was initially the C language editor of GNU. Now it supports C, C++, Object-C,
FORTRAN, Java, and ADA. To some degree, gcc is the combination of all GNU editors.
Gcc compiles source code and does the linking process. Users can choose the command
parameters to compile, link, and generate executable files.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

63

Intel Compiler also optimized code paths to improve application performance on
Intel platforms. Intel Compiler is bundled with the tools offering from Intel called Intel
Integrated Native Developer Experience.

Debugger
A debugger makes it easier for programmers to debug programs. But it is not necessarily
a tool required for code execution. During the compilation process, the time spent on
debugging is more than the time on encoding. Therefore a full-featured debugger that’s
easy to use is necessary.

The GNU debugger is gdb (abbreviation of GNU Debugger). It is also open source
code and is a command line–based debugger. All debugging commands are realized
through the commands of the control station.

Build Manager
GNU provides one build manager called make, a tool for controlling compilation of
multiple software files. It is similar to Visual C++† project in Windows. In addition, it can
automatically manage the contents, means, and timing of software compilation to help
programmers so they can focus on coding instead of organizing compiling sequences.

Make can call gcc to compile and link source codes into executable files for the target
machine according to the makefile defined by the developer.

Makefile Auto Generation Tool
Makefile can help make to perform the target file generation task. But encoding a
makefile is not an easy job, especially for big projects. GNU provides a series of autotools
to make makefiles. Such tools are aware of system configuration issues to help developers
deal with migration issues. Autotools include aclocal, autoscan, autoconf, autoheader,
automake, and libtool.

Several methods are used for generating target files from source code as shown in
Figure 3-8.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

64

Method 1: Use gcc (or Intel compiler ICC) to compile and link all •	
source code files to generate executable target files

Method 2: Use an IDE, such as Eclipse, to compile a makefile •	
and other configuration files and then use make to generate
executable target files

Method 3: Use system build tools-autotools to make makefile and •	
other configurations, and then use make to generate executable
target files

Optimizing Tools -- gprof
To help developers optimize their programs, GNU provides a performance analyzer,
gproof, one of the GNU binutils tools.

Gproof can measure the performance of programs and record the called times of
each function and corresponding execution time so that the optimization effort can be
centered on the most time-consuming portions. In addition, gproof can also generate
function call relations during programming execution, including number of called times,
to help programmers analyze how programs are executing. By relying on the function call
relations, developers do not need to go through all the details of a program’s execution,
improving their work efficiency. And this function is also helpful for maintaining old
code or analyzing open source projects. With the calling diagram, you can get a basic
understanding of the running framework and “skeleton” of the programs. Then analyzing
them is less difficult, especially for code and open source projects you may not be familiar
with.

User encoding

Autotools tools

Configuration
files

make
command

Call

gcc

Executable files

Separately call gcc

Figure 3-8.  Methods for generating target files using GNU tool chain

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

65

Overview, Installation, and Configuration of
Android Application Development Tool Chains on
Intel® Architecture
Android provides a complete set of tool chains (or toolsets) for application development.
Originally, Android ran only on ARM architecture hardware platforms. But now, to
support Android tool chains on the Intel Atom hardware platform, Intel has added
important plug-ins, libraries, and other auxiliary components. In addition, to give
better play to the performance advantages of Intel hardware, Intel has added special
development tools such as compilers and optimizers.

This chapter introduces the general processes and methods for Android application
development on the Intel Atom platform. In the subsequent sections, we’re going to
discuss the methods for using special Intel tools to achieve optimized performance and
low energy consumption.

The Android and GNU development tool chains and the functions corresponding to
Android cross development stages are shown in Table 3-5.

Table 3-5.  Comparison between GNU and Android Tool Chains

Stages of Cross Development GNU Tool Chains Android
Development
Tool Chains
for Intel®
Architecture

Remarks

Editing vi, Emacs, ed Eclipse, Android
SDK

Android
development
tools and
Intel related
plug-ins

Compiling and linking Gcc

Project management Make

Auto generation tool-makefile Autotools

Deployment \

Debugging gdb

Simulation/emulation \ Android Virtual
Device (AVD)

Optimization gprof Vtune™ analyzer Intel series of
tools

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

66

In addition to the differences with GNU tools shown above, Intel also provides some
special performance libraries, including Intel® Integrated Performance Primitives (Intel®
IPP), Intel® Math Kernel (Intel® MKL), and Intel® Threading Building Blocks (Intel® TBB).
Some of the libraries have already provided special services such as the C++ template
based threading services API in Intel TBB. Some of them use the Intel architecture
instruction potential to achieve optimized performance, such as, for example, the Fast
Fourier Transform (FFT) in Intel IPP. Some of the libraries still do not have direct Java
interfaces. We’re going to discuss them in subsequent sections.

Table 3-5 shows that the Android development tool chain for Intel architecture
basically includes two parts: one part is the Android development tools. The Intel tools
here include an Intel architecture emulator, development library, and other plug-ins.
The other part is the independent Intel tools. While the Android development tools
support most of the steps of application development such as editing, building,
packaging, deployment, and debugging, the Intel tools involve mainly optimization.

Android development tools mean the software environment consisting of JDK (Java
SE Development Kit), Android SDK (Software Development Kit), and an IDE (Integrated
Development Environment)—Eclipse. Android development tools can run on Linux,
OS X, and Windows systems. In this book, we’re going to discuss the Windows scenario.

The Android development tools can be run in command-line format or an IDE.
The general development process of the Android command line tool in the Android SDK
is shown in Figure 3-9. Eclipse, a graphic user interface tool, is typically the tool used
for IDE mode, integrating the functions of editing, compiling, linking, deployment, and
debugging. We’re going to discuss the method based on the IDE.

Figure 3-9.  Development process of the Android SDK command line

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

67

The directory structure of the Android SDK is shown below. It can be obtained by
running the tree command from the command line.

├─add-ons
│ └─addon-google_apis-google-16
├─docs
│ ├─about
│ ├─assets
│ ├─design
│ ├─develop
│ ├─distribute
│ ├─guide
│ ├─images
│ ├─intl
│ ├─live
│ ├─out
│ ├─reference
│ ├─resources
│ ├─samples
│ ├─sdk
│ ├─shareables
│ ├─tools
│ └─training
├─extras
│ ├─android
│ └─google
├─platform-tools
│ ├─api
│ ├─lib
│ └─renderscript
├─platforms
│ └─android-16
├─samples
│ └─android-16
├─sources
│ └─android-16
├─system-images
│ └─android-16
├─temp
└─tools
├─ant
├─apps
├─Jet
├─lib
├─proguard
├─support
├─systrace
└─templates

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

68

The main files you should notice are:

add-ons: API packages provided by Google, like Google Maps •	
APIs

docs: help and explanation documents•	

platforms: API packages nd some example files for each SDK •	
version

tools: some general tool files•	

usb_driver: AMD64 and Intel architecture driver files•	

The main files and their functions are described below.

 android.jar
This file is located under the directory of %android-sdk%\platforms, and each version of
Android has one android.jar. By looking at the .jar file you can understand the structure
and organization of internal API packages. The string %android-sdk% here is the install
directory of Android SDK while the corresponding directory for version 16 is android-16.
For example, the author’s android.jar is located in:
 
C:\Documents and Settings>dir D:\Android\
......
2012-07-08 20:02 18,325,478 android.jar
 

The android.jar is a standard zip package that contains compiled zipped files and all
APIs. You can use WinRAR, or other archiving tool, to view its internal structure as shown
in Figure 3-10. Its API kit is further divided into app, content, database, and so on.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

69

Figure 3-10.  Content structure of android.jar

ddms.bat
The debugging monitor service ddms.bat, shown in Figure 3-11, is integrated in Dalvik
(the virtual device of the Android platform) and used for managing the processes of
emulators or devices and assisting debugging work. It can eliminate some processes and
choose one certain program for debugging, generate follow-up data, check threading
data, or take snapshots of emulators or devices.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

70

adb.exe
Android Debug Bridge (adb) is a multipurpose tool that can help you manage the state
of devices or emulators. As mentioned before, this file is located under %android-
sdk%\platform-tools. For example, the author’s adb.exe is located in the C:\
android\adt-bundle-windows-x86_64-20131030\sdk\platform-tools directory, as
shown in Figure 3-12.

Figure 3-11.  The debugging monitor service ddms.bat

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

71

aapt.exe
With the Android resource packaging tool (aapt.exe), you can create .apk files that contain
binary files and resource files for Android applications. The file location is the same as
adb.exe.

aidl.exe
The Android interface description language (aidl.exe) is used for generating inter-process
interface codes. The file location is the same as adb.exe.

sqlite3.exe
Android can create and use SQLite3 database files. Developers and users can easily
access such SQLite data files. The file location is the same as ddms.bat.

dx.bat
Rewrite class byte code as Android byte code (saved in a dex file). The file location is the
same with that of adb.exe.

android.bat
The android.bat file is under the same directory as ddms.bat. This command is used for
displaying and creating the AVD.

Figure 3-12.  File location of the adb.exe tool

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

72

Figure 3-13.  The command shows that two target machine development libraries are
installed on the machine

Intel Environment Setup for Android (OS X Host)
The Environment Setup for Android (OS X Host) Integrates common Intel and third-party
tools into your preferred IDE for productivity-oriented designing, coding, and debugging.
Supported IDEs include Eclipse and Android Studio. This beta release, formerly known as
Beacon Mountain beta, will be part of the Intel® Integrated Native Developer Experience
(Intel® INDE) for OS X hosts and can be downloaded at https://software.intel.com/
en-us/inde/environment-setup-osx. Table 3-6 provides a list of what is included in the
Environment Setup for Android (OS-X Host).

https://software.intel.com/en-us/inde/environment-setup-osx
https://software.intel.com/en-us/inde/environment-setup-osx

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

73

Table 3-6.  Environment Setup for Android (OS-X Host)

Product Installs • Android Studio beta
• �Intel® Integrated Native Developer Experience

(Intel® INDE) native project template for Android Studio
• Android SDK
• Android NDK
• �Intel® Hardware Accelerated Execution Manager

(Intel® HAXM)
• Apache Ant
• Intel® INDE plugins for Eclipse

IDEs • Eclipse
• Android Studio beta

Host Support • OS X

Target Support • Android* 4.3 and up (based on ARM and Intel® architecture)

Android Development on Linux-based Host
Machines
The following Android development tools for Linux-based host machines are available for
download at:

Intel•	 ® Graphics Performance Analyzers
(https://software.intel.com/en-us/vcsource/tools/intel-gpa)

Intel•	 ® Hardware Accelerated Execution Manager (Intel® HAXM)
(https://software.intel.com/en-us/android/articles/
intel-hardware-accelerated-execution-manager/)

Intel•	 ® Threading Building Blocks (Intel® TBB)
(https://software.intel.com/en-us/intel-tbb)

Intel•	 ® C++ Compiler for Android
(https://software.intel.com/en-us/c-compiler-android/)

Intel•	 ® Integrated Performance Primitives (Intel® IPP)
(https://software.intel.com/en-us/intel-ipp)

Intel® Integrated Native Developer Experience beta
The Intel Integrated Native Developer Experience (Intel INDE) is a beta release of Intel’s
cross-platform development suite designed to quickly and easily create applications
targeting Android and Windows devices with native performance, outstanding battery-
life, and exposure to unique platform capabilities. INDE provides a complete and
consistent set of C++/Java tools, libraries, and samples for environment setup, code
creation, compilation, debugging, and analysis on Intel architecture-based devices and
select capabilities on ARM-based Android devices.

https://software.intel.com/en-us/vcsource/tools/intel-gpa
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager/
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager/
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/c-compiler-android/
https://software.intel.com/en-us/intel-ipp

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

74

As a native cross-platform development suite, Intel INDE includes C++/Java native
tools and samples for Android and Microsoft Windows, integration of tools into popular
IDEs, and automatic updates to the latest tools and technology.

Tools and Libraries
Media: easily add visually compelling native video and audio extensions that work across
the latest popular Android phones and tablets. The Intel INDE Media Pack for Android
provides source code and samples to enhance apps with:

Camera and screen capture•	

Video editing•	

Video streaming•	

Audio fingerprinting•	

Support for Intel architecture and ARM-based Android devices •	
running 4.3 and up.

Threading: efficiently implement higher-level, task-based parallelism using the Intel
Threading Building Blocks (Intel TBB). Intel TBB is an award-winning C++ template
library for the development of higher-performance, scalable applications. Apps created
using the parallelism tool can run on Intel architecture and ARM processor-based
Android 4.3 and up devices, as well as Microsoft Windows 7–8.1 client.

Compiling: bring a heritage of industry-leading performance to your Android apps
with performance-oriented compiling with the Intel® C++ Compiler for Android. The
compiler is source-code compatible with GCC, enabling easy usage. The GNU C++
Compiler is also provided through the Android NDK, which is a customization option
in the Environment Setup component of Intel INDE. Apps created using the Intel C++
Compiler can run on Intel architecture-based devices running Android 4.3 and up.

Compute Code Builder: maximize performance with programmable graphics -
develop code that executes on computing devices beyond the CPU using the Compute
Code Builder. This tool assists with creating, compiling, debugging and analyzing
compute APIs like Google Renderscript† and OpenCL†. The compute code builder can
be used in standalone mode or integrated with Microsoft Visual Studio or Eclipse. Apps
created can run on Intel architecture-based Android 4.4 devices, as well as Microsoft
Windows 7–8.1 client. Visit Intel’s Getting Started Guide for more information.

Analyzing and Debugging: Use Analysis and optimization tools •	
suite includes the Intel Graphics Performance Analyzer (Intel
GPA) System Analyzer, Intel GPA Platform Analyzer, Intel GPA
Frame Analyzer, and Intel Frame Debugger. You can use them to
do the following:

Real-time trace analysis of code execution, CPU/GPU usage and •	
task data, and more

Frame-capture analysis and debugging•	

Platform-wide and application-specific GPU metric analysis and •	
graphics pipeline overrides

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

75

Figure 3-14.  Download screen for INDE

Apps created using the analysis and debugging tools can run on Intel architecture-
based devices running Microsoft Windows 7–8.1 or Android 4.4.

Setup
Setting up an environment for Intel INDE is easy. You can build your custom environment
in minutes instead of hours:

Selectively choose tools to install, allowing for a customized •	
environment.

Choose from the Google Android SDK (including Eclipse), •	
vs-Android plug-in for Microsoft Visual Studio, Android NDK,
Android Design, Apache Ant, and Intel HAXM.

Apps created using the environment setup can run on Intel architecture and ARM-
based targets running Android 4.3 and up.

Intel INDE Installation
The following sections describe the Intel INDE installation process.

Downloading Intel INDE
Go to https://software.intel.com/en-us/intel-inde, click the Download link, and
accept the license agreements. You will receive an e-mail with a download link, as shown
in Figure 3-14.

https://software.intel.com/en-us/intel-inde

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

76

Figure 3-16.  INDE setup complete

Installing Intel INDE
Run the downloaded file: IntelHubSetup.exe. An Intel INDE window displays license
terms and conditions, as shown in Figure 3-15.

Figure 3-15.  INDE install window

Check the box to agree to the license terms and conditions, and click Install. The
setup process starts, and several command-line windows flash. An Intel INDE icon and
an NDK.cmd icon are created on your desktop. When the process is complete, you are
ready to launch, as shown in Figure 3-16.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

77

Figure 3-17.  Main window for INDE

Launching Intel INDE
Click the Launch icon, and the main Intel INDE window will start as shown in Figure 3-17.

Follow each tool and application to download the necessary software. You’re ready
to begin cross-platform development.

Configure Eclipse
1.	 Start Eclipse and select the Window menu, then Preferences,

as shown in Figure 3-18.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

78

2.	 A Preferences dialog box will pop up. Select the Android
branch and then type the correct path in the SDK Location
box (usually this is auto-populated), as shown in Figure 3-19.
Note: After clicking the Android branch, a dialog box will pop
up. Click Proceed to continue.

Figure 3-18.  Startup page for configuring Eclipse

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

79

Figure 3-19.  Directory Location Setting of Android SDK

Create AVD (Emulator)
1.	 On the menu bar, select Window, then AVD Manager, as

shown in Figure 3-20.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

80

2.	 The Android Virtual Device Manager dialog box will pop up,
as shown in Figure 3-21. Click the New button.

Figure 3-20.  Start menu for creating emulator

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

81

Figure 3-21.  Initial page of emulator list

3.	 When the Create new Android Virtual Device (AVD) dialog
box displays, as shown in Figure 3-22, type an appropriate
name and, for Target, select the version of Android you wish
to use. The CPU/ABI box will automatically display Intel
Atom(x86). The size field for the SD card is the amount of
space allocated for it on the hard disk (in this example, 1024
MB). If your target device has a larger SD card, enter the
correct size. When the settings are correct, click Create AVD to
close the dialog box.

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

82

4.	 The Android Virtual Device Manager will then display, as
shown in Figure 3-23, and you can see the newly added item in
the list. Click the close button (the x) to close the dialog box.

Figure 3-22.  Creation parameter setting for emulator

Chapter 3 ■ Android Application Development Processes and Tool Chains for Intel® Architecture

83

Figure 3-23.  Display of created list of emulator

Summary
So far, you have finished installing the development environment tools for an emulator
target machine. The next chapter discusses how, if your target machine is a real device
(for example, a smartphone or tablet), you need to install and configure the development
environment for developing and testing apps on that device.

85

Chapter 4

Real Device Environment
Installation

So far, you have completed installing the development environment for an emulator
target machine. But if your target machine is a real device (for example, a mobile phone
or a tablet with the Intel Inside logo), you need to install and configure the development
environment for it. This chapter discusses how to build an application development with
a real Android device, including how to install drivers and connect the device to your
development host machine. Later, you see how to create an application and test it on both
an emulator and a real device.

Mobile Phone Setting
There are many ways to set up a real device to support the Android SDK adb connection,
and the settings vary from device to device. For example, in the case of the Lenovo K900
smartphone, you open the debugging function of the Android device by selecting
Settings ➤ Applications ➤ Development and clicking USB Debugging. For some other
devices, the USB Debugging option is not available because the developer option by default
is not enabled. One example is the Dell Venue 8 Android tablet. To enable the developer
option on a Dell Venue Android tablet, you need to go to Settings ➤ About ➤ Build
Number; tap Build Number seven times to enable the Dell Venue Developer Option, which
will then appear under System Category.

Installing the USB Driver on the Host Machine
This chapter uses the Lenovo K900 smartphone as an example of how to install a mobile
phone USB driver on the host machine:

1.	 Connect the mobile phone to the development PC via
USB cable.

2.	 The mobile phone is named Unknown Device in Device
Manager (see Figure 4-1). 

Chapter 4 ■ Real Device Environment Installation

86

3.	 Install the driver. The driver can be found from the phone
manufacturer or sometimes, as for the K900, from the
emulated CD-ROM device when the phone USB connection
is set to Driver Installation mode.

When you connect a Lenovo phone using a USB cable to your Windows laptop, a
CD-ROM is mounted to the directory as shown in Figure 4-2. The file structure of the USB
memory stick of the Lenovo Intel phone is
 
E: \Lenovo Kxxx Mobile phone driver>dir
 
2011-09-21 09:08 30 Autorun.inf
2012-03-23 17:10 2,366,976 bootstrap.exe
2012-03-23 17:15 69 bootstrap.ini
2012-03-23 10:57 10,993,152 LeDrivers.msi
 

Figure 4-1.  Lenovo K900 ADB device in Device Manager (a yellow ? appears on top of the
icon if Device Manager is unable to recognize the mobile phone when a USB driver is not
installed)

Chapter 4 ■ Real Device Environment Installation

87

4.	 Double-click LeDrivers.msi, and start installing the USB
driver (see Figure 4-3). 

Figure 4-2.  Directory display on the Windows host machine

Figure 4-3.  Lenovo K900 Device Drivers Setup dialog

5.	 Restart the host machine after installation.

You can see that the ADB interface has been installed. In the software list, the Lenovo
Racer-A Device Drivers have been successfully installed (see Figure 4-4).

Chapter 4 ■ Real Device Environment Installation

88

Interaction between the Host Machine and the
Target Machine
With the environment configured, the host and target machines can now use the Android
development environment to provide auxiliary tools for more interaction in addition to
the deployment operation during application development. You have more control over
the target machine, including an emulator-type target machine. The use of these tools is
introduced in the following sections.

Developing Android Applications
This section explains how to use Eclipse with the Android SDK to create a project, edit it,
and run the application using an emulator and a real device.

Creating a Project
To create a project, follow these steps:

1.	 Start Eclipse, and select File ➤ New ➤ Project. In the New
Project dialog box, select Android ➤ Android Application
Project, and click Next to continue (see Figure 4-5). 

Figure 4-4.  Software list for the Lenovo K900 after installation

Chapter 4 ■ Real Device Environment Installation

89

2.	 In the New Android Application dialog box, enter an
application name in the Application Name field, as shown
in Figure 4-6. The Project Name and Package Name are
auto-populated. Note that the set project name is also the
application name on the target machine. 

Figure 4-5.  Starting a new Android project

Chapter 4 ■ Real Device Environment Installation

90

3.	 Use the default configuration, and click Next. The Configure
Launcher Icon dialog box appears (see Figure 4-7). 

Figure 4-6.  New project (application) name

Chapter 4 ■ Real Device Environment Installation

91

4.	 Use the default configuration, and click Next. The Create
Activity dialog box appears (see Figure 4-8). 

Figure 4-7.  New project—application icon setting

Chapter 4 ■ Real Device Environment Installation

92

5.	 Use the default configuration, and click Next. The New Blank
Activity dialog box appears (see Figure 4-9). 

Figure 4-8.  New project—activity setting (1)

Chapter 4 ■ Real Device Environment Installation

93

The file structure and content look like Figure 4-10.

Figure 4-9.  New project—activity setting (2)

Chapter 4 ■ Real Device Environment Installation

94

Editing and Running (on the Emulator)
To test run the application using emulator, please do the following steps:Perform the
following steps.

1.	 Right-click the project name, and select Run As ➤ Run
Configuration on the shortcut menu. Or, from the menu,
select Run ➤ Run Configuration.

2.	 In the dialog box, right-click Android Application (current
project name), and select New. Left-click the Target tab, and
click the Automatically Pick Compatible check box. Select the
Intel Atom-related AVD in the list. Click Apply and then Close
to close the dialog (see Figure 4-11). 

Figure 4-10.  New project—directory structure

Chapter 4 ■ Real Device Environment Installation

95

3.	 Right-click the project name, and select Run As ➤ Android
Application from the shortcut menu (see Figure 4-12). 

Figure 4-11.  Runtime configuration of the emulator target machine

Chapter 4 ■ Real Device Environment Installation

96

4.	 Before running, the message box shown in Figure 4-13
appears. Click OK to continue. The emulator window appears
and shows the running results. 

Figure 4-12.  Editing and runtime for starting an Android application

Figure 4-13.  Message prompt before running Android

Chapter 4 ■ Real Device Environment Installation

97

On the host machine, the console window of Eclipse shows the progress of editing,
deploying, and running, as shown in Figure 4-14.

Figure 4-14.  Eclipse interface when running an Android application

When the last sentence appears, the emulator screen displays the application
window, as shown in Figure 4-15. Note: This process takes about 2 minutes if Intel HAXM
is installed and working on your host machine.

Chapter 4 ■ Real Device Environment Installation

98

5.	 Click the DDMS button in the upper-right corner of the
Eclipse window to enter the DDMS interface. The pane on
the left shows the applications currently running on the
target machine (emulator). In this example, com.example.
helloandroid and helloandroid are running (see Figure 4-16). 

Figure 4-15.  An application running an interface on the emulator

Chapter 4 ■ Real Device Environment Installation

99

6.	 You can see that the menu changes on the target machine.
Click the Home button on the keyboard to see the interface
shown in Figure 4-17. Then click the third button from the left
at the bottom of the screen.

Figure 4-16.  DDMS interface of Eclipse

Chapter 4 ■ Real Device Environment Installation

100

In the application list shown in Figure 4-18, you can see the new MainActivity
application.

Figure 4-17.  Home page of the emulator

Chapter 4 ■ Real Device Environment Installation

101

7.	 To stop running the application, click the DDMS button in
the upper-right corner of Eclipse to enter the DDMS interface.
Select the debugging software from the progress list on the left
(usually com.example.[project name]). Click Stop Process (see
Figure 4-19) to end running the process on the target machine. 

Figure 4-18.  The application list on the emulator

Chapter 4 ■ Real Device Environment Installation

102

Then you see the page of the emulator’s default application, as shown in Figure 4-20.

Figure 4-19.  Ending running the application in DDMS

Chapter 4 ■ Real Device Environment Installation

103

8.	 Click Java at upper left in Eclipse. The IDE interface goes back
to the original editing status (see Figure 4-21). 

Figure 4-20.  Initial page of the emulator

Chapter 4 ■ Real Device Environment Installation

104

9.	 Close the emulator window.

Running on the Real Device
To run the application on the real device, follows these steps:

1.	 Connect the mobile phone to the PC.

2.	 Enter the Eclipse window, and right-click the project name.
In the shortcut menu, select Run As ➤ Run Configuration; or,
in the Eclipse menu, select Run ➤ Run Configuration.

3.	 In the dialog box, left-click Android Application, [current
project name]. Left-click the Target tab, and click Launch
On All Compatible Devices/AVD’s, which is set to Active
Devices And AVD’s. Click Apply and Close to close the dialog
(see Figure 4-22). 

Figure 4-21.  The Eclipse editing interface

Chapter 4 ■ Real Device Environment Installation

105

4.	 Right-click Project Name, and select Run As ➤ Android
Application from the shortcut menu.

On the real device, you can see the interface running on the application, as shown
in Figure 4-23.

Figure 4-22.  Setup for running an application on the real device

Chapter 4 ■ Real Device Environment Installation

106

Figure 4-23.  Application interface on the real device

The application icon appears on the mobile phone menu. And you can see in
Figure 4-24 that MyMainActivity has already been installed on the mobile phone menu.

Chapter 4 ■ Real Device Environment Installation

107

Figure 4-24.  Application list on the real device

Chapter 4 ■ Real Device Environment Installation

108

What’s interesting is that the application process on the real device is much smaller
than on the virtual device (see Figure 4-25). It has only one application process.

Figure 4-24.  (continued)

Chapter 4 ■ Real Device Environment Installation

109

In contrast to running your application on the emulator, the Eclipse console pane
(see Figure 4-26) does not provide much information about editing and deployment.

Figure 4-25.  DDMS interface of Eclipse

Chapter 4 ■ Real Device Environment Installation

110

5.	 Stop running the application by following the same steps as
for the emulator.

Debugging Android Applications
Debugging is an important step in the application development process. For x86 platform
targets, you need an x86-based device or x86 simulator to test and debug the application.
With IA phones and tablets like the Lava Xolo and Lenovo K900 and tablets such as
Samsung Galaxy Tab 10.1 and Dell Venue 7/8 on the market, you can test and debug apps
on real x86-based tablets and phones.

If you don’t have x86 devices for testing, the x86 simulator works just fine. You can
use Android SDK Manager to install the x86 simulator.

Editinging the Source Code
In the Eclipse project file pane, find the \XXX\src\com.example.XXX***.java file, where
XXX is the project name. Double-click the file name, and the source code is displayed on the
right. Edit the source code by adding the lines of code shown in Figure 4-27 (shaded lines).

Figure 4-26.  Eclipse interface while the application is running

Chapter 4 ■ Real Device Environment Installation

111

Figure 4-27.  Modifying the source code in Eclipse

Setting Breakpoints
With the cursor over the code, right-click Toggle Breakpoint in the shortcut menu, as
shown in Figure 4-28.

Chapter 4 ■ Real Device Environment Installation

112

A green icon is displayed on the left side of the code that has a breakpoint set, as
shown in Figure 4-29.

Figure 4-28.  Menu to set a breakpoint

Chapter 4 ■ Real Device Environment Installation

113

Repeat this process to cancel a breakpoint set on a line of code.

Starting Debugging
To start debugging, follow these steps:

1.	 Right-click the project name. In the pop-up menu, select
Debug As ➤ Android Application (see Figure 4-30). 

Figure 4-29.  Display after a breakpoint is set

Chapter 4 ■ Real Device Environment Installation

114

2.	 In the warning dialog box (Figure 4-31), click Yes to continue. 

Figure 4-30.  Entering the debugging state

Figure 4-31.  Message box after entering the debugging state

Chapter 4 ■ Real Device Environment Installation

115

3.	 The Eclipse IDE enters the debugging interface, as shown in
Figure 4-32. Where possible, the initial running interface of
the target machine (real device or emulator) is as shown
in Figure 4-33. 

Figure 4-32.  Interface of the Eclipse IDE during debugging

Chapter 4 ■ Real Device Environment Installation

116

Program Execution Techniques
If you want to carry out single-step execution, click in the code window to make it the active
window (see Figure 4-34). You can highlight the code section and right-click to access the
menu shown in Figure 4-34. From the menu, select Step Over, Step Into, or Step Return
to execute.

Figure 4-33.  The emulator interface during debugging

Chapter 4 ■ Real Device Environment Installation

117

Observing the Debugging Output of the Log.X Function
The Log.X function is equivalent to the MFC TRACE function and is used to output
information in the Eclipse LogCat window. To observe the debugging output of Log.X,
follows these steps:

1.	 If the LogCat pane is not shown, click Window ➤ Show View
➤ LogCat (see Figure 4-35). The LogCat may not be found
depending on the ADT version you are using. If you cannot
find LogCat, you can select Other to display more options and
add LogCat into your list. LogCat is in the Android category. 

Figure 4-34.  Single-step execution

Chapter 4 ■ Real Device Environment Installation

118

2.	 Single-step execute two Log.d sentences:

a.	 Click and activate the code window.

b.	 Press the F6 key to browse the code. You may need to
press F6 multiple times to reach the latest output of these
sentences in the LogCat window (see Figure 4-36). 

Figure 4-35.  Viewing LogCat

Chapter 4 ■ Real Device Environment Installation

119

3.	 Create a filter for the debugging output information by
clicking the Add A New LogCat Filter button in the upper-right
corner of the LogCat window (see Figure 4-37). Enter the Filter
Name and By Log Tag in the dialog box. Filter Name can be
any name you like, but By Log Tag must be the first parameter
(string) of the Log.d() function in the source code. Then click
OK to close the window. 

Figure 4-36.  Viewing output in the LogCat window

Chapter 4 ■ Real Device Environment Installation

120

Figure 4-38.  The LogCat window displaying the filtered output

Figure 4-37.  Creating a new LogCat filter

In Figure 4-38, you can see the the called output information of Log.X dislayed in the
LogCat window.

Chapter 4 ■ Real Device Environment Installation

121

Observing Variables
To observe variables, select Run ➤ Watch, as shown in Figure 4-39.

Figure 4-39.  The Watch command

Right-click the Expression tab to pop up the menu as shown. Click Add New
Expression as shown in Figure 4-40 to add variables for observation.

Chapter 4 ■ Real Device Environment Installation

122

Ending Debugging
Click Terminate on the toolbar (Figure 4-41) or select Terminate on the Run menu to end
debugging.

Figure 4-40.  Adding variables for observation

Chapter 4 ■ Real Device Environment Installation

123

You can see the default application page displayed by the emulator, as shown in
Figure 4-42.

Figure 4-41.  Ending debugging by clicking the Terminate button

Chapter 4 ■ Real Device Environment Installation

124

Go back to the editing home page. Click Java the upper-left corner in Eclipse; the IDE
interface goes back to the original editing status.

Intel Auxiliary Tools for Android Application
Development
Intel provides a series of tools for software development on Intel Atom processor-based
systems. These tools are auxiliary to the Android development tool chains and further
support Android application development. In chapter 3, you saw how to get the Beacon
Mountain tools for Apple OS X and Linux Host system, which are compatible with Eclipse
and support popular Android SDKs including the Android NDK; and the Intel Integrated
Native Developer Experience (Intel INDE) for expanded tools, support, and more for
creating Android applications using on a Microsoft Windows 7-8.1 host system. The
following are introductions to some of those tools.

Figure 4-42.  The default application page displayed by the emulator

Chapter 4 ■ Real Device Environment Installation

125

Intel C++ Compiler (Intel ICC)
Intel C++ Compiler (Intel ICC) is a set of C/C++ encoders that can run on multiple
platforms, including Windows, Linux, and OS X. On Linux platforms, it can replace gcc in
completing C/C++ code compilation and linking.

The Intel ICC encoder can produce instructions that tap into the potential of Intel
processors. Intel ICC-encoded code has relatively better performance on Intel processors.
ICC running on IA-32 and Intel 64 can generate automatic vector components for SIMD
instructions such as SSE, SSE2, SSE3, and SSE4 and generate variables for Intel Wireless
MMX. Intel ICC supports the automatic parallelization of OpenMP and symmetric
multiprocessor (SMP). With additional cluster OpenMP, Intel ICC-compiled code can pass
interface calls for distributed memory multiprocessing (DM-SMP) to generate messages in
OpenMP instructions. This is detailed in the performance optimization section.

Intel ICC and gcc both have editing and linking functions. Intel ICC can be run in
command-line format, such as
 
icc [options] [@response_file] file1 [file2...]
 
where

•	 options means zero or multiple encoding potions

•	 response_file is a text file that lists options for encoding file(s)
to be compiled and can include C or C++ files (suffixes: .C, .c,
.cc, .cpp, .cxx, .c++, .i, .ii) and assembly files (suffixes: .s, .S),
target files (suffix: .o), and static libraries (suffix: .a)

The common options of Intel ICC are shown in Table 4-1.

Chapter 4 ■ Real Device Environment Installation

126

The options listed in the table are unique to Intel ICC. Intel ICC’s compatibility
with gcc means gcc’s encoding options can also be used in Intel ICC. For example, the
-o option can be used to name the target file; -S is used for explaining thecompiled
assembly codes ; -c only compiles the files and does not link into executable files (namely
resisting links).

Intel Graphics Performance Analyzers for Android OS
The Intel Graphics Performance Analyzers (Intel GPA) suite is a set of powerful graphics
and gaming analysis tools that are designed to work the way game developers do,
saving valuable optimization time by quickly providing actionable data to help you find
performance opportunities from the system level down to the individual draw call.

Table 4-1.  Common Intel C++ Compiler Encoding Options

Options Description

-fast An abbreviation for several options: -O3 -ipo -static -xHOST
-no-prec-div. Note: The explanation on the xhost label explains on
which processor the optimization is based. The processor label might
be rewritten during practice.

-g Produces debugging information versions for debugging gdd and idb
debuggers.

-help [CODE] Displays help information on the command line. CODE explains the
type and options of the help group.

-m32 Tells the encoder to produce IA-32 code.

-m64 Tells the encoder to produce IA-64 code.

-O0 Tells the encoder to not perform optimization.

-O1 Tells the encoder to optimize code sizes.

-O2 Optimizes on running speed and starting optimizations

-O3 Starts all optimizations including O2 and intensive cycle optimization.

-prof-gen Compiles programs into the running mode of the code profiler.

-prof-use Compiles and processes the code profiler information during each
step. This option can be applied only to programs to which prof_gen
encoding has been applied.

-xO Initiates SSE3, SSE2, and SSE instruction set optimization for
non-Intel CPUs.

-xS Generates SSE vector encoders and media acceleration instructions.

Chapter 4 ■ Real Device Environment Installation

127

Intel GPA now supports Intel Atom-based phones and tablets running the Google
Android OS. This version of the toolset enables you to optimize OpenGL ES workloads
using your choice of development systems: Windows, OS X, or Ubuntu OS. With this
capability, as an Android developer you can do the following:

Get a real-time view of over two dozen critical system metrics •	
covering the CPU, GPU, and OpenGL ES API

Conduct a number of graphics pipeline experiments to isolate •	
graphics bottlenecks

When using a tablet based on an Intel Atom processor, run Intel •	
GPA Frame Analyzer to perform detailed frame analysis and
optimization

When using an Android device based on Intel Atom processor •	
with PowerVR Graphics, run Intel GPA Platform Analyzer to
perform detailed platform analysis

To download a free copy of Intel GPA, browse to the Intel GPA Home Page
(https://software.intel.com/en-us/vcsource/tools/intel-gpa), and click the
Download button for the appropriate version of the product. For developing games or
applications for the Android OS platform, select a version of Intel GPA depending on your
development system.

Intel System Studio
Intel System Studio is a comprehensive and integrated tool suite that provides advanced
system tools and technologies to help accelerate the delivery of the next generation of
power-efficient, high-performance, and reliable embedded and mobile devices.

Intel System Studio 2014 now allows you to develop for embedded and mobile
Android and Tizen IVI systems, adds cross-development from Windows hosts, and
provides expanded JTAG debug support for all IA platforms. The new agent-based
UEFI debug helps you accelerate time-to-market and strengthen reliability of these
increasingly complex embedded and mobile systems. Eclipse integration and cross-build
capabilities allow for faster system development with Intel System Studio 2014.

Intel System Studio includes the components listed in Table 4-2.

https://software.intel.com/en-us/vcsource/tools/intel-gpa

Chapter 4 ■ Real Device Environment Installation

128

Intel System Studio development tools combined with Intel Quark, Intel Atom, Intel
Core, and Intel Xeon processor platforms provides added value and competitive edge
in delivering robust embedded and mobile platform solutions across a wide range of
markets.

Table 4-2.  Intel System Studio Components

Component Description

Intel VTune Amplifier for Systems Advanced CPU and system-on-chip (SoC)
performance profiling and tuning.

Intel Energy Profiler Advanced GPGPU and SoC power profiling
and tuning.

Intel System Analyzer Real-time system-level performance analysis
with CPU and GPU metrics for Android targets.

Intel JTAG debugger System debugger for in-depth SoC platform
insights, featuring low-overhead event tracing,
logging, source-level debug of EFI/UEFI
firmware via JTAG and the EDKII debug agent,
bootloader, OS kernel, and drivers.

gdb debugger Software debugger for fast application-level
defect analysis for increased system stability,
application-level instruction trace, and
data-race detection.

Intel Inspector for Systems Dynamic and static analyzer that identifies
difficult-to-find memory and threading errors
to ensure functional reliability.

Intel C++ Compiler Industry- leading C/C++ compiler including
the Intel Cilk Plus parallel model for highly
optimized performance. Binary and source
compatible with gcc compilers and
cross-compilers.

Intel Integrated Performance Primitives Extensive library of high-performance
software building blocks for signal, data, and
multimedia processing.

Intel Math Kernel Library Highly optimized linear algebra, Fast Fourier
Transform (FFT), vector math, and statistics
functions.

System Visible Event Nexus (SVEN)
1.0 technology

Ultra-low-overhead event tracing.

Chapter 4 ■ Real Device Environment Installation

129

Intel Project Anarchy: a Free Mobile Game
Engine by Havok
Project Anarchy is a free mobile game engine for iOS, Android (including X-86), and
Tizen. It includes Havok’s Vision Engine along with Havok Physics, Havok Animation
Studio, and Havok AI. It has an extensible C++ architecture, optimized mobile rendering,
a flexible asset-management system, and Lua scripting and debugging. Complete game
samples are included with the SDK along with extensive courseware on the Project
Anarchy site that game developers can use to quickly get up to speed with the engine and
bring their game ideas to life:

Extensible C++ plug-in–based architecture•	

Comprehensive game samples with full source art and source code•	

Focus on community with forums for support, Q&A, feedback, •	
and hands-on training

No commercial restrictions on company size or revenue•	

Upgrades for additional platforms and products, source, and •	
support available

Includes FMOD, the industry’s leading audio tool•	

Intel Performance Libraries
Special performance libraries include Intel Integrated Performance Primitives (Intel IPP),
Intel Math Kernel (Intel MKL), and Intel Threading Building Blocks (Intel TBB).

Intel IPP 8.1 is an extensive library of software functions for multimedia processing,
data processing, and communications applications for Windows, Linux, Android, and
OS X environments. It includes a broad range of functions, including communication
and image processing, computer vision, voice recognition, data compression, encryption
and decryption, string operation, voice processing, video formatting, photorealistic
rendering, and 3D data processing. It also includes sophisticated primitives for building
audio, video, and voice encoders/decoders such as MP3, MPEG-4, H.264, H.263, JPEG,
JPEG2000, GSM-AMR, and G723.

By supporting all data types and function layout, the number of data structure types
is minimized. During application design and optimization, the Intel IPP library provides a
variety of option sets. All kinds of data types and layouts are supported by each function.
The minimized data structure of Intel IPP software provides maximum flexibility in
generating optimized applications and higher-level software modules and library
functions. The Linux version of Intel IPP provides independent software packages that
support IA-32, Intel64, IA-64, and Intel Atom processors.

Intel TBB is a widely used, award-winning C and C++ library for creating high-
performance, scalable, parallel applications. It enhances productivity and reliability with
a rich set of components to efficiently implement higher-level, task-based parallelism.
You gain performance advantages by building future-proof applications to tap multicore
and many-core power. The advanced threading library is compatible with multiple
compilers and portable to various operating systems.

Chapter 4 ■ Real Device Environment Installation

130

Intel IPP and TBB provide convenience and help optimize program runtime
performance. You can reduce the amount of code you have to write by calling the
functions in the libraries. Intel performance libraries can provide the same or similar
services and functions as third-party libraries. They fully use the instruction capacity of
Intel and compatible processors; therefore the same or similar services perform better
than third-party libraries or ones provided by the OS. This topic is discussed at length in
the code-optimization sections in Chapters 8 and 9.

Summary
In this chapter, you discussed how you setup and configure the Application development
on host system, install USB driver for Android real device so that the connection can be
built between the devices and host systems to allow you to test and debug the application.
You also discussed how to use Intel emulator, and all the steps required to accelerate the
emulator and how to work with it. In next chapter, you will discuss Android Operation
System, and understand the principles of Android OS on Intel Architecture.

131

Chapter 5

The Android OS

At the heart of all compute devices is the operating system, or OS. Development and
execution of application software are based on the OS and the software platform as a whole.
In this chapter, you learn about the Android OS—the recommended software platform for
Intel Atom-based machines—to build your competence for subsequent development of
embedded applications.

Android Overview
Android is a comprehensive operating environment based on the Linux kernel (in 2014,
Kernel version 3.10.x has been used by major OEMs). Initially, the deployment target
for Android was the mobile phone category, including smartphones and lower-cost
flip-phone devices. However, Android’s full range of computing services and rich
functional support have the full potential to extend beyond the mobile phone market for
use on other platforms and applications, such as tablets.

In addition to the kernel, the Android OS for x86 requires some drivers and
technologies, including those commonly found on mobile devices:

USB driver for host and client•	

Video driver for video encode as well as decode•	

Display and graphics: 2D and 3D rendering; planes, pipes, ports•	

Flash memory driver•	

Camera driver: usually a Linux-based v41 (video for) driver•	

Audio driver: usually an Advanced Linux Sound Architecture •	
(ALSA) based advanced Linux (sound system) driver

Near field communication (NFC)•	

Wi-Fi Driver: IEEE 802.11-based driver•	

Keyboard driver•	

Security (DRM, trusted boot, and so on)•	

Chapter 5 ■ The Android OS

132

Bluetooth driver•	

Binder IPC: a special driver of Android, with separate device •	
nodes to provide inter-process communications (IPC) functions

Power management: drivers for three different CPU Standby •	
states: Active Stand-by (S0i1), Always On Always Connected
(AOAC) Stand-by (S0i2), and Deep Sleep Stand-by (S0i3)

With Android’s breadth of capabilities, it would be easy to confuse it with a desktop
OS; Android is a layered environment and includes rich functions.

Android applications are generally written in the Java programming language and
can include many different kinds of resource files (in the res directory). An APK package
is generated after the Java program and other related resources are compiled. Google
also provides support for multiple APK files. This is a feature of Google Play that allows
developers to publish different APKs for the application that are each targeted to different
device configurations. Android offers many core applications including Home, Contact,
Phone, and Browser. In addition, you can use the APIs in the application framework layer
to develop your own applications.

The Android UI subsystem includes

Windows•	

Views•	

Widgets for displaying common elements such as edit boxes, lists, •	
and drop-down lists

It also includes an embeddable browser built on WebKit, the same open source
browser engine powering the Apple iPhone’s Mobile Safari browser.

Android boasts a healthy array of connectivity options, including Wi-Fi, Bluetooth,
and wireless data over a cellular connection (for example, GPRS, EDGE, 3G, and 4G/LTE).
A popular technique in Android applications is to link to Google Maps to display an
address directly within an application. Support for location-based services (such as GPS)
and accelerometers is also available in the Android software stack, although not all
Android devices are equipped with the required hardware. There is also camera support.
Historically, two areas where mobile applications have struggled to keep pace with
their desktop counterparts are graphics/media and data-storage methods. Android
addresses the graphics challenge with built-in support for 2D and 3D graphics, including
the OpenGL ES library. The data-storage burden is eased with the popular open source
SQLite database included on the Android platform.

Chapter 5 ■ The Android OS

133

As mentioned, Android runs on top of a Linux kernel. Java-based applications are
run within a virtual machine (VM). It’s important to note that the VM is not a JVM, as you
might expect, but is the Dalvik virtual machine (DVM), an open source technology. Each
Android application runs within an instance of the DVM, which in turn resides within a
Linux kernel–managed process, as shown in Figure 5-2.

Applications
Built-in (phone, contacts, browser). Third-party/Custom

Application Frameworks
Telephone manager, location manager, notification manager, content

providers, window manager, resource manager

Libraries
Graphics, media, database, WebKit

and so on

Android Runtime (ART)
Dalvik Virtual Machine

Linux Kernel
Power management, file system, drivers, process and so on

Figure 5-1.  Android software architecture

Android Architecture
A simplified block diagram of the Android software architecture is shown in Figure 5-1.

Chapter 5 ■ The Android OS

134

Starting with Android KitKat 4.4, Google has implemented the new Android Run
Time (ART), which is also called Dalvik version 2. ART is under active development
in the Android Open Source Project (AOSP) master, and future 64-bit versions of
Android will be based on ART. You can find the latest information about ART at
https://source.android.com/devices/tech/dalvik/art.html.

Basic Android Functionality from a Programming
Perspective
Android is a version of Linux. This section recaps some basic Linux commands and
common practices for Android developers with two scenarios: one based on the Android
emulator provided in the Android SDK and the other for developers who own a real
Android smartphone or tablet with Intel inside it (in the examples, the Lenovo K900
smartphone). If you are an experienced Android/Linux developer, you can safely skip the
rest of this chapter and move to the next chapter.

Android System Interface
The Android mobile system interface is a key aspect in which major manufacturers differ.
Personalized system interfaces are not only a selling point, but also a platform for mobile
phone users to communicate with their friends. This section uses the Lenovo K900
smartphone as an example to discuss Android system UI design. The four-leaf clover
design used by Lenovo K900 is shown in Figure 5-3.

Linux Kernel

Linux process

Dalvik virtual machine

Android application

Figure 5-2.  Android application operation layer

https://source.android.com/devices/tech/dalvik/art.html

Chapter 5 ■ The Android OS

135

The Lenovo phone adopts the conventional “slide up to unlock” mode, which is
simple and convenient. The shortcuts in the main interface can be changed by
long-pressing a leaf, as shown in Figure 5-4. It’s worth noting that during the main
interface operation, the shortcut-setting option does not appear if you click the menu key,
as on some other Android phones. In addition, you cannot add or delete the home screen
(the shortcuts in leaves can be changed).

Figure 5-3.  Lenovo K900 main interface

Chapter 5 ■ The Android OS

136

The Lenovo phone’s drop-down menu is personalized and includes four options:
Notification, Switch, Call, and Message. In the Switch interface, you can make quick
settings for the mobile phone or long-press an option to enter the option’s detailed
settings interface.

Some Android phones allow you to add widgets and shortcuts when you long-press
any blank space on the interface, but the Lenovo phone doesn’t have this function. You
can use the menu key to add tools and shortcut keys (except the)home screen. When
you press the screen with two fingers, the multiscreen interface appears where you can
perform a quick search, as shown in Figure 5-5.

Figure 5-4.  All Menu interface

Chapter 5 ■ The Android OS

137

The menu interface in 20-rectangle-grid design is fashionable and elegant, but some
icons are blurred.

The main hardware and OS configuration information of the Lenovo K900 phone are
shown in Figure 5-6.

Figure 5-5.  Multiscreen interface of the Lenovo phone

Chapter 5 ■ The Android OS

138

Terminating an Application in Android
Android offers three different methods to terminate an application, as described in the
following sections.

Method 1 (for Real Devices)

1.	 Select the following options in the mobile device menu:
Settings ➤ Applications ➤ Running Services ➤ Running
Applications. The applications that are executing are shown.
This list may vary on different devices. For example, on the
Samsung Galaxy Note, Applications is replaced with Application
Manager, and on the Dell Venue (Android KitKat 4.4), it is
replaced with Apps.

2.	 Click the application to delete from the list, and the Force Quit
and Uninstall buttons pop up on the screen. Click Force
Quit to terminate the process.

Figure 5-6.  Parameters of the Lenovo K900 phone

Chapter 5 ■ The Android OS

139

Method 2

Press Return when the application occupies the current top-level window screen (that is,
the application is running).

Method 3

Terminate the process in the Dalvik Debug Monitor Server (DDMS) on a host system.
This can be achieved when the Android device is connect to a host system that has an IDE
with an Android SDK that supports DDMS, such as Eclipse.

Using the Web Browser in the Android Emulator
If you have a smartphone, there is no doubt that you can connect to the Internet easily.
If you are running Android on an emulator, you can follow these steps to use the web
browser:

1.	 Click the Home button on the keyboard, and the interface
shown in Figure 5-7 appears. Click the bottom-right button. 

Figure 5-7.  Web browser startup interface

Chapter 5 ■ The Android OS

140

2.	 The web browser window pops up. Click the address bar to
bring up the keyboard on the emulated device, as shown in
Figure 5-8. Input the address on the emulated keyboard, and
then click Go. 

Figure 5-8.  Web browser initial interface

Common Linux Commands and Operations
Because Android is based on Linux, Android supports most Linux commands.
The following sections present some common Linux commands that are supported on an
Ubuntu system–based host machine and an Android system–based target machine. If you
are using a Windows host system to develop applications for Android, you can use the
Android Debug Bridge (adb) command provided by the Android SDK to connect to an
Android device or emulator to run these commands.

Chapter 5 ■ The Android OS

141

Check Users
The following command checks the current logged-in user’s name:
 
$ who am i
 
or
 
$echo $USER
 

The following command displays username information:
 
$ id
 
uid=1000(cereal) gid=1000(cereal)
groups=4(adm), 20(dialout), 24(cdrom), 46(plugdev), 106(lpadmin),
121(admin), 122(sambashare), 1000(cereal)
 

The output data shows the current user is cereal, the user ID is 1000, the user belongs
to the cereal group, the group ID is 1000, and so on.

Changing a Password
The following command changes the current user’s password:
 
$ passwd
 

Here is the output:
 
Changing password for cereal.
(current) UNIX password:
Enter New UNIX password:
Retype New UNIX password:
Password changed
 

The passwd command can also be used to change the Rootpassword. For example,
if you log in with the username cereal, you can use the following command to set the
password of the root user:
 
$ sudo passwd root
 

In desktop Linux, a login window usually appears as the system starts, requiring you
to enter the username and password. But Android doesn’t have this process. Android
automatically logs in using the default username and password, which are invisible to the
user; the system resources are used under the user’s identity.

Chapter 5 ■ The Android OS

142

If the password of the root user is uncertain after Android installation, you can set it
as shown earlier using the passwd root command. sudo means the command is executed
under the root identity, but execution of the command only requires confirmation by
inputting the password of an ordinary user.

Clearing the Screen
You can use the clear command to clear the screen:
 
$ clear

Superuser Root Operation
Linux has a unique superuser root (different from multiple superusers for Windows),
which can access all files and directories and operate all applications in the system. Use
the su command to enter the root user account:
 
$ su
 

Then, enter the root user’s password. After you enter the root user account, the
command-line prompt changes from $ to #. If the su command is not followed by
any parameter, the default is to switch to the root user but not the root user’s home
directory—that is, the root login environment is not changed after the switch. It is still
the default login environment. When a parameter is entered, the root user as well as the
environment of the root user are changed:
 
$ su -
 

Use the exit command to exit the root user account and return to the ordinary
user identity:
 
#exit
 

After exiting, the command line prompt changes from # to $.
When you enter the root user account with the su command, subsequent

operations are made under the root identity. To execute the current command under
the root user identity and return to the ordinary user identity after the execution of
the command, add the prefix sudo before the command, as shown earlier. As sudo is
executed, the system asks you to enter the password of the current user (not the root
user) to confirm the identity.

Theoretically, an ordinary user doesn’t necessarily have sudo permissions; the
permissions are specified in the document /etc/sudoers. In desktop Linux, this should
always be edited or set via commands such as visudo. But in Android, the default is that
the installer has sudo permissions.

Chapter 5 ■ The Android OS

143

Displaying Files and Directories
You use the ls command to display directory and file information. The common format
of ls is as follows:
 
ls [-l] [<directory name>]
 

Here, ls -l shows file or directory, size, modified date and time, file or folder name
and owner of file and it’s permission. By default, the information of the current directory
is displayed. For example (the current directory is /home/cereal):

Changing and Displaying the (Current) Directory
Use the cd command to change the current directory. For example, to change the current
directory to \embedded\pkgs, input the following command (note that the root directory
and directory are separated by / in Linux):
 
$ cd /home/cereal/Document
 

This path, beginning with / to indicate the directory, is called an absolute path.
If the current directory is /home/cereal, the relative path can be used:

 
$ cd Documents
 

If no parameters are entered, the cd command changes to the home directory of the
current user:
 
$ cd
 

.. means the parent directory, accessed with the following command:
 
$ cd ..
 

Use the pwd command to display the absolute path name of the current directory:
 
$ pwd
/home/cereal
 

There are also symbols to represent special directories in Linux. For example, ~
indicates the user’s home directory, so you can use the following command to go to the
home directory:
 
$ cd ~

Chapter 5 ■ The Android OS

144

Searching for Files
Use the find command to search for files. The format of the command is
 
find directory name -name file name
 

You can search for specified files in the specified directory and all child directories.
For example, input the following command to search for ifconfig files in the entire
file system:
 
find / -name ifconfig
 

This command starts at the root directory and searches for ifconfig files under all
subdirectories. The command accesses all directories, many of which are not accessible
to an ordinary user, so it’s recommended that you execute this command under the root
identity.

File Operation
Android has file-operation commands similar to those in Windows. The commands are
listed in Table 5-1.

Table 5-1.  Android File-Operation Commands

Command Function Format Format description

cat Show file contents cat [-n] <file list> n: Show the line number.

ln Establish a hard/
soft link

ln [-sf] <original
file><destination
file>

s: Soft link; the default is
hard link. f: The destination
file, if it exists, will be
replaced

mkdir Make a directory mkdir <directory
name>

Create a directory with given
name

rmdir Delete an empty
directory

rmdir <directory
name>

The directory to be deleted
must be empty. To delete a
non-empty directory, use
the following command:

rm –rf <directory name>

(continued)

Chapter 5 ■ The Android OS

145

For example, you can use the following command to display the contents of the
/etc/passwd file:
 
$ cat /etc/passwd
 

Use the following command to copy the /etc/passwd file to the current directory:
 
$ cp /etc/passwd .
 

The . in this command indicates the current directory.

Modifying File/Directory Permissions
As mentioned, every file or directory has its own permission. Only users with the
corresponding permission can perform operations. The permission must be modified if it
doesn’t match. Table 5-2 lists the Linux commands to modify file permissions.

Command Function Format Format description

cp Copy a file cp [option] [<source
path>]<source
file> <destination
path>[<destination
file>]

Copy SOURCE to DEST,
or multiple SOURCE(s) to
DIRECTORY

mv Move and
rename a file

mv <source file>
<destination file>

Rename SOURCE to DEST,
or move SOURCE(s) to
DIRECTORY.

rm Delete a file rm [option]
<file name>

-i: Ask whether to delete.

-f: Don’t ask whether to
delete.

-r: Recursively delete the
entire directory, like rmdir.

cmp Compare files cmp <file 1>
<file 2>

Compares two files of any
type and writes the results to
the standard output.

Table 5-1.  (continued)

Chapter 5 ■ The Android OS

146

For example, this command adds write permission for other users of the
report.doc file:
 
chmod o+w report.doc
 

In Linux, the owner, users in the same group, and other users are represented by u, g,
and o, respectively. The previous command adds write permission for other users (o).

The next example sets the group permission of report.doc tp rw (deletes x
permission):
 
chmod g=rw report.doc
 

Permissions can also be represented by digits: the values for read, write, and execute
are 4, 2, and 1, respectively. The digit of the allocated permissions is the sum of the three.
For example, the following command sets the user permission of report.doc to rw
(4 + 2 + 0 = 6), sets the group permission to r (4 + 0 + 0 = 4), and gives no permission for
other users (0 + 0 + 0 = 0):
 
chmod 640 report.doc
 

This command allocates report.doc to the managers groups:
 
chgrp managers report.doc
 

To set the owner of report.doc to cereal and set its group to managers, you can use
this command:
 
chown cereal.managers report.doc
 

This command changes the owner of all files under the current directory to cereal:
 
chown cereal *
 

Table 5-2.  File/Directory Permission-Modification Commands

Command Function Format

chmod Change the file/directory access
permission (only the file owner
and root user can do this)

chmod <octal digit>/<+/-
w/r/x> <file name>

chgrp Change the file group chgrp <group name>
<file name>

chown Change the file owner (only the
root user can do this)

chown <new owner>
<file name>

Chapter 5 ■ The Android OS

147

Generally, only root users can use chown to change the owner of a file or directory.
In Windows, executability of a file is based on its suffix (such as .exe), but Linux doesn’t

have any requirement for the name of an executable file and determines whether the file is
executable by the file attributes In Android, to make a file executable or non-executable, you
usually use the chmod command to add or delete permission to execute.

Many command functions, such as file operations and permission operations,
are usually performed in a file explorer, text editor, or other graphical user interface
application. But with command-line operations, you have a new way to perform
commands quickly. Android doesn’t provide GUI applications such as a file explorer, so
in most cases, you have to use the command line to complete those functions.

Working with the Executable File Path
If a path is not specified for an executable file, Linux can find the file with the path it saved
in the system variable PATH, also called the default path or path. By default, Windows
finds executable files in the current directory, but Linux only finds executable files in
their default paths. So, you can use the following command to execute the executable file
under the current directory:
 
./directory name of executable file
 

The following command shows the current path:
 
$ echo $PATH
 

You can also use the which command to find out whether the directory of an
executable file has been included in the default path. For example, the following
command finds out whether the gcc directory has been included in the default path:
 
$which gcc
 

If it is present in the default path, this command outputs the directory of the
executable file: for example, /usr/bin/gcc. Otherwise, the command outputs nothing.

To add a directory in the default path, you can use the following command:
 
$ PATH=$PATH:/tools/bin
$ export PATH
 
or
 
$ export PATH=$PATH:/tools/bin
 

Add a /tools/bin path under PATH with : as the separator. Changing the PATH value
or any environment variable must be exported through export; otherwise, the new PATH
value will not take effect. This works only for the current user.

The export command can be added to shell files such as .bash_profile, .profile,
and .bashrc so the command is executed before the command line starts each time.

Chapter 5 ■ The Android OS

148

A simple way of executing executable files without modifying the default path is to
specify the absolute path before the executable file name.

Piping and Screening
The Linux pipe operation symbol | takes the output of one command as the input of
the second one. Its function is the same as in Windows. For example, you can use the
following command to show file content screen by screen:
 
$ cat /etc/passwd | more
 

The more command shows files screen by screen, suspending execution after each
page of output; you tell it to continue by pressing any key. In the previous command,
cat/etc/passwd means to output the content of the passwd file, and the output is used
as the input (using the pipe command) of the more command.

The grep command can search and display certain lines in a file. For example:
 
$ grep cereal /etc/passwd
 

This command finds and displays lines containing “cereal” in the passwd file. The
output is like this:
 
cereal:x:1000:1000:cereal,,,:/home/cereal:/bin/bash
 

The string to search can be enclosed with single quotes ('') or double quotes ("").
The text in '' is taken literally, whereas some special characters in "" are given special
meaning by the shell. The previous command can also be written in these forms:
 
$ grep 'cereal' /etc/passwd
 

and
 
$ grep "cereal" /etc/passwd
 

In most cases, you use the pipe and grep commands to show screens of command
output. For example:
 
$ ls -l /home/cereal/Document | grep qt
 

This command shows the corresponding line of the file/directory containing the qt
field in the /home/cereal/Document directory.

Another command you have used is
 
$ ps -e | grep ssh
 
which lists all active processes containing the text “ssh” in the process name.

Chapter 5 ■ The Android OS

149

Running Commands in the Background
The execution of commands usually occupies the input/output of the console or the
command-line window, which means you cannot input a command before the one that is
executing ends. In contrast, if an application runs in the background, the console’s input/
output is not occupied. To run a command in the background, simply add & to the end of
the command.

Interrupting the Execution of Commands in the Foreground
Press Ctrl+C to interrupt commands executing in the foreground. For example, the Linux
ping command will endlessly ping a host, but you can end its execution as follows:
 
$ ping 127.0.0.1
 
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.027 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.028 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.029 ms
64 bytes from 127.0.0.1: icmp_seq=4 ttl=64 time=0.030 ms
64 bytes from 127.0.0.1: icmp_seq=5 ttl=64 time=0.031 ms
^C
--- 127.0.0.1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4462ms rtt min/avg/
max/mdev = 0.027/0.029/0.031/0.001 ms
$
 

After the fifth ping output item, the command was interrupted by pressing Ctrl+C,
and the screen shows ^C.

Checking Hardware Information (Such as OS Version and CPU)
The uname command displays system information, including information related to the
computer and OS. The syntax of the command is
 
uname [-amnrsv][--help][--version]
 

The parameters are as follows:

-a (all): Show all information

-m (machine): Show computer type

-n (nodename): Show the host name on the network

-r (release): Show the issue number of the OS

-s (sysname): Show the OS name

Chapter 5 ■ The Android OS

150

-v (version): Show the OS version

--help: Show help

--version: Show version information

For example, the following command shows the type of OS on the machine:
 
$ uname
Linux
 

The machine’s OS is Linux.
This command shows the issue number of the Linux kernel:

 
$ uname -r
2.6.31-14-generic
 

The issue number is 2.6.31-14.
Linux puts the processor information in the cpuinfo file in the /proc directory,

allowing you to check this through the file. You can check the processor model with the
following command:
 
$ cat /proc/cpuinfo | grep "model name"
 

The output on an Asus Eee PC 1000HC netbook is
 
model name : Intel(R) Atom(TM) CPU N270 @ 1.60GHz
model name : Intel(R) Atom(TM) CPU N270 @ 1.60GHz
 

The machine has an Intel Atom processor N270.
Now check the number of logical CPUs:

 
$ cat /proc/cpuinfo | grep "processor"
 

The output on an Asus Eee PC 1000HC netbook is
 
processor : 0
processor : 1
 

The processor has two logical CPUs.
The following command will displays the ID of each logical CPU:

 
$ cat /proc/cpuinfo | grep "core id"
 

The output on an Asus Eee PC 1000HC netbook is
 
core id : 0
core id : 0
 

The two logical CPUs have the same core ID, which means the hyperthreading of the
processor is open—that is, the hyperthreading technology simulates two CPUs.

Chapter 5 ■ The Android OS

151

Using the Android Development and Auxiliary
Tools
The following sections describe how to use emulator, help file, DDMS, (adb), and
common Android and telnet commands.

Using the Emulator
Android Virtual Device (AVD), the Android emulator, is a good tool to run to debug
mobile applications. Using AVD was briefly introduced earlier in the book, and this
section provides a more in-depth discussion.

The emulator can be started using one of three methods. 

Method 1

Start the emulator in Eclipse by following these steps:

1.	 Start Eclipse, select Run ➤ Run Configuration, as shown in
Figure 5-9. 

Figure 5-9.  Emulator startup menu

Chapter 5 ■ The Android OS

152

2.	 In the Debug Configuration box, select \Android
Application\XXX in the left column, and then click Target ➤
“Automatically pick compatible device: Always uses preferred
AVD . . . ”. Click the Start button on the right after checking the
specified emulator.

3.	 A Launch Options information box pops up (see Figure 5-10).
Click Launch, and the emulator window opens (see Figure 5-11). 

Figure 5-10.  Launch Options information box

Chapter 5 ■ The Android OS

153

Method 2

To start the emulator while running the application in Eclipse, on the menu bar, select
Window ➤ Android Virtual Device Manager (see Figure 5-12).

Figure 5-11.  Initial interface of the emulator when started separately

Chapter 5 ■ The Android OS

154

Sometimes, when this method is used, the interface locks up. That is to say, after
running the project (application) in Eclipse, the emulator sometimes shows an interface
like the one in Figure 5-13. The application’s interface is not visible, indicating the
emulator is locked up.

Figure 5-12.  The Android Virtual Device Manager

Chapter 5 ■ The Android OS

155

The solution is to click the menu button. If a window pops up, click Wait To
Continue, and the application’s interface will appear, as shown in Figure 5-14.

Figure 5-13.  Interface when the emulator locks up at startup

Chapter 5 ■ The Android OS

156

Method 3

AVD configurations can also be created and managed from command line using
“android” tool as discussed here: http://developer.android.com/guide/developing/
devices/managing-avds-cmdline.html

Example Creation of AVD from command line for Intel Architecture: avd create
avd –n HC –t android-13 –s WXGA

Accept “yes” for custom hw and choose x86 for
hw.cpu.arch propertyUsing the Help File
The Android development help file provides descriptions, explanations, and use
examples for class and method prototypes involved in application development. You
can read the help file either online, or offline as local files. The online reading function is
more powerful because it supports auto-complete and search of class names. However,
depending on the network speed, online reading may not be as responsive as offline
reading. The two methods are explained next.

Figure 5-14.  Interface after unlock

http://developer.android.com/guide/developing/devices/managing-avds-cmdline.html
http://developer.android.com/guide/developing/devices/managing-avds-cmdline.html

Chapter 5 ■ The Android OS

157

When you use Android SDK Manager (by selecting Window from the top menu in
Eclipse) to download the Android packages, you see Documentation for Android SDK in
each package. After you select and install it, all documents are copied into the docs folder,
which is the subdirectory of the android-sdk installation directory in your system. The
local help file is accessed through the index.html file in the docs. To use local help files,
follow these steps:

1.	 Open the index.html file under the docs subdirectory of the
android-sdk installation directory (in this case, D:\Android\
android-sdk\docs\index.html). In the browser window, an
information bar asking to run ActiveX may pop up. Click to
run the control.

2.	 Click Reference below the top of the page, as shown in
figure 5-15. 

Figure 5-15.  Entry page for class references

The help interface appears, as shown in Figure 5-16.

Chapter 5 ■ The Android OS

158

Offline reading does not support auto-complete and searching for a class name.
Figure 5-17 shows an example of searching help for the TextView class. Input the class
name TextView in the search bar in the upper-right corner, and the auto-complete list
shows corresponding candidate names.

Figure 5-16.  Class reference page

Figure 5-17.  Input interface for auto-complete and search of pages in offline reading mode

When selecting a candidate in the list (in this example, the first one,
android.widget.TextView, is selected), a network connection error will appear if no
connection is available. The help file will not show corresponding information.

The online reading function is more powerful, and the steps are as follows:

1.	 Enter the URL http://android.com in the address bar of the
web browser, and a screen like the one in Figure 5-18 appears. 

http://android.com/

Chapter 5 ■ The Android OS

159

2.	 Click Get The SDK on the bottom of the page, as shown in
Figure 5-19. 

Figure 5-18.  Initial page of online reading

Figure 5-19.  SDK entry page

3.	 Click Reference on the new page, as shown in Figure 5-20. 

Chapter 5 ■ The Android OS

160

4.	 In the help information search box in the upper-right corner,
enter a search string for the item (in this example, “Log”).
A list box of candidates that contain the keyword drops down.
Select the item you want from the list. The page shows the
help file of corresponding item.

Using DDMS
Dalvik Debug Monitor Service (DDMS) is an important and powerful supporting file
for Android development. It can help debug software on the target machine, perform
needed interactions between the host and target machines, and manage file systems,
processes, and other contents on the target machine. DDMS is saved in the tools
subdirectory of the Android SDK installation directory. It can be integrated into Eclipse
and used as a plug-in, or its functions can be input on the command line. There are also
two ways to start DDMS:

Double-click •	 ddms.bat or input ddms in the command-line
window to run it.

Start DDMS during program debugging in Eclipse.•	

DDMS can perform its functions on both the emulator and connected devices.
If the system detects that both of them are running, DDMS is directed to the emulator
by default.

Figure 5-20.  Entry page for references

Chapter 5 ■ The Android OS

161

DDMS sets up the link between the IDE and the target machine, which listen for
debugging information through their respective ports, while DDMS can monitor the
connection of the test terminal in real time. When a new test terminal is connected,
DDMS captures the ID of target machine and sets up the debugger through adb, thus
enabling instructions to be sent to the test terminal.

The following instructions show how to use DDMS integrated in Eclipse.

Showing the DDMS Button
In Eclipse, the DDMS interface is on the same level as the development editing and
debug interfaces. Click the DDMS button to enter the DDMS interface. By default, Eclipse
doesn’t show the button, so you need to follow these steps:

1.	 Click Open Perspective in the toolbar.

2.	 Select DDMS in the pop-up box. The DDMS button is
displayed in the upper-left corner of Eclipse, as shown in
Figure 5-21. 

Figure 5-21.  Displaying the DDMS start button

Chapter 5 ■ The Android OS

162

Starting DDMS
With the DDMS button now visible, you can perform the following steps to use the
interface:

1.	 Start Eclipse, connect the phone or start the AVD emulator,
and click DDMS in the upper-right corner of the window, as
shown in Figure 5-22. 

2.	 The DDMS interface appears, as shown in Figure 5-23. The left
pane is the task manager of the target machine where you can
view and end processes. The right pane includes tabs such as
File Explorer (shown in Figure 5-23) and Net Statistics. The
right pane also displays information for the target machine. 

Figure 5-22.  DDMS entry interface

Chapter 5 ■ The Android OS

163

File Transfer between Host and Target Machines, and File
Management
DDMS can also perform file transfers (mutual copy) between the host and target machines
(real device or emulator) and manage files on the target machine, as described next.

Copying a File from the Host Machine to the Target Machine

Follow these steps:

1.	 Click File Explorer in the right pane of DDMS interface. You
see the buttons Pull A File From The Device, Push A File
Onto The Device, and Delete The Selection In The Toolbar, as
shown in Figure 5-24. 

Figure 5-23.  DDMS initial interface

Chapter 5 ■ The Android OS

164

2.	 In the right pane, you can see the entire file system of the
target machine (the emulator is running in this example).
Click to select the folder (the data folder in this example),
click the Push A File Onto The Device button on the toolbar,
and select a file (on the host machine) in the pop-up box, as
shown in Figure 5-25. 

Figure 5-24.  Initial DDMS interface for file transfers

Chapter 5 ■ The Android OS

165

You can see the copied file (cats.jpg in this example) on the target machine, as
shown in Figure 5-26.

Figure 5-25.  Selecting a file to copy from the host machine to the target machine

Chapter 5 ■ The Android OS

166

Note that some folders on the target machine are not allowed to be uploaded due to
the restriction on user authority. For example, if you select the root folder to upload files,
an error will appear in the bottom message box, as shown in Figure 5-27.

Figure 5-26.  File system of the target machine after copying a file

Chapter 5 ■ The Android OS

167

Copying a File from the Target Machine to the Host Machine

Follow the same steps as in the previous section, but this time click the button Pull A File
From The Device.

Deleting a File

Follow the same steps as in the section “Copying a File from the Host Machine to the
Target Machine,” but click the Delete The Selection button.

Process Management on the Target Machine
In DDMS, you can view the processes running on the target machine and perform some
management tasks, such as Stop Process. Following is an introduction.

Figure 5-27.  Uploading a file under the root directory on the target machine

Chapter 5 ■ The Android OS

168

Starting Process Management for the Target Machine

Start an application (the test project in this example whose source code file is
MyAppCode.java) in Eclipse, as shown in Figure 5-28.

The application’s interface running on the emulator is shown in Figure 5-29.

Figure 5-28.  Applications that have started before process view

Chapter 5 ■ The Android OS

169

Start the DDMS interface by clicking the DDMS button at the upper-right corner
in the Eclipse window of the host machine. You see the list of processes running on the
target machine in the left pane. Find the process (com.example.test in this example)
corresponding to the application in the list, as shown in Figure 5-30.

Figure 5-29.  Application’s interface started before process view

Chapter 5 ■ The Android OS

170

As you can see in the figure, DDMS monitors the first process com.android.phone
(process ID: 311) on port 8600. If there are more target machines or more application
processes, the monitoring port will increment in ascending order: The second process
monitoring port will be assigned as 8601, the third process monitoring port will be
assigned as 8602, and so on. DDMS receives all terminal commands via port 8700, which
is called the base port.

In the upper-right corner is a row of very important buttons: Debug The Selected
Process, Update Threads, Update Heap, Stop Process, and Screen Capture, which
complete the corresponding operations. The following sections illustrate the use of these
buttons, using Stop Process as the example.

Stopping a Designated Process

To stop an application, select the application process and then click the Stop Process
button in the upper toolbar. You can see the application on the simulator has been
terminated, as shown in Figure 5-31; the original process (com.example.test) is no
longer shown in the DDMS process list in Eclipse.

Figure 5-30.  List of processes running on target machine

Chapter 5 ■ The Android OS

171

Taking a Target Machine Screen Capture
DDMS can also be used to capture a shot of the target machine’s screen. The screenshot
can be saved as a file on the host machine. The steps are as follows:

1.	 Start the target machine application, as shown in Figure 5-32. 

Figure 5-31.  DDMS interface on the host machine after process termination

Chapter 5 ■ The Android OS

172

2.	 In the Eclipse environment of the host machine, click the
Screen Capture button on the upper toolbar of the left pane,
click the Save button in the pop-up box, and then click the
Done button to close the dialog box, as shown in Figure 5-33. 

Figure 5-32.  Interface of the target machine before screen capture

Chapter 5 ■ The Android OS

173

You can see the screenshot in the folder on the host machine, as shown in Figure 5-34.

Figure 5-33.  Performing a screen capture on the target machine

Chapter 5 ■ The Android OS

174

Emulator Operation
If the target machine is an emulator, you can see the emulator operation interface by
clicking the Emulator Control tab in the right pane of DDMS, as shown in Figure 5-35.

Figure 5-34.  Host machine screen capture result

Chapter 5 ■ The Android OS

175

Functions on this panel allow the test device to easily simulate some interactive
functions of real phones, such as answering phone calls, simulating various network
conditions according to options, and simulating the receiving of SMS and sending of
virtual address coordinates to test GPS functions. Here are several function descriptions.

•	 Telephony status: Simulate voice quality and signal connection
mode by using options

•	 Telephony actions: Simulate telephone answering and sending
SMS to the test device

•	 Location control: Simulate geographical coordinates, or simulate
the dynamic change of route coordinates and display the default
geographical indications in the following three ways:

•	 Manual: Send two-dimensional latitude and longitude
coordinates to the test device manually

•	 GPX: Import a sequence of dynamically changing
geographical coordinates via a GPX file to simulate the
changing GPS value during the movement

•	 KML: Import unique geographical indications via a KML file
and show them on the test device dynamically according to
the changing geographical coordinates

Figure 5-35.  Emulator control interface of DDMS

Chapter 5 ■ The Android OS

176

Following you see how to use these functions, using as an example sending SMS:

1.	 Complete the Emulator Control\Telephony Actions box.

2.	 After clicking Send, open Messaging in the Android emulator.
You see the SMS, as shown in Figure 5-36. 

Figure 5-36.  Title of SMS received by the emulator

3.	 Click the new SMS to view its details, as shown in Figure 5-37. 

Figure 5-37.  Content of the SMS received by the emulator

Chapter 5 ■ The Android OS

177

Using adb at Command Prompt
Android Debug Bridge (adb) is a general-purpose debugging tool provided by Android.
With this tool, you can manage the status of the device or phone simulator and perform
the following operations:

Quickly update the code on the device or phone emulator, such as •	
the application or Android system

Run shell commands on the device•	

Manage the reserved ports on the device or the phone emulator•	

Copy and paste files on the device or the phone emulator•	

adb’s functions are generally integrated into the Eclipse development environment. This
section introduces other functions of adb, which generally are entered on the command
line. Table 5-4 lists the three frequently used commands.

Table 5-4.  Common Commands for Viewing Information on the Target Machine

Command Description

adb devices View the information of the target machine

adb get-product View the product model of the target machine

adb get-serialno View the serial number of the target machine

Using adb at Command Prompt is very helpful when the emulator isn’t started or a
phone isn’t connected, the output result is empty after you type this command in the host
machine’s Windows command line:
 
C:\Documents and Settings>adb devices
List of devices attached
 

If the adb service has not been started, the above command will prompt information
for start-up:
 
C:\Documents and Settings>adb devices
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
List of devices attached
 

After starting the emulator, run the command, and the emulator device information
is displayed:
 
C:\Documents and Settings>adb devices
List of devices attached emulator-5554 device
 

Chapter 5 ■ The Android OS

178

After starting the emulator and connecting to the phone, the command displays the
following
 
C:\Documents and Settings>adb devices
List of devices attached emulator-5554 device Medfield04749AFB device
 

where emulator-5554 refers to the target machine corresponding to the emulator,
and Medfield04749AFB refers to the target machine corresponding to the Lenovo phone.

When only the phone is connected, the adb get-serialno command only outputs
the serial number of the effective target machine:
 
C:\Documents and Settings>adb get-serialno
Medfield04749AFB 

Running Commands on the Target Machine

You know that Android is based on Linux, and you have been introduced to the Linux
commands supported by Android. However, most mobile devices running Android
have no physical keyboard for command input. Even then, the Linux commands are
useful. You can make use of some auxiliary tools, such as adb, to achieve remote input
of Android commands. By using adb shell commands, you can enter commands on the
host machine and make the target machine execute them. In other words, the keyboard
and screen of the host machine simulate a terminal on the target machine. The target
machine here can be either a real device or an emulator. Follow these steps:

1.	 Enter the adb shell command on the host machine’s
Windows command line:

 
C:\Documents and Settings> adb shell

 
2.	 Input the Android command of the target machine.

For example:
 
pwd
pwd
/
ls -l
ls -l
drwxr-xr-x root root 2012-07-09 13:24 acct
drwxrwx--- system cache 2012-07-09 13:25 cache
dr-x------ root root 2012-07-09 13:24 config
lrwxrwxrwx root root 2012-07-09 13:24 d -> /sys/kernel/debug
drwxrwx--x system system 2012-07-09 19:44 data
-rw-r--r-- root root 116 1970-01-01 00:00 default.prop
drwxr-xr-x root root 2012-07-09 13:25 dev
lrwxrwxrwx root root 2012-07-09 13:24 etc -> /system/etc
-rwxr-x--- root root 105204 1970-01-01 00:00 init
-rwxr-x--- root root 2344 1970-01-01 00:00 init.goldfish.rc

Chapter 5 ■ The Android OS

179

-rwxr-x--- root root 17048 1970-01-01 00:00 init.rc
-rwxr-x--- root root 1637 1970-01-01 00:00 init.trace.rc
-rwxr-x--- root root 3915 1970-01-01 00:00 init.usb.rc
drwxrwxr-x root system 2012-07-09 13:24 mnt
dr-xr-xr-x root root 1970-01-01 00:00 proc
drwx------ root root 2011-12-08 23:06 root
drwxr-x--- root root 1970-01-01 00:00 sbin
lrwxrwxrwx root root 2012-07-09 13:24 sdcard -> /mnt/sdcard
drwxr-xr-x root root 1970-01-01 00:00 sys
drwxr-xr-x root root 2012-06-23 01:56 system
-rw-r--r—root root 272 1970-01-01 00:00 ueventd.goldfish.rc
-rw-r--r-- root root 3879 1970-01-01 00:00 ueventd.rc
lrwxrwxrwx root root 2012-07-09 13:24 vendor -> /system/vendor
cd
cd
cd: HOME not set
echo $PATH
echo $PATH
/sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin
ifconfig eth0
ifconfig eth0
eth0: ip 10.0.2.15 mask 255.255.255.0 flags [up broadcast running multicast]
 

3.	 Use the exit command to stop execution on the target
machine and return to the command-line interface on the
host machine:

 
exit
exit
C:\Documents and Settings> 

Note■■  T he Linux shell in Android has been simplified a lot. As a result, many common
Linux commands are not supported.

Installing Application Packages on the Target Machine

You can use the adb install command to install or uninstall application packages on the
target machine. The format of the software installation command is
 
adb install XXX.apk
 
where XXX.apk is a file in the current directory of the host machine. For example, to install
file browser software, follow these steps:

Chapter 5 ■ The Android OS

180

1.	 The original application on the target machine (emulator) is
shown in Figure 5-38. 

Figure 5-38.  Application executing on the virtual machine before software installation

2.	 Run the following commands at the command line on the
host machine:

 
E:\temp\temp>adb install file_browser.apk
92 KB/s (2617375 bytes in 27.546s)
pkg: /data/local/tmp/file_browser.apk
Success
 

The installation file, file_browser.apk, is located under the current directory
(E:\temp\temp in this example) of the host machine.

You can see that the target machine has the new application ES File Explorer
installed, as shown in Figure 5-39.

Chapter 5 ■ The Android OS

181

You can start the new app by clicking its icon, as shown in Figure 5-40.

Figure 5-39.  Virtual machine application after software installation

Chapter 5 ■ The Android OS

182

The software can be installed on a real phone in the same way.

Uninstalling Software on the Target Machine

You can use the adb shell command rm to uninstall software on the target machine.
For example:
 
E:\temp\temp>adb shell rm /data/app/*.apk
 

The software (*.apk) is installed via adb and located in the /data/app/ directory;
therefore, it is not necessary to designate a path during installation. It is only required
that you execute the rm command during uninstallation. However, the rm command is
very powerful and can cause irreversible loss of data if not used properly. The safe and
recommended method to uninstall an app is

adb uninstall packagename

Figure 5-40.  Operation interface of the newly installed software

Chapter 5 ■ The Android OS

183

Transferring Files between the Host and Target Machines

The command adb push can be used to copy files from the host machine to the target
machine, and the command adb pull can be used to copy files from the target machine
to the host machine.

Enabling and Disabling the adb Service

You can disable the adb service using the adb kill-server command and enable it with
the adb start-server command.

Other Functions

The following is a list of some other useful adb functions:

Port forwarding (forwards the default port TCP5555 to port 1234)
 
adb forward adb forward tcp:5555 tcp:1234
 

Access the database sqlite3
 
adb shell sqlite3
 

Wait for running devices
 
adb wait-for-devices
 

View the bug report
 
adb bugreport
 

Record the radio communication log
 
adb shell logcat -b ratio
 

Generally speaking, there are many radio communication logs, and it is unnecessary
to get the record during operation, but you can get the record by command.

Using Android Commands
Android commands are provided by the batch file android.bat, located under the tools
subdirectory in the android-sdk installation directory. These commands can manage
the emulator and the APIs, mostly through Eclipse. Of course, management can also be
achieved by entering Android commands on the command line. The following sections
introduce these commands.

Chapter 5 ■ The Android OS

184

Viewing the Installed Emulator
You can view the installed emulator by running the android list avd command.
For example:
 
C:\Documents and Settings>android list avd
Available Android Virtual Devices:
Name: AtomAVD
Path: C:\Documents and Settings\hlgu\.android\avd\AtomAVD.avd
Target machine: Android 4.0.3 (API level 15)
ABI: x86
Skin: WVGA800
Sdcard: 1024M

Name: myAndroid
Path: C:\Documents and Settings\hlgu\.android\avd\myAndroid.avd
Target machine: Android 4.1 (API level 16)
ABI: armeabi-v7a
Skin: WVGA800
Sdcard: 1024M
Snapshot: true
 

The output shows that the system has two emulators installed: AtomAVD emulator
(name line) with CPU of x86 (ABI line) and myAndroid emulator with CPU of armeabi-v7a.

Viewing the Version Information of the Currently Supported APIs
You can view the version information of the currently supported APIs by running the
android list target command. For example:
 
C:\Documents and Settings>android list target
Available Android targets:

id: 1 or "android-15"
Name: Android 4.0.3
Type: Platform
API level: 15
Revision: 3
Skins: HVGA, QVGA, WQVGA400, WQVGA432, WSVGA, WVGA800 (default), WVGA854,
WXGA720, WXGA800
ABIs : x86

id: 2 or "Google Inc.:Google APIs:15"
Name: Google APIs
Type: Add-On
Vendor: Google Inc.

Chapter 5 ■ The Android OS

185

Revision: 2
Description: Android + Google APIs
Based on Android 4.0.3 (API level 15)
Libraries:
* com.google.android.media.effects (effects.jar)
Collection of video effects
* com.android.future.usb.accessory (usb.jar)
API for USB Accessories
* com.google.android.maps (maps.jar)
API for Google Maps
Skins: WVGA854, WQVGA400, WSVGA, WXGA720, HVGA, WQVGA432, WVGA800 (default),
QVGA, WXGA800
ABIs : armeabi-v7a

id: 3 or "HTC:HTC OpenSense SDK:15"
Name: HTC OpenSense SDK
Type: Add-On
Vendor: HTC
Revision: 2
Based on Android 4.0.3 (API level 15)
Libraries:
* htc-extension (HTCSDK.jar)
HTC generic extension library
Skins: WVGA854, WQVGA400, WSVGA, WXGA720, HVGA, WQVGA432, WVGA800 (default),
QVGA, WXGA800
ABIs : no ABIs.

id: 4 or "android-16"
Name: Android 4.1
Type: Platform
API level: 16
Revision: 1
Skins: HVGA, QVGA, WQVGA400, WQVGA432, WSVGA, WVGA800 (default), WVGA854,
WXGA720, WXGA800, WXGA800-7in
ABIs : armeabi-v7a

id: 5 or "Google Inc.:Google APIs:16"
Name: Google APIs
Type: Add-On
 
Vendor: Google Inc.
Revision: 2
Description: Android + Google APIs
Based on Android 4.1 (API level 16)

Chapter 5 ■ The Android OS

186

Libraries:
* com.google.android.media.effects (effects.jar)
Collection of video effects
* com.android.future.usb.accessory (usb.jar)
API for USB Accessories
* com.google.android.maps (maps.jar)
API for Google Maps
Skins: WVGA854, WQVGA400, WSVGA, WXGA800-7in, WXGA720, HVGA, WQVGA432,
WVGA 800 (default), QVGA, WXGA800
ABIs : armeabi-v7a
 

The output shows that the current development environment has several APIs
installed including android-15, Google Inc.: Google APIs:15, HTC:HTC OpenSense
SDK:15, android-16, and Google Inc.:Google APIs:16.

Creating an Emulator
The Android create avd –n command can be used to create an emulator, but you
generally create it in Eclipse.

Starting the Emulator
Most of the time, you start the emulator in Eclipse using the emulator command.
For example:
 
C:\Documents and Settings>emulator -avd myAndroid
 
myAndroid is the name of emulator listed by the android list avd command. This
command will start the myAndroid emulator.

Using Telnet for Emulator Commands
You can use Telnet to enter commands on the target machine (emulator) from the host
machine and make the target machine (emulator) execute the commands. In this way,
the host machine (Windows, Linux, and Mac systems) becomes a console terminal of the
emulator. The format of Telnet commands is
 
telnet localhost <console-port>
 

For example:
 
telnet localhost 5554
 

Chapter 5 ■ The Android OS

187

In general, the serial number of the Android emulator is 5554. When running Telnet,
you need to change the console-port to the serial number of the emulator you intend to
connect to: for example, 5554, 5556, or 5558. After connecting to the emulator using telnet
localhost 5554, enter the help command.

After logging in to the Android emulator terminal mode, the available commands
include event, geo, gsm, kill, network, power, redir, sms, vm, and window; they are used
to control the Android emulator. Many of these commands can be replaced by the DDMS
emulator graphical operation introduced previously. The following sections introduce
these commands.

event Command
The format is
 
event text testmessage
 

This command can send four events—send, types, codes, and text—to the
emulator. For example, after event text testmessage sends a literal string “test
message” to the emulator, you immediately see this message on the screen of the Android
emulator.

geo Command
The format is
 
geo <fix|nmea>
 

For example:
 
geo fix 121.5 25.4 10
geo nmea $GPRMC,071236,A,3751.65,S,14527.36,E,000.0,073.0,130309,011.3,E*62
 

The geo command can send the GPS location to the emulator. geo fix sends a set of
fixed GPS locations represented by longitude, latitude, and height, which can be obtained
from the map on some web sites, such as longitude 121.5, latitude 25.4, and height
10 meters. When the Android device is connected to an external GPS device via USB,
you can use the geo nmea command to send locations to the external GPS device.

The National Electrical Manufacturers Association (NEMA) developed the NEMA
0183 protocol for GPS devices. The format of gps nema command is complicated and
composed of 12 fields, but thanks to this complexity, the command provides more
accurate positioning than the geo fix command. The format of the gps nema command
is as follows:
 
$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh
$GPRMC,hhmmss.ss,A,IIII.II,a,yyyyy.yy,a,x.x,x.x,ddmmyy,x.x,a*hh
$GPRMC (Recommended minimum specific GPS/Transit data)
 

Chapter 5 ■ The Android OS

188

The fields are as follows:

UTC, in the format of hhmmss (hour, minute, and second). •	
For example: 071236.

Positioning state: A = Available positioning, V = Void positioning.•	

Latitude, in the format of ddmm.mm (d refers to degrees, m refers •	
to minutes). For example: 3751.65 = 37 degrees 51.65 minutes.

Latitude hemisphere N (northern hemisphere) or S (southern •	
hemisphere).

Longitude, in the format of dddmm.mm. For example: •	
14527.36 = 145 degrees 27.36 minutes.

Longitude hemisphere E (east longitude) or W (west longitude).•	

Ground speed (000.0 to 999.9 knots; 0 will also be transmitted). •	
For example: stationary 000.0.

Ground direction (000.0-359.9 degrees; 0 will also be transmitted). •	
For example: 073.0.

UTC date, in the format of ddmmyy (date, month, and year). •	
For example: 130309.

Magnetic declination (000.0-180.0 degrees; 0 will also be •	
transmitted). For example: 011.3.

Direction of magnetic declination: E (East) or W (West).•	

Mode indicator (in NEMA 0183 protocol, A = autonomous •	
positioning, D = difference, E = estimate, N = null information).
*hh is the checksum. For example: *62 gsm call 5556688.

gsm Command
The gsm command can simulate the calling state of a GSM phone and has parameters
including call, busy, hold, accept, cancel, data, voice, and status. Simply by adding
any phone number behind a parameter, you can simulate calling a GSM phone in the
Android emulator.

kill Command
The kill command immediately closes the emulator window in the terminal mode of the
Android emulator.

Chapter 5 ■ The Android OS

189

network Command
The network command is a network-management and -operation command. It has
various parameters to complete different network functions. For example:
 
network status
 

This command is used to view the network-transmission status of the Android
emulator.

Here are some additional examples:
 
network speed full
network speed umts
 

Network speed can change the phone’s network-transmission modes, including gsm
(GSM/CSD), gprs (GPRS), edge (EDGE/EGPRS), umts (UMTS/3G), hsdpa (HSDPA/3.5G),
and full-speed transmission, which are selected randomly. This is the default network
setting of the Android system.

power Command
This command displays whether the current power status of the phone is AC power
connected, as well as the battery’s remaining power:
 
power display

redir Command
Similar to the adb forward command, the redir command can display and manage the
emulator’s TCP or UDP communication port. For example:
 
redir add tcp: 5000:6000
 

You can use this command to direct the messages received by TCP port 5000 of the
hosting system to TCP port 6000 of the Android emulator.

This command lists the TCP or UDP communication port that has been directed:
 
redir list
 

The redir del command can delete the communication port that has been directed:
 
redir del tcp: 5000

Chapter 5 ■ The Android OS

190

sms Command
You can use the sms command to send SMS:
 
sms send <phone number> <SMS>
 

For example:
 
sms send 5556688 this is a test sms
 

This sends the SMS text “this is a test” to the phone number 5556688, and the
Android emulator will immediately receive it.

Window scale? Command
The window scale command can change the emulator’s window size. For example:
 
window scale factor (factor: 0.1-3.0)
window scale 1.2
 

The first command sets the screen scale factor to between 0.1 and 3.0. The second
command scales the window size of the Android emulator 1.2 times.

Summary
For application developers, it is critical that the applications you build can be run on all
the devices made by different OEMs and on different platforms. However, OEMs have
been tailoring and customizing the Android OS of their devices to meet the unique needs
of the set of the software and hardware they use. As a result, understanding Android OS
customization is helpful for you to better design applications. The next chapter discusses
customization of the Android OS, including the installation and reflash of the Android
image, which is the fastest way for you to update your test platform to the latest Android
version directly from the device manufacturer.

191

Chapter 6

Customization and
Installation of Android

Due to the characteristics of any embedded systems, such as resource constraints,
tailoring and customization are important features for an embedded OS, and Android
is no exception. This chapter provides a general discussion of customization in an
embedded OS and then explains the customization of Android, specifically.

Tailoring and Customization of an Embedded OS
Not all functions and services provided by the embedded OS are included in a special
embedded application, for two reasons. First, the embedded system is always resource
constrained, especially with regard to storage space; thus it is impossible to include all
redundant functions in the system at release. Second, many commercial embedded
OSs collect a licensing fee based on the components chosen by the user. So, users
should tailor the embedded OS according to their individual needs. The principle of OS
customization is shown in Figure 6-1.

Figure 6-1.  Principle of OS customization

Chapter 6 ■ Customization and Installation of Android

192

For example, Windows XP Embedded OS offers tens of thousands of components—more
than the functions of desktop Windows XP. But for a subway baffle-gate system based
on Windows XP Embedded, for example, components such as Windows Media Player,
the Internet Explorer browser, the DirectX settings panel, and Explorer task manager are
not required. Eliminating such components reduces the hardware resources required
by the system, thus reducing the cost; and this makes the system operate faster, thereby
improving efficiency.

A majority of embedded OSs provide means for customization and tailoring.
However, there are many different tailoring modes: some start with compiling source
code, which requires the user to configure the option of conditional compilation; some
start by linking the target files, linking to different library files according to the user’s
configuration; and the remaining modes extract precompiled files from the existing
binary file library according to the user’s choice. Table 6-1 lists the customization modes
provided by frequently used embedded OSs.

Table 6-1.  Customization Modes of Different Embedded Operating Systems

Embedded OS Customization Modes

Windows CE Provide Platform Builder IDE and graphical component
options. Link different library files according to the
selected components.

Embedded Linux For the kernel, generate config files via make config
before; then compile according to the configuration files.

Windows XP Embedded Provide Target Designer IDE and graphical component
options. Extract required binary files according to the
selected components; no compilation is necessary for the
linking process.

mC/OS-II Selectively and conditionally compile some part of the
code according to the value defined by the C language
macro in the header file.

VxWorks Select which modules are necessary in the Tornado IDE.

After system customization, you get an embedded OS that runs on the target
hardware device and has been optimized for the special application field.

Overview of Android Customization
Theoretically, Android customization falls into two levels: customization of the Linux
kernel and customization of the entire image. Customization of the Linux kernel is similar
to customization of embedded Linux: both involve the same methods and steps. Android
customization mainly focuses on image customization. Let’s see why.

Chapter 6 ■ Customization and Installation of Android

193

ROM Package/Image
The Android image is commonly known as a read-only memory (ROM) package, which
is the system package of an Android phone. The reason for this naming convention is that
mobile phones prior to Android phones, including smartphones (such as Nokia and WM)
and non-smart phones (such as Sony Ericsson, Moto P2K platform, and MTK), all have a
separate ROM chip storage system file. So, the system file is referred to as ROM package
or ROM image.

The image is a cross-compiled binary Linux file that can be installed and run on
some embedded device, becoming the OS of the device. To better understand this
concept, let’s review the typical development process, shown in Figure 6-2.

Start

Write code

Cross compiling, linking

Packaging

Deployment

Running

Debugging &
optimization

End

Write source code

Use specialized compilers and
linkers to generate target code

Compress target code and
affiliated files into file packages

Install target files from host
machine to target device

Execute and check
the results of code

Debug programs and
optimize performance

Figure 6-2.  Development process for Android software

Chapter 6 ■ Customization and Installation of Android

194

For embedded software, generally speaking, developing Android software requires
the same steps as general-purpose software: designing, encoding, compiling, linking,
packaging, deploying, debugging, and optimizing. For some Android systems, testing and
verification steps are also required. The OS deployed on the embedded logic device also
goes through such phases. For example, for a Linux system, you get its kernel source code,
cross-compile, and generate code that can be executed on the embedded target machine;
then you compress and package this code to form the image file (see Figure 6-3). The last
step is deployment. Unlike the deployment of an application file, the deployment of an
OS image file is referred to as installation due to the particularity of its operation.

Figure 6-3.  Image use process

Figure 6-4.  Example of an embedded system image

The image file (package) of a complete executable software system in the embedded
system consists of the bootloader, OS kernel (kernel for short), file system, and user
applications. The actual image file usually adopts a partition (also known as independent
layer) structure to store all parts that are located in different areas (modules) of the image,
and all parts are loaded into the system from the bottom layer. An example of a typical
embedded system image is shown in Figure 6-4.

The Android image includes a bootloader, the core OS, a hardware adaptation
module, a file system, the user experience, and applications. The core OS layer of Android
includes the Linux kernel and various middleware modules. Below the core OS layer is
the hardware adaptation layer. To adapt to different hardware, diversified drivers need to
be installed for the OS. Without these drivers, the OS cannot use the hardware to operate
as usual. Therefore, the image consists of the drivers and any applications developed by
the user.

Chapter 6 ■ Customization and Installation of Android

195

The Android image usually exists in the form of a compressed file (.zip, tar.gz,
or a similar file format), which usually contains the file and folders shown in Table 6-2.
The file structure can be seen after the compressed file is decompressed.

Table 6-2.  File Structure of an Android Image File

Name Property r Remarks

META-IN Directory Optional; may be unavailable in some images

system Directory

boot.img File

The function and structure of the files and folders are as follows:

boot.img file: The system image, including the Linux kernel,
bootloader, and ramdisk launched by the system. A ramdisk is
a small file system that holds the core files needed to initialize
the system. The boot.img file is created using an open source
tool called mkbootimg.

META-INF directory: The system-update script, with the path
META-INF\com\google\android\updater-script.

system\app directory: All system-provided applications such
as calendar, contacts, Gmail, and so on. You can put your
application’s .apk file in this directory so it can be directly
installed when the ROM is reflashed.

system\bin directory: System commands such as top, which
can be executed after logging in through the adb shell.

system\etc directory: Configuration files.

system\font directory: All kinds of fonts.

system\framework directory: Java core files, such as .jar files.
Under the Dalvik virtual machine (DVM), it supports the
framework developed by the user via Java.

system\lib directory: Android local shared libraries that
consist of .so files, which are shared objects in the form of ELF
binaries, compiled by assembler, C, or C++.

system\media directory: Media files such as bootanimation.zip,
which consists of .png pictures used for boot animation and for
changing the boot image. Under the audio directory are some
audio files that are used as ringtones and for notifications.

Chapter 6 ■ Customization and Installation of Android

196

Overview of Android Image Customization
Android image customization, commonly known as creating Android ROM (creating ROM
for short), is an academic term. The Android core OS layer has multiple components,
and the applications vary in different systems; image customization decides which
components and applications are written into the image file of the target system. The
process makes a personal customized system file into a flashable ROM image. This is also
known as a system firmware update.

The ready-made Android image can be installed onto an Intel Atom processor-based
system (that is, a mobile phone, tablet, or the like) via USB flash and SD card. Then the
system with the Android image will have the capability to enter the Android operating
environment at self-start.The MicroSD card, originally called the TransFlash Card, was
launched by SanDisk. It is 15 × 11 × 1 mm, about the size of a fingernail. It can be used in
an SD card slot via an SD adapter card and is widely used in mobile phones.

You can create Android ROM in the following ways:

Compile the Android source code, which is a little complex.•	

Create or customize your own ROM based on the existing ROM.•	

The process of Android image customization is shown in Figure 6-5.

Figure 6-5.  Process of Android image customization

Example of Android Image Customization
The following example illustrates the second way to customize Android: by creating ROM
using the cloned ROM image released by device manufacturer for targeted hardware. In
this way, the Android customization includes structure parsing for Android system folder,

Chapter 6 ■ Customization and Installation of Android

197

application software updates, and the customization of the ROM signature package. The
steps are as follows:

1.	 Download the compiled ROM package from Android’s official
website, your mobile phone manufacturer’s official website
(for example, the website for the Lenovo K900 mobile phone),
or websites providing an Android image. For example, the
ROM provided by the Lenovo K900 mobile phone’s website
(www.lenovocare.com.cn/ProductDetail.aspx?id=719) is
shown in Table 6-3. Be noted that since the Lenovo K800 and
K900 phones are sold in China market, the software dates are
only provided by Lenovo’s official site in Chinese language. 

Table 6-3.  Information in the ROM Package on the Lenovo K900 Website

ROM Name Description Android Version Date of Release

K900_1_S_2_162_0074 Official update 4.0.4 Aug. 8, 2012

K900_1_S_2_162_0086 Official update 4.0.4 Aug. 15, 2012

K900_1_S_2_019_0113_130903 Official update 4.2.0 Sep. 3, 2013

K900_source Official update 4.4 May 23, 2014

 2.	 Compress all the ROM files into one folder (named
NewsROM” in this example).

3.	 Delete and add files in the ROM folder (NewsROM in this
example) to tailor and customize Android.

Some customization examples are as follows:

Go to the •	 data\app directory to check whether the preinstalled
applications are what you need. At this point you can remove
unnecessary apps. You can also add the default installed
applications you need.

Go to the •	 system\app directory and customize the system
applications for your device. You can delete unwanted system
applications or add your special-built or customized applications
(as customized .apk files). Be careful: some system applications
are dependent on others, so best practice is to test before the
customization to fix dependencies and other issues prior to
implementing the changes to the Android system image.

Go to the •	 system\media directory to make modifications such as
changing the boot image or adding a customized ringtone.

Go to the •	 system\bin directory to add commands and so forth.

http://www.lenovocare.com.cn/ProductDetail.aspx?id=719

Chapter 6 ■ Customization and Installation of Android

198

If you’re worried about deleting some files accidently and thus
causing failure at startup, you should adopt a conservative
approach: execute delete or add operations only for files in
the data/app and system/app folders.

4.	 Compress the modified ROM folder as a .zip file. Ensure
that the contents, including META-INF, system, boot.img, and
data (optional), are displayed when you double-click the
compressed file.

5.	 Install and configure the Java environment. The Java
environment is required in the following steps to support the
operation of the auto-sign tool, so you need to install and set
up Java operation. Download the latest JDK (jdk1.7.0 in this
example), and install it; then follow these steps:

a.	 Set the Java environment variable as follows: right-click
My Computer and select [Properties] ➤ [Advanced] ➤
[Environment Variables] ➤ [System Variables] ➤ [New]
in the pop-up shortcut menu.

b.	 In the dialog box, set [Variable Name] to “JAVA_HOME
variable value: JAVA installation directory”. Find
[path] in the same place, double-click it, and add
“C:\JDK1.7.0;.;C:\JDK1.7.0\bin” after the variable value.

c.	 Reboot the system.

d.	 Test. Enter Java commands in the command-line
window. The configuration is successful if no error
message appears.

6.	 Use the sign tool to sign the .zip packages. The steps are
as follows:

a.	 Download the auto-sign tool and unpack it under a
directory (myautosign in this example). The tool can be
downloaded at http://androidforums.com/developer-
101/8665-how-signing-roms.html.

b.	 Rename the .zip file package to update.zip, and
copy it to the directory where you unpacked auto-sign
(the myautosign directory).

c.	 Run the sign.bat file under the directory where you
unpacked auto-sign.

d.	 After the customization build, the directory contains
an update_signed.zip file, which is the signed ROM
package and the customized ROM package you need.

http://androidforums.com/developer-101/8665-how-signing-roms.html
http://androidforums.com/developer-101/8665-how-signing-roms.html

Chapter 6 ■ Customization and Installation of Android

199

Installation/Reflash of the Android Image
Image installation is required to use the customized image on the target machine. In other
words, the process of image customization and use must go through two stages: image
generation (production) and image installation, as shown in Figure 6-6.

Figure 6-6.  Image generation and installation

Image installation means installing the Android image on the target device or emulator.
This process is commonly known as reflashing. Reflashing an Android phone is equivalent
to reinstalling the system for the phone, which is similar to computer system reinstallation.
Generally speaking, when a computer needs system reinstallation, you use a system disk or an
image file. When an Android phone needs to be reflashed, you burn an official or third-party
ROM image file into the ROM via a tool and install a new system for the phone.

The official Android website often releases the latest Android image systems for users,
so you can download image files directly to skip image-generation stage. For users, the
customization and installation process can be very simple: download the image, and reflash.

Android installation also involves recovery and wiping:

Recovery is a mode of the mobile device. Through recovery,
users can install the system (that is, reflash ROM), empty
various data from the phone, partition a memory card, back
up and restore data, and so on. Recovery is similar to the Ghost
one-key recovery function on a computer.

Wipe means to erase and remove. Wiping is an option in
recovery mode; it removes various data from the phone,
similar to restoring factory defaults. Wipe is most commonly
used before the reflash. Users may see the Wipe prompt, which
suggests the need to clear data before the reflash.

As mentioned, Android installation is essentially an issue of deployment in the
process of software cross-development, but generally you adopt offline programming
instead of online programming. In the installation process, the media you use are SD
cards and other portable external storage devices. This process is shown in Figure 6-7.
The installation is divided into two steps: first, place the image from the host on the
portable SD card external storage device; second, start the machine from the portable
external storage device and install Android on the target machine.

Chapter 6 ■ Customization and Installation of Android

200

Image Installation Example
Following is an example of image installation. The path/directory may be different
from different OEMs or from different Android versions (this example is based on a
Lenovo phone):

1.	 Empty the phone’s SD card. This step is optional and can be
done either on the host or on the phone. It is very simple to
complete the step on the host: unplug the SD card from the
phone, insert it in the SD card reader of the host, and delete
all files from the removable disk at the host (for example,
in Windows).

Empty the SD card on the phone by following these steps:

a.	 Connect the phone to the host.

b.	 Execute the following commands successively in the
command-line window at the host:
 
adb devices
adb remount
adb shell
su
rm -r /system/sd/*  

(Note: sdcard is usually mounted under /storage/sdcard0
or /sdcard, However, the location may be different if
you’re using a device from a different OEM or on another
Android version.)

2.	 Copy the customized ROM file (update_signed.zip in the
example) to the SD card, and rename it update.zip.

Figure 6-7.  Android image installation

Chapter 6 ■ Customization and Installation of Android

201

3.	 Make sure the SD card has been inserted in the phone. Restart
the phone, and enter Recovery mode. Follow these steps:

a.	 Shut down the phone normally.

b.	 Press the power button and the <volume+> button of the
device at the same time: the phone starts while vibrating
and enters BKB Provisioning OS mode. Double-click the
<volume+> button quickly to make the system enter
Test mode.

c.	 Press <volume+> and <volume-> to move to the sixth
option (SD Update), and click Enter in the lower-left
corner. Automatic reflash begins.

4.	 Reboot.

The entire reflash process takes a few minutes. The phone restarts automatically
after vibrating twice; the first reboot takes longer, and then the familiar four-leaf clover
interface appears.

After reboot, choose Settings ➤ System Information to check the phone, network,
battery, and version information; IMEI code; and internal version number to confirm
whether the upgrade has been successful.

Automating the Procedure with flash_device.sh
There is a script that will perform all the previously described procedures for you.
This script is located here:
 
<Path-to-your-project>/vendor/intel/support/flash_device.sh
 

You can add this script to your bin folder and run it from a terminal window.
You should be able to find the section on this topic in the user manual from the OEM.

Intel Build Tools Suite
Intel has developed an Android Build Tools Suite (see Figure 6-8) to help developers
easily and quickly do the Android system build and customization. The suite provides the
following features:

Device customization•	

Ability to generate a customized firmware module and Android •	
OS image

Final customization and localization•	

Ability to compile a single image and load the image into a •	
supported device

Ability to verify configuration readiness•	

Troubleshooting and calibration•	

Chapter 6 ■ Customization and Installation of Android

202

Summary
This chapter completed the discussion of system-level topics for Android. Starting in the
next chapter, you begin to learn application development for Android on x86, and you
see how to develop user interfaces suitable for the UX and interaction characteristics of
mobile devices on Android. You start by learning about Android graphic user interface
(GUI) design, because it’s an indispensable part of human-computer interaction (HCI).
Because resources are limited for a mobile phone or tablet, GUI design of Android
systems is more challenging than for desktops. In addition, users have more rigorous
demands and expectations for a user-friendly experience. Interface design has become
one of the important factors determining the success of applications for Android on
the market.

Figure 6-8.  Intel Build Tools Suite

203

Chapter 7

GUI Design for Android
Apps, Part 1: General
Overview

Since its emergence in the 1980s, the concept of the graphical user interface (GUI) has
become an indispensable part of human-computer interaction (HCI). As embedded systems
have evolved, they have gradually adopted this concept as well. The Android embedded OS
running on the Intel Atom hardware platform is at the forefront of this movement.

Because resources are limited, the GUI design of Android systems is more
challenging than that of desktop systems. In addition, users have more rigorous demands
and expectations for a high-quality user experience. Interface design has become one
of the important factors in determining the success of systems and applications on the
market. This chapter introduces how to develop user interfaces suitable for typical user
interaction on Android embedded systems.

Overview of GUIs for Embedded Applications
These days, the user interface (UI) and user experience (UX) of software are increasingly
important factors in determining whether software will be accepted by users and
achieve market success. UX designs are based on the types of input/output or interaction
devices and must comply with their characteristics. Compared to desktop computer
systems, Android systems have different interaction devices and modalities. If a desktop’s
UI designs are copied indiscriminately, an Android device will present a terrible UI
and unbearable UX, unacceptable to users. In addition, with greater expectations
for compelling user experiences, developers must be more meticulous and careful
in designing system UIs and UXs, making them comply with the characteristics of
embedded applications.

This chapter first introduces the general GUI design method for desktop systems and
then shows how designing UIs for embedded systems is different. The aim is to help you
quickly master general methods and principles of GUI design for Android applications.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

204

Characteristics of Interaction Modalities of
Android Devices
A general-purpose desktop computer has powerful input/output (or interaction)
devices such as a large, high-resolution screen, a full keyboard and mouse, and diverse
interaction modalities. Typical desktop computer screens are at least 17 inches, with
resolutions of at least 1,280 × 960 pixels. The keyboard is generally a full keyboard or
an enhanced keyboard. On full keyboards, letters, numbers, and other characters are
located on corresponding keys—that is, full keyboards provide keys corresponding to all
characters. Enhanced keyboards have additional keys. The distance between keys on a
full keyboard is about 19 mm, which is convenient for users to make selections.

The GUI interactive mode of desktop computers based on screen, keyboard, and
mouse is referred to as WIMP (windows, icons, menus, and pointers), which is a style of
GUI using these elements as well as interactive elements including buttons, toolbars, and
dialog boxes. WIMP depends on screen, keyboard, and mouse devices to complete the
interaction. For example, a mouse (or a device similar to a mouse, such as a light pen) is
used for pointing, a keyboard is used to input characters, and a screen shows the output.

In addition to screens, keyboards, mice, and other standard interaction hardware,
desktop computers can be equipped with joysticks, helmets, data gloves, and other
multimedia interactive devices to achieve multimedia computing functions. By installing
cameras, microphones, speakers, and other devices, and by virtue of their powerful
computing capabilities, users can interact with desktop computers in the form of voice,
gestures, facial expressions, and other modalities.

Desktop computers are also generally equipped with CD-ROM/DVDs and other
large-capacity portable external storage devices. With these external storage devices,
desktop computers can release software and verify ownership and certificates through
CD/DVD.

As a result of the embeddability and limited resources of embedded systems, as well
as user demand for portability and mobility, Android systems have interaction modalities,
methods, and capabilities that are distinct from those of desktop systems. Due to these
characteristics and conditions, interaction on Android systems is more demanding and
more difficult to achieve than it is on desktop systems.

The main differences between Android devices and desktop computers are
described next.

Screens of Various Sizes, Densities, and Specifications
Instead of large, high-resolution screens like those on desktop computers, Android
device screens are smaller and have various dimensions and densities measured in dots
per inch (DPI). For example, the K900 smartphone’s screen is 5.5 inches with a resolution
of 1920 ×1080 pixels, and some smartphone screens are only 3.2 inches.

The aspect ratio of Android device screens is not the conventional aspect ration
of 16:9 or 4:3 used by desktop computers. If Android devices adopted the interaction
mode of desktop computers, many problems would result, such as a blurry display and
errors in selecting targets.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

205

Keypads and Special Keys
Desktop computers have full keyboards, where a key corresponds to every character and
the generous distance between keys makes typing convenient. If an Android device has a
keyboard, it’s usually a keypad instead of the full keyboard. Keypads have fewer keys than
full keyboards; several characters generally share one key. A keypad’s keys are smaller
and more tightly spaced than on full keyboards, making it harder to select and type
characters. As a result, keypads are less convenient to use than full keyboards. In addition,
some keypads provide special keys that are not found on standard full keyboards, so users
must adjust their input on the Android device.

Generally speaking, on Android devices, keys and buttons are a unified concept.
Whether you press a button or a key, the action is processed as a keyboard event with
a uniform numbering scheme. Keyboard events in Android have corresponding
android.view.KeyEvent classes. Figure 7-1’s button/key callouts correspond to the event
information listed in Table 7-1.

(a) Lenovo Phone K900 (b) Emulator

Figure 7-1.  Keyboard and buttons of an Android phone

See help documents like that for android.view.KeyEvent for details. Table 7-1’s
contents are excerpts.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

206

Table 7-1.  Android Event Information Corresponding to Key and Button Events

Key/Button Key Code Another Name Key Event

Key  in Figure 7-1 24 KEYCODE_VOLUME_UP {action=0 code=24
repeat=0 meta=0
scancode=115
mFlags=8}

Key  in Figure 7-1 25 KEYCODE_VOLUME_DOWN {action=0 code=25
repeat=0 meta=0
scancode=114
mFlags=8}

Key  in Figure 7-1 82 KEYCODE_MENU {action=0 code=82
repeat=0 meta=0
scancode=139
mFlags=8}

Key  in Figure 7-1 No response

Key  in Figure 7-1 4 KEYCODE_BACK {action=0 code=4
repeat=0 meta=0
scancode=158
mFlags=8}

Key  in Figure 7-1 No response

A–Z 29–54 KEYCODE_A–KEYCODE_Z

0–9 7–16 KEYCODE_0–KEYCODE_9

Key  in Figure 7-1 19 KEYCODE_DPAD_UP

Key 11 in Figure 7-1 20 KEYCODE_DPAD_DOWN

Key 12 in Figure 7-1 21 KEYCODE_DPAD_LEFT

Key 10 in Figure 7-1 22 KEYCODE_DPAD_RIGHT { action=ACTION_DOWN,
keyCode=KEYCODE_DPAD_
RIGHT, scanCode=106,
metaState=0,
flags=0x8,
repeatCount=0,

eventTime=254791,
downTime=254791,
deviceId=0,
source=0x301 }

(continued)

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

207

Key/Button Key Code Another Name Key Event

Key 13 in Figure 7-1 23 KEYCODE_DPAD_CENTER { action=ACTION_DOWN,
keyCode=KEYCODE_DPAD_
CENTER, scanCode=232,
metaState=0,
flags=0x8,
repeatCount=0,

eventTime=321157,
downTime=321157,
deviceId=0,
source=0x301 }

Key  in Figure 7-1 5 KEYCODE_CALL { action=ACTION_DOWN,
keyCode=KEYCODE_
CALL, scanCode=231,
metaState=0,
flags=0x8,
repeatCount=0,
eventTime=331714,

downTime=331714,
deviceId=0,
source=0x301 }

Key  in Figure 7-1 6 KEYCODE_ENDCALL

Table 7-1.  (continued)

Touch Screens and Styluses, in Place of Mice
A touch screen is an input device covering a display device to record touch positions.
By using the touch screen, users can have a more intuitive reaction to the information
displayed. Touch screens are widely applied to Android devices and replace a mouse
for user input. The most common types of touch screens are resistive touch screens,
capacitive touch screens, surface acoustic wave touch screens, and infrared touch
screens, with resistive and capacitive touch screens being most often applied to Android
devices. Users can directly click videos and images on the screen to watch them.

A stylus can be used to perform functions similar to touch. Some styluses are
auxiliary tools for touch screens and replace fingers, helping users complete elaborate
pointing, selecting, line drawing, and other operations, especially when the touch screen
is small. Other styluses implement touch and input functions along with other system
components. With the first type of auxiliary tool styluses, users can touch and input
characters with fingers. But the second type of stylus is an indispensable input tool and is
used instead of fingers.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

208

Touch and styluses can perform most functions that mice typically do, such as click
and drag, but can’t achieve all the functions of mice, such as right-click and left-click/
right-click at the same time. When designing embedded applications, you should control
the interaction mode within the range of functions that touch screens or styluses can
provide and avoid operations that are not available.

Onscreen Keyboards
Onscreen keyboards, also known as virtual keyboards or soft keyboards, are displayed
on the screen via software. Users tap the virtual keys like they would tap the keys on
physical keyboards.

Few Multimodal Interactions
Multimodal interaction refers to human-computer interaction with the modes involving
the five human senses. It allows the user to interact through input modalities such as
speech, handwriting, and hand gesture. Because computing capability is limited, Android
devices generally do not adopt multimodal interaction.

Few Large-Capacity Portable External Storage Devices
Most Android devices do not have the CD-ROM/DVD drives, hard disks, or other large-
capacity portable storage peripherals such as solid-state drives (SSDs) that are usually
configured on desktop computers. These devices cannot be used on Android devices to
install software or verify ownership and certificates. However, Android devices usually
support microSD cards, which now have capacities of up to 128 GB; and more and
more cloud-based storage solutions such as Dropbox, One Drive, and Google Drive are
being developed for Android devices, with Android-compatible client apps available for
download from Google Play Store.

UI Design Principles for Embedded Systems
This section introduces interactive design issues and corrective measures to take when
transforming traditional desktop applications to embedded applications.

Considerations of Screen Size
Compared to desktop computer systems, Android systems have smaller screens with
different display densities and aspect ratios. Such screen differences result in many problems
when migrating applications from desktop systems to Android systems. If developers reduce
desktop system screens proportionally, the graphic elements become too small to be seen
clearly. In particular, it is often difficult to see the text and icons, select and click some
buttons, and place some application pictures on the screen appropriately. If developers
migrate application graphic elements to Android systems without changing their sizes, the
screen space is limited and can only accommodate a few of the graphic elements.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

209

Size of Text and Icons
Another problem is the size of text and icons. When an application is reduced from a
typical 15-inch desktop screen to a typical 5- or 7-inch phone or tablet screen, its text is
too small to be seen clearly. In addition to the size of the text font, the text window (such
as a chat window) also becomes too small to read the text. Trying to reduce the font size
to suit smaller windows makes the text hard to recognize.

Therefore, the design of embedded systems should use as few text prompt messages
as possible; for example, replace the text with graphic or sound information. In addition,
where text is necessary, the text size should be adjustable. On Android, some predefined
fonts and icons are available in the res directory, such as drawable-hdpi, drawable-mdpi,
and drawable-xhdpi.

Clickability of Buttons and Other Graphical Elements
Similar to the problem of small text, buttons and other graphical elements also bring
interaction problems when migrating applications. On desktop systems, the size of buttons
is designed for mouse clicks, whereas on Android systems, the button size should be suitable
for fingers (on touch screens) or styluses. Therefore, when porting a Windows-based app
to support Android devices, the application UI needs to be redesigned; and predefined
drawables provided by the Android SDK should be selected in order to suit fingers or
styluses.

Developers should use bigger and clearer buttons or graphic elements to avoid
such problems and leave enough gap between graphic elements to avoid errors, which
are common when a small touch screen is used for selecting by fingers or styluses. In
addition, if an application has text labels near buttons, the labels should be part of the
clickable area connected with the buttons, so the buttons are easier to click.

Size of Application Windows
Many applications, such as games, use windows with fixed sizes instead of windows
that automatically adjust to fill any size screen. When these applications are migrated to
Android systems, because the screen’s aspect ratio does not match its resolution, part of
the picture may not be seen, or part of the area may not be reachable.

These problems may be more complicated on smartphones and tablets because their
screens have various densities such as small (426 dp × 320 dp), normal (470 dp × 320 dp),
large (640 dp × 480 dp), and extra large (960 dp × 720 dp). Their aspect ratios are diverse
and different from those commonly adopted by desktop systems.

One good way to solve such problems is to place the entire application window
proportionally on the smartphone or tablet screen, such as the large and extra-large
screens, which are typically 640 × 480 pixels and 960 × 720 pixels; or rearrange the UI to
make full use of the entire widescreen area; or make the entire app window a scrollable
view. In addition, you can allow users to use multiple touch fingers touch to zoom in,
zoom out, or move the application window on the screen.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

210

Considerations Arising from Touch Screens and Styluses
As mentioned earlier, touch screens and styluses are used on many Android systems to
perform some traditional mouse functions. Such input devices are called tap-only touch
screens. However, tap-only touch screens cannot provide all mouse functions. There is no
right button, and the current finger/stylus location cannot be captured when the screen is
not touched. So, desktop applications that allow functions such as cursor moves without
clicking, different operations for left-clicks and right-clicks, and so on, cannot be realized
on Android systems using touch screens and styluses.

The following sections talk about several problems often seen when migrating
applications from desktop systems to Android systems using tap-only touch screens.

Correctly Interpreting the Movement and Input of the Cursor
(Mouse) on Tap-Only Touch Screens
Many applications need mouse movement information when no mouse key is pressed.
This operation is called moving the cursor without clicking. For example, a lot of PC
shooting games1 simulate the user’s field of vision such that moving the mouse without
clicking is interpreted as moving the game player’s vision field; but the cursor should
always stay in the middle of the new vision field. However, an embedded device with
a tap-only touch screen does not support the operation of moving the cursor without
clicking. Once the user’s finger touches the screen, a tap event is triggered. When the user
moves a finger on the screen, a series of tap events at different positions is triggered; these
events are interpreted by the existing game code as additional interaction events (that is,
moving the aiming position of the game player’s gun).

The original interaction mode needs to be modified when migrating this type of
application to Android systems. For example, this problem can be modified into a click
operation: once the user touches the screen, the game screen should immediately switch
to the vision field, in which the cursor is located at the screen center. This way, the cursor
is always displayed at the screen center and not at the position the user actually touched.
One advantage you benefit from on mobile platforms is that most smartphones and
tablets on the market are equipped with sensors such as accelerometers, gyroscopes, GPS
sensors, and compasses, and they allow applications to read data from the sensors. As a
result, developers have more options than just touch input.

More generally, if an application needs to track the cursor’s movement from point A
to point B, the tap-only touch screen can define this input by the user clicking first point A
and then point B, without the need to track the movement between point A and point B.

Setting Screen Mapping Correctly
Many applications run in full-screen mode. If such applications do not perfectly fill the entire
tap-only touch screen (that is, they are smaller or bigger than the screen), input mapping
errors result: there is a deviation between the display position and the click position.

1A typical example is the game Counter-Strike (CS).

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

211

One situation that often occurs in migrating a full-screen application to a tap-only
touch screen with a low aspect ratio is the application window being centered on the
screen with blank space showing on both sides. For example, when a desktop application
window with a resolution of 640 × 480 (or 800 × 600) pixels is migrated to a tap-only touch
screen with a resolution of 960 × 720 (or 1280 × 800, a WXGA on Dell Venue 8) pixels, it
appears on the screen as shown in Figure 7-2. The resulting mapping errors cause the app
to incorrectly respond to user interaction. When the user taps the position of the yellow
arrow (the target), the position identified by the application is the point where the red
explosion icon is located. These kinds of errors also occur when the user taps a button.

Figure 7-2.  Screen-mapping errors due to a low aspect ratio

You should consider the position-mapping logic and take this blank space into
consideration, even if the blank space is not part of the migrating application’s window.
By making these changes, the tap-only touch screen can map the touch position correctly.

Another situation occurs when the desktop full-screen window is migrated to a
tap-only touch screen with a higher aspect ratio. The height of the original application
window does not fit on the tap-only touch screen, and mapping errors occur in the
vertical direction instead of the horizontal direction.

Figure 7-3 shows the original application window filling the screen horizontally
but not vertically on a tap-only touch screen with a higher aspect ratio. Here, when the
user taps the position of the yellow arrow (the target), the position identified by the
application is the point where the red explosion icon is located. These errors are caused
by the difference in shape between the physical display and the application window.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

212

One solution is to ensure that the OS accurately maps the tap-only touch screen
to the entire visible area of the screen. The OS provides special services to complete
the screen stretching and mouse position mapping. Another solution is to consider, at
the beginning of application development, allowing configuration options to support
preconfigured display densities and aspect ratios provided by the Android SDK, such as
screens with a resolution of 640 × 480, 960 × 720, or 1,080 × 800 pixels. This way, if the
final dimension deformation is acceptable, the application may automatically stretch the
window to cover the whole screen.

How to Solve Hover-Over Problems
Many applications allow hover-over operations: that is, users can place the mouse over a
certain object or locate the mouse over an application icon to trigger an animated item or
display a tooltip. This operation is commonly used to provide instructions for new players
in games; but it is not compatible with the characteristics of tap-only touch screens,
because they do not support the mouse hover-over operation.

You should consider selecting an alternative event to trigger animations or tips. For
example, when the user touches the operation of applications, relevant animated themes and
tips are triggered automatically. Another method is to design an interface interaction mode
that temporarily interprets tap events as mouse hover-over events. For example, the action of
pressing a certain button and moving the cursor would not be interpreted as a tap operation.

Providing Right-Click Functionality
As mentioned before, tap-only touch screens generally do not support right-click
operations on mice. A commonly used alternative is a delayed touch (much longer than
the tap time) to represent a right-click. This could result in the wrong operation occurring
if the user accidentally releases their finger too soon. In addition, this method cannot
perform simultaneous left-click and right-click (also known as double-click).

Figure 7-3.  Screen-mapping errors due to a high aspect ratio

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

213

You should provide a user-interaction interface that can replace the right-click
function: for example, using double-click or installing a clickable control on the screen to
replace the right-click.

Keyboard Input Problems
As mentioned earlier, desktop computers use full keyboards, whereas Android systems
usually have much simpler keypads, button panels, user-programmable buttons, and
a limited number of other input devices. These limitations cause some problems when
designing embedded applications that are not seen in desktop systems.

Restricting the Input of Various Commands
The keyboard limitations on Android systems make it difficult for users to type
a large number of characters. Therefore, applications that require users to input
many characters, especially those depending on command input, need appropriate
adjustments when migrating to an Android system.

One solution is to provide an input mode that restricts the number of characters
by reducing the number of commands or selectively using convenient tools like menu
item shortcut keys. A more flexible solution is to create command buttons on the screen,
especially context-sensitive buttons (that is, buttons that appear only when needed).

Meeting Keyboard Demand
Applications need keyboard input, such as naming a file, creating personal data, saving
progress, and supporting online chat. Most applications tend to use the screen keyboard
to input characters, but the screen keyboard does not always run or show at the front of
the application interface, making character-input problems hard to solve.

One solution is to either design a mode without explicit conflict with the onscreen
keyboard application (for example, not using the full-screen default operation mode) for
applications, or provide an onscreen keyboard in the UI that appears only when needed.
Another simple way of minimizing keyboard input is to provide default text string values,
such as default names of personal data and default names of saved files, and allow users
to select by touching. To obtain other information required by the text string (for example,
prefix and suffix of file names), you can add a selection button that provides a list of
character strings you’ve established, from which the user can select. The name of a saved
file can also be uniquely obtained by combining various user information items extracted
from the screen or even using the date-time stamp. Some text input services (such as a
chat service) should be disabled if they are not the core functions of an application. This
will not cause any negative impact on the user experience.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

214

Software Distribution and Copyright Protection Problems
Desktop computers are generally equipped with CD-ROM/DVD drives, and their
software is generally distributed via CD/DVD. In addition, for anti-piracy purposes,
CD/DVD installation usually requires users to verify the ownership of the disk or load
contents dynamically from the CD/DVD, especially video files. However, Android systems
(smartphones and tablets, for instance) generally do not have CD-ROM/DVD drives;
Android does support an external microSD card, but directly installing an application
from it is still not supported.

A good solution is to allow users to download or install applications via the Internet
instead of installing from CD/DVD. Consumers buy and install applications directly
from application stores such as the Apple App store, Google Play, and Amazon Appstore.
This popular software release model allows mobile developers to use certificates, online
accounts, or other software-based ways to verify ownership, instead of physical CD/
DVDs. Similarly, you should consider providing the option of placing content on an
online cloud service instead of requiring users to download videos and other content
from a CD/DVD.

Android Application Overview
The following sections describe the application file framework and component structure
of Android applications.

Application File Framework
Figure 7-4 shows the file structure after the generation of the HelloAndroid app (this is an
Eclipse screen shot).

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

215

Even if you are not using Eclipse, you can directly access the project folder and see
the same file structure, as listed next:
 
E:\Android Dev\workspace\HelloAndroid>TREE /F
E:.
│ .classpath
│ .project
│ AndroidManifest.xml
│ ic_launcher-web.png
│ proguard-project.txt
│ project.properties
│

Figure 7-4.  Example file structure of an Android project

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

216

├─.settings
│ org.eclipse.jdt.core.prefs
│
├─assets
├─bin
│ │ AndroidManifest.xml
│ │ classes.dex
│ │ HelloAndroid.apk
│ │ resources.ap_
│ │
│ ├─classes
│ │ └─com
│ │ └─example
│ │ └─helloandroid
│ │ BuildConfig.class
│ │ MainActivity.class
│ │ R$attr.class
│ │ R$dimen.class
│ │ R$drawable.class
│ │ R$id.class
│ │ R$layout.class
│ │ R$menu.class
│ │ R$string.class
│ │ R$style.class
│ │ R.class
│ │
│ └─res
│ ├─drawable-hdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ ├─drawable-ldpi
│ │ ic_launcher.png
│ │
│ ├─drawable-mdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ └─drawable-xhdpi
│ ic_action_search.png
│ ic_launcher.png
│
├─gen
│ └─com
│ └─example
│ └─helloandroid
│ BuildConfig.java
│ R.java
│

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

217

├─libs
│ android-support-v4.jar
│
├─res
│ ├─drawable-hdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ ├─drawable-ldpi
│ │ ic_launcher.png
│ │
│ ├─drawable-mdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ ├─drawable-xhdpi
│ │ ic_action_search.png
│ │ ic_launcher.png
│ │
│ ├─layout
│ │ activity_main.xml
│ │
│ ├─menu
│ │ activity_main.xml
│ │
│ ├─values
│ │ dimens.xml
│ │ strings.xml
│ │ styles.xml
│ │
│ ├─values-large
│ │ dimens.xml
│ │
│ ├─values-v11
│ │ styles.xml
│ │
│ └─values-v14
│ styles.xml
│
└─src
 └─com
 └─example
 └─helloandroid
 MainActivity.java
 

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

218

Let’s explain the features of this Android project file structure:

•	 src directory: Contains all source files.

•	 R.java file: Is automatically generated by the Android SDK
integrated in Eclipse. You do not need to modify its contents.

•	 Android library: A set of Java libraries used by Android
applications.

•	 assets directory: Stores mostly multimedia files and other files.

•	 res directory: Stores preconfigured resource files such as
drawable layouts used by applications.

•	 values directory: Stores mostly strings.xml, colors.xml, and
arrays.xml.

•	 AndroidManifest.xml: Equivalent to an application configuration
file. Contains the application’s name, activity, services, providers,
receivers, permissions, and so on.

•	 drawable directory: Stores mostly image resources used by
applications.

•	 layout directory: Stores mostly layout files used by applications.
These layout files are XML files.

Similar to general Java projects, a src folder contains all the .java files for a project;
and a res folder contains all the project resources, such as application icons (drawable),
layout files, and constant values.

The next sections introduce the AndroidManifest.xml file, a must-have of every
Android project, and the R.java file in the gen folder, which is included in other Java
projects.

AndroidManifest.xml
The AndroidManifest.xml file contains information about your app essential to the
Android system, which the system must have before it can run any of the app’s code.
This information includes activities, services, permissions, providers, and receivers used
in the project. An example is shown in Figure 7-5.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

219

The file’s code is as follows:
 
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.helloandroid"
 android:versionCode="1"
 android:versionName="1.0" >
 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="15" />
 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MyMainActivity"
 android:label="@string/title_activity_my_main" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>
 

Figure 7-5.  The content of AndroidManifest.xml displayed in Eclipse

http://schemas.android.com/apk/res/android

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

220

The AndroidManifest.xml file is a text file in XML format, with each attribute
defined by a name = value pair. For example, in Android, label = "@ string /
title_activity_my_main", label indicates the name of the Android application as
activity_my_main.

An element consists of one or more attributes, and each element is enclosed by the
start (<) and end (/>) tags:
 
<Type Name [attribute set]> Content </ type name>
<Type Name Content />
 

The format [attribute set] can be omitted; for example, the <intent-filter> ...
</ intent-filter> text segment corresponds to the activity content of the element, and
<action... /> corresponds to the action element.

XML elements are nested in layers to indicate their affiliation, as shown in the previous
example. The action element is nested within the intent-filter element, which illustrates
certain aspects of the properties or settings of intent-filter. Detailed information about
XML is beyond the scope of this book, but many excellent XML books are available.

In the example, intent-filter describes the location and time when an activity
is launched and creates an intent object whenever an activity (or OS) is to execute an
operation. The information carried by the intent object can describe what you want to
do, which data and type of data you want to process, and other information. Android
compares the intent-filter data exposed by each application and finds the most
suitable activity to handle the data and operations specified by the caller.

Descriptions for the main attribute entries in the AndroidManifest.xml file are listed
in Table 7-2.

Table 7-2.  The Main Attribute Entries in the AndroidManifest.xml File

Parameter Description

Manifest Root node that contains all contents in the package.

xmlns:android Contains the manifest of the namespace.

xmlns:android=http://schemas.android.com/apk/res/android.
Makes various standard properties usable in the file and provides
data to most elements.

package Package of manifest application.

Application Contains the root node of the application-level component manifest
in the package. This element can also contain some global and
default properties for the application, such as label, icon, theme,
and necessary permissions. One manifest may contain zero or one
(no more than one) element.

android:icon Icon of the application.

android:label Name of the application.

(continued)

http://schemas.android.com/apk/res/android

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

221

Parameter Description

Activity Name of the initial page to load when users start the application.
It is an important tool for user interaction. Most other pages are
displayed when other activities are performed or manifested by
other activity flags.

Note: Each activity must have a corresponding <activity> flag
whether it is used externally or in its own package. If an activity has
no corresponding flag, you cannot operate it. In addition, to
support a searching activity, an activity can contain one or several
<intent-filter> elements to describe the operations it supports.

android:name Default activity launched by the application.

intent-filter Is formed by manifesting the intent value supported by a
designated component. In addition to specifying different types
of values, intent-filter can specify properties for describing a
unique label, icon, or other information required by an operation.

Action Intent action supported by a component.

Category Intent category supported by a component. The default activity
launched by the application is designated here.

uses-sdk Related to the SDK version used by the application.

Table 7-2.  (continued)

R.java
The R.java file is generated automatically when a project is created. It is a read-only file
and cannot be modified. R.java is an index file defining all resources of the project. For
example:
 
/* AUTO-GENERATED FILE. DO NOT MODIFY.

 */
package com.example.helloandroid;
public final class R {
 public static final class attr {
 }
 public static final class dimen {
 public static final int padding_large=0x7f040002;
 public static final int padding_medium=0x7f040001;
 public static final int padding_small=0x7f040000;
 }

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

222

 public static final class drawable {
 public static final int ic_action_search=0x7f020000;
 public static final int ic_launcher=0x7f020001;
 }
 public static final class id {
 public static final int menu_settings=0x7f080000;
 }
 public static final class layout {
 public static final int activity_my_main=0x7f030000;
 }
 public static final class menu {
 public static final int activity_my_main=0x7f070000;
 }
 public static final class string {
 public static final int app_name=0x7f050000;
 public static final int hello_world=0x7f050001;
 public static final int menu_settings=0x7f050002;
 public static final int title_activity_my_main=0x7f050003;
 }
 public static final class style {
 public static final int AppTheme=0x7f060000;
 }
}
 

You can see that many constants are defined in this code. The names of these
constants are the same as the file names in the res folder, which proves that the R.java
file stores the index of all resources of the project. With this file, it is more convenient
to use resources in applications and identify the resources required. Because this file
does not allow manual editing, you only need to refresh the project when adding new
resources to it. The R.java file automatically generates the index of all resources.

Definition File of Constants
The values subdirectory of the project contains a definition file for the strings, colors,
and array constants; the string constant definitions are in the strings.xml file. These
constants are used by other files in the Android project.

Eclipse provides two graphic view tabs, Resources and strings.xml, for the strings.xml
file. The Resources tab provides a structured view of the name-value, and the strings.
xml tab directly displays the contents of a text file format. The strings.xml file of the
HelloAndroid example is shown in Figure 7-6.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

223

(a) Resource View

(b) XML view

Figure 7-6.  IDE graphic view of the strings.xml file of HelloAndroid

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

224

The file content is as follows:
 
<resources>
 
 <string name="app_name">HelloAndroid</string>
 <string name="hello_world">Hello world!</string>
 <string name="menu_settings">Settings</string>
 <string name="title_activity_main">MainActivity</string>
 
</resources>
 

The code is very simple; it only defines four string constants (resources).

Layout Files
Layout files describe the size, location, and arrangement of each screen widget
(combination of window and gadget). A layout file is the “face” of the application. Layout
files are text files in XML format.

Widgets are visual UI elements, such as buttons and text boxes. They are equivalent
to controls and containers in the Windows system terminology. Buttons, text boxes, scroll
bars, and so forth are widgets. In the Android OS, widgets generally belong to the View
class and its descendant classes and are stored in the android.widget package.

An application has a main layout file corresponding to the application’s screen
display at startup. For example, the layout file and the main interface of the HelloAndroid
example are shown in Figure 7-7. When an application is created, Eclipse automatically
generates a layout file for the application’s main screen display. The file is located in the
project folder’s res\layout directory. The file name in the generated application projects
is specified in the next section: in this case, the source code file name corresponds to the
[Layout Name] key, so the file is named activity_main.xml.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

225

(a) The main graphic ayout file in Eclipse

(b) The user interface

Figure 7-7.  The main graphic layout and user interface

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

226

When you click the design window (in this case, activity_main.xml), you can see
the corresponding contents of the XML-formatted text file, as shown in Figure 7-8.

Figure 7-8.  The main layout file of the HelloAndroid example

The contents of the file are as follows:
 
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:padding="@dimen/padding_medium"
 android:text="@string/hello_world"
 tools:context=".MainActivity" />
 
</RelativeLayout>
 

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

227

In this code, there are several layout parameters:

•	 <RelativeLayout>: The layout configuration for the relative position.

•	 android:layout_width: Customizes the screen width of the current
view; match_parent represents the parent container (in this case, the
activity) match; fill_parent fills the entire screen; wrap_content,
expressed as text fields, changes depending on the width or height of
this view.

•	 android:layout_height: Customizes the screen height occupied
by the current view.

Two other common parameters, not shown in this layout file, are as follows:

•	 android:orientation: Here means the layout is arranged
horizontally.

•	 android:layout_weight: Give a value for the importance
assigned to multiple views of a linear layout. All views are given a
layout_weight value; the default is zero.

Although the layout file is an XML file, you do not have to understand its format
or directly edit it, because the Android Development Tools and Eclipse provide a visual
design interface. You simply drag and drop widgets and set the corresponding properties in
Eclipse, and your actions are automatically recorded in the layout file. You can see how this
works when you walk though the application development example in following sections.

Source Code File
When a project is built, Eclipse generates a default .java source code file that contains
the application basic runtime code for the project. It is located in the project folder under
the src\com\example\XXX directory (where XXX is the project name). The file name of the
generated application projects in this case is the source code file name that corresponds
to the [Activity Name] key, so the file is named MainActivity.java.

The content of MainActivity.java is as follows:
 
package com.example.flashlight;
 
import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;
import android.view.MenuItem;
import android.support.v4.app.NavUtils;
 
public class MyMainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my_main);
 }

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

228

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_my_main, menu);
 return true;
 }
}

Component Structure of Applications
The Android application framework provides APIs for developers. Because the
application is built in Java, the first level of the program contains the UI needs of the
various controls. For example, views (View components) contain lists, grids, text boxes,
buttons, and even an embedded web browser.

An Android application usually consists of five components:

Activity•	

Intent receiver•	

Service•	

Content provider•	

Intent and intent filters•	

The following sections discuss each components a bit more.

Activity
Applications with visual UIs are implemented using activities. When a user selects an
application from the main screen or an application launcher, it starts an action or an
activity. Each activity program typically takes the form of a separate interface (screen).
Each activity is a separate class that extends and implements the activity’s base class. This
class is shown as the UI, consisting of View components responding to events.

Most programs have multiple activities (in other words, an Android application is
composed of one or more activities). Switching to another interface loads a new activity.
In some cases, a previous activity may give a return value. For example, an activity that
lets the user select a photo returns the photo to the caller.

When a user opens a new interface, the old interface is suspended and placed in the
history stack (interface-switching history stack). The user can go back to an activity that
has been opened in the history stack interface. A stack that has no historical value can be
removed from the history stack interface. Android retains all generated interfaces in the
history stack for running the application, from the first interface to the last one.

An activity is a container, which itself is not displayed in the UI. You can roughly
imagine an activity as a window in the Windows OS, but the view window is not only for
displaying but also for completing a task.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

229

Intent and Intent Filters
Android achieves interface switching through a special class called intent. An intent
describes what the program does. The two most important parts of the data structure are
the action and the data processed in accordance with established rules (data). Typical
operations are MAIN (activity entrance), VIEW, PICK, and EDIT. Data to be used in the
operation is presented using a Universal Resource Identifier (URI). For example, to view a
person’s contact information, you need to create an intent using the VIEW operation, and
the data is a pointer to the person’s URI.

A class associated with an intent is called an IntentFilter. An intent encapsulates
a request as an object; IntentFilter then describes what intentions an activity (or,
say, an intent receiver, explained in a moment) can process. In the previous example,
the activity that shows a person’s contact information uses an IntentFilter, and it
knows how to handle the data VIEW operation applied to this person. The activity in the
AndroidManifest.xml file using IntentFilter is usually accomplished by parsing the
intent activity switch. First, it uses the startActivity (myIntent) function to start the
new activity, next it systematically checks the IntentFilter of all installed programs,
and then it finds the activity that is the best match with the myIntent corresponding to
IntentFilter. This new activity receives the message from intent and then starts. The
intent-resolution process occurs in real time in the startActivity called. This process
has two advantages:

The activity emits only one •	 intent request and can reuse the
function of other components.

The activity can always be replaced by an equivalent new activity •	
of the IntentFilter.

Service
A service is a resident system program that has no UI. You should use a service for any
application that needs to run continuously, such as a network monitor or checking for
application updates.

The two ways of using a service are start-stop mode and bind-unbind mode. The
process flow chart and functions are shown in Table 7-3.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

230

When two modes are in mixed use—for example, one mode calls startService()
and other modes call bindService()—then only when both the stopService call and the
unbindService call occur will the service be terminated.

A service process has its own life cycle, and Android tries to keep a service process
that has been started or bound. The service process is described as follows:

If the service is the implementation process of the method •	
onCreate(), onStart, or onDestroy(), then the main process
becomes a foreground process to ensure that this code is not
stopped.

If the service has started, the value of its importance is lower •	
than that of the visible process but above all invisible processes.
Because only a few processes are visible to the user, as long as the
memory is not particularly low, the service does not stop.

If multiple clients have bound to the service, as long as any one of •	
the clients is visible to the user, that service is visible.

Broadcast Intent Receiver
When you want to execute some code associated with external events, such as have a task
performed in the middle of the night or respond to a phone ringing, use IntentReceiver.
Intent receivers have no UI and use NotificationManager to inform users that their event
has happened. An intent receiver is declared in the AndroidManifest.xml file but can
also be declared using Context.registerReceiver(). The program does not have to run
continuously to wait for IntentReceiver to be called. When an intent receiver is triggered,
the system starts your program. Programs can also use Context.broadcastIntent() to
send their intent broadcast to other programs.

Table 7-3.  The Usage Model of a Service

Mode Start End Visit Notes

Start/
stop

Context.start
Service()

Context.stop
Service()

Even if the process
of the startService
call is ended, the
service is still there
until the process calls
stopService() or the
service causes its own
demise (stopSelf()
is called).

Bind/
unbind

Context.bind
Service()

Context.unbind
Service()

Context.Service
Connection()

When calling
bindService(), the
process is dead; then
the service it binds to
must be ended.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

231

Android applications can be used to handle a data element or to respond to an
event (such as receiving text messages). Android applications are deployed to the
device together with an AndroidManifest.xml file. AndroidManifest.xml contains the
necessary configuration information, so the application is properly installed on the
device. AndroidManifest.xml also includes the necessary class names and the types
of events that can be handled by the application, as well as the necessary permissions
to run the application. For example, if an application needs to access the network—to,
say, download a file—the manifest file must be explicitly listed in the license. Many
applications may enable this particular license. This declarative security can help reduce
the possibility of damage to equipment from malicious applications.

Content Provider
You can think of content providers as database servers. A content provider’s task is to
manage persistent data access, such as a SQLite database. If the application is very
simple, you might not need to create a content-provider application. If you want to build
a larger application or need to build applications to provide data for multiple activities or
applications, you can use the content provider for data access.

If you want other programs to use their own programs’ data, a content provider
is very useful. The content-provider class implements a series of standard methods
that allows other programs to store and read data that can be processed by the content
provider.

Android Emulator
Android does not use the ordinary Java virtual machine (JVM); it uses the Dalvik virtual
machine (DVM) instead. The DVM and JVM are fundamentally different. The DVM takes
up less memory, is specifically optimized for mobile devices, and is more suitable for
mobile phones used in embedded environments. Other differences are as follows:

The general JVM is based on the stack-based virtual machine, but •	
the DVM is a register-based virtual machine. The latter is better
because applications can achieve maximum optimization based
on the hardware, which is more in line with the characteristics of
mobile devices.

The DVM can run multiple virtual machine instances •	
simultaneously in limited memory, so that each DVM application
executes as a separate Linux process. In the general JVM, all
applications run in a shared JVM, and therefore individual
applications are not running as separate processes. With each
application running as a separate process, the DVM can be
prevented from closing all programs in the event of the collapse of
the virtual machine.

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

232

The DVM provides a less restrictive license platform than the •	
general JVM. The DVM and JVM support different generic code.
The DVM does not run standard Java bytecode, but rather Dalvik
executable format (.dex). Java code compilation of Android
applications actually consists of two processes. The first step is to
compile the Java source code into normal JVM executable code,
which uses the file-name suffix .class. The second step is to
compile the bytecode into Dalvik execution code, which uses the
file-name suffix .dex. The first step compiles the source code files
under the src subdirectory in the project directory into .class
files in the bin\class directory; and the second step moves the
files from the bin\class subdirectory to classes.dex files in
the bin directory. The compilation process is integrated into the
Eclipse build process; however, you can also use the command
line to compile manually.

Introducing Android Runtime (ART)
ART is an Android runtime that first became available in Google Android KitKat (4.4) as a
preview feature. It is also called Dalvik version 2 and is under active development in the
Android Open Source Project (AOSP). All smartphones and tablets with Android KitKat
keep Dalvik as the default runtime. This is because some OEMs still do not support ART
in Android implementations, and most third-party applications are still built based on
Dalvik and have not yet added support for the new ART.

As described by Google on the Android developer site, most existing apps should
work when running with ART. However, some techniques that work on Dalvik do not
work on ART. The differences between Dalvik and ART are shown in Table 7-4.

Table 7-4.  Dalvik vs. ART Summary

Dalvik ART

Application APK package with DEX class file Same as Dalvik

Compile Type Dynamic compilation (JIT) Ahead-of-time compilation (AOT)

Functionality Stable and went through
extensive QA

Basic functionality and stability

Installation Time Faster Slower due to compilation

App Launch Time Mostly slower due to JIT
compilation and interpretation

Mostly faster due to AOT
compilation

Storage Footprint Smaller Larger, with precompiled binary

Memory Footprint Larger due to JIT code cache Smaller

Chapter 7 ■ GUI Design for Android Apps, Part 1: General Overview

233

ART offers some new features to help with application development, performance
optimization, and debugging, such as support for the sampling profiler and debugging
features like monitoring and garbage collection. Transitioning from Dalvik to ART is
likely to take some time, and Dalvik and ART will both be provided in Android to allow
smartphone and tablet users to select and switch. However, future 64-bit Android will be
based on ART.

Summary
This chapter introduced the general GUI design method for desktop systems and then
showed how designing the UI and UX for embedded systems is different. You should now
understand the general methods and principles of GUI design for Android applications
and be ready to learn about the Android-specific GUI. The next chapter describes the
state transition of activities, the Context class, intent, and the relationship between
applications and activities.

235

Chapter 8

GUI Design for Android
Apps, Part 2:
The Android-Specific GUI

This chapter describes the state transitions of activities and discusses the Context class,
intent, and the relationship between applications and activities.

State Transitions of Activities
As mentioned in Chapter 7, the activity is the most important component. Activities
have their own state and transition rules, and they are the basis of what you need to
understand to write Android applications.

Activity States
When activities are created or destroyed, they enter or exit the activity stack. And as they
do, they transition among four possible states:

Active: An activity in the active state is visible when it is on the
top of the stack. Typically, it is the foreground activity that is
responding to user input. Android will ensure that it executes at
all costs. If required, Android will destroy stack activities further
down to ensure required resources for the active activity. When
another activity becomes active, this activity is paused.

Paused: In some cases, an activity is visible but does not have
focus. At this moment, it is suspended. When the active activity
is fully transparent or is the non-full screen activity, the activity
below reaches this state. Paused activities are considered
active but do not accept user input events. In extreme cases,
Android will kill a paused activity to restore resources to the
active activity. When an activity is completely invisible, it
becomes stopped.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

236

Stopped: When an activity is not visible, it is stopped. This
activity remains in memory to save all state and member
information. But when the system needs memory, this activity
is “taken out and shot.” When an activity stops, it is very
important to save the data and the current UI state. Once the
activity exits or is closed, it becomes inactive.

Inactive: When an activity is killed, it becomes inactive. Inactive
activities are removed from the activity stack. When you need to
use or display the activity, it needs to be started again.

The activity state transition diagram is shown in Figure 8-1.

Figure 8-1.  Android activity state transition diagram

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

237

State change is not artificial and is controlled entirely by the Android memory
manager. Android first closes applications that contain inactive activities, followed by
those with stopped activities. In extreme cases, it removes paused activities.

To ensure a flawless user experience, transition of these states is invisible to users.
When an activity returns to active status from the paused, stopped, or inactive state, the UI
must be nondiscriminatory. So, when an activity is stopped, it is very important to save the
UI state and data. Once an activity becomes active, it needs to recover the saved values.

Important Functions of Activities
The activity state transition triggers the function of the corresponding activity class
(that is, the Java method). Android calls these functions; developers do not have to
explicitly call them. They are called state-transition functions. You can override the
state-transition functions so they can complete their work at the specified time. There
are also some functions that are used to control the state of the activity. These functions
constitute the basis of activity programming. Let’s learn about those functions.

onCreate State-Transition Function
The onCreate function prototype is as follows:
 
void onCreate(Bundle savedInstanceState);
 

This function is run when the activity is first loaded. When you start a new program,
its main activity’s onCreate event is executed. If the activity is destroyed (OnDestroy,
explained later) and then reloaded into the task, its onCreate event participants are
re-executed.

An activity is likely to be forced to switch to the background. (An activity switched
to the background is no longer visible to the user, but it still exists in the middle of a task,
such as when a new activity is started to “cover” the current activity; or the user presses
the Home button to return to the home screen; or other events occur in the new activity
on top of the current activity, such as an incoming caller interface.) If the user does not
view the activity again after a period of time, the activity may be automatically destroyed
by the system along with the task and process. If you check the activity again, the
onCreate event initialization activity will have to be rerun.

And sometimes you may want users to continue from the last open operating state
of the activity, rather than starting from scratch. For example, when the user receives a
sudden incoming call while editing a text message, the user may have to do other things
immediately after the call, such as saving the incoming phone number to a contact.
If the user does not immediately return to the text-editing interface, the text-editing
interface is destroyed. As a result, when the user returns to the SMS program, that user
may want to continue from the last edit. In this case, you can override the activity’s void
onSaveInstanceState (Bundle outState) events by writing the data you want to be
saved before the destruction of the state of activity or information through outState,
so that when the activity executes the onCreate event again, it transmits information
previously saved through the savedInstanceState. At this point, you can selectively use
the information to initialize the activity, instead of starting it from scratch.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

238

onStart State-Transition Function
The onStart function prototype is as follows:
 
void onStart();
 

The onStart function executes after the onCreate event or when the current activity is
switched to the background. When the user switches back to this activity by selecting it from
switch panel, if it has not been destroyed, and only the onStop event has been performed,
the activity will skip onCreate event activities and directly execute onStart events.

onResume State-Transition Function
The onResume function prototype is as follows:
 
void onResume()
 

The onResume function is executed after the OnStart event or after the current
activity is switched to the background. When the user views this activity again, if it has
not been destroyed, and if onStop events have not been performed (activities continue to
exist in the task), the activity will skip onCreate and onStart event activities and directly
execute onResume events.

onPause State-Transition Function
The onPause function prototype is as follows:
 
void onPause()
 

The onPause function is executed when the current activity is switched to the
background.

onStop State-Transition Function
The onStop function prototype is as follows:
 
void onStop()
 

The onStop function is executed after the onPause event. If the user does not view
the activity again for some time, the onStop event of the activity is executed. The onStop
events are also executed if the user presses the Back key, and the activity is removed from
the current task list.

onRestart State-Transition Function
The onRestart function prototype is as follows:
 
void onRestart()
 

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

239

After the onStop event is executed, if the activity and the process it resides in have
not been systematically destroyed, or if the user views the activity again, the onRestart
event(s) of the activity are executed. The onRestart event skips the onCreate event
activities and directly executes the onStart events.

onDestroy State-Transition Function
The onDestroy function prototype is as follows:
 
void onDestroy()
 

After an onStop event of the activity, if the user does not view the activity again,
it is destroyed.

The finish Function
The finish function prototype is as follows:
 
void finish()
 

The finish function closes the activity and removes it from the stack, which leads to
a call to the onDestroy() state-transition function. One way to resolve this is for the user
to navigate to the previous activity using the Back button.

In addition to the activity switch, the finish function triggers the activity’s state-
transition function, and the startActivity and startActivityForResult methods of the
context class (described in the next sections) also activate it. Functions such as Context.
startActivity also cause the construction of activity objects (that is, create new ones).

Typical causes of the triggers and corresponding functions are listed in Table 8-1.

Table 8-1.  Triggers and Their Functions

Typical Trigger Cause Corresponding
Method of Activity
Executed

Explanations

Context.
startActivity[ForResult]()

Note: As long as the activity
is displayed and viewable on
the screen, this method will be
called.

new Activity()

onCreate() Completes the constructor
function, Saves the activity
object to the application object,
and initializes the various
controls (such as View).

onStart() Similar to View.onDraw().

Activity.finish() onDestroy() Completes the constructor
function, such as removing
the activity object from the
application.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

240

Functions such as Context.startActivity in Table 8-1 trigger three actions:
constructing new Activity objects, onCreate, and onStart. When an activity that is
moved from off screen places to the top of the screen display (that is, displayed in front of
the user), it generally only includes functions being called by onStart.

The Context Class
The Context class is an important Android concept to know. The class is inherited from
the Object function, whose inheritance is as follows:
 
java.lang.Object
 ↳ android.content.Context
 

The literal meaning of context is the text in the adjacent area, which is located in the
android.content.Context of the framework package. The Context class is a LONG type,
similar to the Handle handler in Win32. Context provides the global information interface
about the application environment. It is an abstract class, and its execution is provided by
the Android system. It allows access to resources and characterized types of applications.
At the same time, it can start application-level operations, such as starting activities and
broadcasting and receiving intents.

Many methods require the caller to be identified through a context instance. For
example, the first parameter of Toast is Context; and usually you use this to replace the
activity, which indicates that the caller’s instance is an activity. But other methods, such
as a button’s onClick (View view), cause errors if you use this. In this case, you may use
ActivityName.this to solve the problem, because the class implements the context of
several major Android-specific models like activities, services, and broadcast receivers.

If the parameter—especially the constructor parameter of the class (such as
Dialog)—is the Context type, the actual parameters are typically activity objects,
generally [this]. For example, the Dialog constructor prototype is
 
Dialog.Dialog(Context context)
 

Here’s an example:
 
public class MyActivity extends Activity{
 Dialog d = new Dialog(this);
 

Context is the ancestor of most classes of Android, such as broadcasting, intents, and
so on, and it provides the interface of the global information application environment.
Table 8-2 lists the important subclasses of Context. You can find a detailed description in
the help documentation for the Android Context class.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

241

Classes are called offspring classes because they are direct or indirect subclasses of
Context and have an inheritance relationship like activities:
 
java.lang.Object
 ↳ android.content.Context
 ↳ android.content.ContextWrapper
 ↳ android.view.ContextThemeWrapper
 ↳ android.app.Activity
 

Context can be used for many operations in Android, but it main function is to load
and access resources. There are two commonly used contexts: the application context
and the activity context. The activity context is usually passed between a variety of classes
and methods, similar to the code of onCreate for an activity, as follows:
 
protected void onCreate(Bundle state) {
 super.onCreate(state);
 TextView label = new TextView(this); // Pass context to view control
 setContentView(label);
}
 

When the activity context is passed to the view, it means that view has a reference
pointed to an activity and references resources taken by the activity: view hierarchy,
resource, and so on.

You can also use the application context, which always accompanies the application’s
life but has nothing to do with the activity life cycle. The application context can be acquired
with the Context.getApplicationContext or Activity.getApplication method.

Java usually uses a static variable (singleton and the like) to synchronize states
between activities (between classes inside a program). Android’s more reliable approach
is to use the application context to associate these states.

Each activity has a context, which contains the runtime state. Similarly, an application
has a context that Android uses to ensure that it is the only instance of that context.

If you need to make a custom application context, first you must define a custom
class that inherits from android.app.Application; then describe the class in the
application’s AndroidManifest.xml file. Android automatically creates an instance of

Table 8-2.  Important Subclasses of Context

Subclass Explanation

Activity User-friendly interface class

Application Base class that provides global application state maintenance

IntentService Base class used to handle asynchronous requests for the service
(expressed in an Intent way)

Service A component of the application that represents either a
time-consuming operation that has no interaction with the user or
a task that provides functionality for other application tasks

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

242

this class. By using the Context.getApplicationContext() method, you can get the
application context inside each activity. The following example code gets the application
context in the activity:
 
class MyApp extends Application {
// MyApp is a custom class inherited from android.app.Application
 public String aCertainFunc () {

 }
}
 
class Blah extends Activity {
 public void onCreate(Bundle b){

 MyApp appState = ((MyApp)getApplicationContext());
// Get Application Context
 appState.aCertainFunc();
//Use properties and methods of the application

 }
}
 

You can get global information about the application environment using the
get function of Context. The main functions are shown in Table 8-3 and are either
ContextWrapper or direct context methods.

Table 8-3.  Commonly Used Methods for Obtaining Context

Function Prototype Function

abstract Context
ContextWrapper.getApplicationContext ()

Returns the current process
corresponding to the global context of a
single application.

abstract ApplicationInfo
ContextWrapper.getApplicationInfo ()

Returns the context package
corresponding to the information of the
entire application.

abstract ContentResolver
ContextWrapper.getContentResolver ()

Returns the content-resolver instance
of the corresponding application
package.

abstract PackageManager
ContextWrapper.getPackageManager ()

Returns the package-manager instance
for finding all package information.

abstract String
ContextWrapper.getPackageName ()

Returns the current package name.

(continued)

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

243

Introduction to Intent
Intent can be used as a message-passing mechanism to allow you to declare intent to
take an action, usually with specific data. You can use intent to implement interaction
between components of any application on Android devices. Intent turns a group of
independent components into systems with one-to-one interactions.

It can also be used to broadcast messages. Any application can register a broadcast
receiver to listen and respond to these intent broadcasts. Intent can be used to create
internal, system, or third-party event-driven applications.

Intent is responsible for the description of an operation and the action data of the
application. Android is responsible for finding the corresponding component described
under the sub-intent, passing intent to the component being called, and completing the
component calls. Intent plays the decoupling role between the caller and the one who
is called.

Intent is a mechanism of runtime binding; it can connect two different components
in the process of running the program. Through intent, the program can request or
express willingness to Android; Android selects the appropriate components to handle
the request based on the contents of the intent. For example, suppose an activity wants
to open a web browser to view the content of a page; this activity only needs to issue a

Function Prototype Function

abstract Resources
ContextWrapper.getResources ()

Returns the resource instance of the
(user) application package.

abstract
SharedPreferences
ContextWrapper.getSharedPreferences
(String name, int mode)

Finds and holds the contents of the
preference file whose name is specified
by the parameter name. Returns
the value of the shared preferences
(SharedPreferences) that you can
find and modify. When using a
proper name, only one instance of
SharedPreferences is returned to the
caller, which means once the changes
are complete, the results are shared
with each other.

public final String
Context.getString (int resId)

Returns a localized string from the
application package’s default string
table.

abstract Object
ContextWrapper.getSystemService
(String name)

Returns processing system-level
services according to the name
specified by the variable name. The
returned object classes vary based on
the name of the request.

Table 8-3.  (continued)

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

244

WEB_SEARCH_ACTION request to Android. Based on the content request, Android will check
the intent filter declared in the component registration statement and find an activity for
a web browser.

When an intent is issued, Android finds one or more exact matches for the activity,
service, or broadcastReceiver as a response. Therefore, different types of intent
messages do not overlap and are not simultaneously sent to an activity or service,
because startActivity() messages can be sent only to an activity and startService()
intents can only be sent to a service.

The Main Roles of Intent
The main roles of intent are as follows.

Triggering a New Activity or Letting an Existing Activity
Implement the New Operation
In Android, intent directly interacts with the activity. The most common use of intent
is to bind application components. Intent is used to start, stop, and transfer
application activities. In other words, intent can activate a new activity or make an
existing activity perform a new operation. This can be accomplished by calling the
Context.startActivity() or Context.startActivityForResult() method.

To open a different interface (corresponding to an activity) in an application, you
call the Context.startActivity() function to pass an intent. Intent can either explicitly
specify a specific class to open or include an action required to achieve the goals. In the
latter case, the runtime will choose which activity to open, using a well-known process of
intent resolution in which the Context.startActivity() finds and starts a single activity
that best matches the intent.

Triggering a New Service or Sending New Requests
to Existing Services
Opening a service or sending a request to an existing service is also completed by the
intent class.

Trigger BroadcastReceiver
You can send BroadcastIntent using three different methods: Context.sendBroadcast(),
Context.sendOrderedBroadcast(), and Context.sendStickyBroadcast().

Intent Resolution
The intent transfer process has two ways to match target consumers (such as another
activity, IntentReceiver, or service) with the respondents of the intent.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

245

The first is explicit matching, also known as direct intent. When constructing an
intent object, you must specify the recipient as one of the intent’s component properties
(by calling setComponent (ComponentName) or setClass (Context, Class)). By
specifying a component class, the application notification starts the corresponding
components. This method is similar to an ordinary function call but varies in the reuse of
the granularity.

The second is implicit matching, also known as indirect intent. The sender of the
intent does not know or care who the recipient is when constructing an intent object.
The attribute is not specified in the component intent. This intent needs to contain
sufficient information so that the system can determine which components to use out of
all those available to meet this intent. This method differs significantly from function calls
and helps to reduce coupling between the sender and receiver. Implicit matching resolves
to a single activity. If there are multiple activities that can implement a given action based
on particular data, Android selects the best one to start.

For direct intent, Android does not need to do parsing because the target component
is very clear. However, Android needs to resolve indirect intent. Through analysis, it maps
the indirect intent to the activity, IntentReceiver, or service that processes the intent.

The mechanism of intent resolution mainly consists of the following:

Looking for all •	 <intent-filter>s and the intent defined by those
filters, which are registered in AndroidManifest.xml

Finding and handling the component of the intent through •	
PackageManager (PackageManager can get information about the
application package installed on the current device)

Intent filters are very important. A non-declared <intent-filter> component
can only respond to explicit intent requests that the component name matches, but it
cannot respond to implicit intent requests. A declared <intent-filter> component can
respond to either explicit intent or implicit intent requests. When resolving implicit intent
requests, Android uses three attributes of the intent—action, type, and category—to make
the resolution. The specific resolution methods are described next.

Action Test
A <intent-filter> element should contain at least one <action>, or no intent requests
can be matched to the <intent-filter>. If the action requested by an intent has at least
one match of an <action> in <intent-filter>, then the intent passed the action test of
this <intent-filter>.

If there is no description of a specific action type in the intent request or
<intent-filter>, then one of the two following tests applies:

If •	 <intent-filter> does not contain any action type, regardless
of what the intent requests are, there is no match to this
<intent-filter>.

If the intent request has no set action type, as long as the •	
<intent-filter> contains an action type, this intent request will
successfully pass the action test of <intent-filter>.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

246

Category Test
For an intent to pass the category test, every category in the Intent must match a category
in the filter. When every category of intent requests have exact matches with the
<category> of one <intent-filter> of the components the intent request pass the test.
The excess <category> declaration of <intent-filter> does not cause the match failure.
Any <intent-filter> that does not specify a category test only matches intent requests
that the configuration is not set for.

Data Test
The <data> element specifies a data URI and data type of the intent request that you want
to receive. A URI is divided into three parts that match: scheme, authority, and path. The
URI data type and scheme of the Internet request set by setData() must be the same as
specified in <intent-filter>. If <intent-filter> also specifies authority or path, they
have to match to pass the test.

This decision process can be expressed as follows:

If the intent specifies the action, then the action list of the •	
<intent-filter> of the target component must contain this
action. Otherwise, it is not considered matched.

If the intent does not provide a type, the system gets the data •	
types from the data. And for some action methods, the target
component’s data-type list must contain the data type of the
intent. Otherwise it cannot be matched.

If the data for the intent is not the URI of the content, and the •	
category and intent also do not specify its type, the matching is
based on the data scheme of the intent (for instance, http: or
mailto:), and the intent’s scheme must appear in the scheme list
of the target component.

If the intent specifies one or more categories, these •	
categories must all appear in the category list of the component.
For instance, if the intent contains two categories,
LAUNCHER_CATEGORY and ALTERNATIVE_CATEGORY, the
target component obtained by the parsing must contain at
least these two categories.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

247

The Relationship between Applications
and Activities
Beginners tend to get confused between applications and activities—in particular,
the main activities (those that occur when the application starts). In fact, they are two
completely different objects. The behaviors, attributes, and so forth are not the same.
Following is a list of differences between applications and activities:

No matter how many times an application starts, as long as it is •	
not shut down, its value (that is, the object) is constant. It has only
one instance.

No matter where an application starts, as long as it is not closed, •	
its value (that is, the object) is constant. It has only one instance.

When an activity is not finished, its value (that is, the object) is •	
constant. Each time onStart() is called, the activity displays on
the screen front.

The objects that •	 startActivity starts are different each time. You
can say that startActivity actually contains new objects.

Although you cannot get a new activity object after •	
startActivity, the Android framework can send parameter
values (similar to the actual parameter of the function call)
when startActivity starts its corresponding
activity objects.

Even more surprising is that Android can have an activity •	
coexist in multiple objects. When an activity is closed,
Android returns the results to the main activity started
through startActivity. As a result, it automatically calls the
onActivityResult() method that starts its activity object,
and random distribution can be avoided.

An application can have multiple objects of an activity.•	

The Basic Android Application Interface
In this section, you use an example to learn about Android development using the
Android SDK integrated in the Eclipse IDE. You create an application named GuiExam
using the Android SDK and learn about the Android interface design by following the
steps of the process.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

248

GuiExam Application Code Analysis
This section provides analysis of the GuiExam sample application. First, let’s create the
GuiExam application using the Android SDK in Eclipse. For the application name, type
GuiExam. For the Build SDK, choose API 19, which includes the x86 instructions. As
shown in Figure 8-2, select the system default configurations for all other entries.

Figure 8-2.  Initial setup when generating the GuiExam project

The file structure of the project is shown in Figure 8-3, and the user interface is
shown in Figure 8-4.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

249

Figure 8-3.  File structure of the GuiExam application

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

250

The source code of the application’s only Java file (MainActivity.java) is shown in
Figure 8-5:

Figure 8-4.  The application interface of GuiExam

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

251

You know the MainActivity.OnCreate() function is called when the event is created.
The source code of the function is very simple. The superclass function is called in line 12,
and the setContentView function is called in line 13. This function sets the UI display of the
activity. In the Android project, most of the UI is realized by the view and view subclasses.
View represents a region that can handle the event and can also render this region.

The code in line 13 indicates that the view is R.layout.activity_main. The
auto-generated R.Java file under the gen directory of the project includes code such as
this (excerpted):
 
Line # Source Code
......
8 package com.example.guiexam;
9
10 public final class R {

Figure 8-5.  The typical source codes in Java file MainActivity.java

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

252

26 public static final class layout {
27 public static final int activity_main=0x7f030000;
28 }
29 public static final class id {
30 public static final int menu_settings=0x7f080000;
31 }
32 public static final class string {
33 public static final int app_name=0x7f050000;
34 public static final int hello_world=0x7f050001;
35 public static final int menu_settings=0x7f050002;
36 public static final int title_activity_main=0x7f050003;
37 }

41 }
 

You can see that R.layout.activity_main is the resource ID of the main layout file
activity_main.xml. This file reads as follows:
 
Line# Source Code
1 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
2 xmlns:tools="http://schemas.android.com/tools"
3 android:layout_width="match_parent"
4 android:layout_height="match_parent" >
5
6 <TextView
7 android:layout_width="wrap_content"
8 android:layout_height="wrap_content"
9 android:layout_centerHorizontal="true"
10 android:layout_centerVertical="true"
11 android:padding="@dimen/padding_medium"
12 android:text="@string/hello_world"
13 tools:context=".MainActivity" />14
15 </RelativeLayout>
 

The first line of this code indicates that the content is a RelativeLayout class. By
checking the Android help documentation, you can see that the inheritance relationship
of RelativeLayout is
 
java.lang.Object
 ↳ android.view.View
 ↳ android.view.ViewGroup
 ↳ android.widget.RelativeLayout
 

This class is indeed seen as a view class. This layout contains a TextView class,
which is also the offspring class of the view. Line 12 indicates that its text property is
@string/hello_world and its display text is the contents of the variable hello_world in
strings.xml: “Hello world!”

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

253

As a superclass of the layout, ViewGroup is a special view that can contain other
view objects or even ViewGroup itself. In other words, the ViewGroup object treats the
objects of other views or ViewGroups as member variables (called properties in Java).
The internal view objects contained in ViewGroup objects are called widgets. Because
of the particularity of the ViewGroup, Android makes it possible for a variety of complex
interfaces for applications to be automatically set.

Using Layouts as Interfaces
You can modify or design layouts as part of the application interface design. For example,
you can modify the activity_main.xml file as follows:

1.	 Change TextView’s Text property to “Type Here”.

2.	 Pick a button widget from the Form Widgets column, and
drop it into the activity_main screen. Set its Text property to
“Click Me”, as shown in Figure 8-6.

Figure 8-6.  Modifying the GuiExam layout to add a button

3.	 Drag a plain text widget from the Text Fields section of the left
column and drop it into the activity_main screen. Change
the Width property under the layout parameters branch to
fill_parent, and then drag plain text until it fills the entire
layout, as shown in Figure 8-7.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

254

From these examples, you can see the general structure of the interface. The activity
set through setContentView (layout file resource ID) is: the activity contains a layout,
and the layout contains various widgets, as shown in Figure 8-9.

Figure 8-7.  Modifying the GuiExam layout to add a text-edit widget

(a) Portrait Mode (b) Landscape Mode

Figure 8-8.  The user interface of GuiExam after the layout has been modified

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

255

You may be wondering why Android introduced this layout concept. In fact, this
is a developer-favored feature of Android, compared to the programming interface of
Windows Microsoft Foundation Class (MFC). The layout isolates differences in screen
size, orientation, and other details on the device, which makes the interface screen
adaptive to a variety of devices. So, applications running on different device platforms
can automatically adjust the size and position of the widget without the need for user
intervention or code modification.

For example, the application you created can run on different Android phones,
tablets, and television device platforms without your needing to change any code. The
location and size of the widget are automatically adjusted. Even when you rotate a
phone 90 degrees, the interface for portrait or landscape mode is automatically resized
and maintained in its relative position. The layout also allows widgets to be arranged
according to local national habits (most countries arrange them from left to right, but
some countries arrange them from right to left). The details that need to be considered for
the interface design are all completed by the layout. You can imagine what would happen
if there were no layout classes—you would have to write code for each Android interface
layout for each device. The complexity of this level of work is unthinkable.

Using the View Directly as an Interface
Earlier you saw an interface structure and code framework for activities. You also saw
that most of the UI is implemented by the view and view subclasses. So, you can use the
setContentView function to specify a view object, instead of a layout. The prototype of
the setContentView function of the activity class includes the following.

This function sets a layout resource as the interface of the activity:
 
void setContentView(int layoutResID)
 

Activity

RelativeLayout

Button

EditText

Activity Title property

TextView
Type Here

Figure 8-9.  Interface structure of the activity

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

256

The first type of the function sets an explicit view as the interface of the activity:
 
void setContentView(View view)
 

The 2nd type f the function sets an explicit view as the interface of the activity,
according to the specified format:
 
setContentView(View view, ViewGroup.LayoutParams params)
 

Here you work through an application example that uses the view directly as an
activity interface, using the second function setContentView()You can modify the code of
the MainActivity.java file as follows:
 
......
import android.widget.TextView;
 
public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 �TextView tv = new TextView(this); // Create a TextView Object that

belongs to current Activity
 �tv.setText("Hello My friends!"); // Set Display text of TextView
 �setContentView(tv); // Set View as the main display

of the Activity
}
 

The application interface is shown in Figure 8-10.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

257

In this case you have TextView widgets, which are direct descendant classes of the
view, as the application interface; they are set directly in the setContentView function.
This way, the text displayed by the TextView becomes the output of the application
interface. To use the TextView class, you use an import android.widget.TextView
statement at the beginning of the file to import the package of the class.

Component ID
Now let’s go back and look at the application layout shown in Figure 8-6. The ID attribute
of the added text-edit widget in the layout is @ + id/editText1, and the button’s ID
property is @ + id/button1 (as shown in Figure 8-5). What does that mean?

Let’s look at the R.java file (excerpted):
 
Line # Source Code

8 package com.example.guiexam;
9
10 public final class R {

Figure 8-10.  GuiExam sets the view directly as the interface

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

258

22 public static final class id {
23 public static final int button1=0x7f080001;
24 public static final int editText1=0x7f080002;
25 public static final int menu_settings=0x7f080003;
26 public static final int textView1=0x7f080000;
27 }
28 public static final class layout {
29 public static final int activity_main=0x7f030000;
30 }

43 }
 

Compared with the R.java file in the “GuiExam Application” section, you can see
that lines 23 and 24 are new; they are the resource ID number of the newly added button
and text-edit box. The type is int, which corresponds to the ID attribute values of these
widgets. From the R.java file, you can find the ID of these widgets—the static constant
R.id.button1 is the resource ID of the widgets (buttons) for which the ID attribute
value is @ + id/button1, and the static constant R.id.editText1 is the resource ID of
the widgets (text edit) for which the ID attribute value is @ + id/editText1. What’s the
reason for this? Let’s see.

Android components (including widgets and activities) need to use a value of type
int as a tag This value is the ID attribute value of the component tag. The ID attribute can
only accept a value of resources type. That is, the value must start with @, ; for example,
@ id/abc, @+id/xyz, and so on.

The @ symbol is used to prompt the parser for XML files to parse the name behind
the @. For example, for @string/button1, the parser reads the button1 value of this
variable from values/string.xml.

If the + symbol is used right after the @, it means that when you modify and save a
layout file, the system will automatically generate the corresponding type int variables
in R.java. The variable name is the value after the / symbol; for example, @+id/xyz
generates int xyz = value in R.java, where the value is a hexadecimal number. If the
same variable name xyz already exists in R.java, the system does not generate a new
variable; instead, the component uses this existing variable.

In other words, if you use the @+id/name format and a variable named name exists in
R.java, the component will use the value of the variable as an identifier. If the variable
does not exist, the system adds a new variable, and the corresponding value for the
variable is assigned (not repeated).

Because the component’s ID attribute can be a resource ID, you can set any
existing resource ID value: for example, @drawable/icon, @string/ok, or @+string/.
Of course, you can also set a resource ID that already exists in the Android system, such as
@id/android:list, in which the android: modifier in the ID indicates the package where
the R class of the system is located (in the R.java file). You can enter android.R.id in the
Java code-editing zone, which lists the corresponding resource ID. For example, you can
set the ID property value this way.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

259

For the reason just described, you generally set the ID attributes of Android
components (including widgets, activities, and so on) to the @+id/XXX format. And you
use R.id.XXX to represent the component’s resource ID number in the program.

Buttons and Events
In the example in the section “Using Layouts as Interfaces,” you created an application
that includes Button, EditText, and other widgets, but nothing happens when the button
is clicked. This is because you did not assign a response to the click event. This section
first introduces Android events and the basics of the listener functions. You review and
further explore more advanced knowledge about events in future chapters covering
Android’s multithreaded design.

In Android, each application maintains an event loop. When an application starts,
it completes the appropriate initialization and then enters the event loop state, where
it waits for a user action such as clicking the touch screen, pressing a key (a button), or
some other input operation. User action triggers the program to generate a response to
the event; the system generates and distributes the corresponding event class to handle
it according to the event location, such as Activity or View. The callback methods are
integrated into an interface called the event listener. You can achieve the specified event
response by overriding the abstraction functions of the interface.

The scope of the event received by different classes is different for each class. For
example, the Activity class can receive keypress events but not touch events, whereas
the View class can receive both touch and keypress events. In addition, the event
attribute details received by different classes also vary. For example, the touch event
received by the View class consists of a number of touch points, coordinate values, and
other information. It is subdivided into pressing down, bouncing, and moving events. But
the Button class, which is a descendent of the View class, only detects a pressing action,
and the event does not provide the coordinates of touch points or other information.
In other words, Button processes the original event of the view and integrates all touch
events into one event that records whether it is clicked or not.

Most of the incident-response interfaces of the View class use Listener as a suffix, so
it is easy to remember their association with the event-listener interface. Table 8-4 shows
examples of a number of classes and their incident-response functions.

Table 8-4.  Examples of Classes and Their Incident-Response Functions

Class Event Listener Interface and Function

Button Click onClick() function of the onClickListener Interface

RadioGroup Click onCheckChange() function of the
onCheckChangeListener Interface

View Drop-down list onTouch() function of the TouchListener interface

Input focus
changes

onFocusChange() function of the
onFocusChangeListener interface

Button onKey() function of the onKeyListener interface

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

260

The process to respond to events is as follows. First, define the implementation
class of your listener interface and override the abstract function. Second, call functions
such as set ... Listener(). Then set the implementation class of the custom monitor
interface to the event listener of the corresponding objects.

For example, you can modify the application source to execute an incident response.
There are many coding styles to implement a Java interface. The next section discusses
several ways in which the results of the code running these styles is the same.

Inner Class Listener
Modify the MainActivity.java code as follows (the bold text is added or modified):
 
Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.view.MenuItem;
6 import android.support.v4.app.NavUtils;
7 import android.widget.TextView;
 
8 import android.widget.Button; // Use Button class
9
10 import android.view.View; // Use View class
11 �import android.view.View.OnClickListener; // Use View.OnClickListener

class
12 import android.util.Log;
13 // Use Log.d debugging function
 public class MainActivity extends Activity {
14 private int iClkTime = 1;
15
16 // Count of Button Click
17
 @Override
18 public void onCreate(Bundle savedInstanceState) {
19 super.onCreate(savedInstanceState);
20 setContentView(R.layout.activity_main);
21
22 Button btn = (Button) findViewById(R.id.button1);
23 // Obtain Button object based on the resource ID number
24 final String prefixPrompt ="This is No. ";
25 // Define and set the value of the variable passed
26 final String suffixPrompt ="time(s) that Button is clicked";
 
27 // Define and set the value of the variable passed
28 btn.setOnClickListener(new /*View.*/OnClickListener(){
29 // Set the event response class of Button's click
30

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

261

31 public void onClick(View v) {
32 �Log.d("ProgTraceInfo",prefixPrompt + (iClkTime++) +

suffixPrompt);
 
 }
 });
 }
 
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
 }
}
 

On lines 18‒22, you get the corresponding objects based on the resource ID of
EditText and TextView, respectively. To use OnClickListener as an internal class, you
add the final modifier in front of the variable. In lines 23 and 24, as the response code
of the Button clicks, you first get the contents of EditText using EditText.getText().
Because the function returns a value of type Editable, you convert the type Editable to
the type String via the CharSequence.toString() function (CharSequence is a superclass
of Editable). Then you call the TextView.setText (CharSequence text) function to
refresh the TextView display.

In Android, the accessor functions of a class attribute usually start with set/get,
such as the read/write functions of the EditText contents:
 
Editable getText()
void setText(CharSequence text, TextView.BufferType type)
 

The interface of this application is shown in Figure 8-11; (a) is the start screen, (b) is
the screen after text is entered in the edit text box, and (c) shows the application screen
after the button is clicked.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

262

Using ImageView
Previous sections discussed typical uses of widgets and showed the basic concepts of
widget programming. The image is the foundation of multimedia applications and is thus
a major part of Android applications. This section introduces the use of the image/picture
display widget, ImageView. Through the examples in this section, you learn how to use
ImageView and add files to the project’s resources.

The following example was originally developed in the section when you created the
GuiExam application. Follow these steps to add a picture file to the project:

1.	 Copy the image file (in this case, morphing.png) into the
corresponding /res/drawable-XXX project directory
(the directory in which to store project files of different
resolution images), as shown in Figure 8-12.

Figure 8-11.  The interface of the application with a TextView, a Button, and an EditText

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

263

2.	 Open the project in Eclipse, and press the F5 key to refresh the
project. You can see the file added to the project in Package
Explorer (in this case, morphing.png), as shown in Figure 8-13.

Figure 8-13.  The Package Explorer window after the image is added

Figure 8-12.  Copy the image file into the project’s res directory

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

264

To place ImageView widgets in the layout, follow these steps:

1.	 Click to select the TextView widget of the “Hello world!”
project, and then press the Del key to remove the widget from
the layout.

2.	 In the editor window of layout.xml, locate the Image & Media
branch, and drag and drop the ImageView of this branch to the
layout file. When the Resource Chooser dialog box pops up,
click and select the Project Resource, select the just-imported
picture file under the project, and click OK to complete the
operation. This process is shown in Figure 8-14.

Figure 8-14.  Place the ImageView widget in the layout

3.	 Adjust the size and position of the ImageView, and set its
properties. This step can use the default values shown in
Figure 8-15.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

265

4.	 Save the layout file.

Normally, at this point, you would have to compile the Java code. However, in this
example, compiling is not necessary. Figure 8-16 shows the application’s interface.

Figure 8-16.  Application interface of the ImageView

Figure 8-15.  The property settings of the ImageView

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

266

Exit Activities and Application
In the previous example, you can press the phone’s Back button to hide the activity,
but doing so does not close the activity. As you saw in the section “State Transitions of
Activities,” when the Back button is pressed, started activities only change from the active
state to the non-active state and remain in the system stack. To close these activities and
remove them from the stack, you should use the finish function of the Activity class.

However, closing activities does not mean the application process ends. Even if all
the components of the application (activity, service, broadcast intent receiver, and so on)
are closed, the application process continues to exist. There are two main ways to exit the
application process.

One is the static function System.exit that Java provides to forcibly end the process;
another is the static function Process.killProcess (pid) provided by Android to
terminate the specified process ID (PID). You can pass the Process.myPid() static
function to get the application’s process ID.

You can use these methods for the example in the section “Using ImageView.”
The specific steps are as follows:

1.	 Add two buttons to the layout file with the Text property
“Close Activity” and “Exit Application” respectively and ID
attributes @+id/closeActivity and @+id/exitApplication
respectively. Adjust the buttons’ size and position, as shown
in Figure 8-17.

Figure 8-17.  Add Close Activity and Exit Application buttons in the layout

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

267

2.	 Modify the source code of the MainActivity.java file as
follows (the bold code is either added or modified, and the
lines with strikethrough indicate deleted code):

 
Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 //import android.view.MenuItem;
6 //import android.support.v4.app.NavUtils;
7 import android.widget.Button; // Use Button class
8 import android.view.View; // Use View class
9 �import android.view.View.OnClickListener; // Use View.
OnClickListenerClass

10 import android.os.Process; // Use killProcess method
 
11 public class MainActivity extends Activity {
12 @Override
13 public void onCreate(Bundle savedInstanceState) {
14 super.onCreate(savedInstanceState);
15 setContentView(R.layout.activity_main);
16 Button btn = (Button) findViewById(R.id.closeActivity);
17 // Get Button object of <Closed activity>
18 btn.setOnClickListener(new /*View.*/OnClickListener(){
19 // Set response code for Clicking
20 public void onClick(View v) {
21 finish(); // Close main activity
22 }
23 });
24 btn = (Button) findViewById(R.id.exitApplication);
25 // Get Button object of <Exit Application>
26 // Set the response code to Clicking
27 public void onClick(View v) {
28 finish(); // close main activity
29 �Process.killProcess(Process.myPid()); // Exit application

process
 
30 }
31
32
33
34
35 });
 }
 

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

268

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
 }
}
 

In lines 5 and 6, you remove the unused import statements. You set the response
code for the Close Activity button in lines 16‒21 and set the response code for the
Exit Application button in lines 22‒28. The only difference is that the latter adds the
application-exit code Process.killProcess (Process.myPid ()). Both buttons use the
same finish() function of the Activity class to close the activity. The code in lines 7‒10
imports related classes.

The application interface is shown in Figure 8-18.

Figure 8-18.  The Close Activity and Exit Application interface of the application

When you click the Close Activity or Exit Application button, the main interface of the
application is turned off. The difference is that the application process (com.example.guiexam)
does not quit for Close Activity; but for Exit Application, the process closes. This is clearly
shown in the Devices pane of the DDMS view in Eclipse, in which you can see a list of
processes on the target machine, as shown in Figure 8-19.

Chapter 8 ■ GUI Design for Android Apps, Part 2: The Android-Specific GUI

269

Summary
This chapter introduced Android interface design by having you create a simple
application called GuiExam. You learned about the state transitions of activities, the
Context class, intent, and the relationship between applications and activities. You also
saw how to use the layout as an interface by changing the layout file activity_main.xml,
and you saw how the button, event, and inner event listeners work. The next chapter
describes how to create an application with multiple activities using the activity-intent
mechanism and shows the changes needed in the AndroidManifest.xml file.

(a) Processes after clicking Close Activity (b) Processes after clicking Exit
Application

Figure 8-19.  The process in DDMS when the Close Activity and Exit Application
application is running

271

Chapter 9

GUI Design for Android
Apps, Part 3: Designing
Complex Applications

In the previous chapter, you learned about Android interface design by creating a simple
application called GuiExam. The chapter also covered the state transition of activities, the
Context class, and an introduction to intents and the relationship between applications
and activities. You learned how to use a layout as an interface, and how button, event, and
inner event listeners work. In this chapter, you learn how to create an application with
multiple activities; examples introduce the explicit and implicit trigger mechanisms of
activities. You see an example of an application with parameters triggered by an activity
in a different application, which will help you understand the exchange mechanism for
the activity’s parameters.

Applications with Multiple Activities
The application in the previous example has only one activity: the main activity, which
is displayed when the application starts. This chapter demonstrates an application with
multiple activities, using the activity-intent mechanism, and shows the changes needed
in the AndroidManifest.xml file.

As previously described, an activity is triggered by an intent. There are two kinds of
intent-resolution methods: explicit match (also known as direct intent) and implicit match
(also known as indirect intent). A triggering activity can also have parameters and return
values. Additionally, Android comes with a number of built-in activities, and therefore a
triggered activity can come from Android itself, or it can be customized. Based on these
situations, this chapter uses four examples to illustrate different activities. For the explicit
match, you see an application with or without parameters and return values. For the
implicit match, you see an application that uses activities that come from the Android
system or are user defined.

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

272

Triggering an Explicit Match of Activities with
No Parameters
Using explicit match without parameters is the simplest trigger mechanism of the activity
intent. This section first uses an example to introduce this mechanism and later covers
more complex mechanisms.

The code framework of the activity-intent triggering mechanism for explicit
matching includes two parts: the activities of the callee (being triggered) and those of the
caller (trigger). The trigger is not limited to activities; it can also be a service, such as a
broadcast intent receiver. But because you have only seen the use of activities so far,
the triggers for all the examples in this section are activities.

1.	 The source code framework for the activity of the callee does
the following:

a.	 Defines a class that inherits from the activity.

b.	 If there are parameters that need to be passed, then
the source code framework of the activity calls the
Activity.getIntent() function in the onCreate function
to obtain the Intent object that triggers this activity, and
then gets the parameters being passed through functions
like Intent.getData (), Intent.getXXXExtra (),
Intent.getExtras (), and so on.

c.	 Writes code for the normal activity patterns.

d.	 If the trigger returns values, does the following before
exiting the activity:

i.	 Defines an Intent object

ii.	 Sets data values for the intent with functions like
Intent.putExtras()

iii.	 Sets the return code of the activity by calling the
Activity.setResult() function

e.	 Adds the code for the activity of the callee in the
AndroidManifest.xml file.

2.	 The code framework for the activity of the callee does the
following:

a.	 Defines the Intent object, and specifies the trigger’s
context and the class attribute of the triggered activity.

b.	 If parameters need to be passed to the activity, sets the
parameters for the Intent object by calling functions of
the intent like setData(), putExtras(), and so on.

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

273

c.	 Calls Activity.startActivity(Intent intent)
function to trigger an activity without parameters, or call
Activity.startActivityForResult(Intent intent,
int requestCode) to trigger an activity with parameters.

d.	 If the activity needs to be triggered by the return
value, then the code framework rewrites the
onActivityResult() function of the Activity class,
which takes different actions depending on the request
code (requestCode), result code (resultCode), and
intentions (Intent) values.

In step 2a, the class attribute of the triggered activity is used, which involves a Java
mechanism called reflection. This mechanism can create and return an object of the class
according to the class name. The object of the triggered activity is not constructed before
the triggering; therefore triggering the activity also means creating an object of that class
so that subsequent operations can continue. That is, triggering the activity includes the
operation of the newly created class objects.

The following two examples illustrate the code framework in detail. This section
describes the first one. In this example, the triggered activity belongs to the same application
as the activity of the trigger, and the triggered activity does not require any parameters and
does not return any values. The new activity is triggered via a button, and its activity interface
is similar to the interface of the example in the section “Exit Activities and Application.”
in Chapter 8, Figure 8-16. The entire application interface is shown in Figure 9-1.

Figure 9-1.  The application interface with multiple activities in the same application
without parameters

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

274

After the application starts, the application’s main activity is displayed, as shown
in Figure 9-1(a). When the Change To The New Interface Without Parameters button is
clicked, the app displays the new activity, as shown in Figure 9-1(b). Clicking the Close
Activity button causes the interface to return to the application’s main activity, as shown
in Figure 9-1(c).

Create this example by modifying and rewriting the example in the GuiExam section
in Chapter 8, as follows:

1.	 Generate the corresponding layout file for the triggered
activity:

a.	 Right-click the shortcut menu in the res\layout
subdirectory of the application, and select New ➤ Other
Items. A New dialog box pops up. Select the \XML\XML File
subdirectory, and click Next to continue. In the New
XML File dialog box, enter the file name (in this case
noparam_otheract.xml), and click Finish. The entire
process is shown in Figure 9-2. 

Figure 9-2.  The layout file for the triggered activity

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

275

Note■■  T he file name is the name of the layout file. You must use only lowercase letters
for compilation to be successful; otherwise you will get the error “Invalid file name: must
contain only a-z0-9_..”

You can see the newly added xxx.xml file (in this case,
noparam_otheract.xml) in the project’s Package Explorer,
as shown in Figure 9-3.

Figure 9-3.  Initial interface of the application’s newly added layout file

Note■■  T he layout editor window on the right is still empty, and there is no visible
interface so far. 

b.	 Select the Layouts subdirectory in the left palette, and
drag the layout control (in this case, RelativeLayout)
onto the window in the right pane. You immediately see
a visible (phone-screen shaped) interface, as shown in
Figure 9-4. 

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

276

c.	 Based on the same methodology described in the section
“Using ImageView” in Chapter 8, place an ImageView and
a button in the new layout file. Set the ImageView widget’s
ID attribute to @+id/picture and the Button widget’s ID
attribute to @+id/closeActivity. The Text property is
“Close Activity,” as shown in Figure 9-5. Finally, save
the layout file. 

Figure 9-4.  Drag-and-drop layout for the newly added layout file

Figure 9-5.  Final configuration of the newly added layout file

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

277

2.	 Add the corresponding Activity class for the layout file (Java
source files). To do so, right-click \src\com.example.XXX under
the project directory, and select New ➤ Class on the shortcut
menu. In the New Java Class dialog box, for Name, enter the
Activity class name corresponding to the new layout file
(in this case, TheNoParameterOtherActivity). Click Finish to
close the dialog box. The whole process is shown in Figure 9-6. 

Figure 9-6.  Corresponding class for the newly added layout file

Figure 9-7.  Corresponding class and initial source code of the newly added layout

You can see the newly added Java files (in this case,
TheNoParameterOtherActivity.java) and the initial code, as
shown in Figure 9-7.

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

278

3.	 Edit the newly added .java file
(TheNoParameterOtherActivity.java). This class executes
the activity of the triggered activity (callee). Its source code is
as follows (bold text is added or modified):

 
Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle; // Use Bundle class
3 import android.app.Activity; // Use Activity Class
4 import android.widget.Button; // Use Button class
5 import android.view.View; // Use View class
6 import android.view.View.OnClickListener; // Use OnClickListener Class
  
7 public class TheNoParameterOtherActivity extends Activity {
8 // Define Activity subclass
9 @Override
10 protected void onCreate(Bundle savedInstanceState) {
11 // Define onCreate method
12 super.onCreate(savedInstanceState);
13 // onCreate method of calling parent class
14 setContentView(R.layout.noparam_otheract);
15 // Set layout file
16 Button btn = (Button) findViewById(R.id.closeActivity);
17 // Set responding code for <Close Activity> Button
18 btn.setOnClickListener(new /*View.*/OnClickListener(){
19 public void onClick(View v) {
 finish();
 // Close this activity
 }
 });
 }
 }
 

In line 7, you add the superclass Activity for the newly
created class. The code in lines 8 through 18 is similar to the
application’s main activity. Note that in line 14, the code calls
the setContentView() function to set the layout for Activity,
where the parameter is the prefix name of the new layout XML
file created in the first step.

4.	 Edit the code for the trigger (caller) activity. The trigger
activity is the main activity of the application. The source code
is MainActivity.java, and the layout file is activity_main.xml.
The steps for editing are as follows:

a.	 Edit the layout file, delete the original TextView widgets,
and add a button. Set its ID property to
@+id/goTONoParamNewAct and its Text property to
“Change to interface without Parameter,” as shown in
Figure 9-8. 

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

279

b.	 Edit the source code file of the trigger activity (in this
case, MainActivity.java) as follows (bold text is either
added or modified):

 
Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.content.Intent; // Use Intent class
6 import android.widget.Button; // Use Button class
7 import android.view.View.OnClickListener;
8 import android.view.View;
  
9 public class MainActivity extends Activity {
10 @Override
11 public void onCreate(Bundle savedInstanceState) {
12 super.onCreate(savedInstanceState);
13 setContentView(R.layout.activity_main);
14 Button btn = (Button) findViewById(R.id.goTONoParamNewAct);
15 btn.setOnClickListener(new /*View.*/OnClickListener(){
16 public void onClick(View v) {
17 �Intent intent = new Intent(MainActivity.this,

TheNoParameterOtherActivity.class);
18 startActivity(intent);
19 }
20 });
21 }

Figure 9-8.  Layout configuration for the trigger activity

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

280

22 @Override
23 public boolean onCreateOptionsMenu(Menu menu) {
24 getMenuInflater().inflate(R.menu.activity_main, menu);
25 return true;
26 }
27 }
 

The code in line 17 defines an intent. The constructor function prototype in this case is
 
Intent(Context packageContext, Class<?> cls)
 

The first parameter is the trigger activity, in this case the main activity; this, because
it is used inside the inner classes, is preceded by class-name modifiers. The second
parameter is the class of the callee (being triggered) activity. It uses the .class attribute
to construct its object (all Java classes have the .class attribute).

Line 18 calls startActivity, which runs the intent. This function does not pass any
parameters to the triggered activity. The function prototype is
 
void Activity.startActivity(Intent intent)
 

5.	 Edit the AndroidManifest.xml file. Add descriptive
information for the callee activity (bold text is added) to
register the new Activity class:

 
Line # Source Code
1 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
2 package="com.example.guiexam"
3 android:versionCode="1"
4 android:versionName="1.0" >
...
10 <application
11 android:icon="@drawable/ic_launcher"
12 android:label="@string/app_name"
13 android:theme="@style/AppTheme" >
14 <activity
15 android:name=".MainActivity"
16 android:label="@string/title_activity_main" >
17 <intent-filter>
18 <action android:name="android.intent.action.MAIN" />
19
20 <category android:name="android.intent.category.LAUNCHER" />
21 </intent-filter>
22 </activity>
23 <activity android:name=".�TheNoParameterOtherActivity"

android:label="the other Activity"/>
24 </application>
25
26 </manifest>
 

http://schemas.android.com/apk/res/android

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

281

You can also replace this XML code with the following methods:

Method 1:•	
 
<activity android:name="TheNoParameterOtherActivity"
android:label=" the other Activity"> </activity>
 
Method 2:•	
 
<activity android:name=".TheNoParameterOtherActivity " /> 

Method 3:•	
 
<activity android:name=".TheNoParameterOtherActivity">
</activity>
 

The content of the android: name text field is the class name of the callee’s activity:
TheNoParameterOtherActivity.

Note that if a period (.) is added before the name of the Activity class android:
name, the compiler will give you the following warning at this line in the XML file
(only a warning, not a compile error):
 
Exported activity does not require permission

Triggering Explicit Matching of an Activity with
Parameters of Different Applications
The previous sections introduced triggering another activity without parameters in the
same application. The activity of the trigger is that the callee allows the exchange of
parameters: the trigger can specify certain parameters to the callee, and the callee can
return those parameter values to the trigger on exit. Additionally, the callee and the
trigger can be in completely different applications. This section shows an example of
an application with parameters triggered by an activity in a different application. This
example will help you understand the exchange mechanism for the activity’s parameters.

Use the same GuiExam application from Chapter 8. The interface is shown in
Figure 9-9.

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

282

Figure 9-9.  The interface of multiple activities in different applications

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

283

As shown in Figure 9-9, the trigger activity is in the GuiExam application, where there is a
variable to accept the weather condition entry. The interface in Figure 9-9(a) displays when
the GuiExam application is opened. Click the Enter New Interface To Modify The Weather box
to trigger the activity in HelloAndroid. When this activity starts, it displays the new weather
condition passed in the Set New Weather text box, as shown in Figure 9-9(b). Now enter a new
weather condition value in the Set New Weather, and click OK Change to close the trigger’s
activity. The new value returned from Set New Weather refreshes the Weather variable in the
trigger’s activity, as shown in Figure 9-9(d). If you click Cancel Change, it does the same thing
and closes the activity, but the value Weather does not change, as shown in Figure 9-9(f).

The process list for the executing application is shown in Figure 9-10 (displayed in
the DDMS window of the host machine in Eclipse).

Figure 9-10.  Process list in DDMS for the multiple-activity application

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

284

Figure 9-10 shows that when the application starts, only the process for the trigger,
GuiExam, is running. But when you click Enter New Interface To Modify The Weather, the
new activity is triggered and the process for the new activity HelloAndroid runs, as shown
in Figure 9-10(b). When you click Confirm Change or Cancel Change, the triggered
activity turns off, but the HelloAndroid process does not quit, as shown in Figure 9-10(c).
Interestingly, even though the GuiExam trigger process exits, the HelloAndroid process to
which the triggered activity belongs is still in the running state.

The build steps are as follows:

1.	 Modify the GuiExam code of the trigger application:

a.	 Edit the main layout file (activity_main.xml in this
case) by deleting the original TextView widgets; then
add three new TextView widgets and a button. Set their
properties as follows: set the Text property for two
TextViews to “This interface is the activity of the Caller
in GuiExam application” and “Today’s Weather:”. Set the
third TextView’s ID property to @+id/weatherInfo. The
Text property of the button is “Enter New Interface to
Change Weather”, and its ID attribute is @+id/modifyWeather.
Adjust the size and position of each widget as shown in
Figure 9-11. 

Figure 9-11.  The main layout design for the GuiExam trigger application

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

285

b.	 Modify the content of MainActivity.java as shown here:
 
Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.widget.Button; // Use Button class
6 import android.view.View; // Use View class
7 import android.view.View.OnClickListener; // Use View.OnClickListener class
8 import android.widget.TextView; // Use TextView class
9 import android.content.Intent; // Use Intentclass
10 public class MainActivity extends Activity {
11 public static final String INITWEATHER = "Sunny; // /Initial Weather
12 public static final int MYREQUESTCODE =100;
13 // Request Code of triggered Activity
14 private TextView tv_weather;
15 // The TextView Widget that displays Weather info
16 @Override
17 public void onCreate(Bundle savedInstanceState) {
18 super.onCreate(savedInstanceState);
19 setContentView(R.layout.activity_main);
20 tv_weather = (TextView)findViewById(R.id.weatherInfo);
21 tv_weather.setText(INITWEATHER);
22 Button btn = (Button) findViewById(R.id.modifyWeather);
23 // Get Button object according to resource ID #
24 btn.setOnClickListener(new /*View.*/OnClickListener(){
25 // Set responding code click event
26 public void onClick(View v) {
27 Intent intent = new Intent();
28 intent.setClassName("com.example.helloandroid",
29 // the package (application) that the triggered Activity is located
30 �"com.example.helloandroid.

TheWithParameterOtherActivity");
31 // triggered class (full name)
 String wthr = tv_weather.getText().toString();
32 // Acquire the value of weather TextView
33 intent.putExtra("weather",wthr); // �Set parameter being

passed to Activity
34 startActivityForResult(intent, MYREQUESTCODE);
35 // Trigger Activity
36 }
37 });
38 }
39

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

286

40 @Override
41 protected void onActivityResult(�int requestCode, int resultCode,

Intent data) {
42 // Triggered Activity finish return
43 super.onActivityResult(requestCode, resultCode, data);
44 if (requestCode == MYREQUESTCODE) {
45 // Determine whether the specified Activity end of the run
 if (resultCode == RESULT_CANCELED)
46 { }
47 // Select "Cancel" to exit the code, this case is empty
48 else if (resultCode == RESULT_OK) {
49 // Select <OK> to exit code
50 String wthr = null;
51 wthr = data.getStringExtra("weather");
 // Get return value
 if (wthr != null)
 tv_weather.setText(wthr);
 // Update TextView display of weather content
 }
 }
 }
  
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
 }
 }
 

The code in lines 23–28 triggers the activity with parameters in other applications.
Lines 23–25 establish the trigger intent, which uses the Intent.setClassName() function.
The prototype is
 
Intent Intent.setClassName(String packageName, String className);
 

The first parameter is the name of the package where the triggered activity is
located, and the second parameter is the class name (required to use the full name) of
the triggered activity. By using the startActivity ... function to trigger the activity, the
system can accurately locate the application and activity classes.

Line 28 attaches the parameter as additional data to the intent. Intent has a series of
putExtra functions to attach additional data and another series of getXXXExtra functions
to extract data from the intent. Additional data can also be assembled by the Bundle class.
Intent provides a putExtras function to add data and a getExtras function to get the
data. putExtra uses a property-value data pairing or variable name-value data pairing
to add and retrieve data. In this example, Intent.putExtra("weather", "XXX") saves
the data pair consisting of the name of the weather variable and the value “XXX” as
additional data for the intent.

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

287

The code line with Intent.getStringExtra("weather") gets the value of the
weather variable from the attached intent data and returns the string type.

More details about these functions and the Bundle class can be found in the
documentation on the Android web site. They are not discussed any further here.

In lines 33–46, you rewrite the onActivityResult function of the Activity class.
This function is called when the triggered activity is closed. In line 36, you first determine
which activity is closed and returned according to the request code. Then you judge
whether it is returned by an OK or a Cancel click, based on the result code and the request
code. Lines 40–50 get the negotiated variable values from the returned intent. Line 42
updates the interface based on the return value of the variable. In this function, if the user
clicks Cancel to return, you do nothing.

2.	 Modify the code of the callee application HelloAndroid as
shown in Figure 9-12:

a.	 Using the method described in the section “Triggering
Explicit Matching of an Activity with Parameters of
Different Applications earlier in this chapter, add a layout
file (in this case named param_otheract.xml), and drag
and drop a RelativeLayout layout into the file.

b.	 Edit this layout file by adding two TextView widgets, an
EditText, and two Button widgets. Set their properties as
follows:

•	 Text property for the two TextView widgets: “This
interface is the activity of the caller in HelloAndroid
application” and “Set new weather as:”

•	 ID property for the EditText: @+id/editText_NewWeather

•	 Text property for the two Buttons: “Confirm Changes”
and “Cancel Changes”

•	 ID attribute for the two Buttons: @+id/button_Modify
and @+id/button_Cancel

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

288

Then adjust their size and position.

c.	 As described in the section “Triggering Explicit
Matching of an Activity with Parameters of Different
Applications,” add the corresponding class (in this case,
TheWithParameterOtherActivity) for the new layout
file, as shown in Figure 9-13. 

Figure 9-12.  New layout design of the triggered (callee) application HelloAndroid

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

289

d.	 Edit the class file for the newly added layout file (in this
example, TheWithParameterOtherActivity.java). The
content is as follows:

 
Line # Source Code
1 package com.example.helloandroid;
2 import android.os.Bundle; // Use Bundle Class
3 import android.app.Activity; // Use Activity Class
4 import android.content.Intent; // Use Intent Class
5 import android.widget.Button; // Use Button Class
6 import android.view.View; // Use View Class

Figure 9-13.  Add the corresponding class for the newly added layout file in the
HelloAndroid project

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

290

7 import android.view.View.OnClickListener; // Use OnClickListener Class
8 import android.widget.EditText; // Use EditText Class
  
9 public class TheWithParameterOtherActivity extends Activity {
10 private String m_weather;
11 // Save new weather variable
12 @Override
13 protected void onCreate(Bundle savedInstanceState) {
14 // Define onCreate method
15 super.onCreate(savedInstanceState);
16 // method of call onCreate Super Class
17 setContentView(R.layout.withparam_otheract); // Set layout file
18 Intent intent = getIntent();
19 // Get Intent of triggering this Activity
20 m_weather = intent.getStringExtra("weather");
21 // Get extra data from Intent
22 �final EditText et_weather = (EditText)

findViewById(R.id.editText_NewWeather);
23 et_weather.setText(m_weather,null);
24 // �Set initial value of "New Weather" EditText according to extra

data of the Intent
25 Button btn_modify = (Button) findViewById(R.id.button_Modify);
26 btn_modify.setOnClickListener(new /*View.*/OnClickListener(){
27 // Set corresponding code of <Confirm Change>
28 public void onClick(View v) {
29 Intent intent = new Intent();
30 // Create and return the Intent of Data storage
31 String wthr = et_weather.getText().toString();
32 // Get new weather value from EditText
33 intent.putExtra("weather",wthr);
34 // Put new weather value to return Intent
35 setResult(RESULT_OK, intent);
36 // Set <Confirm> and return data
37 finish(); // Close Activity
 }
 });
 Button btn_cancel = (Button) findViewById(R.id.button_Cancel);
 btn_cancel.setOnClickListener(new /*View.*/OnClickListener(){
 //Set corresponding code for <Cancel Change>
 public void onClick(View v) {
 setResult(RESULT_CANCELED, null);
 // Set return value for <Cancel>
 finish(); // Close this Activity
 }
 });
 }
 }
 

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

291

This code follows the framework of an activity. It sets the activity layout in line 11
such that the layout name is the same as the layout file name created in step 1
(no extension). In lines 19‒22, it first constructs an intent for the return and then adds
extra data to the Intent object as the return data. In line 21, it sets the return value of the
activity and the intent as a return data carrier. The prototype of the setResult function is
 
final void Activity.setResult(int resultCode, Intent data);
 

If resultCode is RESULT_OK, the user has clicked OK to return; and if it is
RESULT_CANCELLED, the user has clicked Cancel to return. In this condition, the return
data carrier intent can be null, which is set in line 27.

3.	 Modify AndroidManifest.xml, which is triggered by the
application, with the following code:

 
Line # Source Code
1 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
2 package="com.example.helloandroid"
3 android:versionCode="1"
4 android:versionName="1.0" >
5
6 <uses-sdk
7 android:minSdkVersion="8"
8 android:targetSdkVersion="15" />
9
10 <application
11 android:icon="@drawable/ic_launcher"
12 android:label="@string/app_name"
13 android:theme="@style/AppTheme" >
14 <activity
15 android:name=".MainActivity"
16 android:label="@string/title_activity_main" >
17 <intent-filter>
18 <action android:name="android.intent.action.MAIN" />
19
20 <category android:name="android.intent.category.LAUNCHER" />
21 </intent-filter>
22 </activity>
23 <activity
24 android:name="TheWithParameterOtherActivity">
25 <intent-filter>
26 <action android:name="android.intent.action.DEFAULT" />
27 </intent-filter>
28 </activity>
29 </application>
30
31 </manifest>
 

http://schemas.android.com/apk/res/android

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

292

4.	 Lines 24–29 are new. As in previous sections, you add an
additional activity description and specify its class name,
which is the class name of the triggered activity generated
in the second step. See the section “Triggering an Explicit
Match of Activities with No Parameters” for information
about modifying the AndroidManifest.xml file. Unlike in that
section, you add not only an activity and the documentation
of its name attribute, but also the intent-filter instructions and
state to accept the default actions described in the Action
element and trigger this Activity class. The activity cannot
be activated in the absence of the intent-filter description of
the activity.

5.	 Run the callee application to register components of the
activity. The modifications to AndroidManifest.xml file
are not registered to the Android system until the callee
application, HelloAndroid, is executed once. Thus this is
an essential step to complete the registration of its included
activity.

Implicit Matching of Built-In Activities
In the examples in the previous two sections, before you trigger the activity of the same
application or different applications through the Activity.startActivity() function or
the Activity.startActivityForResult() function, the constructor of the Intent objects
explicitly specifies the class, either through the .class attribute or through the class
name in a string. This way, the system can find the class to be triggered. This approach
is called explicit intent matching. The next example shows how to trigger a class that is
not specified. Instead, the system figures it out using an approach called implicit intent
matching.

In addition, Android has a number of activities that have already been implemented,
such as dialing, sending text messages, and so on. Examples in this section explain how
you use can implicit matching to trigger these built-in activities. The application interface
is shown in Figure 9-14.

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

293

The user start the GuiExam application and clicks the Enter Dialing Activity button on
the screen. It triggers dial-up activities that come with the system.

In this case, you modify the GuiExam project and use this application as a trigger.
The implicit match triggered activity is the dial-up activity. The steps to build this
example are as follows.

1.	 In the layout file (activity_main.xml) of the GuiExam
application, delete the original TextView widgets, add a
button, and set its ID attribute to @+id/goTODialAct and its
Text property to “Enter Dialing Activity”. Adjust its size and
position as shown in Figure 9-15. 

Figure 9-14.  The application interface when using implicit intent to trigger a built-in
activity

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

294

2.	 Modify the source code file (MainActivity.java) as follows:
 
Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.widget.Button; // Use Button Class
6 import android.view.View; // Use View Class
7 import android.view.View.OnClickListener; // Use View.OnClickListener Class
8 import android.content.Intent; // Use Intent Class
9 import android.net.Uri; // Use URI Class
  
10 public class MainActivity extends Activity {
11 @Override
12 public void onCreate(Bundle savedInstanceState) {
13 super.onCreate(savedInstanceState);
14 setContentView(R.layout.activity_main);
15 Button btn = (Button) findViewById(R.id.goTODialAct);
16 btn.setOnClickListener(new /*View.*/OnClickListener(){
17 // Set corresponding Code for Click Activity
18 public void onClick(View v) {
19 �Intent intent = new Intent(Intent.ACTION_DIAL,

Uri.parse("tel:13800138000"));

Figure 9-15.  Layout file of the application for the implicit match built-in activity

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

295

20 startActivity(intent); // Trigger corresponding Activity
21 }
22 });
 }
23
24 @Override
25 public boolean onCreateOptionsMenu(Menu menu) {
26 getMenuInflater().inflate(R.menu.activity_main, menu);
27 return true;
28 }
 }
 

The code in line 16 defines an indirect intent (that is, intent of implicit match. It is
called an indirect intent because the class that needs to be triggered is not specified in
the constructor of the object; the constructor only describes the function of the class
that needs to be triggered to complete dialing. The constructor functions for the indirect
intent are as follows:
 
Intent(String action)
Intent(String action, Uri uri)
 

These functions require the classes (activities) that can complete the specified action
when they are called . The only difference between the two is that the second function
also comes with data.

This example uses the second constructor, which requires the activity that
can complete the dialing and extra data as a string of phone numbers. Because the
application does not specify the trigger type, Android finds the class to handle this action
(for example, Activity) from the registered class list and triggers the start of the event.

If multiple classes can handle the specified action, Android pops up a selection
menu, and users can select which one to run.

The parameter action can use the system-predefined string. In the previous
example, Intent.ACTION_DIAL is the string constant of ACTION_DIAL, which is defined by
the Intent class. Some system-predefined ACTION examples are shown in Table 9-1.

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

296

Table 9-1.  Some System-Predefined ACTION Constants

ACTION Constant Name Value Description

ACTION_MAIN android.intent.
action.MAIN

Start up as the initial activity of a task
with no data input and no returned
output.

ACTION_VIEW android.intent.
action.VIEW

Display the data in the intent URI.

ACTION_EDIT android.intent.
action.EDIT

Request an activity to edit data.

ACTION_DIAL android.intent.
action.DIAL

Start a phone dialer, and use preset
numbers in the data to dial.

ACTION_CALL android.intent.
action.CALL

Initiate a phone call, and
immediately use the number in the
data URI to initiate a call.

ACTION_SEND android.intent.
action.SEND

Start an activity to send specific data
(the recipient is selected by activity
resolution).

ACTION_SENDTO android.intent.
action.SENDTO

Generally, start an activity to send a
message to a contact designated in
the URI.

ACTION_ANSWER android.intent.
action.ANSWER

Open an activity to process an
incoming call. Currently it is handled
by a local phone-dialing tool.

ACTION_INSERT android.intent.
action.INSERT

Open an activity that can insert a
new project at the addition cursor in
a specific data field. When it is called
as the child activity, it must return
the URI of the newly inserted project.

ACTION_DELETE android.intent.
action.DELETE

Start an activity to delete a data port
at the URI position.

ACTION_WEB_SEARCH android.intent.
action.WEB_SEARCH

Open an activity, and run a web
page search based on the text in the
URI data.

The ACTION constant name is the first parameter used in the constructor of the
implicit-match intent. The value of the ACTION constant, used in the AndroidManifest.xml
statement of the activity that receives this action, is not used in this section, but is used in
the next section. You can find more information about predefined ACTION values in the
android.content.Intent help documentation.

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

297

Implicit Match that Uses a Custom Activity
The previous example used implicit matching to trigger activities that come with the
Android system. In this section, you see an example of how to use an implicit match to
trigger a custom activity.

The configuration of this example application is similar to the one in the section
“Triggering Explicit Matching of an Activity with Parameters of Different Applications.”
The triggering application is hosted in the GuiExam project, and the custom activity
triggered by implicit match is in the HelloAndroid application. The interface is shown in
Figure 9-16.

Figure 9-16.  The interface of implicit match that uses a custom activity

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

298

Figure 9-16(a) shows the interface when the GuiExam trigger application starts.
When you click the Display Activity Of Implicit Intent button, the system finds qualified
candidates for activities according to the requirements of the ACTION_EDIT action and
displays a list of events of these candidates (b). When the user-defined HelloAndroid
application is selected, the activity that can receive the ACTION_EDIT action as claimed in
the intent-filter in HelloAndroid application is displayed (c). When you click the Close
Activity button, the application returns to the original GuiExam activity interface (d).

Like the previous ones, this example is based on modifying the GuiExam project.
The steps are as follows:

1.	 Edit the main layout file (activity_main.xml). Delete the
original TextView widgets, and then add a TextView and a
button. Set the TextView’s Text property to “This application
is the Activity triggered by Caller using Implicit Intent”. Set
the button’s Text property to “Display Activity triggered by
Implicit Intent” and its ID attribute to @+id/goToIndirectAct,
as shown in Figure 9-17. 

Figure 9-16.  (continued)

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

299

Figure 9-17.  The main layout design for the GuiExam trigger application

2.	 Edit MainActivity.java as follows:
 
Line # Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.widget.Button; // Use Button Class
6 import android.view.View; // Use View class
7 import android.view.View.OnClickListener; // Use View.OnClickListener class
8 import android.content.Intent; // Use Intent Class
  
9 public class MainActivity extends Activity {
10 @Override
11 public void onCreate(Bundle savedInstanceState) {
12 super.onCreate(savedInstanceState);
13 setContentView(R.layout.activity_main);
14 Button btn = (Button) findViewById(R.id.goToIndirectAct);
15 btn.setOnClickListener(new /*View.*/OnClickListener(){
16 // Set respond Code for Button Click event
17 public void onClick(View v) {
18 Intent intent = new Intent(Intent.ACTION_EDIT);
19 // Construct implicit Inent
20 startActivity(intent); // Trigger Activity
21 }
 });
22 }
23

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

300

24 @Override
25 public boolean onCreateOptionsMenu(Menu menu) {
26 getMenuInflater().inflate(R.menu.activity_main, menu);
27 return true;
 }
 }
 

The code in lines 16 and 17 defines the implicit intent and triggers the corresponding
activity, which is basically the same as the earlier code that triggers implicit activity, but
here it uses the constructor function of the intent that has no data.

3.	 Modify the HelloAndroid application that includes a custom
activity with the corresponding implicit intent:

a.	 Based on the method described in the section
“Triggering an Explicit Match of Activities with No
Parameters,” earlier in the chapter, add a layout file
(implicit_act.xml) to the project and drag and drop a
RelativeLayout layout into the file.

b.	 Edit the layout file, and add TextView, ImageView, and
Button widgets. Set the attributes as follows:

•	 Text property of the TextView: “This interface is an
Activity of the HelloAndroid, which is responsible for
action triggered by the ACTION_EDIT”.

•	 ImageView: Set up exactly as in the section “Using
ImageView” in Chapter 8.

•	 Text property of the Button: “Close Activity”.

•	 ID property of the Button: @+id/closeActivity.

Then adjust their respective size and position, as shown in Figure 9-18.

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

301

4.	 Similar to the process described in the section “Triggering
an Explicit Match of Activities with No Parameters,” add the
corresponding class to the project for the new layout file
(TheActivityToImplicitIntent), as shown in Figure 9-19. 

Figure 9-18.  Layout file for the custom activity of the corresponding implicit intent

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

302

5.	 Edit the class file for the newly added layout file
(TheActivityToImplicitIntent.java), which reads
as follows:

 
Line # Source Code
1 package com.example.helloandroid;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.widget.Button; // Use Button Class
5 import android.view.View; // Use View class
6 import android.view.View.OnClickListener; // Use View.OnClickListener class
  

Figure 9-19.  New class for the custom activity of the corresponding implicit intent

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

303

7 public class TheActivityToImplicitIntent extends Activity {
8 @Override
9 public void onCreate(Bundle savedInstanceState) {
10 super.onCreate(savedInstanceState);
11 setContentView(R.layout.implicit_act);
12 Button btn = (Button) findViewById(R.id.closeActivity);
13 btn.setOnClickListener(new /*View.*/OnClickListener(){
14 // Set response code for <Close Activity> Click
15 public void onClick(View v) {
16 finish();
17 }
18 });
19 }
 }
 

6.	 Modify the AndroidManifest.xml file of the HelloAndroid
custom application containing the corresponding implicit
intent, as follows:

 
Line # Source Code
1 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
2
3 package="com.example.helloandroid"
4
5 android:versionCode="1"
6
7 android:versionName="1.0" >
8
9 <uses-sdk
10 android:minSdkVersion="8"
11 android:targetSdkVersion="15" />
12
13 <application
14 android:icon="@drawable/ic_launcher"
15 android:label="@string/app_name"
16 android:theme="@style/AppTheme" >
17 <activity
18 android:name=".MainActivity"
19 android:label="@string/title_activity_main" >
20 <intent-filter>
21 <action android:name="android.intent.action.MAIN" />
22
23 <category android:name="android.intent.category.LAUNCHER" />
24 </intent-filter>
25 </activity>

http://schemas.android.com/apk/res/android

Chapter 9 ■ GUI Design for Android Apps, Part 3: Designing Complex Applications

304

26 <activity
27 android:name="TheActivityToImplicitIntent">
28 <intent-filter>
29 <action android:name="android.intent.action.DEFAULT" />
30 <action android:name="android.intent.action.EDIT" />
31 <category android:name="android.intent.category.DEFAULT" />
32 </intent-filter>
33 </activity>
 </application>
 </manifest>
 

The code in lines 24–32 (in bold) gives the activity information for receiving the
implicit intent. Line 26 specifies that you can receive an android.intent.action.EDIT
action. This value corresponds to the constant value of the ACTION parameter
Intent.ACTION_EDIT of the trigger’s intent constructor function (the MainActivity class
of GuiExam). This is a predetermined contact signal between the trigger and the callee.
Line 27 further specifies that the default data type can also be received.

7.	 Run the application HelloAndroid, which now contains a
custom activity for the corresponding implicit intent and
registers its AndroidManifest.xml file in the system.

Summary
So far, three chapters have covered Android interface design. The simple GuiExam
application has demonstrated the state transition of an activity, the Context class, intents,
and the relationship between applications and activities. You also learned how to use a
layout as an interface and how the button, event, and inner event listener work. Examples
with multiple activities introduced the explicit and implicit trigger mechanisms for
activities. You saw an example of an application with parameters triggered by an activity
in a different application, and you now understand the exchange mechanism for the
activity’s parameters.

The application interface discussed so far is basically similar to a dialog interface.
The drawback of this mode is that it is difficult to obtain accurate touchscreen input,
making it difficult to display accurate images based on the input interface. The next
chapter, which covers the last part of Android interface design, introduces the view-based
interaction style interface. In this interface, you can enter information with accurate
touchscreen input and display detailed images, as required by many game applications.

305

Chapter 10

GUI Design for Android
Apps, Part 4: Graphic
Interface and Touchscreen
Input

So far, three chapters have been devoted to Android interface design. The application
interface discussed so far is similar to a dialog interface. The drawback is that it is difficult
to obtain accurate touchscreen input information, so it is hard to display accurate images
based on the input interface. This chapter introduces the view-based interaction style
interface. In this mode, you can enter information with accurate touchscreen input and
display detailed images, which happen to be requirements for lots of game applications.

Display Output Framework
Unlike the dialog box–style interface, which consists of TextView, EditText, Button,
and other window components, an interactive UI display directly uses a View class.
This section introduces the basic framework of drawing in the view (that is, displaying
images or graphics).

To display images and graphics in a view, you need to put drawing code into its
onDraw function. The onDraw function is called whenever images need to be redrawn in a
view, such as when the view is displayed when the application starts, when the front cover
object (such as a view, an event, or a dialog box) on top of the graphic view is moved
away, when the view from the bottom layer is moved into the top layer with the activity,
or in similar circumstances. You’re advised to put the drawing code in the View.onDraw
function, so you can ensure when the view needs to be displayed to the user. The view
window can also immediately be displayed in its total output; otherwise, certain graphic
view areas may not be refreshed or repainted.

Android drawing functions such as draw rectangle, draw oval, draw straight line, and
display text are usually integrated into the Canvas class. When the View.onDraw callback
executes, it brings with it a Canvas parameter that is used to get the Canvas object.

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

306

Android uses the Paint class to draw a variety of graphics. Paint contains a variety of
brush attributes, such as color, fill style, font, and font size.

As described earlier in the book, the interface configuration style of the application
code generated in Eclipse is as follows: an activity includes layouts, and a layout
contains two layers of widget structures. For this reason, you set parameters for the
setContentView function in the onCreate function of the activity as the layout to achieve
this effect. To use the view-based interface, you need to change the default parameter
layout of the setContentView function to a custom view class.

Here is an example that illustrates the process. Modify the GuiExam example project
by using the following steps:

1.	 Using the same steps as in the section “Triggering an Explicit
Match of Activities with No Parameters” in Chapter 9, create a
new class (MyView), as shown in Figure 10-1. 

Figure 10-1.  Create a new class in the project

2.	 Edit the source code of the newly added class (MyView.java).
The content is shown next.

 
Line# Source Code
1 package com.example.guiexam;
2
3 import android.view.View;
4 import android.graphics.Canvas;
5 import android.graphics.Paint;
6 import android.content.Context;
  
7 import android.graphics.Color;
8 import android.graphics.Paint.Style;
9 import android.graphics.Rect;

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

307

10 import android.graphics.Bitmap;
11 import android.graphics.BitmapFactory;
12 import android.graphics.Typeface;
  
13 public class MyView extends View {
14 MyView(Context context) {
15 super(context);
16 }
  
17 @Override
18 public void onDraw(Canvas canvas) {
19 Paint paint = new Paint();
20 �paint.setAntiAlias(true); // Sett anti-aliasing
21 // paint.setColor(Color.BLACK); // Set Color Black
22 // �paint.setStyle(Style.FILL); // Set Fill Style
23 canvas.drawCircle(250, 250, 120, paint); // Draw Circle
  
24 paint.setColor(Color.RED); // Set color red
25 �paint.setStyle(Style.STROKE); // Set style-Stroke (no fill)
26 �canvas.drawRect(new Rect(10, 10, 120, 100), paint); // draw rect
  
27 paint.setColor(0xff0000ff /*Color.BLUE*/);
28 String str = "Hello!";
29 �canvas.drawText(str, 150, 20, paint); // display text
  
30 paint.setTextSize(50); // Set Text Size
31 �paint.setTypeface(Typeface.SERIF); // Set Typeface: Serif
32 �paint.setUnderlineText(true); // Set Underline Text
33 �canvas.drawText(str, 150, 70, paint); // Display text
  
 �Bitmap bitmap = BitmapFactory.decodeResource(getResources(),

R.drawable.ic_launcher);
 �canvas.drawBitmap(bitmap, 0, 250, paint); // Display image
 }
 }
 

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

308

The code in line 13 adds extends View, which makes a custom class; in this case,
MyView inherits from the View category. Lines 13‒16 create a custom class constructor
function that calls the superclass. This constructor function is essential to prevent the
following compilation error:
 
Implicit super constructor View() is undefined. Must explicitly invoke
another constructor
 

Lines 17‒34 override the View.onDraw function to program various pieces of drawing
code. You construct a brush—that is, a Paint object—for drawing in line 16, and you set
it to eliminate jagged edges in line 17. Line 23 draws a circle (x = 250, y = 250); line 24 sets
the brush color to red, and so forth.

The prototype of the setColor function is
 
void Paint.setColor(int color);
 

In Android, a four-byte integer is used to represent a color, based on a, red, green,
and blue. This integer data format looks like this:

aa rr gg bb

From left to right, the first four bytes represent a, red, green, and blue values. For
example, blue is 0xff0000ff, as is also reflected in line 27. In addition, the Android Color
class also defines a constant for some colors, such as BLACK, RED, GREEN, BLUE, and so on,
as reflected in line 24.

The setStyle function sets the fill mode of the brush. The function prototype is
 
void Paint.setStyle(Paint.Style style)
 

The parameter style can take Paint.Style.STROKE (hollow fill), Paint.Style.FILL
(filled), or Paint.Style.FILL_AND_STROKE (solid and filled). These values are constants
defined in the Paint.Style class; their corresponding display styles are shown in Table 10-1. 

Table 10-1.  Fill Mode Parameters and Examples

Image Displayed Graphic Function Parameter Setting

Color=BLACK, Style=FILL

Color=BLACK, Style=STROKE

Color=BLACK,Style=FILL_AND_STROKE

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

309

3.	 Modify the main Activity class (MainActivity.java) as
follows:

 
Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 public class MainActivity extends Activity {
6 @Override
7 public void onCreate(Bundle savedInstanceState) {
8 super.onCreate(savedInstanceState);
9 // setContentView(R.layout.activity_main);
10 setContentView(new MyView(this));
11 }
12  
 

The system automatically overrides the code in line 7 with the code in line 8. This
allows a custom view class instead of the default layout as the interface of the activity.

The application interface is as shown in Figure 10-2; (a) shows the entire interface,
and (b) is the enlarged section of the graphical display.

Figure 10-2.  The interface of the display output framework of the GuiExam application

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

310

Drawing Framework for Responding to
Touchscreen Input
The previous example application only displays images/graphics and cannot respond
to touchscreen input. In this section, you see how to respond to touchscreen input and
control the view display.

View has an onTouchEvent function with the following function prototype:
 
boolean View.onTouchEvent(MotionEvent event);
 

When a user clicks, releases, moves, or does other interactive actions on the
touchscreen, a touch input event is generated. This touch input event triggers the call to
View.onTouchEvent. To allow users to process touchscreen input, you need to rewrite this
function. The response code needs to be written in the function’s body.

View.onTouchEvent has a parameter of type MotionEvent that defines the coordinate
position of the touch point, event type, and so on of the MotionEvent class. The event
types can be MotionEvent.ACTION_DOWN, MotionEvent.ACTION_MOVE,
MotionEvent.ACTION_UP, or equivalent, as defined constants in the MotionEvent class.
The constants represent interactive actions such as a touchscreen press, touchscreen
move, touchscreen pop-up, and so on.

As discussed earlier, whenever the view needs to be redrawn, the View.onDraw
function is called, so the drawing code needs to be put into the function. Most of the time,
the system can automatically trigger redraw events; but because users design their own
redraws, the system does not know when they need to be triggered. For example, perhaps
a user updates the display content, but the location, size, and levels of the content are not
changed; as a result, the system does not trigger the redraw event. In this situation, the
user needs to call the class function postInvalidate or invalidate of the View class to
proactively generate the redraw events. The function prototype is
 
void View.invalidate(Rect dirty)
void View.invalidate(int l, int t, int r, int b)
void View.invalidate()
void View.postInvalidate(int left, int top, int right, int bottom)
void View.postInvalidate()
 

The postInvalidate and invalidate functions with no parameters redraw the
entire view; the postInvalidate and invalidate functions with parameters redraw the
designated area (or certain area) of the view. The difference between postInvalidate
and invalidate with and without constants is that the first case requires an event loop
until the next issue to produce the redraw event, whereas the second one immediately
issues a redraw.

The following example illustrates the framework of drawing code that responds to
touchscreen input. The interface of the application is shown in Figure 10-3.

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

311

Figure 10-3.  The interface of a GuiExam input graphics framework that responds to the
touchscreen

The application starts in Figure 10-3(a). When the user clicks inside a circle (touches
the screen within the circle area), the color of the circle changes: it cycles through black,
red, green, and blue, as shown in Figure 10-3(a)–(d). If you click outside the circle,
the circle does not change colors.

Using the same example as in the earlier section, modify the custom view class
MyView.java as follows:
 
Line# Source Code
1 package com.example.guiexam;
2
3 import android.view.View;
4 import android.graphics.Canvas;
5 import android.graphics.Paint;
6 import android.content.Context;
7
8 import android.graphics.Color;
9 import android.view.MotionEvent;
10 import java.lang.Math;
  
11 public class MyView extends View {
12 �private float cx = 250; // Default X Coordinate of Circle
13 �private float cy = 250; // Default Y Coordinate of Circle
14 private int radius = 120; // Radius
15 �private int colorArray[] = �{Color.BLACK, Color.RED, Color.GREEN,

Color.BLUE };
16 // Defines an array of colors

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

312

17 private int colorIdx = 0; // Custom color subscript
 private Paint paint; // Define Paint
18
19 public MyView(Context context) {
20 super(context);
21 �paint = new Paint(); // Initialization paintbrush
22 �paint.setAntiAlias(true); // Setting anti-aliasing
23 �paint.setColor(colorArray[colorIdx]); // Set the pen color
 }
24
25 @Override
26 protected void onDraw(Canvas canvas) {
27 canvas.drawCircle(cx, cy, radius, paint);
 }
28
29 @Override
30 public boolean onTouchEvent(MotionEvent event) {
31 float px = event.getX();
32 // defined the touch point in the X, Y coordinates
33 float py = event.getY();
34 switch (event.getAction()) {
35 case MotionEvent.ACTION_DOWN:
36 // Touch screen pressed
37 �if (Math.abs(px-cx) < radius && Math.abs(py-cy) < radius){
38 // Touch location inside the circle
39 colorIdx = (colorIdx + 1) % colorArray.length;
40 paint.setColor(colorArray[colorIdx]);
41 // Set paintbrush color
42 }
43 �postInvalidate(); // Repaint
44 break;
45 �case MotionEvent.ACTION_MOVE: // Screen touch and move
46 break;
47 �case MotionEvent.ACTION_UP: // Screen touch unpressed
 break;
 }
 return true;
 }
 }
 

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

313

Lines 15 and 16 define an array of colors and color indices, and line 17 defines
paintbrush variables. Lines 20–22 of the constructor function complete the initialization
of the brush property settings. The reason you do not put the code for the paintbrush
property set in View.Ondraw is to avoid repeated calculations for each redraw. The only
work for the onDraw function is to display the circle.

In lines 28–46, you create the new touch input event response function
onTouchEvent. In lines 30 and 32, you first get the X, Y coordinates of the touch point
using the getX and getY functions of the MotionEvent class. Then you obtain the input
action type through the getAction function of the MotionEvent class in line 34, followed
by a case statement to complete the different input actions. The response to the action
of pressing the touchscreen is in lines 37–43. You determine whether the touch point is
within the circle in line 37. Then you modify the codes that set the colors and change the
pen color in lines 39–40. You call the postInvalidate function notification to redraw in
line 43 and provide it with the final finishing touch.

Multi-Touch Code Framework
Most Android devices support multi-touch touchscreens. The good news is that the
Android system software also provides multi-touch support. This section covers
the multi-touch code framework.

The touch event class MotionEvent has a getPointerCount() function that returns
the current number of touch points on the screen. The function prototype is
 
final int MotionEvent.getPointerCount();
 

You can also use the getX and getY functions discussed earlier to obtain the
coordinates of the touch point. The prototypes are as follows:
 
final float MotionEvent.getX(int pointerIndex)
final float MotionEvent.getX()
final float MotionEvent.getY(int pointerIndex)
final float MotionEvent.getY()
 

In the previous section, you got the coordinates of a single touch point using a function
with no parameters. The getX/getY functions with parameters are used to get the position
of the touch point in the multi-point touch situation, where the parameter pointerIndex is
the index number for the touch point. This is an integer number starting at 0.

Here is an example to illustrate the multi-touch programming framework. This
example is a two-point touch application that zooms a circle in and out. The application
interface is shown in Figure 10-4.

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

314

The application’s launch interface is shown in Figure 10-4(a). The circle is always at
the center of the view, but the size of the circle (its radius) can be controlled by a two-point
touch. The center is the center of the view, not the center of the activity or the center of

Figure 10-4.  The interface of the two-point touch zoom-in/zoom-out GuiExam graphic
application

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

315

the screen. The so-called two-point touchscreen means there are two touch points, or two
fingers moving on the screen at the same time, either in an expand gesture where the circle
becomes larger (b) or in squeeze gesture where the circle becomes smaller (c). The code is
as follows:
 
Line# Source Code
1 package com.example.guiexam;
2
3 import android.view.View;
4 import android.graphics.Canvas;
5 import android.graphics.Paint;
6 import android.content.Context;
7
8 import android.view.MotionEvent;
9 import java.lang.Math;
10 public class MyView extends View {
11 �private static final int initRadius = 120; // initial value of the radius
12 �private float cx; // X coordinate of the circle
13 �private float cy; // Y coordinate of the circle
14 �private int radius = initRadius; // Set initial value of the radius
15 public float graphScale = 1; // �Set Scale factor for one two-point

touch move
16 private float preInterPointDistance; // �Pre-distance of two touch

points
17 private boolean bScreenPress = false; // �The sign of the screen

being pressed down
18 private Paint paint; // Define paintbrush
  
19 public MyView(Context context) {
20 super(context);
21 paint = new Paint(); // Initialize paintbrush
22 paint.setAntiAlias(true); // Set Anti Alias
23 }
  
24 @Override
25 protected void onDraw(Canvas canvas) {
26 �cx = canvas.getWidth()/2; // �Let circle center positioned at the

screen of the screen
27 cy = canvas.getHeight()/2;
28 canvas.drawCircle(cx, cy, radius*graphScale, paint);
29 }
  

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

316

30 @Override
31 public boolean onTouchEvent(MotionEvent event) {
32 �float px1, py1; // Define the X,Y coordinates of 1st touch point
33 �float px2, py2; // Define the X,Y coordinates of 2nd touch point
34 �float interPointDistance; // distance between two touch points
35 switch (event.getAction()) {
36 �case MotionEvent.ACTION_DOWN: // Screen touch pressed
37 break;
38 �case MotionEvent.ACTION_MOVE: // Screen touch move
39 if (event.getPointerCount() == 2) {
40 px1 = event.getX(0); // �Get the X,Y coordinate of the

first touch point
41 py1 = event.getY(0);
42 px2 = event.getX(1); // �Get the X,Y coordinate of the

second touch point
43 py2 = event.getY(1);
44 �interPointDistance = (float) Math.sqrt((px6-px2)*

(px6-px2)+(py1 - py2)*(py1 - py2));
45 if (!bScreenPress){
46 bScreenPress = true;
47 preInterPointDistance = interPointDistance;
48 } else {
49 �graphScale = interPointDistance / preInterPointDistance;
50 invalidate(); // Redraw graphics
51 }
52 } else {
53 bScreenPress = false;
54 radius = (int)(radius * graphScale);
55 // One downsize/enlarge circle end. Record final scale factor
56 }
57 break;
58 case MotionEvent.ACTION_UP: // Screen touch lift up
59 bScreenPress = false;
60 radius = (int)(radius * graphScale);
61 // One downsize/enlarge circle end. Record final scale factor
62 break;
63 }
64 return true;
 }
 }
 

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

317

This code defines a scaling factor graphScale for a two-point touch in line 15 and a
variable preInterPointDistance in line 16 to record the distance between the two touch
points. Line 17 defines the flag variable bScreenPress when the screen is pressed.

Lines 26 and 27 call getWidth and getHeight of the Canvas class in the onDraw
function to get the view’s width and height, and then allocate the center of the circle
in the center of the view. The advantage of this step is that, when the screen rotates 90
degrees, the circle remains in the center of the view, as shown in Figure 10-4(d). The
difference between these examples and the previous one is that this time the radius of
the circle being drawn is equal to the radius of the circle multiplied by the scaling factor
graphScale.

Lines 32–61 contain onDraw based on the modified example in the previous section.
Lines 38–56 are the response code for a touch-move activity. Line 3 determines whether
there are two touch points; if there are, you run code lines 40–51; otherwise, you run
lines 53–54. You set the flag bScreenPress to false to indicate when the two touch points
are first pressed, and then you record the final radius as equal to the current value of the
radius multiplied by the scaling factor graphScale. You get the position coordinates of the
two touch points in lines 40–43. Line 44 calculates the distance between the two touch
points. Line 45 determines whether it is the first press; if it is, lines 46 and 47 run, and
record the distance between the two touch points; otherwise, the code in lines 49‒50 runs.
Here you calculate the scaling factor based on the current distance between the points
and the distance in the previous movement. After this, the graphic is redrawn.

To handle the location of the flag bScreenPress, you execute the response code of
the screen touch-up activity in lines 58–60, which is similar to the non-two-point touch
code in lines 53 and 54.

Responding to Keyboard Input
Most Android devices have a number of hardware buttons, such as Volume +, Volume -,
Power, Home, Menu, Back, Search, and so on. Some Android devices are also equipped
with keyboards. Keyboards, including the device’s hardware buttons, are important input
methods for Android applications. Keyboard input corresponds to keyboard events,
named KeyEvent (also known as a pressing key event). In this section, you learn about the
methods to respond to keyboard input.

In Android, both the Activity and View classes can receive pressed-key events. Key
events trigger calls to the onKeyDown function of the Activity or View class. The function
prototype is
 
boolean Activity.onKeyDown(int keyCode, KeyEvent event);
boolean View.onKeyDown(int keyCode, KeyEvent event);
 

The keyCode parameter is the index code of the key that is pressed. Each key
in Android has a unique number, which is the keyCode. Some of the key codes were
described in Table 7-1. The key event, KeyEvent, contains properties related to buttons,
such as the frequency with which they are pressed. To handle key events, you need to
override the onKeyDown function and add your own response-handling code.

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

318

Figure 10-5.  Using keys to control the movement of the circle in the application interface

Interestingly, although the Activity and View classes can receive key events, the
view is often included in the activity. When the button is pressed, the event first sends
external activity; that is, the activity receives the event sooner. The following example
shows how you respond to the button press by rewriting the activity’s onKeyDown function.

This example shows how to use the arrow keys to move the circle in the application.
The application interface is shown in Figure 10-5.

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

319

The Lenovo phone on which we are testing has no keypad, so we chose to run the
application on a virtual machine. The virtual machine has Left, Down, Right, and Up
keys to achieve these circle movements. The application startup interface is shown in
Figure 10-5(a). Pressing the Left, Down, Right, or Up button makes the circle move in the
corresponding direction. The interface examples are shown in Figure 10-5(b) through (e).

This application is based on the example, created at the beginning of this chapter
(Figure 10-1) and modified per the following procedure:

4.	 Modify the source code of MyView.java as follows:
 
Line# Source Code
1 package com.example.guiexam;
2
3 import android.view.View;
4 import android.graphics.Canvas;
5 import android.graphics.Paint;
6 import android.content.Context;
  
7 public class MyView extends View {
8 �private float cx = 250; // X coordinate of the circle
9 �private float cy = 250; // Y coordinate of the circle
10 �private static final int radius = 120; // Radius of the circle
11 private Paint paint; // define paint brush
12 private static final int MOVESTEP = 10; // �the step length for

pressing direction key
  
13 public MyView(Context context) {
14 super(context);
15 �paint = new Paint(); // Paint brush initialization
16 paint.setAntiAlias(true); // Set Anti Alias
17 }
  
18 @Override
19 protected void onDraw(Canvas canvas) {
20 canvas.drawCircle(cx, cy, radius, paint);
21 }
22 �////// Self-define function:press key to move graphic (circle) //////
23 public void moveCircleByPressKey(int horizon, int vertical){

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

320

24 if (horizon < 0) // horizontal move
25 cx -= MOVESTEP;
26 else if (horizon > 0)
27 cx += MOVESTEP;
28 if (vertical < 0)
29 cy += MOVESTEP; // vertical move
30 else if (vertical > 0)
31 cy -= MOVESTEP;
32 postInvalidate(); // note to repaint
33 }
34 }
 

In lines 23–33, you add a function to the view class to move the image (the circle)
by pressing the horizon or vertical key. This function takes two arguments: horizon and
vertical. If horizon is less than 0, you decrease the X coordinate value of the circle,
and as a result, the circle moves to the left. If horizon is greater than 0, you increase the
X coordinate value of the circle, which moves the circle to the right. You do a similar
operation for the vertical parameters to move the circle up and down. Line 32 updates the
graphics routine with new parameters and trigger the view to redraw.

5.	 Modify the source code of the main activity class
MainActivity.java as follows:

 
Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.view.KeyEvent; // Key press event class
  
6 public class MainActivity extends Activity {
7 �private MyView theView =null; // View object stored inside the variable
  
8 @Override
9 public void onCreate(Bundle savedInstanceState) {
10 super.onCreate(savedInstanceState);
11 �theView = new MyView(this); // record the View class of the Activity
12 setContentView(theView);
13 }
  
14 @Override
15 public boolean onCreateOptionsMenu(Menu menu) {
16 getMenuInflater().inflate(R.menu.activity_main, menu);
17 return true;
18 }
  

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

321

19 @Override // Key down response function
20 public boolean onKeyDown(int keyCode, KeyEvent event) {
21 int horizon = 0; int vertical = 0;
22 switch (keyCode)
23 {
24 case KeyEvent.KEYCODE_DPAD_LEFT:
25 horizon = -1;
26 break;
27 case KeyEvent.KEYCODE_DPAD_RIGHT:
28 horizon = 1;
29 break;
30 case KeyEvent.KEYCODE_DPAD_UP:
31 vertical = 1;
32 break;
33 case KeyEvent.KEYCODE_DPAD_DOWN:
34 vertical = -1;
35 break;
36 default:
37 super.onKeyDown(keyCode, event);
38 }
39 if (!(horizon == 0 && vertical == 0))
40 theView.moveCircleByPressKey(horizon,vertical);
41 return true;
42 }
43 }
 

In this code, you want the Activity class to receive and respond to key-down events,
so you overwrite the onKeyDown function in lines 19–42 with the button-response code.
Although the response function for key buttons is located in the Activity class, the
display updates are to be implemented in the view MyView class, so you must make the
Activity class aware of its corresponding view object. To do so, you add a record-view
object variable theView in line 7. In lines 11 and 12, you let theView record this object
when constructing the view object.

In the key-down response function onKeyDown, you use a switchcase statement
(lines 22–38) and take different actions according to the different keys. The function’s
keyCode parameter specifies the key number of the key that is pressed. For example, the
code in lines 24–26 is the handling code for the Left key. It sets a horizontal flag to “left”
and then calls the self-defined function moveCircleByPressKey of the view class to move
the circle in lines 39 and 40. To allow other key-press-down events to be addressed, you
call the system’s default handler to deal with other keys in lines 36 and 37.

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

322

Dialog Boxes in Android
There are three different ways to use dialog boxes in Android, as discussed in this section.

Using an Activity’s Dialog Theme
The Dialog class implements a simple floating window that can be created in an activity.
By using a basic Dialog class, you can create a new instance and set its title and layout.
Dialog themes can be applied to a normal activity to make it look similar to a dialog box.

In addition, the Activity class provides a convenient mechanism to create, save,
and restore dialogs, such as onCreateDialog(int), onPrepareDialog(int, Dialog),
showDialog(int), dismissDialog(int), and other functions. If you use these functions,
the activity can return the Activity object that manages the dialog through the
getOwnerActivity() method.

The following are specific instructions for using these functions.

onCreateDialog(int) Function
When you use this callback function, Android sets this activity as the owner of each
dialog box, which automatically manages the state of each dialog box and anchors it
to the activity. In this way, each dialog inherits the specific attributes of this activity.
For example, when a dialog box is opened, the menu button displays the option menu
defined for the activity. For example, you can use the volume keys to modify the audio
stream that the activity uses.

showDialog(int) Function
When you want to display a dialog box, you call the showDialog(intid) method and
pass an integer through this function call that uniquely identifies this dialog. When the
dialog box is first requested, Android calls onCreateDialog(intid) from the activity.
You should initialize this dialog box. This callback method is passed to the same ID that
showDialog(intid) has. When you create the dialog box, the object is returned at the end
of the activity.

onPrepareDialog(int, Dialog) Function
Before the dialog box is displayed, Android also calls the optional callback function
onPrepareDialog(int id, Dialog). If you want the properties to be changed every time
a dialog box is opened, you can define this method. Unlike the onCreateDialog(int)
function, which can only be called the first time you open the dialog box, this method is

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

323

called each time you open the dialog box. If you do not define onPrepareDialog(), then the
dialog remains the same as the last time it was opened. The dialog box’s ID and the dialog
object created in onCreateDialog() can also be passed to the function by this method.

dismissDialog(int) Function
When you are ready to close the dialog box, you can call dismiss() through this dialog box
method to eliminate it. If desired, you can also call dismissDialog(int id) method from
the activity. If you want to use the onCreateDialog(int id) method to retain the state of
your dialog box, then each time the dialog box is eliminated, the status of the object of this
dialog box object is kept in the activity. If you decide that you no longer need this object
or clear the state, then you should call removeDialog(intid). This removes any internal
object references, and even if the dialog box is being displayed, it is eliminated.

Using a Specific Dialog Class
Android provides multiple classes that are expansions of the Dialog class, such as
AlertDialog, ProgressDialog, and so on. Each class is designed to provide specific
dialog box functions. The screen interface based on the Dialog class is created in all
activities that then call the specific class. So it does not need to be registered in the
manifest file, and its life cycle is controlled by the activity that calls the class.

Using Toast Reminders
Toasts are special, nonmodular, transient message dialog boxes, usually used in the
broadcast receiver and backgroundservices, and used to prompt user events.

Dialog Box Example
Of the dialog box methods discussed, if it is measured by how the implementation of the
function is done, the first function is the most powerful, followed by the second and third.
In terms of the degree of sophistication of the implementation code, the third method is
the simplest, and the first and the second are more complex.

The following example demonstrates the second method. See Android’s help
documentation and samples (in the samples directory located under the Android SDK
installation directory) to learn more about the other implementation methods.

The specific dialog box class that this sample application uses is the Builder inner
class of AlertDialog. When you press the Back button, a dialog box pops up, allowing you
to decide whether to exit the application. The application interface is shown in Figure 10-6.
Using the Android dialog box in this example will help you understand its usage.

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

324

The application starts and displays the main activity interface, as shown in
Figure 10-6(a). When you press the device’s Back button, the Exit dialog box pops up, as
shown in Figure 10-6(b). When you click the Exit button, the application exits, and the
interface is also closed. When you click the Cancel button, the application returns to the
previous screen, similar to Figure 10-6(a).

Modify the source code of the activity class MainActivity.java to read as follows:
 
Line# Source Code
1 package com.example.guiexam;
2 import android.os.Bundle;
3 import android.app.Activity;
4 import android.view.Menu;
5 import android.view.KeyEvent; // Key event class
6 import android.app.Dialog; // Use Dialog class

Figure 10-6.  The application interface with an Exit dialog box

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

325

7 import android.app.AlertDialog; // Use AlertDialog class
8 �import android.content.DialogInterface; // Use DialogInterface interface
  
9 public class MainActivity extends Activity {
10 private MyView theView =null; // �View objects stored inside

the variable
11 private AlertDialog.Builder exitAppChooseDlg = null; // �Exit App

dialog box
12 private Dialog dlgExitApp = null;
  
13 @Override
14 public void onCreate(Bundle savedInstanceState) {
15 super.onCreate(savedInstanceState);
16 �theView = new MyView(this); // View class of Record My Activity
17 setContentView(theView);
  
18 exitAppChooseDlg = new AlertDialog.Builder(this);
19 // Define AlertDialog.Builder object
20 exitAppChooseDlg.setTitle("Exit Selection");
21 // Define the title of the dialog box
 exitAppChooseDlg.setMessage("Confirm to exit application?");
22 // Define the display text of the dialog box
23 �exitAppChooseDlg.setIcon(android.R.drawable.ic_dialog_info);
24 // Define the icon of the dialog box
25
26 // Set the leftmost button and click response class
27 �exitAppChooseDlg.setPositiveButton("Exit", new

DialogInterface.OnClickListener() {
28 public void onClick(DialogInterface dialog, int which) {
29 �dialog.dismiss(); // Close Dialog Box
 /*MainActivity.*/finish(); // Exit (main) Activity
30 System.exit(0); // Exit Application
31 }
32 });
33
34 // Set the rightmost button and click response class
35 �exitAppChooseDlg.setNegativeButton("Cancel", new

DialogInterface.OnClickListener() {
36 public void onClick(DialogInterface dialog, int which) {
37 dialog.cancel(); // Close dialog box
 }
38 });
39 dlgExitApp = exitAppChooseDlg.create();
40 // Create dialog box exit object
41 }
42

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

326

 @Override
43 public boolean onCreateOptionsMenu(Menu menu) {
44 getMenuInflater().inflate(R.menu.activity_main, menu);
45 return true;
46 }
47
48 @Override // Key down response function
49 public boolean onKeyDown(int keyCode, KeyEvent event) {
50 int horizon = 0; int vertical = 0;
51 switch (keyCode)
52 {
53 case KeyEvent.KEYCODE_DPAD_LEFT:
54 horizon = -1;
55 break;
56 case KeyEvent.KEYCODE_DPAD_RIGHT:
57 horizon = 1;
58 break;
59 case KeyEvent.KEYCODE_DPAD_UP:
60 vertical = 1;
61 break;
62 case KeyEvent.KEYCODE_DPAD_DOWN:
63 vertical = -1;
64 break;
65 case KeyEvent.KEYCODE_BACK:
66 if (event.getRepeatCount() == 0) {
67 dlgExitApp.show();
68 // Display AlertDialog.Builder dialog box
69 }
70 break;
71 default:
72 super.onKeyDown(keyCode, event);
 }
 if (!(horizon == 0 && vertical == 0))
 theView.moveCircleByPressKey(horizon,vertical);
 return true;
 }
 }
 

Lines 11 and 12 define the AlertDialog.Builder class and its associated variable
for the Dialog class in the Activity class. You modify the onCreate function code in
lines 18–36 and define the code to prepare the dialog box. In line 18, you construct the
AlertDialog.Builder class object; the prototype of this constructor function is
 
AlertDialog.Builder(Context context)
AlertDialog.Builder(Context context, int theme)
 

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

327

You use the first prototype in this example to pass the Activity object, which
constructs the dialog box as the context of the constructor function. This is followed by
setting the title display text, icons, and other attributes of the dialog box in lines 19 and 21.

The AlertDialog.Builder dialog box can take up to three buttons: left, middle,
and right. They are set up by the setPositiveButton, setNeutralButton, and
setNegativeButton functions, respectively. You can specify how many dialog box buttons
you need. This example uses two buttons: left and right.

Lines 23–29 set the left button of the dialog box and click-response code. The
prototype of the setPositiveButton function of the AlertDialog.Builder class is
 
AlertDialog.Builder setPositiveButton(int textId,
DialogInterface.OnClickListener listener)
AlertDialog.Builder setPositiveButton(CharSequence text,
DialogInterface.OnClickListener listener)
 

You use a second prototype in the example, where the first parameter is text
displayed by the button, and the second parameter is the interface object of the click
response.

In line 25, you first call the dismissal or cancel function of the DialogInterface class
to close the dialog box. DialogInterface is the operating interface of the dialog class
(AlertDialog, Dialog, and so on). You use the dismiss function to close the dialog box in
line 25 and use a cancel function to close the dialog box in line 33.

Lines 26–27 close the activity and application, as described in the section “Exit
Activities and Application.” in Chapter 8, Figure 8-16. Interestingly, the internal class
DialogInterface.OnClickListener uses a member function of the non-dot external
class MainActivity and does not need to add the prefix in front of “class name.”

You set the dialog box for the right button and click-response code in lines
36–35. The click-response code is relatively simple, using the cancel function of the
DialogInterface class to close the dialog box in line 33.

Finally, line 36 calls the create function of the AlertDialog.Builder class to create
the exit dialog box object dlgExitApp. The function returns an AlertDialog object, and
its prototype is
 
AlertDialog create()
 

Because AlertDialog is derived from the Dialog class, the return value can be
assigned to the Dialog variable.

You add the Back key response code for the OnKeyDown response function on lines 60‒64.
The code is relatively simple: you determine whether duplicate keys are pressed on
line 61, and then you call the show function of the Dialog class to display a dialog box.

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

328

Application Property Settings
In Android device, there are two difference places where you can find out the information
about the applications installed. One is the menu list (the interface after you press
the setting button), the other is by going to the Settings ➤ Applications ➤ Manage
Applications ➤ Downloaded menu item. See Figure 10-7:

Figure 10-7.  The difference of Menulist and Application Setting display on target device

So far, almost all the examples have been based on the code framework of two
applications: GuiExam and HelloAndroid. But it is difficult to distinguish between them in
the menu on the target device. These applications are indistinguishable in the menu list
because you used the default settings instead of applying their own property settings. This
section shows you how to apply property settings.

Figure 10-8 shows the applications setting interface before and after applying
property settings.

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

329

Figure 10-8.  The application on the target device before and after applying property
setting

This example uses the GuiExam application to show the steps for changing the
application settings:

1.	 Modify the icon of the application in the menu on the target
machine. Based on the ic_launcher.png file size under
the application res\drawable-XXX directory (where XXX
represents different resolutions—for example, drawable-hdpi
represents the directory for high-resolution images), edit your
image file, and name it ic_launcher.png.

The common screen resolutions for Android devices and the directories where
application icon files are stored are shown in Table 10-2.

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

330

2.	 Put the custom picture file in the corresponding directory
res\drawable-XXX, and replace the original file. For example,
for the high-resolution screen application, replace the file
ic_launcher.png in res\drawable-xhdpi with your own,
as shown in Figure 10-9. 

Table 10-2.  Common Android Device Screen Resolutions and the Directories Containing
Application Icon Sizes

Directory Name Size Description

drawable-ldpi 36 × 36 dpi Low-resolution screen

drawable-mdpi 48 × 48 dpi Medium-resolution screen

drawable-hdpi 72 × 72 dpi High-resolution screen

drawable-xhdpi 96 × 96 dpi Super-high-resolution screen

drawable-xxhdpi 144 × 144 dpi Extra-extra-high-resolution screen

Figure 10-9.  Replacing the application icon

3.	 Modify the application’s menu text annotation on the target
machine.

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

331

Figure 10-10.  Modifying the icon text of the application

Open the Package Explorer pane of the \res\values\strings.xml file.
The title_activity_my_main string value is set to a custom string (in this case,
“GUI examples”), as shown in Figure 10-10.

After completing these modifications, you can see that the target application’s menu
item’s icon and text label have changed.

Note step 1 can also be implemented by another method that can generate its own
set of icons when the application is created. The procedure is as follows:

1.	 In the Configure Launcher Icon dialog box, click the Image
button, and then click the Browse button to the right of
Image File.

2.	 Select the picture file as the application icon (in this
case, graywolf.png) in the Open dialog box, as shown in
Figure 10-11. 

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

332

Figure 10-11.  Selecting the icon file when generating the application

The Configure Launcher Icon dialog box is shown in Figure 10-12.

Figure 10-12.  Configuring the launcher icon when generating the application

Chapter 10 ■ GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input

333

In other words, Eclipse can, based on the user-specified image file, automatically
generate the various ic_launcher.png files with the appropriate dimensions in the
res\drawable-XXX directory. This eliminates the need to manually edit the images.

Summary
In this last chapter covering Android GUI design, you are introduced to the basic
framework of drawings in the view, the concept of how the drawing Framework responds
to touch screen input, and how to control the display of the view as well as the multi-
touch code framework. You use an example that illustrates the multi-touch programming
framework and keyboard input response. You learn the methods to respond to keyboard
input and hardware buttons that are available on Android devices, such as Volume +,
Volume -, Power, Home, Menu, Back, Search, and so on. You are introduced to the three
different dialog boxes for Android, which include the activity dialog theme, a specific
class dialog, and Toast reminder. At the end of chapter you learn how to change the
application property settings. In the next chapter, you will introduce the performance
optimization for android application on x86. Android is a resource-limited system,
and it therefore requires very strict resource utilization in space and time. Compared
with a desktop system, the performance optimization for applications for Android is
thus far more critical and urgent. You will first introduce the basic principles of SOC
performance optimization, followed by the introduction of principles and methodology
of performance optimization for Android-based development on Intel architecture.

335

Chapter 11

Performance Optimization for
Android Applications on x86

Performance optimization is one of the most important goals every application developer
wants to pursue, regardless of whether the application is for a general desktop Windows
computer or an Android device. Android is a resource-limited system, and it therefore
requires very strict resource utilization. Compared with a desktop system, performance
optimization for Android applications is far more critical.

Different applications have different areas of focus regarding optimization.
Performance optimization for Android systems generally falls into three categories:
application running speed, code size, and power consumption. Generally speaking,
storage space and cost for Android on Intel Atom processors is not a bottleneck, so
this chapter focuses on performance optimization that makes applications run faster.
Chapter 13 covers power-consumption optimization.

The chapter first introduces the basic principles of system on chip (SoC)
performance optimization, followed by principles and methodology of performance
optimization for Android-based development on Intel architecture. Chapter 12
discusses application development for Android on Intel architecture using the native
development kit (NDK).

Principles of Performance Optimization
Optimizing an application’s performance really means optimizing the application’s
execution speed. The optimization aims at reducing the time needed to complete a
specific task. This is achieved by making structural adjustments to the application based
on either hardware or software.

When you’re optimizing an application’s performance, you need to follow several
basic principles:

•	 Equal value principle: There is no change in the result of the
application’s execution after performance optimization.

•	 Efficacy principle: After performance optimization, the targeted
code runs faster.

Chapter 11 ■ Performance Optimization for Android Applications on x86

336

•	 Combined value principle: Sometimes performance optimization
achieves a performance improvement in some areas but
degrades performance in others. You must consider combined
overall performance in determining whether performance
optimization is needed.

One of the most important considerations involves trading time and space.
For example, to perform a function calculation, the values of the function can be
precalculated and put into a program storage zone (memory) as a table. When a program
is running, instead of spending time repeatedly calculating the function, the program can
get the value directly from the table and reduce the execution time. Similarly, a search
can be done on a large space using the hash method and thereby eliminate the need for a
comparison operation.

Performance optimization is based on various techniques. The following sections
describe several major ones.

Reducing Instructions and Execution Frequency
The technique that’s chosen most frequently to optimize performance involves reducing
instructions and execution frequency. For example, from the point of view of data
structures and algorithms, the instructions for comparison and exchange in bubbling
sequencing need to execute O(n2) times. However, by using fast sequencing, you can
reduce the instruction to O(n log n) executions.

In loop optimization, code motion can extract irrelevant public code from the loop
and reduce the execution time of public code from N to 1, thus dramatically reducing the
execution frequency. In addition, you can use inline functions supported by C and C++ to
avoid embedding function-call code; you can omit the function-call instructions and the
implementation of the return instructions.

Selecting Faster Instructions
You can perform the same function with different instructions. The different instructions
take different machine clock cycles, and thus the execution times vary. This gives you the
opportunity to choose a faster instruction.

Reducing computational strength is a typical example of performance optimization
achieved by selecting a faster instruction set. For example, you can multiply an integer
by 4 by shifting the operator two digits to the left. The shift instruction takes many fewer
clock cycles and runs much faster than the multiplication or division instruction.

Another example is using special instructions provided by the hardware to replace
generic instructions. For example, the Intel Atom processors support the Streaming
SIMD Extensions (SSE) instruction set. For vector operations, you should always use SSE
instructions: they run much faster thanks to instruction-level parallel processing. The
ordinary addition instruction width for Intel Atom is 32 bits, whereas SSE instructions
are capable of four times 32-bit data processing. As a result, optimized code using SSE
instructions dramatically shortens the time consumed.

Chapter 11 ■ Performance Optimization for Android Applications on x86

337

Improving the Degree of Parallelism
You can improve the degree of parallelism at multiple levels, including instruction,
expression, function, and thread. Many modern embedded processors, including
the Intel Atom processor, support instruction-pipeline execution. This lets you use
an optimization method called instruction-level parallelism. A code chain can be
decomposed into several units of code that are not dependent on the chain and can be
executed in parallel in the pipeline.

In addition, many embedded system processors, such as the Intel Atom processor,
physically support the concurrent execution of threads. Using an appropriate number
of concurrent threads rather than a single thread can increase running speed. In order
to take advantage of thread-concurrency optimization, you need to consciously adopt
multithreading technology; sometimes optimization must be done with compiler support.

Using the Register Cache Effectively
Writing and reading the cache register is much faster than doing the same with memory.
The goal of cache optimization is to put data and instructions that are being used and
will be used in the cache, to reduce the cache hit rate and reduce cache conflicts. Cache
optimization often appears in the optimization process for a nested loop. Register
optimization involves the effective use of the register and keeping frequently used data in
the register as much as possible.

Cache is based on locality. That is, cache assumes the data to be used is located
in the most recent data that is already in use or is in the vicinity of its own register. This
is called the locality principle or principle of locality, which deeply affects hardware,
software, and system design and performance. Instructions and data required by the
processor are always first read by cache access. If high-speed cache has the needed data,
the processor always accesses high-speed cache directly. In this situation, such an access
is called a high-speed cache hit; if high-speed cache does not contain the needed data, this
is referred to as a failed hit or cache miss.

If this happens, the processor needs to copy data from memory to high-speed cache.
If the corresponding location of high-speed cache is occupied by other data, data that is
no longer needed in cache is expelled and written back to memory. Failed hits result in
a sharp rise in access time; therefore the goal in increasing cache efficiency is to improve
the hit rate and lower failure rates. Data exchange between cache and memory is done
with a block unit, which is used to block-copy or write back blocks containing needed
data as well as write blocks back to memory.

Locality has two meanings:

•	 Temporal locality: Due to temporal locality, the same data object
may be reused many times. Once a data object is copied to the
cache after a failed hit, there are many follow-up hits on the
object. The follow-up hits run faster than the original failed hit.

•	 Space locality: A block usually contains multiple data objects.
Due to spatial locality, the cost of a block copy after a failed hit is
shared by subsequent references to other objects.

Chapter 11 ■ Performance Optimization for Android Applications on x86

338

Performance Optimization Methodology
Many methods and techniques area available for performance optimization. You can use
one approach or multiple comprehensive optimization principles simultaneously, such
as modifying the source code to run faster. Based on the type of criteria, optimization
methods can be divided into different categories.

Depending on whether the optimization is associated with hardware, it is
either machine-dependent optimization and machine-independent optimization.
In machine-dependent optimization, application and code execution have nothing
to do with the machine’s characteristics. These techniques are applicable to all
machines. For example, moving code out of the loop, eliminating induction variables,
and using strength-reduction technology can be applied to any machine or architecture
(either x86 or ARM) to obtain the same optimal results.

Machine-dependent optimization can be done only on specific hardware or architecture.
For example, switching ordinary vector instruction computing to use SSE instructions
depends on many low-level details of the Intel Atom processor and can only be used on Intel
processors that support SSE instructions. In general, machine-independent optimization is
more complex and difficult to achieve than the machine-dependent optimization.

Performance Optimization Approaches
In an ideal scenario, the compiler should be able to compile any code you write and
optimize it into the most efficient machine code. But the reality is that the compiler can
automate only some of all possible optimizations, and the optimizations may be blocked
by the optimization blocker. Depending on how much of a role human or automated
tools play, performance optimization may be performed automatically by the compiler,
done manually by the programmer manually, or performed with the assistance of
development tools. The following sections present several approaches you can use to
achieve performance optimization.

Automatic Optimization by the Compiler
Modern compilers can automatically complete the most common code optimizations,
and this is the preferred way to optimize. This is also known as compiler optimization or
compiling optimization. It must be triggered by appropriate extensions or switch variables.

C/C++ code optimization for Android applications can be achieved using the GCC
compiler (one of the tools in the GNU toolchain) located in the NDK (the Android local
development toolkit) or Intel Compiler (ICC). The next chapter covers this topic in detail.

Performance Optimization Assisted by Development Tools
It is very difficult to achieve overall, comprehensive optimization of a large program.
Fortunately, for applications based on Intel architecture, many useful tools are available
to help you complete the optimization. For example, Intel VTune Amplifier, Graphics
Performance Analyzer (GPA), Power Monitoring Tool, and so on can help you analyze a
program and complete the optimization.

Chapter 11 ■ Performance Optimization for Android Applications on x86

339

GPA is an Intel product-development tool and can be used with Intel processors
such as the Intel Atom processor as well as ARM devices. Intel Profiler is a GNU toolchain
tool and can be used for all types of processors. You can use Profiler to create a profiling
process that shows which areas of a program execute frequently and use more computing
resources, and which areas are less frequently implemented. The profiling data provides
valuable information you can use to complete the optimization.

A typical example of profile-guided optimization (PGO) is the optimization of the
switch statement (such as the switch-case statement in C#). Based on the profile of the
collected sample, after getting the frequency with which each case statement occurred,
you sort the case statement in the switch statement by frequency: the most frequent
statements are moved to the front (performing this statement required the fewest
comparisons), to achieve optimal results with the fewest comparisons.

Intel GPA was originally a tool used for graphics processing unit (GPU) analysis. It has
now developed into a comprehensive tool for analyzing CPU speeds, memory analysis,
frame rate, and device power consumption. You can use GPA to get information about
CPU load, operating frequency, and power consumption. It can guide you as you optimize
an application, and it’s especially helpful for multithreaded optimization. Intel GPA is
not only a speed-optimization tool but also a very handy power-optimization tool. More
detailed discussion and use cases are presented later in this chapter and in Chapter 13.

With optimization tools, you will no longer become disoriented or confused when
trying to find a starting point for optimizing a large program. You can easily locate the
areas that are most in need of optimization: the code segments that are potentially most
problematic. Quickly finding the hot spots allows you to achieve optimization with less
time and effort. Of course, performance optimization is complicated. The tool only plays
a guiding and supporting role—the real optimization must still be completed by the
compiler or manually by you.

Using High-Performance Libraries
High-performance libraries are sets of software libraries, usually developed by a hardware
OEM or special OEM, that provide commonly used operations and services. The code
is carefully optimized based on a combination of processor features and has higher
computing speed than ordinary code. Such high-performance databases use the full
potential of the processor. For example, the Intel Integrated Performance Primitives
(Intel IPP) libraries have been optimized based on SSE instructions for the processor,
hyper/multithreaded parallel pipelined execution, and a waterfall process.

For some compute-intensive code and algorithms, using high-performance libraries
is a simple, practical optimization method, just like standing on the shoulders of giants.
Intel IPP can be used for mathematical calculations, signal processing, multimedia,
image and graphics processing, vector calculations, and other fields. It uses a C/C++
programming interface.

Chapter 11 ■ Performance Optimization for Android Applications on x86

340

Manual Optimization
You should not ignore the human factor during optimization. Some high-level global
optimizations, such as optimizing algorithms and data structures, cannot be done by the
compiler automatically. You must complete the optimization manually. As a programmer,
in order to write efficient code, you should learn algorithms and optimization techniques
to help you develop good programming habits and style. Even if the compiler can
automatically complete the optimization, programmers still need to write efficient code
to assist the compiler optimization at the following levels:

•	 Source-code (high-level language) level: You modify the source
code to implement better algorithms or data structures to
accomplish the optimization manually.

•	 Assembly-language level: Sometimes the high-level language is not
enough to reach optimal results, and you need to modify the code
down at the assembly-language level. In some key computing
segments, although the process of assembly-level optimization is
cumbersome, the performance benefit is totally worth it.

•	 Compiling-instruction level: This optimization is often
accomplished through additions and modifications of compiler
directives, such as modifying the typical compiler directive
pragma and increasing the degree of parallelism in OpenMP.

Program-interactive optimization is a reflection of the art of programming, and
the level of accomplishment enters the realm of the unity of human and machine.
This is the focus of this chapter. Relatively speaking, optimizations performed at the
assembly-language level or the instruction-level compiling phase require you to have
comprehensive expertise about processor architecture, hardware, system, and so on. As a
result, for Android systems on Intel architecture, we recommend optimizing performance
at the source-code level. The following example introduces performance optimization on
Android multithreaded design.

Optimization can be achieved in several ways that are related and structurally
indivisible, although each has a unique function. The overall process is shown in
Figure 11-1.

Compiler
optimization

Manual
Optimization

High-Performance
Libraries

Source Code
Optimization

Analysis Assisted
with Tools

Figure 11-1.  Recommended user optimization

Chapter 11 ■ Performance Optimization for Android Applications on x86

341

As Figure 11-1 shows, manual optimization, compiler optimization, and
high-performance library functions are tied together and are the final steps of optimization;
you can select one of them to achieve the optimization. Both manual optimization and
using high-performance libraries involve modifying the source code. Before you begin those
optimizations, analyzing the program using optimization tools is a vital, beneficial step.

Intel Graphics Performance Analyzers (Intel GPA)
Intel GPA is a set of graphical tools for analysis and optimization that Intel launched a few
years ago. It has evolved into a comprehensive tool for analyzing processor running state,
system power, and other functions.

Introduction to Intel GPA
Intel GPA is only for Intel processors that support Intel Core and Intel Atom processor-
based hardware platforms. It provides a GUI for CPU/GPU speed analysis and
customization features. It enables you to find performance bottlenecks and optimize
applications on devices based on the Intel chipset platform. Intel GPA consists of the
System Analyzer, Frame Analyzer, and software development kit (SDK).

The Intel GPA System Analyzer 2014 R2 version supports Android platforms based
on the Intel Atom processor. The features it offers include the following:

Real-time display of dozens of key indicators including CPU, GPU, •	
and OpenGL ES API

Many graphics pipeline tests to isolate graphics bottlenecks•	

A host-development system that can use Microsoft Windows, Mac •	
OS X, or Ubuntu OS

Intel GPA currently only supports real Android devices and does not support the
analysis of emulators. It uses a typical hardware deployment model, also called Android
application cross-development, in which the host system (Windows and Ubuntu) and
target device (Android Intel-based devices) are connected via USB to monitor Android
applications. Intel GPA uses the Android Debug Bridge (adb) to monitor applications on
target devices: the adb server runs on the Android device, and Intel GPA runs on the host
system as the adb client application. This structure is shown in Figure 11-2.

Chapter 11 ■ Performance Optimization for Android Applications on x86

342

(a) Hardware Configuration

(b) Software Structure

Intel GPA

Host System adb
Target Device

USB Cable

GPA
(adb Client) adb (server)

Windows/Ubuntu Platform Android Platform

Figure 11-2.  Intel GPA configuration for monitoring applications on an Android device

You should be cautious, given that Intel GPA requires adb to work. Both Eclipse and
Dalvik Debug Monitor Server (DDMS) also use adb, so Intel GPA may not work properly
if GPA, DDMS, and Eclipse are running at the same time, due to the adb conflict. It is best
to turn off other Android software-development tools, such as Eclipse and DDMS, when
using Intel GPA.

Figure 11-3 shows the Intel GPA graphic interface monitoring an app running on an
Android device.

Chapter 11 ■ Performance Optimization for Android Applications on x86

343

As you can see, Intel GPA has two main windows and a toolbar pane. The tree
structure in the left pane displays the indicators being monitored:

Under CPU are Aggregated CPU Load, CPU XX Load, CPU •	
XX Frequency, and Target App CPU Load. CPU XX numbers
are determined by how many CPUs are being monitored by
Intel GPA. To get CPU information such as numbers of cores,
model, and frequency, you can use the cat /proc/cpuinfo
command in a terminal window. Figure 11-3 is a screenshot
for a Lenovo K800 smartphone, which uses a single-core Intel
Atom Z2460 processor; it shows two logical processors, because
s the processor supports Intel Hyper Threading Technology
(Intel HTT). Thus two items are shown in CPU Load and CPU
Frequency, indexed 00 and 01. In CPU XX Load, XX is the CPU
number: it displays the load status for CPU XX, whereas CPU XX
Frequency displays the frequency status for CPU XX. Aggregated
CPU Load is the total load of the CPU. Target App CPU Load is the
CPU load of the app on the target device.

Figure 11-3.  The Intel GPA graphic interface monitoring an app running on an
Android device

Chapter 11 ■ Performance Optimization for Android Applications on x86

344

Under Device IO are Disk Read, Disk Write, Network RX, and •	
Network TX. These metrics list status and information for disk
read, disk write, network packets sent, and network packets
received over the network, respectively.

Under Memory are App Resident Memory and Available Memory.•	

Under Power are Current Charging and Current Discharging, •	
which provide the status of charging and discharging.

In the right pane are two real-time status display windows by default. These real-time
windows display an oscilloscope-like status for the specified indicators. The horizontal
axis is the elapsed time, and the vertical axis is the value of the corresponding indicator.
You can drag and drop an index entry from the left pane to one of two windows to display
the real-time indicator of that entry. In Figure 11-3, CPU 00 Load has been dragged and
dropped to the top display window, and the CPU 01 load is shown in the bottom display
window; the vertical axis shows CPU utilization. The maximum is 100%. Above the
real-time status display window are tools such as screen capture and pause display.
You can use these tools to debug an application.

Installing Intel GPA
GPA for Windows is installed during Beacon Mountain installation (Mac OS X
and Ubuntu OS host systems) or Intel INDE installation (Windows host system).
For an Ubuntu host, go to the Intel web site (http://intel.com/software/gpa or
http://software.intel.com/en-us/vcsource/tools/intel-gpa) to download Intel
GPA (this book uses version gpa_12.5_release_187105_windows.exe for the test),
as shown in Figure 11-4.

Figure 11-4.  Intel GPA software download site

http://intel.com/software/gpa
http://software.intel.com/en-us/vcsource/tools/intel-gpa

Chapter 11 ■ Performance Optimization for Android Applications on x86

345

Using Intel GPA on Android
The following example demonstrates how to use Intel GPA to monitor applications on an
Android device. In this case, the target machine is a Lenovo K800 smartphone running on
an Intel Atom processor.

Special requirements must be met to allow Intel GPA to monitor and control
applications on Android devices. Only if these set conditions are met can an application
can be monitored by Intel GPA. You must follow these two steps: set the Eclipse
application parameters and generate and deploy an application, and then use Intel GPA
to monitor the application.

The name of the application used as an example here is MoveCircle. The operation
interface is shown in Figure 11-5(a).

The application is a simple game. The user interface is very basic: just a circle. When
the user touches any point inside the circle and drags around, the black circle follows the
touch point and moves. When the user stops touching the spot in the circle, the circle is
still. The circle does not move when the user drags outside the circle (that is, the initial
touch point within that circle). If the user presses the phone’s Back button, the Exit dialog
box pops up. Clicking Exit exits the application, as shown in Figure 11-5(b).

Figure 11-5.  The MoveCircle application

Chapter 11 ■ Performance Optimization for Android Applications on x86

346

From the application interface description, the major computing tasks of the
application are concentrated in dragging the circle, constantly calculating the circle’s
new location, and refreshing (redrawing) the display. The application’s code framework
application is similar to that in section “Dialog Box Example” of Chapter 10 on page 33,
and thus the source code is skipped here.

Follow these steps to use Intel GPA to monitor the example application:

1.	 Build and deploy the application in Eclipse.

2.	 Use general procedures to create an application project.
Name the application MoveCircle:

a.	 Write the related code for the project. The document
framework is shown in Figure 11-6. 

Figure 11-6.  Document framework for the MoveCircle application

b.	 Edit the AndroidManifest.xml file, and add the
following code:

 
 1. <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 2. package="com.example.movecircle"
 3. android:versionCode="1"
 4. android:versionName="1.0" >
 5.
 6. <uses-sdk
 7. android:minSdkVersion="8"
 8. android:targetSdkVersion="15" />
 9. <uses-permission android:name="android.permission.INTERNET"/>
10.

http://schemas.android.com/apk/res/android

Chapter 11 ■ Performance Optimization for Android Applications on x86

347

11. <application
12. android:icon="@drawable/ic_launcher"
13. android:debuggable="true"
14. android:label="@string/app_name"
15. android:theme="@style/AppTheme" >
16. <activity
17. android:name=".MainActivity"
18. android:label="@string/title_activity_main" >
19. <intent-filter>
20. <action
21. android:name="android.intent.action.MAIN" />
 
22. �<category android:name="android.intent.category.

LAUNCHER" />
23. </intent-filter>
24. </activity>
25. </application>
26.
27. </manifest>
 

In line 9, you add a uses-permission elements, and grant the application Internet
write/read access. Line 13 specifies that the application is debuggable.

c.	 Generate the application package, and deploy the
application to the real target device.

3.	 Start Intel GPA on the host machine to monitor the
application.

4.	 Connect the Android phone to the PC. Make sure the screen
is not locked, or you may get the error “Unsuccessful Phone
Connection”:

d.	 Make sure you turn off all tools that use adb, such as
Eclipse and DDMS. Otherwise, you may get the error
“Unsuccessful Phone Connection.”

e.	 (This step is optional.) Make sure adb is started
and running:
 
C:\Documents and Settings>adb devices
List of devices attached
Medfield04749AFB device
 

f.	 In Windows, select Start ➤ Program ➤ Intel Graphics
Performance Analyzers 2012 RS ➤ Intel GPA System
Analyzer to start Intel GPA.

Chapter 11 ■ Performance Optimization for Android Applications on x86

348

g.	 The Intel GPA initial window pops up, suggesting the
machine to be monitored, as shown in Figure 11-7.
Because the tuning target is a phone in this case, you
select the phone (in this case, Medfield04749AFB) by
clicking the Connect button. 

Figure 11-7.  Intel GPA interface for connecting to a monitored device

h.	 Once connected, Intel GPA does an initial analysis of
applications installed on the monitored smartphone,
dividing apps into two groups: analyzable application and
non-analyzable applications, as shown in Figure 11-8. 

Chapter 11 ■ Performance Optimization for Android Applications on x86

349

In the Analyzable Applications list is the example MoveCircle application. If an
application cannot be analyzed by Intel GPA, it is usually because the application’s
parameters are not set, as described earlier in this section, or because the device is not
rooted. As a good exercise, you can skip step 2b, which modifies AndroidManifest.xml;
that will cause the application to disappear from the Analyzable Applications list and
appear on the list of non-analyzable applications.

i.	 In the Analyzable Applications list, click the name of the
application you want Intel GPA to monitor (in this case,
MoveCircle). A rolling circle showing ongoing progress
appears next to the app. See Figure 11-9. 

Figure 11-8.  Initial interface (apps list) after Intel GPA is connected to the monitored
phone

Chapter 11 ■ Performance Optimization for Android Applications on x86

350

At the same time, the application startup screen is displayed on the phone. The screen
prompts you with the message Waiting For Debugger, as shown in Figure 11-10. Note that
you should not click the Force Close button: wait until the message box automatically
closes in the interface. 

Figure 11-9.  App initialization interface in Intel GPA

Chapter 11 ■ Performance Optimization for Android Applications on x86

351

j.	 The Intel GPA monitoring interface appears, as shown in
Figure 11-11. 

Figure 11-10.  Initial screen on the target phone when Intel GPA starts the application to
be monitored

Chapter 11 ■ Performance Optimization for Android Applications on x86

352

At the same time, the MoveCircle app starts to run on the phone, as shown in
Figure 11-12.

Figure 11-11.  Initial Intel GPA Monitoring interface when the application is started

Chapter 11 ■ Performance Optimization for Android Applications on x86

353

k.	 Drag and drop CPU 00 Load to the top real-time status
display panel in the display window, and drag and drop
CPU 01 Load to the bottom real-time status display
panel. Start to interact with MoveCircle: use your finger
to click and drag the circle for a few seconds, and then
stop the interaction for a few seconds. The corresponding
Intel GPA monitor screen is shown in Figure 11-13. 

Figure 11-12.  The MoveCircle app running on the target phone

Chapter 11 ■ Performance Optimization for Android Applications on x86

354

In Figure 11-13, you can see a rule: when you drag the circle, both CPU loads rise
to a certain height; when you do not interact with the app, the two CPU loads immediately
drop to near 0%. The application’s main computing tasks are concentrated in the circle
drag and move, with no or low computing (low or no CPU loads) when the circle is not
moved.

l.	 To end the Intel GPA analysis, exit the app as shown in
Figure 11-5(b). Intel GPA returns to the starting interface
shown in Figure 11-9.

This example only demonstrates monitoring the load on the CPU. Intel GPA is more
useful when you analyze an application that is doing OpenGL rendering; the screenshots
here don’t show all the GPU and OpenGL metrics. If you are interested, you can try other
examples and monitor other metrics. For example, for MoveCircle, we chose the Disk
Read metric for the top display window and Disk Write for the bottom. After switching
apps to review some photo files and returning to MoveCircle, the action was instantly
apparent (see Figure 11-14).

Figure 11-13.  Intel GPA monitoring the MoveCircle app and displaying CPU loads
in real time

Chapter 11 ■ Performance Optimization for Android Applications on x86

355

Android Multithreaded Design
The Intel Atom processor supports hyperthreading and multi-core configurations.
A multithreaded design is a good way to increase the degree of parallelism and improve
performance. Intel Atom N-series processors support the parallel execution of multiple
threads. Most Intel Atom processors are dual core with HT, and the latest Bay Trail
processor has dual core or quad core and physically supports a certain degree of
parallel execution.

Note that the word used here is parallel rather than concurrent. For some tasks, you
can follow the classic divide-and-conquer methodology and divide them into two or
more basic units. You assign those units to different threads to be executed at the same
time. In this way, the performance potential of the processor is fully utilized, and you
speed up the software execution. As a result, the software runs faster and more efficiently.

Based on the Java multithreaded programming interface, Android provides a more
powerful multithreaded programming interface. With the aid of this programming
interface, you can easily implement multithreaded development and design at the Java
language level without needing to use the cumbersome underlying OS call interface.

Figure 11-14.  Intel GPA monitoring Disk Read and Disk Write for MoveCircle and
other apps

Chapter 11 ■ Performance Optimization for Android Applications on x86

356

Android Framework of a Thread
The Android threaded programming framework is based on Java. There are two
approaches to multithreaded programming in Java: inheriting from the Thread class and
overriding the run method; and using the Runnable interface and the run method.

Java Thread Programming Interface
The general code framework for the first method, inheriting from the Thread class, is as
follows:

1.	 Define the Thread class (in this case, MyThread) and its code:
 
class MyThread extends Thread // Thread inheritance, custom
thread
{
 public MyThread() // Define a constructor
 {
 super(); // �Call the parent class builder

to create objects
 }
 @Override
 public void run() // �To write run code in the run

method of the thread body
 {
 // �The real Run Code of the

thread.
 }
}
 

2.	 Start the thread code:
 
MyThread myThread = new MyThread(); // create a new thread
myThread.start(); // start a thread
 

3.	 Wait for the running thread to end:
 
try {
 myThread.join(); // Wait for thread process
 to end
} catch (InterruptedException e) {
 
}
 

Chapter 11 ■ Performance Optimization for Android Applications on x86

357

The second method uses the Runnable interface implementation. Here is the general
code framework:

1.	 Write a custom Runnable interface implementation class:
 

class MyRunnableThread implements Runnable // �implement runnable
interface

{
 public void run()
 {
 // actual implementation codes of the
thread
 }
}
 

2.	 Start a thread:
 
MyRunnableThread target = new MyRunnableThread();
// create custom runnable interface implementation object//
Thread myThread = new Thread(target); // �create a Thread class

object
myThread.start(); // Start Thread
 

These two methods have the same effects but are used on different occasions. If you
are familiar with Java, you know that Java does not have multiple inheritance in C++; it
implements interfaces instead. To separately implement a thread, you can use the first
method, thread inheritance.

But some classes are inherited from another class. In such cases, if you want the
thread to run, you have to use the second method (Runnable interface). In this case, you
can declare that the class implements the Runnable interface and then put the code to be
run as a thread into the run function. This way, it does not affect its previous inheritance
hierarchy and can also run as a thread.

Note the following about Java’s threading framework:

In the Java runtime, the system implements a thread scheduler, •	
which determines the time at which a thread is running on the CPU.

In Java technology, the thread is usually preemptive, without the •	
need for a time-slice allocation process (assigning each thread
process equal CPU time). In the preemptive scheduling model,
all threads are in a ready-to-run state (waiting state), but only one
thread is running. The thread continues to run until it terminates
or returns to a runnable (wait) state or another, higher-priority
thread becomes runnable. In the latter case, the low-priority thread
terminates to give the right to run to the high-priority thread.

The Java thread scheduler supports the preemptive approach for •	
threads with different priorities, but it does not support time-slice
rotation of threads with the same priority.

Chapter 11 ■ Performance Optimization for Android Applications on x86

358

If the operating system where the Java runtime is running •	
supports the rotation of the time slice, then the Java thread
scheduler supports time-slice rotation of threads with the
same priority.

Do not overly rely on the system’s thread scheduler. For example, •	
the low-priority thread must also get a chance to run.

For more detailed information about Java multithreaded programming methods,
you can refer to related Java programming books, including Learn Java for Android
(www.apress.com/9781430264545), Pro Android Apps Performance Optimization
(www.apress.com/9781430239994), and Android Recipes (www.apress.com/9781430246145).

Android Threaded Programming Extensions and Support
When Android is running, the system (DVM) supports concurrent multiple CPUs. That being
said, if the machine has more than one logical processor, the DVM follows certain strategies
to automatically assign different threads to run on different CPUs. In this way, Android can
physically run different threads in parallel. In addition to the thread-programming interfaces
provided by Java, Android also provides important extensions and support. The first is the
looper-message mechanism.

Android’s interface, including a variety of activities, runs in the main thread of the
application (also known as the UI thread, the interface thread, or the default thread). The
application by default has only one thread, which is the main thread. Thus the application
is considered to be single-threaded. Some time-consuming tasks (computing), if run on
the main thread by default, cause the main interface to fail to respond for a long time.
To prevent this, those time-consuming tasks should be allocated to the independent
thread to execute.

The independent thread running behind the scenes (also known as the assistive
thread or background thread) often needs to communicate with the interface of the main
thread, such as updating the display. If the behind-the-scenes thread calls a function of
an interface object to update the interface, Android gives the execution error message
CalledFromWrongThreadException.

For example, in an application (in this case GuiExam), if a worker thread directly calls
the setText function of the TextView object in the interface to update the display, the
system immediately encounters an error and terminates the running application,
as shown in Figure 11-15.

http://www.apress.com/9781430264545
http://www.apress.com/9781430239994
http://www.apress.com/9781430246145

Chapter 11 ■ Performance Optimization for Android Applications on x86

359

In order to let the worker thread and the main thread interface communicate,
you need to understand the looper-message mechanism. Android has a message queue
that can combine threads, processing handler and looper components to exchange
information.

Message

A message is the information exchanged between threads. When a thread behind the
scenes needs to update the interface, it sends a message containing the data to the UI
thread (the main thread).

Figure 11-15.  Running error when a worker thread directly calls a function of the UI object

Chapter 11 ■ Performance Optimization for Android Applications on x86

360

Handler

The handler is the main processor of the message and is responsible for sending the
message and executing and processing the message content. The behind-the-scenes
thread, using the processing object passed in, calls the sendMessage(Message) function
to send a message. To use a handler, you need a method to implement the class
handleMessage(Message), which is responsible for handling the message operation
content (such as updating the interface). The handleMessage method usually requires
subclassing.

The handler is not used to open a new thread. It is more like the secretary of the
main thread, responsible for managing the updated data from the sub thread and then
updating the interface in the main thread. The behind-the-scenes thread processes the
sendMessage() method to send a message, and the handler calls back (automatically
invoked) processing in the HandlerMessage method to process the message.

Message Queue

The message queue is used to store the messages sent by the handler, based on the first-in,
first-out rule for execution. For each message queue, there is a corresponding handler.
The handler uses two methods to send messages to the message queue: SendMessage
and post. Messages sent by these two methods are executed in slightly different waya:
a message sent by SendMessage is a message queue object and is processed by the
HandlerMessage function of the handler; a message sent through the post method is a
runnable object and is implemented automatically.

Android has no global message queue. It automatically builds a message queue for
the main thread (one of the UI threads), but the message queue is not established in the
sub thread; so Looper.getMainLooper() must be called to get the looper of the main
thread. The main thread loop does not go to NULL; but to call Looper.myLooper() to get
the looper of the current thread loop

Looper

The looper is the housekeeper for each thread’s message queue. It is a bridge between the
handler and message queues. Program components first pass the message to the looper
through the handler, and then the looper puts the message in the queue.

For the main thread of the application’s default UI, the system establishes the
message queue and looper: there is no need to write the message queue and looper
operation code in the source code, and both are transparent to the default main thread.
However, the handler is not transparent to the default main thread. In order to send
a message to the main thread and handle the message, you must establish your own
handler object.

Chapter 11 ■ Performance Optimization for Android Applications on x86

361

In addition to using the looper-message mechanism to achieve communication
between the worker thread and the main GUI thread, you can also use a technique called
asynchronous-tasks (AsyncTask) mechanism to implement the communication between
those threads. The general use of the AsyncTask framework is as follows:

1.	 AsyncTask.

2.	 Implement AsyncTask defined by the following one or several
methods:

•	 onPreExecute(): Begin preparatory work before execution
of the task doInBackground(Params...): Start background
execution. You can call the publishProgress function to
update real-time task progress.

•	 onProgressUpdate(Progress...): After the
publishProgress function is called, the UI thread calls this
function to show the progress of the task interface—for
example, displaying a progress bar.

•	 onPostExecute(Result): After the operation is complete,
send the results to the UI thread.

None of these functions can be called manually. In addition to the
 doInBackground(Params...)function, the remaining three are UI thread called,
so requirements are:

1.	 The AsyncTask instance must be created in the UI thread;

2.	 The AsyncTask.execute function must be called in
the UI thread.

Keep in mind that the task can be executed only once. Multiple calls are abnormal.
You can find a detailed AsyncTask example in the Android help documentation.

Thread Example
This section uses an example to illustrate Android-threaded programming. The running
GuiExam application is shown in Figure 11-16.

Chapter 11 ■ Performance Optimization for Android Applications on x86

362

As shown in Figure 11-16, the demo app has three main activities buttons: Start
Thread Run, Stop Thread Run, and Exit App. The first two control the operation of the
auxiliary thread. Click the Start Thread Run button, and the thread starts running, as
shown in Figure 11-16(b). Click Stop Thread Run to end the thread run, as shown in
Figure 11-16(c). The worker thread refreshes the text display in the TextView every half a
section, displaying Complete Step. X in increments from 0 to X. Click Exit App to close the
activities and exit the application.

The structure of the demo app and the procedures are as follows:

1.	 Edit the main activity file (activity_main.xml), delete the
originalTextView window component, and then add three
buttons and two TextView window components. The buttons’
ID properties are, respectively, @+id/startTaskThread,
@+id/stopTaskThread, and @+id/exitApp. The Text property is,
respectively, Start Thread Run, Stop Thread Run, and Exit App.
The TextView’s ID property is @+id/taskThreadOuputInfo
to display the text output of the worker thread. The entire
process is shown in Figure 11-17.

Figure 11-16.  Demo UI of a multithreaded code framework

Chapter 11 ■ Performance Optimization for Android Applications on x86

363

2.	 Edit MainActivity.java for the activity_main class as
follows:

 
1. package com.example.guiexam;
2. import android.os.Bundle;
3. import android.app.Activity;
4. import android.view.Menu;
5. import android.widget.Button;
6. import android.view.View;
7. import android.view.View.OnClickListener;
8. import android.os.Process;
9. import android.widget.TextView;
10. import android.os.Handler;
11. import android.os.Message;
 
12. public class MainActivity extends Activity {
13. private Button btn_StartTaskThread;
14. private Button btn_StopTaskThread;
15. private Button btn_ExitApp;
16. private TextView threadOutputInfo;
17. private MyTaskThread myThread = null;
18. private Handler mHandler;;
  

Figure 11-17.  Multithreaded code framework in activity_main.xml

Chapter 11 ■ Performance Optimization for Android Applications on x86

364

19. @Override
20. public void onCreate(Bundle savedInstanceState) {
21. super.onCreate(savedInstanceState);
22. setContentView(R.layout.activity_main);
23. �threadOutputInfo = (TextView)findViewById(R.

id.taskThreadOuputInfo);
24. threadOutputInfo.setText("Thread Not Run");
 
25. mHandler = new Handler() {
26. public void handleMessage(Message msg) {
27. switch (msg.what)
28. {
29. case MyTaskThread.MSG_REFRESHINFO:
30. threadOutputInfo.setText((String)(msg.obj));
31. break;
32. default:
33. break;
34. }
35. }
36. };
 
37. �btn_ExitApp = (Button) findViewById(R.id.exitApp);

// Code for <Exit App>Button
38. btn_ExitApp.setOnClickListener(new /*View.*/OnClickListener(){
39. public void onClick(View v) {
40. finish();
41. Process.killProcess(Process.myPid());
42. }
43. });
 
44. btn_StartTaskThread = (Button) findViewById(R.id.startTaskThread);
45. // Code for<Start Thread Run>
46. �btn_StartTaskThread.setOnClickListener(new /*View.*/

OnClickListener(){
47. public void onClick(View v) {
48. �myThread = new MyTaskThread(mHandler); // �Create a

thread
49. myThread.start(); // Start Thread
50. setButtonAvailable();
51. }
52. });
 
53. btn_StopTaskThread = (Button) findViewById(R.id.stopTaskThread);
54. //code for <Stop Thread Run>
55. �btn_StopTaskThread.setOnClickListener(new /*View.*/

OnClickListener(){

Chapter 11 ■ Performance Optimization for Android Applications on x86

365

56. public void onClick(View v) {
57. if (myThread!=null && myThread.isAlive())
58. myThread.stopRun();
59. try {
60. if (myThread!=null){
61. myThread.join();
62. // Wait for Thread Run to end
63. myThread =null;
64. }
65. } catch (InterruptedException e) {
66. �// Empty statement block, ignored forcibly

abort exception
67. }
68. setButtonAvailable();
69. }
70. });
71. setButtonAvailable();
72. }
 
73. @Override
74. public boolean onCreateOptionsMenu(Menu menu) {
75. getMenuInflater().inflate(R.menu.activity_main, menu);
76. return true;
77. }
  
78. �private void setButtonAvailable() // �New function is used to set

the button optional
79. {
80. btn_StartTaskThread.setEnabled(myThread==null);
81. btn_ExitApp.setEnabled(myThread==null);
82. btn_StopTaskThread.setEnabled(myThread!=null);
83. }
84. }
 

Lines 17 and 18 define the variable myThread of the defined thread class
MyTaskThread, and the default main thread handler object mHandler, respectively.
Lines 25–36 define the Handler class. The What attribute field of the message class indicates
the type of message. The custom handler class uses a switch-case statement for different
handlers depending on the type of message; MSG_REFRESHINFO is the message type of the
custom thread class MyTaskThread, which means the worker thread requires an updated
interface display message. Lines 29–31 process the message. The code is very simple; it
updates the TextView widget display based on the message in the parameter object.

Lines 47–49 are the response code when the Start Thread Run button is clicked.
It first creates the custom thread object and then calls the Thread.start function to make
the self-defined thread class MyTaskThread run, which runs the execution code in the run
function as a single thread. Finally, line 49 calls the custom setButtonAvailable function
to set each button’s option (grayed and not selectable, or white and selectable).

Chapter 11 ■ Performance Optimization for Android Applications on x86

366

Lines 55–65 are response code for the Stop Thread Run button. Line 55 first
determines whether the thread already exists or is running. Then it stops a thread run
in line 56 by calling the defined stop-the-thread prototype function from the custom
thread class MyTaskThread and then calling the Thread.join(); it then waits for the
thread run to end. Finally, it sets the optional status of the interface buttons.

Lines 75–80 are a custom function that which is used to determine the optional
status of each button: white and selectable or gray and selectable.

3.	 Create a new class MyTaskThread in the application. This class
inherits from Thread and is used to implement the worker
thread. The source code file MyTaskThread.java of this class
is as follows:

 
 1. package com.example.guiexam;
 2. import android.os.Handler;
 3. import android.os.Message;
 4.
 5. public class MyTaskThread extends Thread {
 6. private static final int stepTime = 500;
 7. // Execution timeof each step(unite:ms)
 8. private volatile boolean isEnded;
 9. // mark if the thread is running. Used to stop thread run
10. private Handler mainHandler;
11. // Handler used to send message
12. �public static final int MSG_REFRESHINFO = 1; // Update message

on interface
13.
14. public MyTaskThread(Handler mh) // Define a constructor
15. {
16. super(); // Call the parent class builder to create objects
17. isEnded = false;
18. mainHandler = mh;
19. }
20.
21. @Override
22. public void run() // Write run code in thread body run method
23. {
24. Message msg ;
25. for (int i = 0; !isEnded; i++)
26. {
27. try {
28. �Thread.sleep(stepTime); // �designate time for every

step of the thread to sleep
29. String s = "Complete" + i +"step";
30. msg = new Message();
31. msg.what = MSG_REFRESHINFO; // Define message type
32. msg.obj = s; // attach data to message
33. mainHandler.sendMessage(msg); // send message

Chapter 11 ■ Performance Optimization for Android Applications on x86

367

34. } catch (InterruptedException e) {
35. e.printStackTrace();
36. }
37. }
38. }
39.
40. public void stopRun() // Stop control function for stop thread run
41. {
42. isEnded = true;
43. }
42. }
 

This document is the implementation code of the custom thread class MyTaskThread,
which is the key to this application. The application is using the first approach, thread
inheritance, to achieve threading. In line 5, the custom class inherits from Thread; and
then, from line 14–39, the threads run code on the rewritten run function. To cope with
the work of the thread, lines 6–9 define the relevant variables. The constant stepTime
represents the length of every step of the thread-delay time, measured in milliseconds.
isEnded controls whether to continue each step in the body of the loop in the run
function. Note that the variable is preceded by the volatile modifier: Each time a thread
accesses the variable, it reads the final value in memory after the variable has been
modified. A write request must be written to memory, too. This avoids the copy in cache
or register not matching the value in the memory variable, which would cause an error.
The mainHandler variable saves the main thread handler. MSG_REFRESHINFO is a constant
that handles custom messages.

Lines 10–15 are a constructor. In this function body, you initialize the value of the
thread-running control variable isEnded and then save mainHandler as the main
thread-handler object passed as a parameter.

Lines 16–33 are the core thread code that rewrites the run function. The code
is composed of a loop to determine whether to continue to use the control variable
isEnded. Here one loop is a step. Every step is also simple: when the Thread class static
function sleep is called in line 28 after a specified time, a message is generated and
assembled in lines 24–27. Finally, in line 28, the message is sent to the specified
(message loop) handler.

Lines 34–37 are a custom control function to stop the thread from running.
The purpose of the code is very simple: to change the run-loop control variable’s value.

Thread Synchronization
A multithreaded process inevitably involves a problem: how to deal with threads’ access
to shared data, which relates to thread synchronization. Thread data sharing is also known
as critical section. Access to shared data is also known as competition for resource access.
In general OS textbooks, thread synchronization includes not only the synchronization
of this passive selected access to shared data, but also active-choice synchronization
between threads to collaborate to complete a task. In Java, thread synchronization is
focused on access to shared data. This section discusses synchronization issues related
to shared data access.

Chapter 11 ■ Performance Optimization for Android Applications on x86

368

In multithreaded programming, if access to shared data does not use certain
synchronization mechanisms, data consistency and integrity cannot be guaranteed.
There are two ways to perform Java thread synchronization: an internal lock data object,
and synchronization. Both approaches are implemented with the synchronized keyword.
Statements modified by the synchronized block can guarantee the exclusivity of the
operations between threads: they are unique, or atomic. In Java, this process is simply
called synchronization. A synchronized block is also known as genlock.

In the first approach to locking data objects, at any time, only one thread may access
the object that is locked. The code framework is as follows:
 
Object var; // Object variable
synchronized(var) {
 // Operation of the shared variable
}
 

In this code, var must be the variable that each thread can access, so it becomes a
synchronization variable. In practice, the synchronization variable and shared variables
can be either the same or different. The Object class in the previous code can be replaced
with a subclass of Object, because in addition to the simple classes in Java, any class can
be the Object offspring class.

Note that the synchronization variable cannot be a simple type (such as int and
float, but not the the String class):
 
int var;
synchronized(var) { �// �compiler error:int is not a valid type's argument

for the synchronized statement

}
 

When you use the second approach—the synchronization method—at any time,
only one thread visits a code segment:
 
class MyClass {
 public synchronized void method1()
 { ... }
}
 

The previous code is the synchronization for the general class (function). In addition,
there is also synchronization for the class’s static function:
 
class MyClass {
 public synchronized static void method2()
 { ... }
}
 

Chapter 11 ■ Performance Optimization for Android Applications on x86

369

Using the synchronization method, the object that calls the synchronization method
is locked. When an object of MyClass: obj1 implements the synchronization method
in a different thread, mutual exclusion achieves the synchronization result. But another
object, obj2, generated by the class MyClass, can call this method with the synchronized
keyword. As a result, the previous code can be written equivalently as shown next:

Synchronization (general) method:•	
 
class MyClass {
 public void method1()
 {
 synchronized (this)
 { .../* function body */ }
 }
}
 
Static synchronization method:•	
 
class MyClass {
 public static void method2()
 {
 synchronized (MyClass.class)
 { .../* function body */ }
 }
}
 

In the static method, a class literal is treated as a lock. It generates the same result
as the synchronized static function. The timing to get a lock is also special: the lock is
acquired when calling the class that this object belongs to, and no longer the specific
object that this class generates.

Following are the generalized rules that Java uses to implement a lock via the
synchronized function:

 Rule 1: When two parallel threads visit the synchronized(this)
synchronization code segment of the same object, only one
thread can be run at any one time. Other threads must wait until
the current thread finishes running this code segment to run the
same code segment.

Rule 2: When a thread visits a synchronized(this)
synchronization code segment of an object, another thread
can still visit a non-synchronized(this) synchronization code
segment of an object.

Rule 3: When a thread visits a synchronized(this)
synchronization code segment of an object, visits by all other
threads to all other synchronized(this) synchronization code
segments of the object are blocked.

Chapter 11 ■ Performance Optimization for Android Applications on x86

370

Rule 4: When a thread visits a synchronized(this)
synchronization code segment of an object, it acquires the
object’s object lock. As a result, visits from other threads to all
synchronized(this) synchronization code segments of an
object are temporally locked.

Rule 5: These rules apply to all other object locks.

Although synchronized can guarantee granularity of the object or executed block
of statements, mutual exclusivity of this granularity degrades thread concurrency; so, the
code, which originally could run in parallel, must run in serial execution. Therefore, you
need to be cautious when you use the synchronized function, and limit it to cases when
you need the synchronized lock. On the other hand, you should make the lock granularity
as small as possible, in order to both ensure the correctness of the program and improve
operational efficiency by making the degree of concurrency as great as possible.

Thread Communication
In multithreaded design, with data exchange among threads, setting the signal
collaboration to complete a task is a common problem. Most significant are generalized
threading issues, such as a typical example of the producer-consumer problem. These are
the threads that must cooperate to accomplish a task.

In classic books on the OS, it is generally recommended that you use a semaphore to
achieve thread-synchronization primitives. Java does not directly provide the semaphore
primitives or programming interface, but achieves the function of the semaphore with
class functions such as wait, notify, notifyAll, and so on.

wait, notify, and notifyAll belong to the function of the Object class and are not
part of the Thread class. Every object has a waiting queue (Wait Set) in Java. When an
object has just been created, its wait queue is empty.

The wait function can make the objects in the current thread wait until another
thread calls the notify or notifyAll method of this object. In other words, when a
call waits in the object’s queue, the thread enters a wait state. Only when the notify
method is called can you remove the thread from the queue to make it a runnable thread.
The notifyAll method waits for all threads in the queue inside the object to become
runnable threads. Notify and notifyAll are similar in functionality.

The wait, notify, and notifyAll functions need to be used in conjunction
with synchronized to establish the synchronization model, which can guarantee the
granularity of the former functions. For example, before calling wait, you need to get the
object’s synchronization lock so that this function can be called. Otherwise, the compiler
can call the wait function, but it will receive an IllegalMonitorStateException
runtime exception.

Chapter 11 ■ Performance Optimization for Android Applications on x86

371

Following are several examples of code frameworks for wait, notify, and notifyAll:

Waiting for a resource code:•	
 
synchronized(obj) {
 while(!condition)
 try {
 obj.wait();
 } catch (InterruptedException e) {
 }
......Use code of obj
}
 
Providing resources (example: complete use of resources and •	
returning to the system):
 
synchronized(obj) {
 condition = true;
 obj.notify();
}
 

The previous code is the standalone use case of the synchronization object obj.
You can also write synchronization code in a class. The framework of this code can be
written as follows:
 
class MyClass{
 public synchronized void func1 {
 while (!condition)
 try {
 wait();
 } catch (InterruptedException e) {
 }
 codes for using MyClass resource
 }
 public synchronized void func2 {
 condition = true;
 notifyAll();
 }
}
 

The thread that is waiting for resources can call the myclass.func1 function, and the
thread that provides resources calls the myclass.func2 function.

Chapter 11 ■ Performance Optimization for Android Applications on x86

372

Principles of Multithreaded Optimization for the Intel
Atom Processor
Multithreaded software design allows program code in different threads to run at the
same time. However, blind use of multithreading or excessive use of multithreaded
programming may not lead to performance improvement and may even downgrade
software performance. Therefore, you need to understand the principles of multithreaded
optimization on Android x86.

First, the start, or scheduling, of a thread requires a certain amount of overhead
and occupies a certain amount of processor time. Processors that do not support
hyperthreading and multi-core processing cannot physically let these threads run at the
same time. To support multithreaded programs, there is significant overhead if you split
one physical processor into multiple logical processors with virtualization technologies
so that each thread can run on a logical core. Such a multithreading strategy not only
makes it difficult to achieve improvement in performance, but may even lead to the
multithreaded execution speed being slower than a single-threaded program. Therefore,
to achieve multithreaded performance acceleration (a prerequisite to being faster than
single-threaded execution speed) using multithreaded design, the processor must
support hyperthreading or multi-core.

Second, for processors that support hyperthreading or multi-core, it is not always
true that more threads will make software run faster. You must consider the performance/
price ratio. The physical basis of multithreaded design for performance tuning is to allow
multiple threads to run at the same time in parallel on the physical layer. Therefore, the
maximum number of concurrently running threads supported by the processor is the
optimum number of threads for multithreaded optimization.

According to Intel’s official statement, Intel Hyper-Threading Technology can
support two threads running in parallel, with multi-core support for multiple threads
running in parallel. For example, for a dual-core Intel processor that supports Intel
Hyper-Threading Technology, the maximum number of threads supported to run in
parallel is

2 2 4core Intel HTT threads´ () =

Therefore, this machine supports multithreaded optimization, and the maximum
number of threads (threads running concurrently) is equal to four.

For a Motorola MT788 target machine, which uses a single-core Intel Atom Z2480
processor with HT, the optimal number of threads is two. If the target machine is a
Lenovo K900 with a dual-core Intel Atom Z2580 processor with Intel HT, the optimal
number of threads is four.

In general, when you consider multithreaded optimization on the Android
platform, it is necessary to look carefully at the processor information to see if it supports
hyperthreading or multi-core technology.

Chapter 11 ■ Performance Optimization for Android Applications on x86

373

Case Study: Intel GPA-Assisted Multithreaded
Optimization for an Android Application
The previous section explained several optimization techniques and principles.
This section uses a comprehensive example to explain optimization. In this case,
multithreaded optimization is combined with optimization assisted by Intel GPA to make
the application run faster.

The example app calculates pi (p). Let’s look at some background for the app.
The mathematical formula is as follows:

1

1
1 0

420

1

x
dx

+
= - =ò arctan() arctan()

p

The integration formula can be expressed using the infinitive:

p =
+

=
+ò å

®

4
1

1
4

1

120

1

0
2x

dx
x

x
xD

Dlim

∆x cannot be infinitely small—you can only make ∆x as small as possible. So, the
result of the formula is closer to p. Using step to represent ∆x,

num steps step_ = 1

The value of step must be maximum to get an accurate value of pi. Consider that

f x
x

() =
+

1

12

While f(x) is a raised function. Here you take a median value to calculate the sum.
That is, you use

f
i

num steps

+æ

è
ç

ö

ø
÷

0 5.

_

to replace

f
i

num steps_

æ

è
ç

ö

ø
÷

to calculate the sum. The result calculated by this formula is not always smaller than the
actual value of p. So, eventually, you get the final formula on which this app is based:

p
4

0 5

0 0

» ´ =
+æ

è
ç

ö

ø
÷

= =
å f x step f

i

num stepsi

num steps

i

num step

()
.

_

_ _ ss

i

num steps

step step f i stepå å´ = ´ + ´[]
=

(.)
_

0 5
0

It is not difficult to write the source code based on this formula.

Chapter 11 ■ Performance Optimization for Android Applications on x86

374

Original Application and Intel GPA Analysis
You begin by deriving the app’s un-optimized computing source code from the formula in
the previous section. This application is named SerialPi.

The design of this app is the same as that in the “Thread Example” section earlier.
The task of calculating p is put in a worker thread (here called a task thread) to run.
A button is set on main activity to control the running of the thread, and a TextView is
used to display the result of the task thread. The interface showing the app’s single run is
shown in Figure 11-18.

Figure 11-18.  SerialPi app interface

The interface after the application starts is shown in Figure 11-18(a). When you click
the Start Calculating button, all buttons on the interface gray out until the computation is
complete. The interface then displays the computation result as well as the thread’s total
running time. Clicking Exit App, as shown in Figure 11-18(b) exits the application. From
the interface screen, you can see that it takes about 22 seconds for this app to calculate p.
Running the application repeatedly, the calculation time remains about the same
(22 seconds).

Chapter 11 ■ Performance Optimization for Android Applications on x86

375

The steps to build the application and write the key code are as follows:

1.	 Create a new application called SerialPi. The proposed
project property should use the default value. Set [Build SDK]
to support x86 API.

2.	 Edit activity_main.xml. Place two Button components and
two TextView components in the layout. Set the ID attribute
of one TextView to @+id/taskOuputInfo: it will display the
results of the task thread, as shown in Figure 11-19. 

Figure 11-19.  Layout for the SerialPi App

3.	 Create new thread class MyTaskThread in the project, and edit
the source code file MyTaskThread.java as follows:

 
1. package com.example.serialpi;
2. import android.os.Handler;
3. import android.os.Message;
 
4. public class MyTaskThread extends Thread {
5. private Handler mainHandler;
6. public static final int MSG_FINISHED = 1;

Chapter 11 ■ Performance Optimization for Android Applications on x86

376

7. // Defined the message type for the end of the calculation
8. private static final long num_steps = 200000000;
9. // num_steps variables in Formula, the total number of steps
 private static final double step = 1.0 / num_steps;
10. // Step variable in formula, step length
11. public static double pi = 0.0;
12. // the calculation of results of p
13.
14. static String msTimeToDatetime(long msnum){
15. �// The function converts the number of milliseconds into hours: minutes:

seconds. Milliseconds "format
16. long hh,mm,ss,ms, tt= msnum;
17. ms = tt % 1000; tt = tt / 1000;
18. ss = tt % 60; tt = tt / 60;
19. mm = tt % 60; tt = tt / 60;
20. hh = tt % 60;
21. �String s = "" + hh +"hour "+mm+"minute "+ss + "Second" + ms

+"Milliseconds";
22. return s;
23. }
24.
25. @Override
26. public void run()
27. {
28. double x, sum = 0.0;
 long i;
 for (i=0; i< num_steps; i++){
29. x = (i+0.5)*step;
30. sum = sum + 4.0/(1.0 + x*x);
31. }
32. pi = step * sum;
  
33. Message msg = new Message();
34. msg.what = MSG_FINISHED; // Define message Type
35. mainHandler.sendMessage(msg); // Send Message
36. }
37.
38. public MyTaskThread(Handler mh) // Constructor
39. {
40. super();
41. mainHandler = mh;
42. }
43. }
 

Similar to the framework and the example code listed in the thread example earlier,
thread-inheritance laws are used to initialize the thread. Pay close attention to the code
segments in bold, which are most directly related to the calculation of p. Lines 7 and 8

Chapter 11 ■ Performance Optimization for Android Applications on x86

377

define a static variable with the same name used in the formula that calculates p. Line 9
defines the variable for saving the results of the p calculation. Note that this variable is
public so that the main thread can access it.

Lines 22–28 calculate p according to the formula. The x variable is an independent
variable of function

f x
x

() =
+

1

12

and sum is a cumulative variable of S. Line 28 calculates the final results. Refer to the code
framework mentioned in the earlier section of this chapter on page 32 titled. “Thread
Example”; it should not be difficult to understand.

Note that in the thread’s run function, once the calculation is complete, the message
is sent to the main thread (interface) in line 29.

4.	 Edit the source code in the main activity class file
MainActivity.java. This code controls the run of the thread
and displays the calculated results:

 
 1. package com.example.serialpi;
 2. import android.os.Bundle;
 3. import android.app.Activity;
 4. import android.view.Menu;
 5. import android.widget.Button;
 6. import android.view.View;
 7. import android.view.View.OnClickListener;
 8. import android.os.Process;
 9. import android.widget.TextView;
10. import android.os.Handler;
11. import android.os.Message;
 
12. public class MainActivity extends Activity {
13. private MyTaskThread myThread = null;
14. �private TextView tv_TaskOutputInfo; // Display (Calculated) Task

thread output
15. private Handler mHandler;;
16. private long end_time;
17. private long time;
18. private long start_time;
 
19. @Override
20. public void onCreate(Bundle savedInstanceState) {
21. super.onCreate(savedInstanceState);
22. setContentView(R.layout.activity_main);
23. �tv_TaskOutputInfo = (TextView)findViewById(R.id.taskOuputInfo);
24. �final Button btn_ExitApp = (Button) findViewById(R.id.exitApp);

Chapter 11 ■ Performance Optimization for Android Applications on x86

378

25. btn_ExitApp.setOnClickListener(new /*View.*/OnClickListener(){
26. public void onClick(View v) {
27. exitApp();
28. }
29. });
30. �final Button btn_StartTaskThread =

(Button) findViewById(R.id.startTaskThread);
31. �btn_StartTaskThread.setOnClickListener(new /*View.*/

OnClickListener(){
32. public void onClick(View v) {
33. btn_StartTaskThread.setEnabled(false);
34. btn_ExitApp.setEnabled(false);
35. startTask();
36. }
37. });
38. mHandler = new Handler() {
39. public void handleMessage(Message msg) {
40. switch (msg.what)
41. {
42. case MyTaskThread.MSG_FINISHED:
43. end_time = System.currentTimeMillis();
44. time = end_time - start_time;
45. �String s = " The end of the run,Pi="+ MyTaskThread.

pi+ " Time consumed:"
46. +
47. MyTaskThread.msTimeToDatetime(time);
48. tv_TaskOutputInfo.setText(s);
49. btn_ExitApp.setEnabled(true);
50. break;
51. default:
52. break;
53. }
54. }
55. };
 }
56.
57. @Override
58. public boolean onCreateOptionsMenu(Menu menu) {
59. getMenuInflater().inflate(R.menu.activity_main, menu);
60. return true;
 }
61.
62. private void startTask() {
63. myThread = new MyTaskThread(mHandler); // Create a thread
64. if (! myThread.isAlive())

Chapter 11 ■ Performance Optimization for Android Applications on x86

379

65. {
66. start_time = System.currentTimeMillis();
67. myThread.start(); // Start thread
68. }
 }
69.
70. private void exitApp() {
71. try {
72. if (myThread!=null)
73. {
74. myThread.join();
75. myThread = null;
76. }
77. } catch (InterruptedException e) {
78. }
79. finish(); // Exit the activity
80. �Process.killProcess(Process.myPid()); // Exit the application

process
81. }
 }
 

This code is similar to the code framework of the example MainActivity class in the
“Thread Example” section. The lines of code shown with a gray background are added to
estimate the task’s running time. Three variables are defined in line 16–18: start_time is
the task’s start time, end_time as the task’s end time, and time is the task’s running time.
These three variables are parts of the following formula:
 
time = end_time - start_time
 

In line 65, when you start the task threads, the machine’s current time is recorded in
the start_time variable at the same time. In lines 43–44, when the message is received
that the task thread has finished running, the machine’s time is recorded in end_time.
The currentTimeMillis function is a static function provided by the Java System class in
the java.lang package; it returns the current time in milliseconds.

5.	 Referring to the “Thread Communication” section’s example,
modify the project’s AndroidManifest.xml file to make it
comply with the requirements of Intel GPA monitoring.

After the coding is completed and you’ve compiled and generated the app, deploy it
to the target device.

Now you can use Intel GPA to analyze this application. See the steps in the
“Thread Communication” section. First you monitor and analyze the two CPU loads
(CPU XX Load indicators). During monitoring, click the Start button to begin running and
monitoring information recorded under Intel GPA. The results of the analysis are shown
in Figure 11-20.

Chapter 11 ■ Performance Optimization for Android Applications on x86

380

Figure 11-20.  Intel GPA analysis screen for SerialPi

Chapter 11 ■ Performance Optimization for Android Applications on x86

381

Figure 11-20.  (continued)

Figure 11-20(a) shows the analysis when you click the Start button, Figure 11-20(b)
shows the task thread running and Figure 11-20(c) shows the task thread at the end of
the run. From the three screens, you can see that the load on the CPU stays at a low level
before the app begins to run and after the end of the run. Once the computing task thread
starts to run, the load on the CPU rises sharply to 100% of load. You can also see that
while the task thread is running, only one of the two CPUs is at full capacity; the other
is at low load levels. By analyzing the graph, you can see that the 100% load does not
always occur on a specific CPU. Instead, the 100% load alternates between the two CPUs,
which reflects the Java Runtime time support for task scheduling: the processor system
is transparent to applications. Although a two-CPU load rate is subject to rotation, the
load rate is a complementary state: a rising load on one CPU means a decreasing load on
another. Thus the total load (sum of the loads of two CPUs at any time) does not exceed
the 100% load of a single CPU.

Optimized Application and Intel GPA Analysis
The preceding example uses code derived directly from the formula for calculating p.
Is there room for optimization? The answer is definitely yes. Doing so requires you to
examine the app’s algorithm and apply the optimization principles you’ve learned,
making full use of the Intel Atom processor’s hardware features.

Chapter 11 ■ Performance Optimization for Android Applications on x86

382

How do you tap the full performance potential of the Intel Atom processor? As
explained earlier, multi-core Intel Atom processors with Intel Hyper-Threading Technology
support multithreading running in parallel on multiple physical cores. For example, the
Lenovo K900 phone uses an Intel Atom Z2580 processor and supports two threads running
in parallel. This is the entry point for your algorithm optimization: you can divide and
conquer. By carefully analyzing the run function in the example MyTaskThread class in the
previous section, you can make computing tasks allocated to multiple (in this case, two)
threads run; and the threads running in parallel can make the app run faster.

To calculate the cumulative value of the integral area for p, in line 24 you calculated
the integral area one step at a time and added the cumulative sum. In this section you take
a different approach: you divide the integral area into many blocks and let each thread be
responsible for calculating a block. You get the p value by adding the cumulative area of
the blocks calculated by the threads. This way, you use a divide-and-conquer strategy to
complete the task distribution and get the final results. The optimized app is called ThreadPi.
When ThreadPi is calculating the cumulative value of the integral area (which is the p value),
each thread’s calculation step accumulates the step size to increase the total number of
threads so that each thread is responsible for the sum of their own area of the block.

The UI of the running ThreadPi app is shown in Figure 11-21.
The interface of this optimized application (ThreadPi) is the same as the original

application (SerialPi). In Figure 11-21(b), you can see that this application takes 13
seconds to calculate the value of p. The time is reduced to almost half that of the original
application (22 seconds). The only difference is that the application uses two threads to
calculate p.

Chapter 11 ■ Performance Optimization for Android Applications on x86

383

Figure 11-21.  User interface of ThreadPi

This application is based on modifying the original application code. The key
changes are as follows.

1.	 Modify the thread class of the computing tasks’ MyTaskThread
source code file MyTaskThread.java as follows:

 
 1. package com.example.threadpi;
 2. import android.os.Handler;
 3. import android.os.Message;
 
 4. public class MyTaskThread extends Thread {
 5. private Handler mainHandler;
 6. public static final int MSG_FINISHED = 1;
 7. private static final long num_steps = 200000000;
 8. // num_steps variable in formula, total steps
 9. private static final double step = 1.0 / num_steps;
10. // step variable in formula, step length
11. public static double pi = 0.0; // Calculated result of p

Chapter 11 ■ Performance Optimization for Android Applications on x86

384

12. public static final int num_threads = 2; // Thread count
13. private int myNum; // Thread #
 private static Object sharedVariable = new Object();
14. // synchronization lock variable for Pi variable
15. private static int finishedThreadNum = 0;
16. // count of threads finishing calculation
17.
18. static String msTimeToDatetime(long msnum){
19. �// The function to convert the number of milliseconds into hours:

minutes: seconds. Millis
20. long hh,mm,ss,ms, tt= msnum;
21. ms = tt % 1000; tt = tt / 1000;
22. ss = tt % 60; tt = tt / 60;
 mm = tt % 60; tt = tt / 60;
23. hh = tt % 60;
24. �String s = "" + hh +"hour "+mm+"minute "+ss + "秒 " + ms

+"milliseconds";
25. return s;
26. }
 
27. public void setStepStartNum(int n)
28. // set thread # for thread, in response to starting position of i
29. {
30. myNum = n;
31. }
32.
33. @Override
34. public void run()
35. {
36. double x, partialSum = 0.0;
37. long i;
38. for (i = myNum; i < num_steps; i += num_threads) {
39. x = (i + 0.5) * step;
40. partialSum += 4.0 / (1.0 + x * x);
41. }
42. synchronized (sharedVariable) {
43. pi += partialSum * step;
44. finishedThreadNum++;
45. if (finishedThreadNum >=num_threads) {
 // waiting all threads finishing run and send message
46. Message msg = new Message();
47. msg.what = MSG_FINISHED; //Define message type
48. mainHandler.sendMessage(msg); //Send message
49. }
50. }
51. }
 

Chapter 11 ■ Performance Optimization for Android Applications on x86

385

 public MyTaskThread(Handler mh) // constructor
 {
 super();
 mainHandler = mh;
 }
 }
 

The code segments shown with in bold are the main difference between ThreadPi
and SerialPi. Lines 10–13 define the variables required for multithreaded computing
tasks. The variable num_threads computes the number of threads when the computing
task starts. In this case, the Lenovo K900 has an Intel Atom processor with two logical
CPUs, so this value is set to 2. The myNum variable computes the thread number, which
is in the range 0 to num_threads – 1. The variable sharedVariable is introduced by a
synchronization lock applied to variable pi. Because pi is a simple variable, it cannot
be directly locked. The finishedThreadNum variable is the number of threads used to
complete the calculation. When the value of finishedThreadNum is equal to that of
num_threads, all the computing threads have finished running.

Lines 23–26 are a function you add specifically for MyTaskThread, the computing
thread. It marks the thread’s index number.

Lines 30–44 are the prototype code of the computing thread. Lines 30–35 are
the direct code to calculate p. Compared with the corresponding code in the original
application, you can see that the sum variable in the original app has been replaced with
partialSum, which reflects the fact that the area of this thread is only part of the total
area. The most important difference is in line 32: the step-length variable i is not 1 but
num_threads, which means the thread moves forward a few steps every time. The initial
position of variable I is not 0 but is derived from the thread number. This is a little like a
track and field competition, where each athlete (thread) starts at the beginning of their
lane rather than from the same starting point. The thread computation is like athletes
running in their own lanes on their own track.

Each thread calculates its sum and needs to add this data to the total cumulative
sum (the pi variable). This variable is shared by multiple threads, so you need to
add a synchronization lock. This step corresponds to lines 36–44. Line 36 adds the
synchronization lock, and line 37 adds the result of the thread’s calculation to the public
results of pi. Line 38 adds 1 to the number of threads at the end of the calculation. In line
39, by comparing the number of threads that have finished the calculation to the total
number of threads, you determine whether all the threads have finished running. Only at
after all threads have finished is the message sent to the main thread.

2.	 Modify the source code file of the main activity class
MainActivity.java as follows:

 
 1. package com.example.threadpi;
 2. import android.os.Bundle;
 3. import android.app.Activity;
 4. import android.view.Menu;
 5. import android.widget.Button;
 6. import android.view.View;
 7. import android.view.View.OnClickListener;

Chapter 11 ■ Performance Optimization for Android Applications on x86

386

 8. import android.os.Process;
 9. import android.widget.TextView;
10. import android.os.Handler;
11. import android.os.Message;
 
12. public class MainActivity extends Activity {
13. private MyTaskThread thrd[] = null;
14. private TextView tv_TaskOutputInfo;
15. private Handler mHandler;;
16. private long end_time;
17. private long time;
18. private long start_time;
 
19. @Override
20. public void onCreate(Bundle savedInstanceState) {
21. super.onCreate(savedInstanceState);
22. setContentView(R.layout.activity_main);
23. �tv_TaskOutputInfo =

(TextView)findViewById(R.id.taskOuputInfo);
24. TextView tv_Info = (TextView)findViewById(R.id.textView1);
25. �String ts = "This example currently has"+ MyTaskThread.num_

threads + "threads in this run on calculating the value of Pi";
26. tv_Info.setText(ts);
27. �final Button btn_ExitApp = (Button) findViewById(R.id.exitApp);
29. �btn_ExitApp.setOnClickListener(new /*View.*/OnClickListener(){
30. public void onClick(View v) {
31. exitApp();
32. }
33. });
34. �final Button btn_StartTaskThread = (Button) findViewById(R.

id.startTaskThread);
35. �btn_StartTaskThread.setOnClickListener(new /*View.*/

OnClickListener(){
36. public void onClick(View v) {
37. btn_StartTaskThread.setEnabled(false);
38. btn_ExitApp.setEnabled(false);
39. startTask();
40. }
41. });
42. mHandler = new Handler() {
43. public void handleMessage(Message msg) {
44. switch (msg.what)
45. {
46. case MyTaskThread.MSG_FINISHED:
47. end_time = System.currentTimeMillis();

Chapter 11 ■ Performance Optimization for Android Applications on x86

387

48. time = end_time - start_time;
49. �String s = "Run End,Pi="+ MyTaskThread.pi+ " Time

spent:"
50. + MyTaskThread.msTimeToDatetime(time);
51. tv_TaskOutputInfo.setText(s);
52. btn_ExitApp.setEnabled(true);
53. break;
54. default:
55. break;
56. }
57. }
58. };
59. }
60.
61. @Override
62. public boolean onCreateOptionsMenu(Menu menu) {
63. getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
64. }
65.
66. private void startTask() {
67. thrd = new MyTaskThread[MyTaskThread.num_threads];
68. start_time = System.currentTimeMillis();
69. for(int i=0; i < MyTaskThread.num_threads; i++){
70. thrd[i] = new MyTaskThread(mHandler); // Create a thread
71. thrd[i].setStepStartNum(i);
72. thrd[i].start();
 }
73. }
74.
75. private void exitApp() {
76. �for (int i = 0; i < MyTaskThread.num_threads && thrd

!= null; i++) {
77. try {
78. thrd[i].join(); // Wait for thread running to end
79. } catch (InterruptedException e) {
80. }
81. }
82. finish();
83. Process.killProcess(Process.myPid());
 }
 }
 

Chapter 11 ■ Performance Optimization for Android Applications on x86

388

The code segments in bold are the main difference between this application and
the original application. In line 13, the single thread object variable of the original
application changes to an array of threads. In lines 67–71, starting a single thread in the
original application is changed to starting all the threads in the array and setting the
index number of the thread when the app starts. The meaning of the thread number is
introduced in the MyTaskThread code description. And instead of waiting for the end of a
single thread, you wait for the end of the thread array (lines 74–79).

After finishing these optimizations, you need to compile, generate, and deploy the
application to on the target device, just as you did the original application. You can run
the application independently and measure its run time. The computing time is reduced
to almost half of its original length.

Next you can use Intel GPA to analyze the optimized application (ThreadPi). The
analysis process is the same as the process used for SerialPi. The results are shown in
Figure 11-22.

Figure 11-22.  Intel GPA analysis of ThreadPi

Chapter 11 ■ Performance Optimization for Android Applications on x86

389

Figure 11-22.  (continued)

Chapter 11 ■ Performance Optimization for Android Applications on x86

390

As you can see, when you click the Start button, the calculation (task) threads start
running. Both CPU loads raise from low load to 100% capacity. When the calculation
is complete, the CPU loads drop back to a low load condition. Unlike in the original
application, while the computing task is running, both CPUs are 100% loaded. There is no
longer any load rotation. This indicates that the optimized application has two parallel CPUs
working at full capacity on the calculation task, which makes the application runs faster.

Summary
This chapter introduced the basic principles of performance optimization, optimization
methods, and related tools for Android application development. Because Java is the
application development language of choice for Android developers, the optimization tools
presented in the previous chapter are mainly for Java. Java applications run in a virtual
machine and are inherently slower than C/C++ applications, which are directly compiled
and run on hardware instructions. In addition, due to the fundamental nature of C/C++,
many developers have more experience with C/C++ applications and have created more
optimization tools. As a result, C/C++ development shouldn’t be excluded from Android
app development. The next chapter introduces the Android NDK for C/C++ application
development along with related optimization methods and optimization tools.

391

Chapter 12

NDK and C/C++ Optimization

The previous chapter introduced the basic principles of performance optimization,
optimization methods, and related tools for Android application development. Because
Java is the recommended application development language for Android developers,
the optimization tools presented in Chapter 11 were mainly for Java. However, C/C++
development shouldn’t be excluded from Android app development. This chapter
introduce the Android NDK for C/C++ application development along with related
optimization methods and optimization tools.

Introduction to JNI
Java applications do not run directly on the hardware—they run in a virtual machine.
The source code of an application is not compiled to get hardware instructions, but is
instead compiled to allow a virtual machine interpret and execute code. For example,
Android applications run in the Dalvik virtual machine (DVM); its compiled code
is executable code for the DVM in .dex format. This feature means Java runs on the
virtual machine and ensures its cross-platform capability: that is, its “compile once, run
anywhere” feature. Dalvik has a just-in-time (JIT) compiler and is optimized to have a low
memory requirement.

Everything has pros and cons. Java’s cross-platform capability causes it to be less
connected to and limits its interaction with the local machine’s internal components,
making it difficult to use local machine instructions to take advantage of the machine’s
performance potential. It is difficult to use locally based instructions to run a huge existing
software library, and this limits its functionality and performance. Starting in Android 4.4
(KitKat), Google introduced Android Runtime (ART), which is an application runtime
environment that replaces Dalvik. ART transforms the application’s bytecode into native
instructions that are later executed by the device’s runtime environment. ART introduces
ahead-of-time (AOT) compilation by performing it when an application is installed.

Is there a way to make Java code and native code software collaborate and
share resources? The answer is yes, using the Java Native Interface (JNI), which is an
implementation method for a Java local operation. JNI is a Java platform defined by the
Java standard to interact with the code on the local platform, generally known as the host
platform. But this chapter is about the mobile platform; and in order to distinguish it from
the mobile cross-development host, we call it the local platform. The interaction between
Java Code and native application includes two directions: Java code calling native
functions (methods), and local application calls to the Java code. Relatively speaking,

Chapter 12 ■ NDK and C/C++ Optimization

392

the former method is used more in Android application development. So this chapter’s
emphasis is on the approach in which Java code calls native functions.

Java calls native functions through JNI by having the local method stored in the form
of library files. For example, on a Windows platform, the files are in .dll file format, and
on Unix/Linux machines, the files are in .so file format. An internal method of calling
the local library file enables Java to establish close contact with the local machine: this is
called the system-level approach for various interfaces.

JNI usually has two usage scenarios: first, to be able to use legacy code (for example,
prior to use C/C++, Delphi and other development tools); second, in order to better, more
directly interact with the hardware for better performance.

JNI’s general workflow is as follows: Java initiates calls so that the local function’s side
code (such as a function written in C/C++) runs. This time the object is passed over from
the Java side and run a local function Then the result value is returned to the Java code.
Here JNI is an adapter, completing mapping between the variables and functions (Java
method) between the Java language and native compiled languages (such as C/C++).
Java and C/C++ are very different in terms of function prototype definitions and variable
types. In order to make the two match, JNI provides a jni.h file to complete the mapping
between them. This process is shown in Figure 12-1.

C/C++ Codes

Call and parameters
transfer

java App
Codes

JNI

jni.h header
file

Return results

Class
MethodFunction

.dll/.so
database

Java
Virtual
Machine

Figure 12-1.  JNI general workflow

The general framework of a C/C++ function call via JNI and a Java program
(in particular, an Android application) is as follows:

1.	 A method of compiling native declared in a Java class
(C/C++ function).

2.	 The .java source code file containing the native method is
compiled.

Chapter 12 ■ NDK and C/C++ Optimization

393

3.	 The javah command generates a .h file, including a function
prototype for implementing the native method based on the
.class files.

4.	 C/C++ is used to implement the local method.

5.	 The recommended method for this step is to first copy the
function prototypes in the .h file and then modify the function
prototypes and add the function body. In this process, the
following points should be noted:

The JNI function call must use the C function. If it is a C++ •	
function, do not forget to add the extern C keyword.

Method names should use the following template: •	

Java_package_class_method, or Java_ package
name _ class name _ function method name.

6.	 The C/C++ file is compiled into a dynamic library
(under Windows, a .dll file; under Unix/Linux, a .so file).

Use the System.loadLibrary() or System.load() method in Java to load the
dynamic library that is generated. These two functions are slightly different:

System.loadLibrary() loads the default directory under the
local link library.

System.load() requires an absolute path, depending on the
local directory to add a cross-link library.

In the first step, Java calls the native C/C++ function; the format is not the same
for both C and C++. For example, for Java methods such as non-passing parameters
and returning a String class, C and C++ code for the function differ in the
following ways:

C code:•	
 
Call function:(*env) -> <jni function> (env, <parameters>)
Return jstring:return (*env)->NewStringUTF(env, "XXX");

 C++ code:•	
 
Call function:env -> <jni function> (<parameters>)
Return jstring:return env->NewStringUTF("XXX");
 

NewStringUTF is the Java String object’s function generated in C/C++,
provided by JNI.

Chapter 12 ■ NDK and C/C++ Optimization

394

Java Methods and C Function Prototype Java
Earlier you saw that in the code framework for Java programs to call a C/C++ function,
you can use the javah command, which generates the corresponding .h file for native
methods based on the .class files. The .h file is generated in accordance with certain
rules, to make the correct Java code to find the corresponding C function to execute.
Another good solution is to use env->RegisterNatives function to manually do the
mapping and avoid using javah.

For example, suppose you have the following Java code for Android:
 
 public class HelloJni extends Activity
1. {
2. public void onCreate(Bundle savedInstanceState)
3. {
4. TextView tv.setText(stringFromJNI()); // Use C function Code
5. }
6. public native String stringFromJNI();
7. }
 

For the C functions stringFromJNI() used on line 4, the function prototype in
the .h file generated by javah is
 
1. JNIEXPORT jstring JNICALL Java_com_example_hellojni_HelloJni_stringFromJNI
2. (JNIEnv *, jobject);
 

The C source code files to define the function code are roughly as follows:
 
1. /*
2.
3. Signature: ()Ljava/lang/String;
4. */
5. �jstring Java_com_example_hellojni_HelloJni_stringFromJNI

(JNIEnv* env, jobject thiz)
6. {
7.
8. return (*env)->NewStringUTF(env, "......");
9. }
 

From this code, you can see that the function name is quite long but still regular,
in full accordance with the naming convention java_package_class_method. That is,
the stringFromJNI() method in Hello.java corresponds to the Java_com_example_
hellojni_HelloJni_stringFromJNI() method in C/C++.

Notice the comment for Signature: ()Ljava/lang/String;. Here the () in
()Ljava/lang/String; indicates the function parameter is empty, which means, other
than the two parameters JNIEnv * and jobject, there are no other parameters. JNIEnv *
and jobject are two parameters that all JNI functions must have for the JNI environment
and corresponding Java class (or object), respectively. Ljava/lang/String; indicates that
the function’s return value is a Java String object.

Chapter 12 ■ NDK and C/C++ Optimization

395

Java and C Data Type Mapping
As mentioned, Java and C/C++ have very different variable types. In order to make the
two match, JNI provides a mechanism to complete the mapping between Java and C/C++.
The relationships of the main types are shown in Table 12-1.

Table 12-1.  The Correspondence between Java Types and Local (C/C++) Types

Java Type Native Type Description

boolean jboolean C/C++ 8-bit integer

byte jbyte C/C++ unsigned 8-bit integer

char jchar C/C++ unsigned 16-bit integer

short jshort C/C++ signed 16-bit integer

int jint C/C++ signed 32-bit integer

long jlong C/C++ unsigned 64-bit integer

float jfloat C/C++ 32-bit floating point

double jdouble C/C++ 64-bit floating point

void void N/A

Object jobject Any Java object, or does not
correspond to an object of Java type

Class jclass Class object

String jstring String object

Object[] jobjectArray Array of any object

boolean[] jbooleanArray Boolean array

byte[] jbyteArray Array of bits

char[] jcharArray Character array

short[] jshortArray Short integer array

int[] jintArray Integer array

long[] jlongArray Long integer array

float[] jfloatArray Floating-point array

double[] jdoubleArray Double floating-point array

Chapter 12 ■ NDK and C/C++ Optimization

396

When a Java parameter is passed, you can use C code as follows:

•	 Basic types can be used directly: For example, double and jdouble
are interchangeable. Basic types are those from boolean through
void in Table 12-1. In such a type, if the user passes a boolean
parameter into the method, then there is a local method jboolean
corresponding to the boolean type. Similarly, if the local methods
return a jint, then an int is returned in Java.

•	 Java object usage: An Object object has String objects and a
generic object. The two objects are handled a little differently:

·· String object: The String object passed by Java programs
is the corresponding jstring type in the local method. The
jstring type and char * in C are different. So if you just use
it as a char *, an error will occur. Therefore, jstring nust be
converted into a char * in C/C++ prior to use. Here you use
the JNIEnv method for conversion.

·· Object object: Use the following code to get the object
handler for the class:

 
jclass objectClass = (env)->FindClass("com/ostrichmyself/jni/Structure");

Use the following code to get the required domain handler ··
for the class:

 
jfieldID str = (env)->GetFieldID(objectClass,"nameString","Ljava/lang/String;");
jfieldID ival = (env)->GetFieldID(objectClass,"number","I");

Then use the following similar code to assign values to the ··
incoming fields of the jobject object:

 
(env)->SetObjectField(theObjet,str,(env)->NewStringUTF("my name is D:"));
(env)->SetShortField(theObjet,ival,10);

If there is no incoming object, then C code can use the ··
following code to generate a new object:

 
jobject myNewObjet = env->AllocObject(objectClass);

 Note■■   NewObject() needs to be called instead if you want the object constructor to
be called.

Chapter 12 ■ NDK and C/C++ Optimization

397

Java Array Processing

For an array type, JNI provides some operaable functions. For example, GetObjectArrayElement
can take the incoming array and use NewObjectArray to create an array structure.

Resource Release

The principle of resource release is as follows:

Objects of C/C++ new or object of malloc need to use the C/C++ •	
to release.

If the new object of the •	 JNIEnv method is not used by Java,
it must be released.

To convert a string object from Java to UTF using •	
GetStringUTFChars, you need to open the memory, and you must
use ReleaseStringUTFChars method to release the memory after
you are finished using char *.

These are brief descriptions of the basic ideas of type mapping when Java exchanges
data with C/C++. For more information about Java and C/C++ data types, please refer to
related Java and JNI books, documentation, and examples.

Introduction to NDK
You now know that the Java code can access local functions (such as C/C++) using JNI.
To achieve this, you need development tools. As stated earlier, an entire set of
development tools based on the core Android SDK are available that you can use to
cross-compile Java applications to applications that can run on the target Android device.
Similarly, you need cross-development tools to compile C/C++ code into applications
that can run on an Android device. This tool is the Android Native Development Kit
(NDK), which you can download from http://developer.android.com.

Prior to the NDK, third-party applications on the Android platform were developed
on a special Java-based DVM. The announcement of the native SDK allows developers
to directly access Android system resources and to implement parts of apps using
native-code languages such as C and C++. The application package file (.apk) can be
directly embedded into the local library. In short, with the NDK, Android applications
originally run on the DVM can use native languages like C/C++ for program execution.
This brings the following benefits:

Performance improvements from using native code to develop •	
parts of programs that require high performance, and by directly
accessing the CPU and hardware

The ability to reuse existing native code•	

Of course, compared to the DVM, using native SDK programming also has some
disadvantages, such as added program complexity, difficulty in guaranteeing compatibility,
the inability to access the Framework API, more difficult debugging, decreased flexibility,
and so on. In addition, access to JNI requires additional performance overhead.

http://developer.android.com/

Chapter 12 ■ NDK and C/C++ Optimization

398

In short, NDK application development has pros and cons. You need to use NDK at
your own discretion. The best strategy is to use NDK to develop parts of the application
for which native code will improve performance.

NDK includes the following major components:

Tools and build file needed to generate native code libraries •	
from C/C++ sources. These include a series of NDK
commands, including javah (use the .class files to generate
the corresponding .h files) and gcc (described later)

A consistent local library embedded in the application •	
package (.apk files) that can be deployed in Android devices

Support for some native system header files and libraries for •	
all future Android platforms

Documentation, samples, and tutorials•	

The process framework of NDK application development is shown in Figure 12-2. An
Android application consists of three parts: Android application files, Java native library files,
and dynamic libraries. These three parts are generated from different sources through the
respective generation path. For an ordinary Android application, the Android SDK generates
Android applications files and Java native library files. The Android NDK generates the
dynamic library files (the file with the .so extension) using native code (typically C source
code files). Finally, Android application files, Java native library files, and dynamic libraries
are installed on the target machine, and complete collaborative applications run.

Android NDK Application

Dalvik
Application

App File

Makefile

Compile and Link
C Code

Use javah -jni to
Create Header File

Dynamic Libraries

C Source Code Head File

Java Local
Library

Documents

Javac Compile Javac Compile

Java Local
Libraries

Java Code

Android
Application
Documents

Figure 12-2.  Flowchart of Android NDK application development

Chapter 12 ■ NDK and C/C++ Optimization

399

Application projects developed with NDK (referred to as NDK application projects)
have the components shown in Figure 12-3. Unlike typical applications developed using
the Android SDK, in addition to the Dalvik class code, manifest files, and resources, NDK
application projects also include JNI and a shared library generated by NDK.

Android NDKApplication

Android
manifest

Resource
bundle

Dalvik
classes

Libraries &
JNI

Figure 12-3.  Application components for an Android NDK application

Android adds NDK support in its key API version. Each version includes some new
NDK features, simple C/C++, a compatible Standard Template Library (STL), hardware
expansion, and so on. These features make Android more open and more powerful. The
mapping of the Android API and its corresponding relationship with the NDK are shown
in Table 12-2.

Table 12-2.  Relationship between the Main Android API and NDK Versions

API Version Supported NDK Version

API Level 3 Android 1.5 NDK 1

API Level 4 Android 1.6 NDK 2

API Level 7 Android 2.1 NDK 3

API Level 8 Android 2.2 NDK 4

API Level 9 Android 2.3 NDK 5

API Level 12 Android 3.1 NDK 6

API Level 14 Android 4.0.1 NDK 7

API Level 15 Android 4.0.3 NDK 8

API Level 16 Android 4.1 NDK 8b

API Level 16 Android 4.2 NDK 8d

API Level 17 Android 4.2 NDK 9

API Level 18 Android 4.3 NDK 9d

API Level 19 Android 4.4 NDK 10

Chapter 12 ■ NDK and C/C++ Optimization

400

TIP: THE MEANING OF APPLICATION BINARY INTERFACE (ABI)

Each piece of native code generated using the Android NDK is given a matching
application binary interface (ABI). The ABI precisely defines how the application and
its code interact with the system at runtime. An ABI is roughly like instruction set
architecture (ISA) in computer architecture.

A typical ABI usually contains the following information:

Machine code the CPU instruction set should use··

Runtime memory access ranking··

The format of executable binary files (dynamic libraries, ··
programs, and so on) as well as what type of content is allowed
and supported

Different conventions used in passing data between the ··
application code and systems (for example, when the
function call registers and/or how to use the stack, alignment
restrictions, and so on)

Alignment and size limits of enumerated types, structure fields, ··
and array

A unique name; the available list of function symbols for ··
application machine code at runtime usually comes from a very
specific set of libraries

Android currently supports the following ABI types:

·· armeabi: ABI name for the ARM CPU, which supports at least the
ARMv5TE instruction set.

·· armeabi-v7a: Another ABI name for ARM-based CPUs; it extends
the armeabi CPU instruction set extensions, such as Thumb-2
instruction set extensions and floating-point processing unit
directives for vector floating-point hardware.

·· x86: ABI name generally known for supporting the x86 or IA-32
instruction set of the CPU. More specifically, its target is often
referred to in the following sections as the i686 or Pentium Pro
instruction set. Intel Atom processors belong to this ABI type.

Chapter 12 ■ NDK and C/C++ Optimization

401

·· MIPS: ABI for MIPS-based CPUs that support the MIPS32r1
instruction set. The ABI includes the following features: MIPS32
revision 1 ISA, little-endian, O32, hard-float, and no DSP
applicationThese types have different compatibilities. x86 is
incompatible with armeabi and armeabi-v7a. The armeabi-v7a
machine is compatible with armeabi, which means the armeabi
framework instruction set can run on an armeabi-v7a machine,
but not necessarily the other way around, because some
ARMv5 and ARMv6 machines do not support armeabi-v7a code.
Therefore, when you build the application, users should be
chosen carefully based on their corresponding ABI machine type.

Installing NDK and Setting Up the Environment
The NDK is included in Intel Beacon Mountain for Linux, Intel Beacon Mountain for OS X
and Intel Integrated Native Developer Experience (INDE) for Windows host system, and
is installed when you install one of those Intel tools. The installation is detailed in Chapter
3. An environment setup program is also included in Intel INDE; you can download it and
run the setup automatically.

Installing CDT
CDT is an Eclipse plug-in that compiles C code into .so shared libraries. After installing
the Cygwin and NDK module, you already can compile C code into .so shared libraries
at the command line, which means the core component of Windows NDK is already
installed. If you prefer to use the Eclipse IDE rather than a command-line compiler to
compile the local library, you need to install the CDT module.

If you need to install it, follow these steps.

1.	 Visit the official Eclipse web site
(www.eclipse.org/cdt/downloads.php) and download the
latest CDT package.

2.	 Start Eclipse. Select Help ➤ Install New Software ➤ Start to
install CDT.

3.	 In the pop-up Install dialog box, click Add.

4.	 In the pop-up Add Repository dialog box, enter a name.

5.	 For Location, you can enter the local address or the Internet
address. If you use an Internet address, Eclipse goes to the
Internet to download and install the package; a local
address directs Eclipse to install the software from the local
package. In this case, enter the local address; then click
the Archive button in the pop-up dialog box and enter the
directory and file name for the CDT file you downloaded.
If you downloaded it from the Internet, the address is
http://download.eclipse.org/tools/cdt/releases/galileo/.

http://www.eclipse.org/cdt/downloads.php
http://download.eclipse.org/tools/cdt/releases/galileo/

Chapter 12 ■ NDK and C/C++ Optimization

402

6.	 After returning to the Install dialog box, click to select the
software components that need to be installed. In this
example, CDT Main Feature is the required component
you need to select. A list of detailed information about CDT
components to install is displayed, as shown in Figure 12-4.

Figure 12-4.  Detailed information for the CDT component installation

7.	 Review the License dialog box, and click “I accept the terms of
the license agreement” to continue.

8.	 The installation process starts. When it is finished, restart
Eclipse to complete the installation.

Chapter 12 ■ NDK and C/C++ Optimization

403

NDK Examples
This section provides an example to illustrate the use of JNI and NDK. As described
previously, NDK can be run from both the command line and in the Eclipse IDE. The
example uses both methods to generate the same NDK application.

Using the Command Line to Generate a Library File
The app name in this example is jnitest. It is a simple example to demo the JNI code
framework. The steps are as follows:

1.	 Create an Android app project, compile the code, and generate
the .apk package. You first create a project in Eclipse, and
name the project jnitest. Choose Build SDK to support the
x86 version of the API, as shown in Figure 12-5. For the other
options, use the default values. Then generate the project.

Figure 12-5.  Setting up the jnitest project parameters

Chapter 12 ■ NDK and C/C++ Optimization

404

After the project has been generated, the file structure is created as shown in
Figure 12-6. Note the directory where the library file (in this case, android.jar) is located,
because later steps use this parameter.

a.	 Modify the Java files to create code using a C function. In
this case, the only Java file is MainActivity.java; modify
its code as follows:

 
1. package com.example.jnitest;
2. import android.app.Activity;
3. import android.widget.TextView;
4. import android.os.Bundle;
5. public class MainActivity extends Activity
6. {
7. @Override
8. public void onCreate(Bundle savedInstanceState)
9. {
10. super.onCreate(savedInstanceState);
11. TextView tv = new TextView(this);
12. tv.setText(stringFromJNI()); // stringFromJNIas a C function
13. setContentView(tv);
14. }

Figure 12-6.  File structure of the jnitest project

Chapter 12 ■ NDK and C/C++ Optimization

405

15. public native String stringFromJNI();
16.
17. static {
18. System.loadLibrary("jnitestmysharelib");
19. }
20. }
 

The code is very simple. In lines 11–13, you use a TextView to display a string returned
from the stringFromJNI() function. But unlike in the Android application discussed earlier,
nowhere in the entire project can you find the implementation code for this function. So
where does the function implementation occur? Line 15 declares that the function is not a
function written in Java, but is instead written by the local (native) libraries, which means
the function is outside of Java. Because it is implemented in the local library, the question
is, what libraries? The answers are described in lines 17–20. The parameter of the static
function LoadLibrary of the System class describes the name of the library: the library is
one of shared libraries in Linux named libjnitestmysharelib.so. The application code
declared in the static area will be executed before Activity.onCreate. The library will be
loaded into memory at the first use.

Interestingly, when the loadLibrary function loads the library name, it
automatically adds the lib prefix before the parameters and the .so suffix at the end.
Of course, if the name of the library file specified by parameter starts with lib, the
function does not add the lib prefix.

b.	 Generate the project in Eclipse. Only build it—do not
run it. This compiles the project, but the .apk file is not
deployed to the target machine.

When this step is completed, the corresponding .class files are generated in the
project directory bin\classes\com\example\jnitest. This step must be completed
before the next step, because the next step needs to use the appropriate .class files.

2.	 Create a jni subdirectory in the project root directory. For
example, if the project root directory is E:\temp\AndroidDev\
workspace\jnitest, then you can use the md command to
create the jni subdirectory:
 
E:\temp\Android Dev\workspace\jnitest>mkdir jni
 

Test whether the directory has been built:
 
E:\temp\Android Dev\workspace\jnitest>dir
......
2013-02-01 00:45 <DIR> jni
 

Chapter 12 ■ NDK and C/C++ Optimization

406

3.	 Create a C interface file. This is the C function prototype that
works with the local (external) function. Specific to this case
are the C function prototypes of the stringFromJNI function.
You declare in Java that you need to use the prototype of the
external function; but it is in the Java format, so you need to
change it to C format, which means building a C JNI interface
file. This step can be done with the javah command:

 
$ javah -classpath <directory of jar and .class documents> -d <directory of
.h documents> <the package + class name of class>
 

The command parameters are as follows:

-classpath: The class path

-d: The storage directory for the generated header file

<class name>: The complete .class class name of a native
function being used, which consists of “the package + class
name of class” component.

For this example, follow these steps:

a.	 Enter the root directory using the command line (for this
example, E:\temp\Android Dev\workspace\jnitest).

b.	 Run the following command:
 
E:> javah -classpath "D:\Android\android-sdk\platforms\android-15\android.jar";
bin/classes com.example.jnitest.MainActivity
 

In this example, the class of the native function stringFromJNI’s used is
MainActivity; and the resulting file after compiling this class is MainActivity.class,
which is located in the root directory of the project bin\classes\com\example directory.
The first line of the source code file of its class MainActivity.java shows where the
package of the class is:
 
package com.example.jnitest;
 

Therefore, this is the command: “class name = package name.Class name”
(be careful not to use the .class suffix).

-classpath first needs to explain the Java library path of the entire package
(in this case, the library file is android.jar; its location is at D:\Android\android-sdk\
platforms\android-15\android.jar). Second, it needs to define the target class
(MainActivity.class) directory. In this case, it is bin\classes under
bin\classes\com\example\MainActivity.class, both separated by semicolons (C).

Chapter 12 ■ NDK and C/C++ Optimization

407

c.	 Now the .h file is generated in the current directory (the
project root directory). The file defines the C language
function interface. You can test the output:

 
E:\temp\Android Dev\workspace\jnitest>dir
......
2013-01-31 22:00 3,556 com_example_jnitest_MainActivity.h
 

It is apparent that a new .h file has been generated. The document reads as follows:
 
1. /* DO NOT EDIT THIS FILE - it is machine generated */
2. #include <jni.h>
3. /* Header for class com_example_jnitest_MainActivity */
4.
5. #ifndef _Included_com_example_jnitest_MainActivity
6. #define _Included_com_example_jnitest_MainActivity
7. #ifdef __cplusplus
8. extern "C" {
9. #endif
10. #undef com_example_jnitest_MainActivity_MODE_PRIVATE
11. #define com_example_jnitest_MainActivity_MODE_PRIVATE 0L
12. #undef com_example_jnitest_MainActivity_MODE_WORLD_READABLE
13. #define com_example_jnitest_MainActivity_MODE_WORLD_READABLE 1L
14. #undef com_example_jnitest_MainActivity_MODE_WORLD_WRITEABLE
15. #define com_example_jnitest_MainActivity_MODE_WORLD_WRITEABLE 2L
16. #undef com_example_jnitest_MainActivity_MODE_APPEND
17. #define com_example_jnitest_MainActivity_MODE_APPEND 32768L
18. #undef com_example_jnitest_MainActivity_MODE_MULTI_PROCESS
19. #define com_example_jnitest_MainActivity_MODE_MULTI_PROCESS 4L
20. #undef com_example_jnitest_MainActivity_BIND_AUTO_CREATE
21. #define com_example_jnitest_MainActivity_BIND_AUTO_CREATE 1L
22. #undef com_example_jnitest_MainActivity_BIND_DEBUG_UNBIND
23. #define com_example_jnitest_MainActivity_BIND_DEBUG_UNBIND 2L
24. #undef com_example_jnitest_MainActivity_BIND_NOT_FOREGROUND
25. #define com_example_jnitest_MainActivity_BIND_NOT_FOREGROUND 4L
26. #undef com_example_jnitest_MainActivity_BIND_ABOVE_CLIENT
27. #define com_example_jnitest_MainActivity_BIND_ABOVE_CLIENT 8L
28. #undef com_example_jnitest_MainActivity_BIND_ALLOW_OOM_MANAGEMENT
29. #define com_example_jnitest_MainActivity_BIND_ALLOW_OOM_MANAGEMENT 16L
30. #undef com_example_jnitest_MainActivity_BIND_WAIVE_PRIORITY
31. #define com_example_jnitest_MainActivity_BIND_WAIVE_PRIORITY 32L
32. #undef com_example_jnitest_MainActivity_BIND_IMPORTANT
33. #define com_example_jnitest_MainActivity_BIND_IMPORTANT 64L
34. #undef com_example_jnitest_MainActivity_BIND_ADJUST_WITH_ACTIVITY
35. #define com_example_jnitest_MainActivity_BIND_ADJUST_WITH_ACTIVITY 128L
36. #undef com_example_jnitest_MainActivity_CONTEXT_INCLUDE_CODE
37. #define com_example_jnitest_MainActivity_CONTEXT_INCLUDE_CODE 1L

Chapter 12 ■ NDK and C/C++ Optimization

408

38. #undef com_example_jnitest_MainActivity_CONTEXT_IGNORE_SECURITY
39. #define com_example_jnitest_MainActivity_CONTEXT_IGNORE_SECURITY 2L
40. #undef com_example_jnitest_MainActivity_CONTEXT_RESTRICTED
41. #define com_example_jnitest_MainActivity_CONTEXT_RESTRICTED 4L
42. #undef com_example_jnitest_MainActivity_RESULT_CANCELED
43. #define com_example_jnitest_MainActivity_RESULT_CANCELED 0L
44. #undef com_example_jnitest_MainActivity_RESULT_OK
45. #define com_example_jnitest_MainActivity_RESULT_OK -1L
46. #undef com_example_jnitest_MainActivity_RESULT_FIRST_USER
47. #define com_example_jnitest_MainActivity_RESULT_FIRST_USER 1L
48. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_DISABLE
49. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_DISABLE 0L
50. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_DIALER
51. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_DIALER 1L
52. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_SHORTCUT
53. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_SHORTCUT 2L
54. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_SEARCH_LOCAL
55. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_SEARCH_LOCAL 3L
56. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_SEARCH_GLOBAL
57. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_SEARCH_GLOBAL 4L
58. /*
59. * Class: com_example_jnitest_MainActivity
60. * Method: stringFromJNI
61. * Signature: ()Ljava/lang/String;
62. */
63. �JNIEXPORT jstring JNICALL Java_com_example_jnitest_MainActivity_

stringFromJNI
64. (JNIEnv *, jobject);
65.
66. #ifdef __cplusplus
67. }
68. #endif
69. #endif
 

In this code, pay special attention to lines 63–64, which are C function prototypes
of a local function stringFromJNI.

4.	 Compile the corresponding C file. This is the true realization
of a local function (stringFromJNI). The source code file is
obtained by modifying the .h file based on the previous steps.

Create a new .c file under the jni subdirectory in the project. The file name can be
anything; in this case, it is jnitestccode.c. The contents are as follows:
 
1. #include <string.h>
2. #include <jni.h>
3. �jstring Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv* env,

jobject thiz)

Chapter 12 ■ NDK and C/C++ Optimization

409

4. {
5. �return (*env)->NewStringUTF(env, "Hello from JNI !"); // Newly added

code
6. }
 

The code that defines the function implementation is very simple. Line 3 is the Java
code used in the prototype definition of the function stringFromJNI; it is basically a copy
of the corresponding contents of the .h file obtained from lines 63–64 of com_example_
jnitest_MainActivity.h), slightly modified to make the point. The prototype formats
of this function are fixed; JNIEnv* env and jobject thiz are inherent parameters of
JNI. Because the parameter of the stringFromJNI function is empty, there are only two
parameters in the generated C function. The role of the code in the fifth line is to return
the string “Hello from JNI!” as the return value.

The code in line 2 is the header file that contains the JNI function, which is required
for any functions that use JNI. As it relates to the string function, line 1 contains the
corresponding header file in this case. After completing these steps, the .h file has no use
and can be deleted.

5.	 Create the NDK makefile file in the jni directory. These
documents are mainly Android.mk and Application.mk:
Android.mk is required, but if you use the default application
configuration, you do not need Application.mk. The specific
steps are as follows:

a.	 Create a new Android.mk text file under the jni directory
in the project. This file is used to tell the compiler about
some requirements, such as which C files to compile,
what file name to use for compiled code, and so on. Enter
the following:
 
1. LOCAL_PATH := $(call my-dir)
2. include $(CLEAR_VARS)
3. LOCAL_MODULE := jnitestmysharelib
4. LOCAL_SRC_FILES := jnitestccode.c
5. include $(BUILD_SHARED_LIBRARY)
 

Line 3 represents the generated .so file name (identifying each module described in
your Android.mk file). It must be consistent with parameter values of the System.loadLibrary
function in the Java code. This name must be unique and may not contain any spaces.

Note■■  T he build system automatically generates the appropriate prefix and suffix;
in other words, if one is the shared library module named jnitestmysharelib, then a
libjnitestmysharelib.so file is generated. If you name the library libhello-jni, the
compiler does not add a lib prefix and generates libhello-jni.so too.

Chapter 12 ■ NDK and C/C++ Optimization

410

The LOCAL_SRC_FILES variable on line 4 must contain the C or C++ source code files
to be compiled and packaged into modules. The previous steps create a C file name.

Note■■   You do not have to list the header files and include files here, because the
compiler automatically identifies the dependent files for you—just list source code files
that are directly passed to the compiler. In addition, the default extension name of C++
source files is .cpp. It is possible to specify a different extension name, as long as you
define the LOCAL_DEFAULT_CPP_EXTENSION variable. Don’t forget the period character at
the start (.cxx, rather than cxx).

The previous code in lines 3 and 4 is very important and must be modified for each
NDK application based on its configuration. The contents of the other lines can be copied
from the example.

b.	 Create an Application.mk text file under the jni
directory in the project. This file is used to tell the
compiler the specific settings for this application. Enter
the following:
 
APP_ABI := x86
 

This file is very simple; the object code generated by the application instructions is
for 86 architecture, so you can run the application on Intel Atom machines. For APP_ABI
parameters, you can use any architecture (x86, armeabi, armeabi-v7a or MIPS) that you
want to support.

6.	 Compile the .c file to the .so shared library file. Go to the
project root directory (where AndroidManifest.xml is
located) and run the ndk-build command:

 
E:\temp\Android Dev\workspace\jnitest>ndk-build
D:/Android/android-ndk-r8d/build/core/add-application.mk:128: Android NDK:
WARNING: APP_PLATFORM android-14 is larger than android:minSdkVersion 8 in
./AndroidM
anifest.xml
"Compile x86 : jnitestmysharelib <= jnitestccode.c
SharedLibrary : libjnitestmysharelib.so
Install : libjnitestmysharelib.so => libs/x86/libjnitestmysharelib.so
 

This command adds two subdirectories (libs and obj) in the project folder
and creates a .so file (command execution information prompt file named
libjnitestmysharelib.so) under the obj directory.

If these steps do not define the specified ABI in the Application.mk file, the ndk-build
command generates object code for the ARM architecture (armeabi). If you want to

Chapter 12 ■ NDK and C/C++ Optimization

411

Figure 12-7.  jnitest application interface

generate the x86 architecture instructions, you can do so using the ndk-build APP_ABI = x86
command to remedy the situation. The architecture of the object code generated by this
command is still x86.

7.	 Run the project. Figure 12-7 shows the application running on
the target device.

Generating a Library File in the IDE
The previous section described the process of compiling C files into dynamic library
.so files that can be run on the Android target device. To do this, you run the ndk-build
command in the command line. You can also complete this step in the Eclipse IDE.

Eclipse supports direct NDK integration. You can install CDT into Eclipse, create
an Android project to which you want to add C/C++ code, create a jni/ directory in
your project directory, place your C/C++ sources file in the same directory, and put the
Android.mk file into it—this is a makefile that tells the Android build-system how to build
your files.

Chapter 12 ■ NDK and C/C++ Optimization

412

If for some reason, you need to manually build the code, you can use the following
process to generate the library files in the IDE. The code in steps 1–7 is exactly the same as
in the previous section, except that in step 6, you compile .c files into .so shared library
files. This is explained in detail in a moment:

1.	 Compile the .c file into the .so shared library file. Right-click
the project name, select Build Path ➤ Config Build Path, and,
in the pop-up dialog box, select the Builders branch. Click the
New button in the dialog box, and then; double-click Program
in the prompt dialog box. This process is shown in Figure 12-8.

Figure 12-8.  Entering parameters settings for the interface to compile C code in Eclipse

2.	 In the pop-up Edit Configuration dialog box, for the Main tab
settings, enter the following:

Location: The path to the Cygwin bash.exe

Working Directory: The bin directory of Cygwin

Chapter 12 ■ NDK and C/C++ Optimization

413

Figure 12-9.  Main tab setting in the Edit Configuration dialog box

Arguments:
 
--login -c "cd '/cygdrive/E/temp/Android
Dev/workspace/jnitest' && $ANDROID_NDK_ROOT/ndk-build"
 
E/temp/Android Dev/workspace/jnitest is the drive letter
and path for the project. The settings are shown in Figure 12-9.

3.	 Configure the Refresh tab, ensuring that the The Entire
Workspace and Recursively Include Sub-folders items are
selected, as shown in Figure 12-10.

Chapter 12 ■ NDK and C/C++ Optimization

414

4.	 Reconfigure the Build Options tab. Select During Auto Builds
and Specify Working Set of Relevant Resources, as shown in
Figure 12-11.

Figure 12-10.  Edit Configuration dialog box Refresh tab settings

Chapter 12 ■ NDK and C/C++ Optimization

415

Figure 12-11.  Edit Configuration dialog box Build Options tab settings

5.	 Click the Specify Resources button. In the Edit Working Set
dialog box, select the jni directory, as shown in Figure 12-12.

Chapter 12 ■ NDK and C/C++ Optimization

416

6.	 Save the configuration. It will automatically compile C-related
code under the jni directory and output the corresponding
.so library files to the project’s libs directory. The libs
directory is created automatically. In the Console window,
you can see the output of the build is as follows:

 
/cygdrive/d/Android/android-ndk-r8d/build/core/add-application.mk:128:
Android NDK: WARNING: APP_PLATFORM android-14 is larger than
android:minSdkVersion 8 in ./AndroidManifest.xml
Cygwin : Generating dependency file converter script
Compile x86 : jnitestmysharelib <= jnitestccode.c
SharedLibrary : libjnitestmysharelib.so
Install : libjnitestmysharelib.so => libs/x86/libjnitestmysharelib.so

Figure 12-12.  Select source code and directories where related files are located

Chapter 12 ■ NDK and C/C++ Optimization

417

Figure 12-13.  The jnitest project structure after NDK library files are generated

Workflow Analysis for NDK Application Development
The process of generating an NDK project as described works naturally to achieve
C library integration with Java. You compile .c files into .so shared library files. The
intermediate version of the libraries is put into the obj directory, and the final version is
put into the libs directory. When this is completed, the project file structure is created
as shown in Figure 12-13.

When you run the project, the shared library .so files are in the project directory on
the host machine and are packed in a generated .apk file. The .apk file is essentially a
compressed file; you can use compression software like WinRAR to view its contents. For
this example, you can find the .apk file in the bin subdirectory of the project directory;
open it with WinRAR to show the file structure. The content of the lib subdirectory of the
.apk is a clone of the content of the project’s lib subdirectory.

When the .apk is deployed to the target machine, it is unpacked. The .so files are
placed in the /data/dat/XXX/lib directory, where XXX is the application package name.
For this example, the directory is /data/data/com.example.jnitest/lib. You can view
the file structure of the target machine under the Eclipse DDMS; the file structure for

Chapter 12 ■ NDK and C/C++ Optimization

418

the example is shown in Figure 12-14. If you are interested, you can try it on the
command line, using the adb shell command to view the corresponding contents in the
target file directory.

Figure 12-14.  jnitest application deployment target file structure

In addition, if you run the jnitest application in an emulator (in this case, the target
machine is a virtual machine), you can see the following output in the Eclipse Logcat
window:
 
1. 07-10 05:43:08.579: E/Trace(6263): error opening trace file: No such file
or directory (2)
2. 07-10 05:43:08.729: D/dalvikvm(6263): Trying to load lib
/data/data/com.example.jnitest/lib/libjnitestmysharelib.so 0x411e8b30
3. 07-10 05:43:08.838: D/dalvikvm(6263): Added shared lib
/data/data/com.example.jnitest/lib/libjnitestmysharelib.so 0x411e8b30
4. 07-10 05:43:08.838: D/dalvikvm(6263): No JNI_OnLoad found in
/data/data/com.example.jnitest/lib/libjnitestmysharelib.so 0x411e8b30,
skipping init
5. 07-10 05:43:11.773: I/Choreographer(6263): Skipped 143 frames! The
application may be doing too much work on its main thread.
6. 07-10 05:43:12.097: D/gralloc_goldfish(6263): Emulator without GPU
emulation detected.
 

Lines 2–3 are reminders of the .so shared library loaded in the application.

Chapter 12 ■ NDK and C/C++ Optimization

419

NDK Compiler Optimization
From the example, you can see that the NDK tool’s core role is to compile source code
into a .so library file that can run on an Android machine. The .so library file is put into
the lib subdirectory of the project directory, so that when you use Eclipse to deploy
applications, you can deploy the library files to the appropriate location on a target
device, and the application can using the library function.

Note■■  T he nature of the NDK application is to establish a code framework that complies
with the JNI standard, to let Java applications use a local function beyond the scope of the
virtual machine.

The key NDK command to compile the source code into a .so library file is
ndk-build. This command is not actually a separate command, but an executable script.
It calls the make command in the GNU cross-development tools to compile a project;
and make calls, for example, the gcc compiler to compile the source code to complete the
process, as shown in Figure 12-15. Of course, you can also directly use .so shared libraries
developed by third parties that are already in Android applications, thus avoiding the
need to write your own library (function code).

As Figure 12-15 shows, the GNU compiler gcc is the core tool in NDK to complete
C/C++ source code compilation. gcc is the standard Linux compiler, which can compile
and link C, C++, Object-C, FORTRAN, and other source code on the local machine.
Not only can the gcc compiler do local compiling, but it can also do cross-compiling.
This feature has been used by Android NDK and other embedded development tools.
In compiler usage, gcc cross-compiling is compatible with native compiling; that is,

Figure 12-15.  The working mechanism of NDK tools

Chapter 12 ■ NDK and C/C++ Optimization

420

command parameters and switches of locally compiled code can essentially be ported
without modification to cross-compiling code. Therefore, the gcc compiling method
described next is generic for both local and cross-compiling.

Chapter 11 mentioned that some optimizations can be done automatically by the
compiler, which is referred to as compiler optimization. For systems based on Intel x86
architecture processors, in addition to the GNU gcc compiler, the Intel C/C++ compiler
is also good. Relatively speaking, because the Intel C/C ++ compiler fully utilizes the
features of Intel processors, the code-optimization results are better. For Android NDK,
both the Intel C/C++ compiler and gcc can complete the C/C++ code compilation.
Currently, the Intel C/C ++ compiler provides the appropriate usage mechanisms.
Ordinary users need a professional license, whereas gcc is open source, free software and
is more readily available. So, this section uses gcc as an experimental tool to explain how
to perform C/C++ module compiler optimization for Android applications.

The gcc optimization is controlled by options in the compiler switches. Some of
these options are machine independent, and some are associated with the machine. This
section discusses some important options. Machine-related options are described only if
relevant to Intel processors.

Machine-Independent Compiler Switch Options
The machine-independent options for gcc compiler switches are the -Ox options, which
correspond to different optimization levels. Following are the details.

-O or -O1
Level 1 optimization, which is the default level, uses the -O option; the compiler tries
to reduce code size and execution time. For large functions, it needs to spend more
compiling time and use a large amount of memory resources for optimizing compiling.

When the -O option is not used, the compiler’s goal is to reduce the overhead of
compiling so that results can be debugged. In this compilation mode, the statement
is independent. By inserting a breakpoint interrupt program run between the two
statements, you can reassign variables or modify the program counter to jump to other
currently executing statements, so you can precisely control the running process and the
user can get results when they want to debug. In addition, if the -O option is not used,
only declared register variables can have a register allocation.

If you specify the -O option, the -fthread-jumps and -fdefer-pop options are
turned on. On a machine with a delay slot, the -fdelayed-branch option is turned on.
Even for machines that support debugging without a frame pointer, the -fomit-frame-
pointer option is turned on. Some machines may also open other options.

-O2
This option optimizes even more. gcc performs nearly all supported optimizations that
do not involve a space-speed tradeoff. As compared to -O, this option increases both
compilation time and the performance of the generated code.

Chapter 12 ■ NDK and C/C++ Optimization

421

-O3
This option optimizes still more. It turns on all optimizations specified by -O2 and also
turns on the -finline-functions, -funswitch-loops, -fpredictive-commoning,
-fgcse-after-reload, -ftree-vectorize, -fvect-cost-model, -ftree-partial-pre,
and -fipa-cp-clone options.

-O0
This option reduces compilation time and makes debugging produce the expected
results. This is the default.

An automatic inline function is often used as a function-optimization measure.
C99 (C language ISO standard developed in 1999) and C++ both support the inline
keyword. The inline function uses inline space in exchange for time. The compiler does
not compile an inline-described function into a function, but directly expands the code
for the function body, thereby eliminating the function call For example, consider the
following function:
 
inline long factorial (int i)
{
 return factorial_table[i];
}
 

Here all occurrences of all the code in the factorial() call are replaced with the
factorial_table [] array references.

In the optimizing state, some compilers treat that function as an inline function
even if the function does not use inline instructions, if appropriate in the circumstances
(such as if the body of the function code is relatively short and the definition is in the
header file), in exchange for execution time.

Loop unrolling is a classic speed-optimization method and is used by many
compilers as the automatic optimization strategy. For example, the following code needs
to loop 100 cycles:
 
for (i = 0; i < 100; i++)
{
 do_stuff(i);
}
 

At the end of each cycle, the cycle conditions have to be checked to do a comparative
judgment. By using a loop-unrolling strategy, the code can be transformed as follows:
 
for (i = 0; i < 100;)
{
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;

Chapter 12 ■ NDK and C/C++ Optimization

422

 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
}
 

The new code reduces the comparison instruction from 100 to 10 times, and the time
used to compare conditions can be reduced by 90%.

Both methods described here improve the code efficiency and accomplish the
optimization of the object code. This is a typical way of optimizing the object code to
make it more time efficient

Intel Processor-Related Compiler Switch Options
The m option of gcc is defined for the Intel i386 and x86-64 processor family. The main
command options and their effects are shown in Table 12-3.

Table 12-3.  Intel Processor-Related gcc Switch Options

Switch Option Notes Description

-march=cpu-type
-mtune=cpu-type

Generates code for the specified type of
CPU. cpu-type can be i386, i486, i586,
Pentium, i686, Pentium 4, and so on.

-msse Compiler automatic vectorization: use
or do not use MMX, SSE, and SSE2
instructions. For example, -msse means
programming into the instruction, and
-mno-sse means not programmed into
the SSE instruction.

-msse2

-msse3

-mssse3 gcc-4.3 new addition

-msse4.1 gcc-4.3 new addition

-msse4.2 gcc-4.3 new addition

-msse4 Include 4.1 and .2,
gcc-4.3 new addition

-mmmx

-mno-sse

-mno-sse2

-mno-mmx

-m32
-m64

Generate 32/64 machine code.

Chapter 12 ■ NDK and C/C++ Optimization

423

In Table 12-3, -march is the CPU type of the machine, and -mtune is the CPU type
that the compiler wants to optimize; by default it is the same as for -march. The -march
option is a tight constraint, and -mtune is a loose constraint. The -mtune option can
provide backward compatibility.

For example, a compiler with the options -march = i686, -mtune = pentium4 is
optimized for the Pentium 4 processor but can be run on any i686 as well. And for
-mtune = pentium-mmx compiled procedures, the Pentium 4 processor can be run.

The following option generates cpu-type instructions that specify the type of machine:
 
-march=cpu-type
 

The -mtune = cpu-type option is only available if you are optimizing code
generated for cpu-type. By contrast, -march = cpu-type generates code not run on
non-gcc for the specified type of processor, which means -march = cpu-type implies the
-mtune = cpu-type option.

The cpu-type option values related to Intel processors are listed in Table 12-4.

Table 12-4.  The Main Option Values of gcc -march Parameters for cpu-type

cpu-type Value Description

native Selects the CPU to generate code at compilation time by determining
the processor type of the compiling machine. Using -march=native
enables all instruction subsets supported by the local machine
(hence the result might not run on different machines). Using
-mtune=native produces code optimized for the local machine
under the constraints of the selected instruction set.

i386 Original Intel i386 CPU.

i486 Intel i486 CPU. (No scheduling is implemented for this chip.)

i586 Intel Pentium CPU with no MMX support.

Pentium

pentium-mmx Intel Pentium MMX CPU, based on a Pentium core with MMX
instruction set support.

pentiumpro Intel Pentium Pro CPU.

i686 When used with -march, the Pentium Pro instruction set is used, so
the code runs on all i686 family chips. When used with -mtune, it has
the same meaning as generic.

pentium2 Intel Pentium II CPU, based on a Pentium Pro core with MMX
instruction set support.

pentium3 Intel Pentium III CPU, based on a Pentium Pro core with MMX and
SSE instruction set support.

pentium3m

(continued)

Chapter 12 ■ NDK and C/C++ Optimization

424

cpu-type Value Description

pentium-m Intel Pentium M; low-power version of the Intel Pentium III CPU
with MMX, SSE, and SSE2 instruction set support. Used by Intel
Centrino-based notebooks.

pentium4 Intel Pentium 4 CPU with MMX, SSE, and SSE2 instruction set
support.

pentium4m

prescott Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2, and
SSE3 instruction set support.

nocona Improved version of Intel Pentium 4 CPU with 64-bit extensions and
MMX, SSE, SSE2, and SSE3 instruction set support.

core2 Intel Core 2 CPU with 64-bit extension and MMX, SSE, SSE2, SSE3,
and SSSE3 instruction set support.

corei7 Intel Core i7 CPU with 64-bit extensions and MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, and SSE4.2 instruction set support.

corei7-avx Intel Core i7 CPU with 64-bit extensions and MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AES, and PCLMUL instruction set
support.

core-avx-i Intel Core CPU with 64-bit extensions and MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND, and
F16C instruction set support.

atom Intel Atom CPU with 64-bit extensions and MMX, SSE, SSE2, SSE3,
and SSSE3 instruction set and Atom Silvermont (SLM) architecture
support.

Table 12-4.  (continued)

Traditional gcc is a local compiler. These command options can be added to gcc to
control gcc compiler options. For example, suppose you have an int_sin.c file:
 
$ gcc int_sin.c
 

This command uses the O1 optimization level (default level) and compiles int_sin.c
into an executable file named by default a.out.

This command uses O1 optimization (default level) to compile int_sin.c into an
executable file; the executable file name is specified as sinnorm:
 
$ gcc int_sin.c -o sinnorm
 

Chapter 12 ■ NDK and C/C++ Optimization

425

This command uses O1 optimization (default level) to compile int_cos.c into a
shared library file coslib.so. Unlike source code files compiled into an executable
program, this command requires that the source code file int_cos.c does not contain the
main function:
 
$ gcc int_cos.c -fPIC -shared -o coslib.so
 

This command compiles int_sin.c into the executable file with the default file
name. The compiler does not perform any optimization:
 
$ gcc -O0 int_sin.c
 

This command uses the highest optimization level O3 to compile the int_sin.c file
to the executable file with the default file name:
 
$ gcc -O3 int_sin.c
 

This command compiles int_sin.c into an executable file using SSE instructions:
 
$ gcc -msse int_sin.c
 

This command compiles int_sin.c into an executable file without any SSE
instructions:
 
$ gcc -mno-sse int_sin.c
 

This command compiles int_sin.c into an executable file that can use Intel Atom
processor instructions:
 
$ gcc -mtune=atom int_sin.c
 

From the example compiled by gcc locally, you have some experience using the
compiler switch options for gcc compiler optimizations. For the gcc native compiler,
the gcc command can be used directly in the switch options to achieve compiler
optimization. However, from the previous example, you know that the NDK does not
directly use the gcc command. Then how do you set the gcc compiler switch option to
achieve NDK optimization?

Recall that in the NDK example, you used the ndk-build command to compile
C/C++ source code; the command first needed to read the makefile Android.Mk. This
file contains the gcc command options. Android.mk uses LOCAL_CFLAGS to control and

Chapter 12 ■ NDK and C/C++ Optimization

426

complete the gcc command options. The ndk-build command passes LOCAL_CFLAGS
runtime values to gcc as its command option to run the gcc command. LOCAL_CFLAGS
passes the values to gcc and uses them as the command option to run gcc commands:

For example, in section 3, you amended Android.mk as follows:
 
1. LOCAL_PATH := $(call my-dir)
2. include $(CLEAR_VARS)
3. LOCAL_MODULE := jnitestmysharelib
4. LOCAL_SRC_FILES := jnitestccode.c
5. LOCAL_CFLAGS := -O3
6. include $(BUILD_SHARED_LIBRARY)
 

Line 5 is new: it sets the LOCAL_CFLAGS variable script.
When you execute the ndk-build command, which is equivalent to adding a

gcc -O3 command option, it instructs gcc to compile the C source code at the highest
optimization level, O3. Similarly, if you edit the line 5 to
 
LOCAL_CFLAGS := -msse3
 
you instruct gcc to compile C source code into object code using SSE3 instructions that
Intel Atom supports.

You can set LOCAL_CFLAGS to a different value and compare the target library file size
and content differences. Note that this example jnitest C code is very simple and does
not involve complex tasks. As a result, the size and content of the library files are not very
different when compiled from different LOCAL_CFLAGS values.

Is there an example where there is a significant difference in the size or content of the
library file? Yes, as you will see in the following sections.

Optimization with Intel Integrated Performance
Primitives (Intel IPP)
Figure 12-15 shows that Android applications can bypass NDK development tools and
use existing .so shared libraries developed by third parties directly, including third-party
shared libraries provided by Intel Integrated Performance Primitives (Intel IPP). Intel IPP
is a powerful function library for Intel processors and chipsets, and it covers math, signal
processing, multimedia, image and graphics processing, vector computing, and other areas.
A prominent feature of Intel IPP is that its code has been extensively optimized based on
the features of the Intel processor, using a variety of methods. It is a highly optimized, high-
performance service library. Intel IPP has cross-platform features; it provides a set of cross-
platform and OS general APIs, which can be used for Windows, Linux, and other operating
systems; and it supports embedded, desktop, server, and other processor-scale systems.

Intel IPP is really a set of libraries, each with different function areas within the
corresponding library, and it differs slightly according to the number of functions supported
in different processor architectures. For example, Intel IPP 5.X image-processing functions
can support 2,570 functions in Intel architecture, whereas it supports only 1,574 functions
in the IXP processor architecture.

Chapter 12 ■ NDK and C/C++ Optimization

427

The services provided by a variety of high-performance libraries, including Intel IPP,
are multifaceted and multilayered. Applications can use Intel IPP directly or indirectly.
It can provide support not only for applications, but also for other components and
libraries.

Applications using Intel IPP can use its function interface directly or use sample code
to indirectly use Intel IPP. In addition, using the OpenCV library (a cross-platform Open
Source Computer Vision Library) is equivalent to indirectly using the Intel IPP library.
Both the Intel IPP and Intel MKL libraries run on high-performance Intel processors on
various architectures.

Taking into account the power of Intel IPP, and in accordance with the characteristics
of optimized features of the Intel processor, you can use the Intel IPP library to replace
some key source code that runs more often and consumes time. This way, you can obtain
much higher performance acceleration than with general code. This is simply a “standing
on the shoulders of giants” practical optimization method: you can achieve optimization
without manually writing code in critical areas.

Intel recently released the Intel Integrated Native Development Experience (INDE),
which provides both Intel IPP and Intel Threaded Building Blocks (Intel TBB) for Android
application developers. You can easily use Intel IPP, Intel TBB, Intel GPA, and other tools
for Android application development.

NDK Integrated Optimization Examples
This section uses a case study to demonstrate comprehensive optimization techniques
by integrating NDK with C/C++. The case is divided into two steps. The first step is
to compile a local function from C/C++ code to accelerate the computing tasks in a
traditional Java-based program; the second step demonstrates using NDK compiler
optimizations to achieve C/C++ optimization. Each step is introduced in its own section;
the two sections are closely linked.

C/C++: Accelerating the Original Application
The previous chapter introduced a Java code example (SerialPi) that calculates p. In this
section, you change the computing tasks from Java to C code, using NDK to turn it into a
local library. You then compare it with the original Java code tasks and get some firsthand
experience with using C/C++ native library functions to achieve traditional Java-based
task acceleration.

The application used for this case study is named NdkExp; see Figure 12-16.

Chapter 12 ■ NDK and C/C++ Optimization

428

Figure 12-16(a) shows the application’s main interface, including three buttons: Start
Java Task, Start C Task, and Exit Application. Clicking the Start Java Task button starts a
traditional Java task that calculates p. When the task is completed, the calculated results
are displayed below the button along with the time spent, as shown in Figure 12-16(b).
Clicking the Start C Task button starts a computing task written in C, using the same math
formula to calculate p. When the task is completed, the calculated results are displayed
below the button along with the time spent, as shown in Figure 12-16(c).

For the same task, the application written in traditional Java takes 12.565 seconds
to complete; the application written in C and compiled by the NDK development tool
takes only 6.378 seconds to complete. This example shows you the power of using NDK to
achieve performance optimization.

This example is implemented as follows:

1.	 Generate the project in Eclipse, name it NdkExp, and choose
the Build SDK option to support the x86 version of the API.
Use the default values for the other options. Then generate
the project.

2.	 Modify the main layout file. Put three TextView widgets
and three Button widgets in the layout, set the Text and ID
attributes, and adjust their size and position, as shown in
Figure 12-17.

Figure 12-16.  Original version of NdkExp

Chapter 12 ■ NDK and C/C++ Optimization

429

3.	 Modify the main layout of the class source code file
MainActivity.java as follows:

 
1. package com.example.ndkexp;
2. import android.os.Bundle;
3. import android.app.Activity;
4. import android.view.Menu;
5. import android.widget.Button;
6. import android.view.View;
7. import android.view.View.OnClickListener;
8. import android.os.Process;
9. import android.widget.TextView;
10. import android.os.Handler;
11. import android.os.Message;
12.
13. public class MainActivity extends Activity {
14. private JavaTaskThread javaTaskThread = null;
15. private CCodeTaskThread cCodeTaskThread = null;
16. private TextView tv_JavaTaskOuputInfo;
17. private TextView tv_CCodeTaskOuputInfo;
18. private Handler mHandler;;
19. private long end_time;

Figure 12-17.  Layout of the original NdkExp

Chapter 12 ■ NDK and C/C++ Optimization

430

20. private long time;
21. private long start_time;
22. @Override
23. public void onCreate(Bundle savedInstanceState) {
24. super.onCreate(savedInstanceState);
25. setContentView(R.layout.activity_main);
26. �tv_JavaTaskOuputInfo = (TextView)findViewById(R.

id.javaTaskOuputInfo);
27. tv_JavaTaskOuputInfo.setText("Java the task is not started ");
28. �tv_CCodeTaskOuputInfo = (TextView)findViewById

(R.id.cCodeTaskOuputInfo);
29. tv_CCodeTaskOuputInfo.setText("C code task is not start ");
30. final Button btn_ExitApp = (Button) findViewById(R.id.exitApp);
31. btn_ExitApp.setOnClickListener(new /*View.*/OnClickListener(){
32. public void onClick(View v) {
33. exitApp();
34. }
35. });
36. �final Button btn_StartJavaTask = (Button)

findViewById(R.id.startJavaTask);
37. �final Button btn_StartCCodeTask = (Button)

findViewById(R.id.startCCodeTask);
38. btn_StartJavaTask.setOnClickListener(new /*View.*/OnClickListener(){
39. public void onClick(View v) {
40. btn_StartJavaTask.setEnabled(false);
41. btn_StartCCodeTask.setEnabled(false);
42. btn_ExitApp.setEnabled(false);
43. startJavaTask();
44. }
45. });
46. btn_StartCCodeTask.setOnClickListener(new /*View.*/OnClickListener(){
47. public void onClick(View v) {
48. btn_StartJavaTask.setEnabled(false);
49. btn_StartCCodeTask.setEnabled(false);
50. btn_ExitApp.setEnabled(false);
51. startCCodeTask();
52. }
53. });
54. mHandler = new Handler() {
55. public void handleMessage(Message msg) {
56. String s;
57. switch (msg.what)
58. {
59. case JavaTaskThread.MSG_FINISHED:
60. end_time = System.currentTimeMillis();
61. time = end_time - start_time;

Chapter 12 ■ NDK and C/C++ Optimization

431

62. s = " �The return value of the Java task "+ (Double)
(msg.obj) +" Time consumed:"

63. + JavaTaskThread.msTimeToDatetime(time);
64. tv_JavaTaskOuputInfo.setText(s);
65. btn_StartCCodeTask.setEnabled(true);
66. btn_ExitApp.setEnabled(true);
67. break;
68. case CCodeTaskThread.MSG_FINISHED:
69. end_time = System.currentTimeMillis();
70. time = end_time - start_time;
71. �s = " The return value of the C code task"+ (Double)

(msg.obj) +" time consumed:"
72. + JavaTaskThread.msTimeToDatetime(time);
73. tv_CCodeTaskOuputInfo.setText(s);
74. btn_StartJavaTask.setEnabled(true);
75. btn_ExitApp.setEnabled(true);
76. break;
77. default:
78. break;
79. }
80. }
81. };
82. }
83.
84. @Override
85. public boolean onCreateOptionsMenu(Menu menu) {
86. getMenuInflater().inflate(R.menu.activity_main, menu);
87. return true;
88. }
89.
90. private void startJavaTask() {
91. if (javaTaskThread == null)
92. javaTaskThread = new JavaTaskThread(mHandler);
93. if (! javaTaskThread.isAlive())
94. {
95. start_time = System.currentTimeMillis();
96. javaTaskThread.start();
97. �tv_JavaTaskOuputInfo.setText

("The Java task is running...");
98. }
99. }
100.
101. private void startCCodeTask() {
102. if (cCodeTaskThread == null)
103. cCodeTaskThread = new CCodeTaskThread(mHandler);

Chapter 12 ■ NDK and C/C++ Optimization

432

104. if (! cCodeTaskThread.isAlive())
105. {
106. start_time = System.currentTimeMillis();
107. cCodeTaskThread.start();
108. �tv_CCodeTaskOuputInfo.setText

("C code task is running...");
109. }
110. }
111. private void exitApp() {
112. try {
113. if (javaTaskThread !=null)
114. {
115. javaTaskThread.join();
116. javaTaskThread = null;
117. }
118. } catch (InterruptedException e) {
119. }
120. try {
121. if (cCodeTaskThread !=null)
122. {
123. cCodeTaskThread.join();
124. cCodeTaskThread = null;
125. }
126. } catch (InterruptedException e) {
127. }
128. finish();
129. Process.killProcess(Process.myPid());
130. }
131.
132. static {
133. System.loadLibrary("ndkexp_extern_lib");
134. }
135. }
 

This code is basically the same as the example code for SerialPi. Only the code in
lines 123–134 is ew. This code requires that the libndkexp_extern_lib.so shared library
file be loaded before the application runs. The application needs to use local functions in
this library.

4.	 The new thread task class JavaTaskThread in the project is
used to calculate p. The code is similar to the MyTaskThread
class code in the SerialPi example and is omitted here.

Chapter 12 ■ NDK and C/C++ Optimization

433

5.	 The thread task class CCodeTaskThread in the new project
calls the local function to calculate p; its source code file
CCodeTaskThread.java reads as follows:

 
1. package com.example.ndkexp;
2. import android.os.Handler;
3. import android.os.Message;
 
4. public class CCodeTaskThread extends Thread {
5. private Handler mainHandler;
6. public static final int MSG_FINISHED = 2; // �The message after the

end of the task
7. private native double cCodeTask(); // �Calling external C functions

to accomplish computing tasks
 
8. static String msTimeToDatetime(long msnum){
9. long hh,mm,ss,ms, tt= msnum;
10. ms = tt % 1000; tt = tt / 1000;
11. ss = tt % 60; tt = tt / 60;
12. mm = tt % 60; tt = tt / 60;
13. hh = tt % 60;
14. �String s = "" + hh +" Hour "+mm+" Minute "+ss + " Second " + ms

+" Millisecond ";
15. return s;
16. }
 
17. @Override
18. public void run()
19. {
20. double pi = cCodeTask(); // �Calling external C function to

complete the calculation
21. Message msg = new Message();
22. msg.what = MSG_FINISHED;
23. Double dPi = Double.valueOf(pi);
24. msg.obj = dPi;
25. mainHandler.sendMessage(msg);
26. }
  
27. public CCodeTaskThread(Handler mh)
28. {
29. super();
30. mainHandler = mh;
31. }
32. }
 

Chapter 12 ■ NDK and C/C++ Optimization

434

This code is similar to the code framework of the MyTaskThread class of the SerialPi
example. The main difference is at line 20. The original Java code for calculating p is
replaced by calling a local function cCodeTask to achieve the task. To indicate that
cCodeTask is a local function, you add the local declaration in line 7.

6.	 Build the project in Eclipse. Again, just build, rather than run.

7.	 Create the jni subdirectory in the project root directory.

8.	 Write the C implementation code for the cCodeTask function.

9.	 Compile the file into a .so library file. The main steps are as
follows.

a.	 Create a C interface file. Because it is a cCodeTaskThread
class using a local function, you need to generate the
class header file based on the class file of this class. At the
command line, go to the project directory and run the
following command:
 
E:\temp\Android Dev\workspace\NdkExp> javah
-classpath "D:\Android\android-sdk\platforms\
android-15\android.jar";bin/classes com.example.
ndkexp.CCodeTaskThread
 

This command generates a file in the project directory named com_example_ndkexp_
CCodeTaskThread.h. The main content of the document is as follows:
 

23. �JNIEXPORT jdouble

JNICALL Java_com_example_ndkexp_CCodeTaskThread_cCodeTask
24. (JNIEnv *, jobject);

 

In lines 23–24, the prototype of the local function cCodeTask is defined.

b.	 Based on these header files, create a corresponding C
code file in the jni directory of the project. In this case,
name it mycomputetask.c it reads as follows:

 
1. #include <jni.h>
2. �jdouble Java_com_example_ndkexp_CCodeTaskThread_cCodeTask

(JNIEnv* env, jobject thiz)
3. {
4. const long num_steps = 100000000; // The total step length
5. const double step = 1.0 / num_steps;
6. double x, sum = 0.0;
7. long i;
8. double pi = 0;
9.

Chapter 12 ■ NDK and C/C++ Optimization

435

10. for (i=0; i< num_steps; i++){
11. x = (i+0.5)*step;
11. sum = sum + 4.0/(1.0 + x*x);
12. }
13. pi = step * sum;
14.
15. return (pi);
16. }
 

Lines 4–16 are the body of the function—the code calculating p, which is the code
that corresponds to the MyTaskThread class in SerialPi. It is not difficult to understand.
Note that in line 4, the value of the variable num_steps (the total step length) must be the
same as the value of the step size the JavaTaskThread class represents. Otherwise,
it make no sense to compare the performance here.

The first line of each Jni file must contain the headers. Line 2 is the cCodeTask function
prototype and is based on slightly modified header files obtained in the previous step.

Line 16 returns the results. With the Java double type, which corresponds to the
C jdouble type, C can have a pi variable of type double returned directly to it. This is
discussed in the introduction to this chapter.

c.	 In the project jni directory, by following the method
Section: Using the Command Line Method to Generate a
Library File on page 12 of this chapter3, create Android.
mk and Application.mk files. The content of Android.mk
reads as follows:

 
1. LOCAL_PATH := $(call my-dir)
2. include $(CLEAR_VARS)
3. LOCAL_MODULE := ndkexp_extern_lib
4. LOCAL_SRC_FILES := mycomputetask.c
5. include $(BUILD_SHARED_LIBRARY)
 

Line 4 specifies the C code in the case file. Line 3 indicates the file name of the
generated library; its name must be consistent with the parameters of the
System.loadLibrary function in line 133 of the project file MainActivity.java.

d.	 Based on the method described in Section: Using the
Command Line Method to Generate a Library File on
page 12 of this chapter compile the C code into the .so
library file under the lib directory of the project.

10.	 Run the project.

The application’s running interface is shown in the next section, in Figure 12-18.

Chapter 12 ■ NDK and C/C++ Optimization

436

Extending Compiler Optimization
The example demonstrates the capabilities of NDK for application acceleration.
However, the application implements only one local function and is unable to provide
information to compare the effects of compiler optimizations. For this purpose, in this
section you rebuild the application and use it to experiment with the effects of compiler
optimizations; see Figure 12-18.

The application has four buttons. When you click the Start Java Task button, the
response code does not change. When you click the Start C Task or Start another C Task
button, the application starts a local function running.

The code (the function body) of the two functions is the same. It calculates the
values of p, but using different names. The first button calls the cCodeTask function, and
the second button calls the anotherCCodeTask function. These functions are located
in the mycomputetask.c and anothertask.c files, respectively, and they correspond to
the library files libndkexp_extern_lib.so and libndkexp_another_lib.so after being
compiled. In this case, you compile libndkexp_extern_lib.so using the -O0 option and
libndkexp_another_lib.so using the -O3 option, so one is compiled unoptimized and
the other is compiled optimized.

Clicking Start C Task runs the unoptimized version of the C function, as shown in
Figure 12-20(b); and clicking Start Another C Task runs the optimized version, as shown
in Figure 12-20(c). After task execution, the system displays the calculated results to the
consumption of time.

As you can see in Figure 12-18, regardless of whether the compiler optimizations
are used, the running time of the local function is always shorter than the running time
(12.522 seconds) of the Java function. The execution time (5.632 seconds) of the -O3

Figure 12-18.  Extended version of NdkExp

Chapter 12 ■ NDK and C/C++ Optimization

437

optimization function is less than the execution time (7.321 seconds) of the unoptimized
(-O0 compiler option) function. From this result comparison, you can see that using
compiler optimizations actually reduces application execution time. Not only that, it is
even less than the original application running time (6.378 seconds) in section	
C/C++: The Original Application Acceleration. This is because the original application
without compiler options defaults to the -O1 level of optimization, whereas the -O3
optimization level is even higher than the original application, so it’s not surprising that it
has the shortest running time.

This application is a modified and extended version of the original application
NdkExp. The steps are as follows:

1.	 Modify the main layout file. Add a TextView widget and a
Button widget in a layout. Set the Text and ID properties, and
adjust their size and position, as shown in Figure 12-19.

Figure 12-19.  Extended NdkExp layout

Chapter 12 ■ NDK and C/C++ Optimization

438

2.	 Modify the class source code file MainActivity.java of the
main layout. The main changes are as follows:

 
 ...
13. public class MainActivity extends Activity {
14. private JavaTaskThread javaTaskThread = null;
15. private CCodeTaskThread cCodeTaskThread = null;
16. private AnotherCCodeTaskThread anotherCCodeTaskThread = null;
17. private TextView tv_JavaTaskOuputInfo;
18. private TextView tv_CCodeTaskOuputInfo;
19. private TextView tv_AnotherCCodeTaskOuputInfo;

182. static {
183. System.loadLibrary("ndkexp_extern_lib");
184. System.loadLibrary("ndkexp_another_lib");
185. }
186. }
 

On line 16 and line 19 respectively, add the required variables for the new Start
Other C Task button.

The key change is in line 184; here, in addition to loading the original shared library
files, you also add another library file.

3.	 In the project, add a thread task class
AnotherCCodeTaskThread that calls a local function to
calculate p. Its source code file AnotherCCodeTaskThread.
java reads as follows:

 
1. package com.example.ndkexp;
2. import android.os.Handler;
3. import android.os.Message;
  
4. public class AnotherCCodeTaskThread extends Thread {
5. private Handler mainHandler;
6. public static final int MSG_FINISHED = 3;
 // The message after the end of the task
7. private native double anotherCCodeTask();
 // Calling external C functions to complete computing tasks
  
8. static String msTimeToDatetime(long msnum){
9. long hh,mm,ss,ms, tt= msnum;
10. ms = tt % 1000; tt = tt / 1000;
11. ss = tt % 60; tt = tt / 60;
12. mm = tt % 60; tt = tt / 60;
13. hh = tt % 60;

Chapter 12 ■ NDK and C/C++ Optimization

439

14. �String s = "" + hh +"Hour "+mm+"Minute "+ss + "Second " + ms
+"Millisecond";

15. return s;
16. }
  
17. @Override
18. public void run()
19. {
20. double pi = anotherCCodeTask(); // �Calling external C function

to complete the calculation
21. Message msg = new Message();
22. msg.what = MSG_FINISHED;
23. Double dPi = Double.valueOf(pi);
24. msg.obj = dPi;
25. mainHandler.sendMessage(msg);
26. }
  
27. public CCodeTaskThread(Handler mh)
28. {
29. super();
30. mainHandler = mh;
31. }
32. }
 

This code is almost identical to the code of the CCodeTaskThread class. It does a
little processing by calling another external C function anotherCCodeTask to complete
computing tasks in line 20. For this, in line 7 it provides appropriate instructions for local
functions and changes the value of the message type in line 6. This way, it distinguishes
itself from the previous C with a message. Line 4 shows the task class, inherited from the
Thread class.

4.	 Build the project in Eclipse: just a build, not a run.

5.	 Modify the makefile file of mycomputetask.c, and rebuild
library files. To do so, first modify the Android.mk file under
the jni directory of the project, which reads as follows:
 
1. LOCAL_PATH := $(call my-dir)
2. include $(CLEAR_VARS)
3. LOCAL_MODULE := ndkexp_extern_lib
4. LOCAL_SRC_FILES := mycomputetask.c
5. LOCAL_CFLAGS := -O0
6. include $(BUILD_SHARED_LIBRARY)
 

Unlike the original application, in line 5 you add parameters for the command
LOCAL_CFLAGS passed to gcc. The value -O0 means no optimization.

Chapter 12 ■ NDK and C/C++ Optimization

440

6.	 compile the C code file into the .so library file in the lib
directory of the project.

7.	 Save the .so library files in the lib directory of the project (in
this example, the file is libndkexp_extern_lib.so) to some
other directory, because the following operations will delete
this .so library file.

8.	 Write the C implementation code for the anotherCCodeTask
function. Copy the processing steps for the cCodeTask
function in the previous section. Using the method in the
section “NDK Examples,” compile the file into the .so library
file. The main steps are as follows:

a.	 Create a C interface file. At the command line, go to the
project directory, and then run the following command:
 
E:\temp\Android Dev\workspace\NdkExp> javah
-classpath "D:\Android\android-sdk\platforms\
android-15\android.jar";bin/classes com.example.
ndkexp.AnotherCCodeTaskThread
 

This command generates a com_example_ndkexp_AnotherCCodeTaskThread.h file.
The main contents of the file are as follows:
 

23. �JNIEXPORT jdouble JNICALL Java_com_example_ndkexp_

AnotherCCodeTaskThread_anotherCCodeTask
24. (JNIEnv *, jobject);

 

Lines 23–24 define the local function, which is anotherCCodeTask prototype.

b.	 Based on the previously mentioned header files in
the project Jni directory, establish corresponding C
code files, in this case anothertask.c. The content is a
modification of mycomputetask.c:
 
1. #include <jni.h>
2. �jdouble Java_com_example_ndkexp_

AnotherCCodeTaskThread_anotherCCodeTask
(JNIEnv* env, jobject thiz)

3. {

17. }
 

The second line of mycomputetask.c is replaced by the prototype of the
anotherCCodeTask function. This is the same function prototype copied from that in the
.h file created in the previous step, with minor revisions. The final form is in line 2.

Chapter 12 ■ NDK and C/C++ Optimization

441

c.	 Modify the Android.mk file in the jni directory as follows:
 
1. LOCAL_PATH := $(call my-dir)
2. include $(CLEAR_VARS)
3. LOCAL_MODULE := ndkexp_another_lib
4. LOCAL_SRC_FILES := anothertask.c
5. LOCAL_CFLAGS := -O3
6. include $(BUILD_SHARED_LIBRARY)
 

In line 4, the value is replaced with the new C code file anothertask.c. In line 3,
the value is replaced with a new library file name consistent with the parameters of the
System.loadLibrary function, which is in line 184 of the MainActivity.java file. In line 5,
the value of the LOCAL_CFLAGS parameter for the passed gcc command is replaced with
-O3, which represents the highest level of optimization.

d.	 Follow the method described in section 3.1 to compile
the C code file into the .so library file under the lib
directory of the project. The libndkexp_extern_lib.
so documents in the lib directory disappear and are
replaced by a newly generated libndkexp_another_lib.
so file. So, it is very important to save the library files.

9.	 Put the previously saved libndkexp_extern_lib.so library
file back into the libs directory. There are now two files in the
directory. You can use the dir command to verify:
 
E:\temp\Android Dev\workspace\NdkExp>dir libs\x86
2013-02-28 00:31 5,208 libndkexp_another_lib.so
2013-02-28 00:23 5,208 libndkexp_extern_lib.so
 

10.	 Run the project.

Comparing Compiler Optimizations
Through this case study, you have learned the effects of compiler optimization. The
task execution time was shortened from 7.321 seconds before optimization to 5.632
seconds after optimization. But you only compared the difference between the gcc
-O3 and -O0 command options in the example. You can extend this configuration by
modifying the Android.mk file content when compiling the two files mycomputetask.c
and anothertask.c, and compare the difference in the optimizing effects when using
different compiler command options. To modify the Android.mk file, you only need to
modify the value of the LOCAL_CFLAGS item; you can select many gcc command options to
compare. Let’s look at an example.

Chapter 12 ■ NDK and C/C++ Optimization

442

Example 1. Comparing Optimization Results Using SSE
Instructions
Compile the Start C Task button corresponding to the Android.mk file of
mycomputetask.c:
 
LOCAL_CFLAGS := -mno-sse
 

And compile the Start other C Task button corresponding to the Android.mk file of
anothertask.c:
 
LOCAL_CFLAGS := -msse3
 

The former tells the compiler not to compile SSE instructions; the latter allows the
compiler to program into SSE3 instructions. The reason to choose SSE3 instructions is
that SSE3 is the highest level of instructions the Intel Atom processor supports.

The results of running the application are shown in Figure 12-20.

Figure 12-20.  Optimization comparison of compiler SSE instructions for NdkExp

Chapter 12 ■ NDK and C/C++ Optimization

443

The same task using an SSE instruction has a shorter execution time than not using
an SSE instruction. The execution time is shortened from the original 6.759 seconds to
5.703 seconds.

Noted that, in this example, we finished modifying Android.mk and reran ndk-build
to generate the .so library file. We immediately deployed and ran the NdkExp project but
found out that we could not achieve the desired effect because only the .so library files
are updated. The Eclipse project manager does not detect that that the project needs to
rebuild. As a result, the .apk was not updated, and NdkExp on the target machine would
not run updates or the original code. Considering this situation, you can use the following
methods to avoid this problem:

1.	 Uninstall the application from the phone.

2.	 Delete the three documents classes.dex, jarlist.cache,
and NdkExp.apk in the bin subdirectory of the host project
directory.

3.	 Delete the project in Eclipse.

4.	 In Eclipse, re-import the project.

5.	 Re-deploy and run the projects.

Here you only compared the effect of SSE instructions. You can try other gcc
compiler options and compare their operating results.

In addition, the previous examples are only concerned with the NDK effect, so
the C functions still use single-threaded code. You can combine the NDK optimization
knowledge from this chapter with the multithreading optimization from the previous
chapter and change the C function to multithreading, and implement it along with the
compiler optimization. Such a set of written optimization techniques in a variety of
applications will allow the applications to run faster.

Summary
This chapter introduced the Android NDK for C/C++ application development, along
with related optimization methods, and optimization tools. The Intel mobile hardware
and software provide a basis for low-power design. The Intel Atom processor provides
hardware support for low power, which is a major feature of the Android operating system.

The next chapter presents an overview of low-power design. It also discusses
the Android power-control mechanisms and how to achieve the goal of low-power
application design.

445

Chapter 13

The Low-Power Design of
Android Application and
Intel Graphics Performance
Analyzers (Intel GPA):
Assisted Power Optimization

Unlike general-purpose computers that use an AC power supply, not all mobile devices
can be directly connected to AC power; it cannot be assumed that the power supply is
inexhaustible. In addition, heat dissipation must be considered for mobile devices.
If power consumption is too high, it requires the system to increase heat dissipation, and
at some point it may reach a point where this is not allowed. Due to strict constraints on
the system’s overall power consumption, low-power design, commonly known as power
saving, is an important element of applications for mobile devices; in many cases it is a
rigid requirement or the basis for survival. For example, it would be difficult to imagine a
mobile phone the market would accept that could support only a few hours’ time.

On the other hand, Intel Mobile hardware and software provide a basis for
low-power design. The Intel Atom processor provides hardware support for low power,
and low-power support is a major feature of Android. Both provide a good platform for
low-power design for mobile applications.

This chapter is organized as follows: first an overview of and introduction to
low-power design, then a discussion of the Android power-control mechanisms, and
finally a discussion of how to achieve the goal of low-power application design.

Overview of Low-Power Design
Let’s look at the power-consumption characteristics of mobile systems. For a mobile
device, the processor, radio communication, and the screen are the three main
components of its power consumption (power). The processor and its ancillary

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

446

equipment are responsible for most of the battery power consumption. Therefore, this
chapter focuses on the power consumption of the processor and its ancillary equipment
(abbreviated here as processor power consumption).

The Basics of Consumption
Battery life mainly refers to the running time that a mobile device such as a laptop, an
MP3 player, or a mobile phone, equipped with its own battery alone, can maintain
without an external power adapter. In general, the factors that affect the machine’s battery
life include the battery itself as well as the machine power consumption (watts/hour).

For a semiconductor product, the power consumption of a digital circuit is composed of
two parts. The first part is static power consumption, from the perspective of integrated circuit
technology, which is power consumption caused by drain current (leakage current), which is
part of the electronic circuit (such as CMOS). The ability to control this power consumption
is mainly determined by the production processes and materials used. The second part of
a digital circuit’s power consumption is dynamic power dissipation. Many factors affect this
part, such as circuit design, circuit complexity, and working clock frequency.

The dynamic power of the processor (or CPU), also known as switching power,
referred to as power consumption, is determined by the following empirical equation:

P a C F V= ´ ´ ´ 2

In this formula, P is the processor power consumption, a is an adjustment parameter
relating to the circuit, C is total gate capacitance of a single clock cycle (which is fixed for
a processor), F is the processor operating frequency, and V is operating voltage. As you
can see, the processor’s power consumption is proportional to the square of the operating
voltage, proportional to the operating frequency.

Tip■■   With regard to processor power consumption, there is a related concept called
thermal design power (TDP). TDP is easy to confuse with CPU power consumption. Although
both are indicators used to measure processor power, and both use watts (W) as a unit, TDP
has a different meaning than processor power consumption.

TDP is a heat-release indicator’s reflection of a processor. By definition, it is the heat
released by a processor when it reaches maximum load. The processor TDP power
consumption is not the real power consumption of the processor. Processor power
(power) is a physical parameter, which is equal to the value of current flowing through the
processor core and the product of the voltage value of the processor core, and it reflects
the actual power consumption of energy in the unit of time. TDP is the heat generated by
the processor’s thermal effect of current and other forms of heat release. Obviously, the
processor TDP is less than the power consumption of the processor.

TDP cooling system requirements are an important factor for hardware designers and
manufacturers to consider. But this chapter discusses the actual consumption of electrical
power—processor power consumption—not TDP.

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

447

From the processor power-consumption formula, the adjust parameter a and
total gate capacitance C are determined by the processor design and materials. For a
processor, parameters a and C are fixed; if you want to reduce power consumption, you
must start from the operating frequency (F) and operating voltage (V), which are the
starting point for many low-power technologies.

In general, the methods to achieve the greater energy efficiency for a CMOS
processor are as follow:

1.	 Reduce the voltage or the processor clock frequency.

2.	 Internally disable some of the currently executing functions
that do not require a functional unit.

3.	 Allow part of the processor to be fully disconnected from the
main power supply to eliminate leakage.

4.	 Improve processor circuit design and manufacturing
processes; obtain energy efficiency by applying the principles
of physics.

There are two types of tactics for managing processor power (power consumption).
One is the use of static power-management mechanisms. Such mechanisms are
invoked by the user and do not depend on processor activity. One example of a static
mechanism is a power-saving mode to conserve power. The power-saving mode can be
entered with a single instruction and exited through receipt of an interrupt or other
event.

Another tactic for managing processing power is to use dynamic power-
management mechanisms. Such mechanisms are based on the dynamic activity of the
processor power-consumption control. For example, when the command is run, if some
part of the processor logic does not need to run, the processor may switch off these
specific sections.

Power Consumption Control Technology
To help you understand the power-consumption basics for semiconductors (including
processors), let’s look at the ways you can implement power consumption control
technology in hardware. These pathways are discussed in the following sections.

Dynamic Voltage/Frequency Scaling Technology
Dynamic frequency scaling (DFS) is a way of controlling power consumption by adjusting
(reducing) the operating frequency of the processor so that it runs at less than the peak
frequency, thus reducing processor power. This technology was first used on laptops and
is now more and more widely used in mobile devices.

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

448

DFS technology has other uses besides saving energy on the processor. It can be
used in a quiet computing environment on the machine or in a light load condition to
reduce cooling costs as well as the overall energy demand. When a system has inadequate
cooling and the temperature is close to a critical value, this technology helps to reduce
heat buildup, thus preventing the machine from experiencing critical temperature
problems. Many overclocking systems also use this technique to achieve temporary
supplemental cooling.

Tip■■   In contradiction to, but related to, DFS technology is overclocking. This
technology upgrades processor (dynamic) power to exceed the manufacturer’s prescribed
design limits and improve processor performance. There is an important difference between
DFS and overclocking: overclocking is in the front-side bus (mainly because multiples
usually are locked) in a modern computer system, whereas DFS is used in the multiplier to
completion. Moreover, overclocking is often static; DFS is usually dynamic.

In practice, the Advanced Configuration and Power Interface (ACPI) specifies that
the C0 working state of modern processors can be divided into named performance
states (P-states) and throttling states (T-states). The P-state allows you to reduce the
clock frequency, and the T-state does so by inserting a STPCLK (stop the clock) signal to
temporarily close the clock signal and further suppress processor power consumption
(but not the actual clock frequency). Intel is also working with Google on improving
power management for Android and has created drivers for three CPU standby states:
Active Standby (S0i1), Always On Always Connected (AOAC) Standby (S0i2), and Deep
Sleep Standby (S0i3).

As described, power consumption is mainly caused by leakage current due to the
presence of static power; dynamic power is only part of the total power of the chip. When
the chip size becomes smaller, the CMOS threshold level is lowered, and the influence of
the leakage current appears more obvious. Especially for the current chip-manufacturing
process, which is under the micron level, dynamic power is only about two thirds of the
total power of the chip, which limits the effect of frequency scaling.

Dynamic voltage scaling (DVS) is another way to control processor power
consumption. This is accomplished by adjusting (lowering) the operating voltage of the
processor to reduce processor power.

DFS does not have much value simply as a way to save dynamic power. Taking into
account the important role of V 2 in the dynamic power formula, as well as the fact that
there has been in-depth optimization of the low-power idle state for modern processors
to save a lot of power consumption in DFS, you need to consider DVS. Reducing the
processor clock frequency also provides voltage reduction space (because in a certain
range, the maximum operating frequency a processor can support is increased with the
increase of the processor’s supply voltage). Voltage scaling and frequency scaling can be
used in conjunction to form a comprehensive power-control method: dynamic voltage/
frequency discharge reduction, or dynamic voltage and frequency scaling (DVFS). This
technology is also known as Intel processor CPU throttling.

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

449

Dynamic voltage/frequency scaling technology affects performance. This technique
reduces the number of instructions issued by the processor at a given time, thereby
causing a decline in processing performance (speed). Therefore, it is usually used at a
lower processor load (such as when the system is running in the idle state).

Clock Gating
Clock gating is another way to achieve energy savings, in this case by closing and opening
the module clock and power control. This technology was applied in the first family
of applications, such as the OMAP3-like traditional phone chip; the Intel Pentium 4
processor also used it.

For CMOS processor components, the power consumed to change the level state
is much greater than the power consumed to maintain the level state, because the clock
signal is extremely frequent when changing level state. If you use clock-gating technology
in the current clock cycle, if the system does not use some of the logic module, the
module clock signal is cut off, creating a closed circuit in the module so the logic switch
does not change state. You only need to retain the leakage current while the switching
power consumption is close to zero, to reduce power consumption. When there is
work to be done, the module clock is reactivated. This process is also known as clipping
(or pruning) the clock tree. In a sense, clock gating is an extreme case of the variable
frequency clock, but the two values are zero and the maximum frequency.

This technique requires that each module—known as a functional unit block
(FUB)—contain the clock gate logic circuit. That is, the technique of clipping the clock
tree must be ensured by the additional logic components.

Clock gating has several forms. With the software manual clock-gating method,
the driver controls when to turn on or off the various clocks used by the specified idle
controller. The other method is automatic clock gating: the hardware can be informed or
can detect whether there is work to do and then close the gate if you specify that the clock
is no longer needed. For example, an internal bridge or bus may use the automatic
clock-gating method so that it is always gated off until the processor or DMA engines
need to use it. Peripheral devices on the bus may be closed by the driver in the gated code
if the software did not use them.

Energy-Saving Circuit Design and Manufacturing Processes
Chip circuit design choices and manufacturing processes can improve energy savings
on a physical level. One of these design choices is to use an ultra-low voltage (ULV)
processor. ULV series processors reduce the processor core voltage and reduce the
number of processor cores and even size, to realize power-consumption control from the
hardware (at the physical level).

In addition, similar to the ULV processor, a 45-nanometer manufacturing process
reduces processor power consumption at the hardware level. The chip consumes less
power and has longer battery life, has more transistors, and is smaller. The Intel Atom
Bay Trail processor uses a 22-nanometer manufacturing process for energy-saving
technologies (14nm technology will be used on the next generation of processors).

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

450

With the further enhancement of manufacturing processes and manufacturing
precision, chips are getting smaller and smaller, while at the same time, physical power
consumption is becoming lower and lower.

With an understanding of hardware power control, you can look at system
power-control technology. Some of these techniques are at the hardware level, some are
at the operating system layer, and some are at the system layer and include both software
and hardware.

Intel SpeedStep and Enhanced Intel SpeedStep Technology
Intel SpeedStep Technology was developed to provide power control for Intel CPUs; the
technology is now generally referred to as Enhanced Intel SpeedStep Technology (EIST).
It was first used in the Intel Pentium M, Pentium 4 6xx Series, and Pentium D processors.
Intel Core, Intel Atom, and other processor series have also adopted it. EIST mainly takes
advantage of dynamic voltage and frequency scaling; the basic principle is to adjust
processor voltage and frequency to reduce power consumption and heat. Of course, with
the reduction of voltage and frequency, processing speed is also reduced. This technology
has undergone several generations of development, as discussed next.

First-Generation Intel SpeedStep Technology

The original Intel SpeedStep Technology allows the processor to switch freely between
two modes of operation: AC status, which offers the highest performance mode
(Maximum Performance mode); and battery status (Battery Optimized mode).
These two modes are automatically selected according to the computer’s power source:
external power supply or battery. Maximum Performance mode is the approximate
performance when the computer is connected to AC power (that is, always powered by
an external power supply). Battery Optimized mode is used when the computer is using
the minimum battery power to achieve the best performance. Usually, when switching
modes with Intel SpeedStep Technology, the power of the processor is reduced by 40%
while still maintaining the 80% of peak performance.

The conversion speed of mode switching is very fast—only 1/2000 of a second, so
the user does not feel the transformation. Even if a program’s performance requirements
are sensitive (for example, playing DVD movies), this conversion process does not affect
program operation. In addition, users can set up their own mode to use the battery in
Maximum Performance mode or an external power supply in Battery Optimized mode.
To do so, the user selects a mode onscreen, without having to restart the computer.

Second-Generation Intel SpeedStep Technology (EIST)

EIST begins dynamic switching between the two modes of performance for voltage
and frequency, according to the processor load in real time. Using this technique, the
battery-powered processor load automatically switches to the maximum operating
frequency and voltage. It can also switch to the lowest operating frequency and voltage
automatically, according to the processor load in the external power supply. In other
words, the technical processing of the operating frequency and voltage change is no
longer determined by the type of power source.

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

451

Third-Generation Intel SpeedStep Technology (Improved EIST)

In addition to the two basic modes of operation, the improved EIST provides a variety
of intermediate modes and supports multiple frequencies, speeds, and voltage settings
(controlled by the processor voltage adjustment mechanism), according to the strength of
the processor’s current load. It automatically switches the operating mode.

EIST includes a number of software and hardware technologies to ensure that it
runs smoothly, including the system BIOS, the user terminal software, ASIC control, and
chipset support. The software program itself does not need to make any changes; it can
easily use this technique. At the same time, EIST also requires the operating system to
cope with, for example, its processor load detection, which is accomplished through the
operating system.

APM and the ACPI Standard
To make low power consumption possible for mobile computing systems, hardware
and operating systems need to work together. Coordinating operating systems and
hardware for both power consumption and power management requires a unified set
of interface specifications. The earliest specification was Advanced Power Management
(APM), released by Intel and Microsoft; it is a set of APIs, running on IBM-compatible
PC operating systems and BIOS synergy to manage power consumption. The current
specification is Advanced Configuration and Power Interface (ACPI), which comes from
the development of APM.

ACPI is an open industry standard for power-management services. It is compatible
with multiple operating systems; the initial goal is to use it with personal computers.
ACPI has power-management tools and a hardware abstraction layer. The operating system
has its own power-management model. It sends demand controls to hardware via ACPI
and then observes the hardware status as an input, to control the power of computers and
peripherals. ACPI in the entire computer system structure is illustrated in Figure 13-1.

Application

Hardware Platform

Device
Driver

CPU Core

ACPI Driver Program
AML(Advanced Management

Language)

ACPI

ACPI Table
ACPI Register

ACPI BIOS

Power
Management

Figure 13-1.  ACPI structure

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

452

ACPI supports the following five basic global power states:

•	 G3: Mechanical off state; the system does not consume power.

•	 G2: Soft off state; the entire operating system restarts to restore the
machine to working conditions. This state has four substates:

•	 S1: No system context; the missing low wake-up delay state.

•	 S2: Lost low CPU and system cache status wake-up delay
state.

•	 S3: In addition to the main memory, all other system status is
lost; low wake-up delay state.

•	 S4: Low-power sleep mode; all devices are turned off.

•	 G1: Sleep state; the system appears to be off; the low-power
state. The time required to return to the normal operating state
is inversely proportional to the power consumption of the
low-power state.

•	 G0: The working state; the system is fully available.

•	 Retention state: The system does not comply with ACPI.

The typical power-management program includes a viewer for messages received by
ACPI that describe the behavior of the system. Also included is a decision model based on
observations to determine power-management behavior.

Popular operating systems and software platforms, such as Windows and Android,
all support ACPI.

Low-Power Operating System States
When the task is idle (or in an inactive state), the computer system achieves energy
savings by entering the various low-power operating modes. These low-power modes are
sometimes collectively referred to as sleep mode. They are between the states in which
system is fully booted and completely closed, with a variety of forms; each form has
its own characteristics to meet users’ various needs. These modes are described in the
following sections.

Standby

When the system is in standby mode, it cuts off power to the hardware components,
thereby reducing computer power consumption. Standby cuts off peripherals, the
monitor, and even the power of the hard drive, but it retains the power of the computer’s
memory to ensure that there is no loss of work data.

The main advantage of standby mode is that recovery time is short—it takes just a
few seconds for the system to be restored to its previous state. The disadvantage is that
standby mode needs the memory power supply, so memory contents are not saved to

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

453

the folder and therefore do not affect the running speed of memory reload. However, if
a power failure occurs in this mode, all unsaved memory contents are lost. Therefore,
standby is also known as suspend to RAM (STR).

When the system is in standby mode, the hard disk and other equipment are in the
power-wait state until a wakeup call is received. The power supply, processor, graphics,
and other fans are working, and the keyboard indicator is lit. You can press any keyboard
key or move the mouse to wake up the computer. The hard disk is repowered, and allows
memory, processors, and other devices to exchange data and return to the original mode
of operation.

Hibernate

When the system is in hibernate mode, an image of the operating mode is saved to
external memory and then the computer is turned off. When you turn on the power and
reboot, operation reverts to the earlier look: files and documents are arranged as you left
them on the desktop.

Hibernate mode is deeper than standby mode and thus helps save more power,
but the computer takes longer to restart. In addition, hibernate mode includes higher
security. This is because this mode not only closes the power supply to the peripherals
and hard disk but also cuts off the power supply of the RAM memory chips. This mode is
also known as suspend to disk (STD).

As the computer enters hibernate mode, before the power is turned off, all data is
stored (written) in external memory (usually a hard disk) to the reference file. On coming
out of hibernate mode, the system is restored (read) from the reference file, and data is
reloaded into memory. In this way, the system reverts to the previous operating mode.
Because hibernate mode needs to save memory data, the recovery (wake-up) time is
longer than with standby mode.

The advantage of this mode is that no power is consumed, and thus you need not be
afraid of power anomalies during sleep. It can also save and restore the user state, but this
requires the same space on the hard disk as the physical memory size.

Hibernation of a computer system is almost as quiet as regular shutdown; you can
completely remove power, and memory data (running) won’t be lost due to a power
failure. Compared to standby, hibernation is generally difficult to wake up with an
external device; it needs to start the system with a normal boot. However, hibernate mode
boots the system without triggering a regular start process: it only needs the hard disk
memory mirroring read taken into memory, so it is much faster than a standard boot.

Sleep

Sleep mode combines all the advantages of standby and hibernation. The system
switches to the sleep state; all the data in system memory dumps into the hibernation file
on the hard disk, and then all power to the equipment in addition to memory is turned off
so data in memory is maintained. Thus, restoring power during sleep is not an exception;
you can quickly recover directly from the data in memory. If there are power anomalies
and the data in memory is lost during sleep, data can also be recovered from the hard
disk, but the speed is a little slower. In any case, this model does not result in data loss.

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

454

Sleep mode is not always continuously maintained. If the system enters sleep
mode for a period of time without being awakened, it may automatically change to
hibernate mode and turn off the power supply to the memory to further reduce energy
consumption.

Achieving these low-power energy-saving features requires both operating system
support and hardware support, such as support for ACPI. Only by combining these
features can you achieve the energy savings described. When the idle time (also known
as non-active time) reaches a specified length or the battery power is low, the operating
system can automatically put your computer system in a low-power state, saving energy
for the entire system.

Linux Power-Control Mechanism
Android is based on Linux. Linux has a lot of practical tools for analyzing and reducing
power consumption, some of which have been adopted by Android. The following
sections describe several types of Linux power control and management, including many
aspects of the technology and its components.

Tickless Idle
Tickless idle, sometimes called non-fixed frequency or no empty circulation, is the
technology used in the Android Linux kernel to improve its power-saving ability.

The traditional Linux kernel processor uses a periodic timer to record the state of the
system, load balance, schedule, and maintain a variety of processor timer events. Early
timer frequencies were generally 100 Hz. The new kernel uses 250 Hz or up to 1,000 Hz.
However, when the processor is idle, these periodic timed events consume a lot of power.
Tickless idle eliminates this periodic timer event in the processor and is also related to the
optimization of other timers.

After using tickless idle, the Linux kernel is an empty cycle-free kernel. The kernel
still records the time, but using a different approach. There is no longer frequent checking
to see if there is work to be done. When the kernel knows there is work to be done, it
schedules hardware to issue an interrupt request. Tickless idle technology has another
indirect benefit in energy efficiency: you can make better use of virtual technology, which
means the virtualization software is not interrupted unnecessarily or too often.

Tickless idle provides the necessary kernel foundation for excellent power savings.
However, it also requires collaboration with the application. If the application does not
follow the principle of low-power design, is badly written, or is using the wrong behavior,
it may easily consume or waste the power savings created by tickless idle.

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

455

PowerTOP
PowerTOP helps users find applications that consume additional power when the
computer is idle. It has a more prominent role for advanced software. Here are
PowerTOP’s features:

Gives recommendations to help users make better use of the •	
system’s various hardware power-saving features

Identifies culprit software modules that prevent hardware power •	
savings from achieving optimal performance

Helps developers test their applications and achieve optimal •	
behavior

Provides adjustment proposals to access low power•	

A screenshot of PowerTOP running is shown in Figure 13-2.

Information
about C-state

residency,
wakeup, and

power
consumption

Wakeup,
reason and

detailed
information

Improvement
suggestion

Figure 13-2.  PowerTOP interface example

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

456

Many Linux systems on the Intel Atom platform, such as Ubuntu, support the
PowerTOP tool. Figure 13-2 shows PowerTOP running in Ubuntu. Android does not
support this tool yet (it is not known if Android will support it in the future). However,
Intel has recently provided tools on Android with functionality similar to that of
PowerTOP, as introduced in the following sections.

Intel Power-Optimization Aids
Intel has introduced some aids to help with low-power design for Android applications.
The role of these auxiliary tools is similar to the profiler with regard to performance
optimization, VTune, and so on. With these tools, you can do tool-assisted optimization
on the application’s power consumption. In other words, the aids offer guidance or
counseling. To achieve real optimization, you must rewrite the code in accordance with
low-power design principles (described in the following sections).

Intel developed the Intel Mobile Development Kit for Android for system or
middleware developers to create Android system or middleware software that takes
advantage of the latest innovations Intel platforms have to offer. This kit provides access
to an x86 (Intel Architecture) based tablet, development tools designed to seamlessly
create software for this device, and technical collateral about the OS, tools, system
software, middleware, and hardware. You can purchase the kit at https://software.
intel.com/en-us/intel-mobile-development-kit-for-android.

You can also use the Intel Graphics Performance Analyzers (GPA): free, low-power
auxiliary tools provided by Intel to help Android applications save power. Intel
GPA–assisted speed and performance optimization features were introduced in the
previous chapter. This section emphasizes its auxiliary functions for power optimization.

Indicators related to the machine’s power consumption include CPU frequency,
current charging, current discharging, and so on. CPU frequency reflects the operating
frequency of the processor in the CPU column. As mentioned in the section
“The Basics of Consumption,” the operating frequency directly reflects the dynamic
power consumption of the processor: the higher the frequency, the higher the processor
power consumption. Therefore, by observing CPU frequency, you can analyze the
(dynamic) power consumption of the processor when the application is running.

When analyzing the CPU frequency, you can drag and drop the CPU in the CPU
Column XX Frequency indicator items to the display window for observation. Figure 13-3
shows the CPU frequency during an analysis of a sample app, MoveCircle.

https://software.intel.com/en-us/intel-mobile-development-kit-for-android
https://software.intel.com/en-us/intel-mobile-development-kit-for-android

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

457

The vertical axis in Figure 13-3 is the operating frequency of the CPU; the unit is
megahertz (MHz). In this example, the target machine is a Lenovo K800 Smartphone
with an Intel Atom processor, two logical CPUs, and two display windows. As you can
see, when the application has a computing task, the CPU increases the frequency to cater
to the needs of the calculation; when computing tasks are light, the CPU reduces the
operating frequency to save power.

The Current Charging and Current Discharging indicators reflect the charge and
discharge conditions. Unlike CPU frequencies, these reflect the machine’s overall
power consumption. Current Discharging indicates the discharge status; this is a direct
reflection of the machine’s power consumption, and it is the direct target you want to
observe. However, during the Intel GPA analysis, the target machine is connected to
the host via a USB cable, so the host becomes a power supply and is charging the target
machine (phone). Thus you should not ignore the Current Charging indicator when
analyzing overall machine power consumption.

While analyzing overall machine power consumption, you can drag and drop
the power bar under the corresponding Current Charging (top graph) and Current
Discharging (bottom graph) index entries to the display window to observe them.
Figure 13-4 shows an analysis of the machine’s charging and discharging using the
sample MoveCircle app.

Figure 13-3.  Intel GPA CPU frequency analysis

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

458

Figure 13-4.  Intel GPA machine overall power analysis

(a) The application is running

(c) The screen is locked(b) The application is not running

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

459

The vertical axis in Figure 13-4 is in the current in milliamperes (mA). When the
voltage is constant, it is a direct reflection of power consumption. When no application
is running, the charge (Current Charging) maintains a natural fluctuation of the state,
and the discharge (Current Discharging) stays almost 0 for the low state, as shown in
Figure 13-4(b). When the application is running, due to the increase in the dynamic
power consumption of the CPU, the discharge no longer maintains the 0 state. Discharge
at the same time lowers the value of the charge; this is visible in Figure 13-4(a).
When the user locks the screen, the screen may go blank and running applications may
also be suspended, quickly reducing the CPU’s dynamic power consumption; this brings
the discharge almost back to the 0 state, and the charge rises. This process is shown in
Figure 13-4(c).

As you can also see in the previous figures, the Intel Atom processor and Android
have load-sensing power-management capabilities, and they work together on dynamic
power management. When the application is not running or is completing low-power
computing tasks, the system perceives this change, and the hardware (processor) control
technology jumps in and reduces power consumption. It usually does so by lowering the
operating frequency/voltage using EIST.

Low-Power Considerations in Application Design
Hardware and operating systems provide good technical support for low power
consumption by the system, and this can also be accomplished using appropriate
management mechanisms and means of control. However, the ultimate low-power target
requires the close cooperation of the application. If the application is developed without
following the principle of low-power design, the final program may either not use the
system’s low-power potential or waste power, cancelling out the power savings from
the low-power technology provided by the hardware and operating system. Therefore,
this chapter emphasizes the importance of low-power requirements and principles in
application design.

Low-power design requirements and principles in application development
involve many technologies and methodologies. Let’s examine the major principles and
recommendations.

The Most Basic Principle of Low-Power Optimization
The most basic principle of low-power optimization is to minimize the working hours
of the processor and various peripherals. When a peripheral is not required and
processor operation is not required, the best way to reduce their power consumption is to
turn them off.

Because the processor uses a larger proportion of the total power consumption of
the system, the processor’s working hours need to be as short as possible; it should spend
longer in idle mode or power-down mode. This is a software design key to reducing the
mobile system’s power consumption.

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

460

General Recommendations: High Performance = Low
Power Consumption
In most cases with fixed voltage, running at peak velocity (high frequency) for a short
period of time with a long time in a deep idle state is much more energy efficient than
a long run at a medium operating frequency with a mild idle state. Therefore, for the
same task, much less electricity is consumed if your app runs to completion in the
shortest possible time and then enters an idle state, rather than runs over a longer time to
completion before entering a short idle state.

A fast algorithm can also reduce power consumption, which follows the
recommendation that high performance is equal to low power consumption.

Use Low-Power Hardware as Much as Possible to
Achieve the Task
The same task can be accomplished with different types of hardware, and different
hardware has different power-consumption overhead. When your app has the option to
choose different hardware to run the same task, you should choose low-power hardware.

In general, the energy consumption of the register access is the lowest; and the
energy consumption of cache access is lower than the energy consumption of main
memory access. Therefore, the program design should try to follow these suggestions:

Use the register as effectively as possible.•	

Analyze the behavior of the cache to discover the main cache •	
conflict.

Use page-mode access as much as possible in the storage system.•	

Polling Is the Enemy of Low-Power Optimization
Programs waiting for state changes or accessing peripheral devices may use polling;
this method is sometimes referred to as rapid rotation or spinning code. Polling allows
the processor to perform a few instructions repeatedly. Power consumption is roughly
equal to heavy computing tasks, and its role is just waiting for a status change; but the
waiting period cannot allow the processor to enter an idle state, resulting in a lot of
wasted power. Therefore, in low-power design, you should try to avoid using polling
and instead use alternative methods. For example, you should use interrupts instead of
polling access peripherals. In the client/server collaboration model, you should change
the client inquiry service to have the server actively push services to the client. For thread
synchronization, if you need to query the status change, you should use the operating
system event or semaphore.

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

461

For example, suppose Thread 2 wants to access a resource. The ability to access is
determined by the access-control variable canGo. Thread 1 is responsible for on or off
access control of variables canGo. If this is achieved by the polling statement, the thread
code may be as follows:
 
volatile boolean canGo = false; // Shared variables
// The code of thread 1 // The code of thread 2
void run() void run()
{ {

 canGo = true; while (!canGo);
 // Allow thread 2 to access a resource // Wait canGo Change to true
 // Access to the resource code
} }
 

In the previous code, the Thread 2 while statement is typical of polling; it consumes
a lot of processor time to prevent entry into the idle sleep state. You can change to a Java
wait-notify mechanism to achieve the same functions:
 
volatile boolean canGo = false;
Object sema; // The synchronization lock canGo variable
// The code of thread 1 // The code of thread 2
void run() void run()
{ {
 synchronized(sema){ synchronized(sema){
 �canGo = true; // Allow

thread 2 to access a resource while (!canGo)
 sema.notifyAll() sema.wait();
 } }
 // Access to the resource code
} }
 

After being replaced by the wait-notify code, thread 2 has no rapid rotation of the
polling statement: each time it checks the canGo variable in a loop, if the conditions are
not met, it enters the suspend state and releases the CPU. So, the CPU load is not wasted
on the thread. When the CPU has no other tasks, the load soon drops to a low state.
When low load to the processor is detected, the system takes measures to reduce power
consumption. This could not be done with the rapid rotation of polling mode before the
optimization.

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

462

Event-Driven Programming
In addition to implementing the software design methodology, low-power programs
should always follow the event-driven model of program design if possible. Event-driven
programming means the program is designed to respond to events: when an event
arrives, the application runs to handle the event; when no event arrives or the event is
finished, the program gives up the processor and changes to a sleep state. Here the event
is referred to as a generalized event, including user input, network communication events,
and process/thread synchronization events.

When the event-driven design process is used, processor utilization is particularly
high: programs only run when there are real things to deal with, and they free the
processor when there is nothing to do. When the processor is in an idle state, the
operating system and hardware can detect the idle in a timely manner and initiate the
operation to reduce power consumption.

Reduce Periodic Operations Similar to Polling
in Application Programs
Earlier you saw that the polling operation consumes unnecessary energy. Unnecessary
programming of periodic triggers or running operations can have an effect similar to
polling and consume power unnecessarily.

Tickless idle, as discussed earlier, is an operating system kernel improvement that
follows this principle; it removes periodic timed operations from the kernel. In addition,
Linux applications have many unnecessary periodic triggers or running operations, such
as these:

Mouse movement, once per second. This is commonly used in •	
screensavers.

Changes in volume, 10 times per second. This is commonly used •	
in the mixer program.

The next minute, once per second. This clock program is •	
commonly used.

USB reader, 10 times per second. This daemon is commonly used.•	

Other application data and conditions that change:•	

More than 10 times per second (web browser)•	

More than 30 times per second (GPS signal acquisition •	
applications)

More than 200 times per second (the Flash plug-in)•	

These unnecessary triggers and operations cause the system to wake up from an idle
state. When ported to Android, such operations should be noted and carefully avoided or
improved; otherwise they can easily offset power-consumption savings.

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

463

Low-Power Recommendations for Data Acquisition and
Communications
When designing communication modules, try to improve the communication rate.
When the communication rate is increased, it means communication time is shortened
and fewer high-power communications, reducing total power consumption.

Similarly, when using Wi-Fi communication, you should use burst mode to transmit
data, which can shorten the communication time (especially when sending data). It is
easy for Wi-Fi devices to enter an idle state as soon as possible.

Establishing a Power-Aware Program
Power for Android devices often toggles between being connected to an external power
supply and using battery power. The power requirements of the software for both power
states are completely different: the former is power-insensitive but requires that priority
be put on performance most of time; the latter is power-consumption-sensitive and
therefore needs to strike a balance between performance and power consumption.
Thus the application should detect the type of power supply and make adjustments to
adapt to power-related changes.

In addition, some power-management factors may affect software behavior, such
as when the device’s battery is below a certain threshold and the device enters the
closed state and automatic sleep, and so on. Application design should take into account
environmental changes brought about by these power-management events, pay attention
to the possible impact of these factors, and respond appropriately. For example, ongoing
processing of time-consuming operations (such as lengthy floating-point operations,
the query circulating system, and complex graphics reproduction) can be interrupted
or suspended by power-management events. One of the countermeasures is to save the
scene and make sure the environment is allowed time to recover from the interrupt status.

In addition, you can develop a kind of defensive programming for power, such as
advance consideration or prediction of what kind of task or application the user will
start (for example, playing a movie); or determining in advance whether there is enough
battery power to complete the task, and if not, alerting the user at the start of the task.

Case Study 1: Intel GPA Assisted Power
Optimization for an Android Application
Following is a case study to demonstrate a comprehensive approach that uses the Intel
GPA power-analysis tools to rewrite and optimize an application that has high power
consumption, in accordance with low-power design principles.

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

464

(a) The application has just
started

(b) After clicking the Start Run
button

(c) After the task has finished
running

Figure 13-5.  Separate PollLast applications running in the interface

Original Application and Intel GPA Power Analysis
The example application runs for a specified period of time (20 seconds).
This application, without low-power optimized code, is called PollLast. The application
design calls for it to get the current time through the static function currentTimeMillis
of the Java System class; the current time plus the duration of the runtime specified in the
program is equal to the end of the program run. The program then gets the current time
in the looping function currentTimeMillis and compares it with the program end time.
If the current time exceeds the program end time, the program ends the loop and finishes
the program. Because the entire task takes a long time to process, you run the program
as a worker thread so it does not affect the response of the main interface. The main
interface controls the start of the task.

The application’s operation interface is shown in Figure 13-5.

The main steps to create the application are as follows:

1.	 Create a new project called PollLast. Set the proposed
project property to use the default value, and select the Build
SDK version which supports the x86 API.

2.	 Edit the main layout file, and place two Buttons and two
TextViews on the layout; one is used to display the operating
status of the task thread, as shown in Figure 13-6.

 

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

465

3.	 Create a new task thread class MyTaskThread, which will run a
specified time. Edit the source code file MyTaskThread.java as
follows:
 
1. package com.example.polllast;
2. import android.os.Handler;
3. import android.os.Message;
  
4. public class MyTaskThread extends Thread {
5. private Handler mainHandler;
6. public static final int MSG_FINISHED = 1;
7. �public static final int lasthour = 0;

// The number of hours the program is running
8. �public static final int lastmin = 0;

// The number of minutes of the program to run
9. �public static final int lastsec = 20;

// The number of seconds the program is running
 
10. @Override
11. public void run()
12. {
13. long start_time = System.currentTimeMillis();
14. �long millisecduration = ((lasthour * 60 + lastmin) * 60 +

lastsec)*1000;

Figure 13-6.  The main layout of the PollLast application

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

466

15. long endtime = start_time + millisecduration;
16. long now;
17. do {
18. now = �System.currentTimeMillis(); // Polling
19. } while (now < endtime);
20. Message msg = new Message();
21. msg.what = MSG_FINISHED;
22. mainHandler.sendMessage(msg);
23. }
  
24. public MyTaskThread(Handler mh)
25. {
26. super();
27. mainHandler = mh;
28. }
29. }

 
The gray background marks the major code segments where changes are made.

In lines 7–9, you assign three constants lasthour, lastmin, and lastsec, respectively, as
the task’s running time in hours, minutes, and seconds. The code in lines 13 and 14 is a
core part of the task. In lines 13–15, you set the task start time, duration, and end time, in
milliseconds. Line 16 defines the current-time variable now. In lines 17–19, you use a loop
to poll and compare time. Each cycle first gets the current time and then compares it with
the end time; if the current time is greater than the end time, the loop is ended.

This is typical polling code. The loop body is only a statement to query the current
time, so the loop is very fast and consumes lots of processor computing resources.

4.	 Edit the main activity class source code file MainActivity.
java, and let it control running the task thread. The code
sections are almost the same as the MainActivity example’s
SerialPi class code (see Chapter 8).

5.	 Modify the project’s AndroidManifest.xml file to meet the
Intel GPA monitoring requirements.

Now you can deploy the application to the target machine. This example uses the
Lenovo K800 mobile phone as a test target.

Figure 13-7 and Figure 13-8 show the analysis using Intel GPA. This example
analyzes the main monitor CPU frequency (the CPU XX Frequency indicator) and the
charge or discharge (Current Charging and Current Discharging indicators). You click
the Start Run button to start running the task and recording the Intel GPA monitoring
information.

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

467

(a) The application has just started

(b) After clicking the Start Run button

Figure 13-7.  PollLast Intel GPA CPU frequency analysis

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

468

(a) The application has just started

Figure 13-8.  PollLast Intel GPA charge/discharge analysis

(c) After the task has finished running

Figure 13-7.  (continued)

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

469

(b) After clicking the Start Run button

(c) After the task has finished running

Figure 13-8.  (continued)

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

470

From the CPU frequency chart in Figure 13-7, you can see that CPU frequency jumps
from 600 MHz up to 1.6 GHz after starting the task and drops back to 600 MHz after
running the task. Of course, both logical CPU frequencies do not jump up to
1.6 GHz when the task is running: they have a complementary relationship. When the
task is running, only one CPU frequency jumps to the highest values. The main reason for
this complementary effect is that this example task has only one worker thread.

The machine’s charge is shown in Figure 13-8 in a map view of discharge conditions.
The discharge maintained a level below 400 mA before starting the task, as shown in
Figure 13-8(a). After starting the task, the discharge jumped to levels above 550 mA.
After running the task, discharge level returned to 400 mA or less. The phone was fully
charged before running, so the entire example process was always charged in a low state of
approximately 0. Discharge reflects the charge level of the machine under the same total
power consumption. Running the task led to a dramatic increase in power consumption.

Optimized Applications and an Intel GPA Power Analysis
Through the code analysis of the PollLast application, you know that using a polling
statement causes machine power consumption to rise, especially in MyTaskThread.java
lines 17–19. You need to rewrite this segment by applying the low-power application
design principles as previously described and change the polling code. You can create an
optimized solution that lets the thread sleep the specified time instead of polling.
This application is an improved version based on PollLast, with these changes:

1.	 Create a new project SleepLast. Set the proposed project
property to use the default value, and select the Build SDK
which supports the x86 API.

2.	 Copy the PollLast main layout file to the project, and replace
the original layout of the project file.

3.	 Copy the original application MyTaskThread.java to this
project, and modify its contents as follows:

 
1. package com.example.sleeplast;
2. import android.os.Handler;
3. import android.os.Message;
 
4. public class MyTaskThread extends Thread {
5. private Handler mainHandler;
6. public static final int MSG_FINISHED = 1;
7. �public static final int lasthour = 0;

// The number of hours run
8. �public static final int lastmin = 0;

// The number of minutes run
9. �public static final int lastsec = 20;

// The number of seconds to run
 

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

471

10. @Override
11. public void run()
12. {
13. �long millisecduration = ((lasthour * 60 + lastmin) *

60 + lastsec)*1000;
14. try {
15. Thread.sleep(millisecduration);
16. } catch (InterruptedException e) {
17. e.printStackTrace();
18. }
19. Message msg = new Message();
20. msg.what = MSG_FINISHED;
21. mainHandler.sendMessage(msg);
22. }
  
23. public MyTaskThread(Handler mh)
24. {
25. super();
26. mainHandler = mh;
27. }
28. }

 
The first line of code is the declaration of the application package.
The main changes are from lines 13–18. Here you use the static function sleep

of the Thread class to specify how long the thread should sleep. The application
calculates the sleep time in milliseconds in line 13. Because sleep may throw an
InterruptedException exception, you put the function into a try-catch statement block.

4.	 Copy the MainActivity.java from the original application to
cover the same documents. Change its package-declaration
line to
 
package com.example.sleeplast;
 

5.	 Modify the project’s AndroidManifest.xml file to match the
Intel GPA monitoring requirements.

Now you can deploy the application to the target machine. Again, this example uses
a Lenovo K800.

In the real world, you only need to modify the source code of the original application
to achieve the optimization for low-power consumption—you don’t need to create a
separate application. For example, in this case, you would only need to do step 3.
This example creates an optimized version of the application to highlight the differences.

Following the same procedure as with the original application, you can use Intel GPA
to analyze the optimized application. The results are shown in Figure 13-9 and
Figure 13-10.

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

472

(a) The application has just started

(b) After clicking the Start Run button

Figure 13-9.  Intel GPA CPU frequency analysis of the SleepLast application

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

473

(a) The application has just started

(c) After the task has finished running

Figure 13-9.  (continued)

Figure 13-10.  Intel GPA charge/discharge analysis of SleepLast

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

474

(c) After the task has finished running

(b) After clicking the Start Run button

Figure 13-10.  (continued)

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

475

In Figure 13-9, compare the graph when the task has not yet started (Figure 13-9(a))
and graph when the task is complete Figure 13-9(c)): the processor frequency does not
change (Figure 13-9(b)) when the task runs. Essentially, all three states have the same
frequency and remain at a low level of 600 MHz. This reflects the fact that the processor’s
dynamic power consumption before, during, and after the process did not change
significantly and maintained low load levels.

Figure 13-10 reflects overall machine power consumption, which is also consistent.
Before starting the task (Figure 13-10(a)), during the running of the application
(Figure 13-10(b)), and at the end (Figure 13-10(c)), discharge maintained a low level of
approximately 0. The graph representing charging did not change significantly before,
during, or after the application ran. Compared with PollLast, which caused significant
overall power consumption, the optimized SleepLast application achieves an optimized
power-saving result.

Case Study 2: Timer Optimization and Intel GPA
Power Analysis
This section introduces another power-optimization solution: the timer method. You use
Java’s Timer and TimerTask to implement a timer. The timer measure the specified time
and notifies the task that it should end when a specified time has passed.

Follow these steps to create the application:

1.	 Create a new project called TimerLast. Set the proposed
project property to use the default value, and select the Build
SDK version that supports the x86 API.

2.	 Copy the main layout file from PollLast to this project, and
replace the layout file.

3.	 Copy MainActivity.java from PollLast to this project, and
modify its contents as follows:
 
1. package com.example.timerlast;
2. import android.os.Bundle;
3. import android.app.Activity;
4. import android.view.Menu;
5. import android.widget.Button;
6. import android.view.View;
7. import android.view.View.OnClickListener;
8. import android.os.Process;
9. import android.widget.TextView;
10. import android.os.Handler;
11. import android.os.Message;
12. import java.util.Timer;
13.

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

476

14. public class MainActivity extends Activity {
15. private TextView tv_TaskStatus;
16. private Button btn_ExitApp;
17. private Handler mHandler;
18. private Timer timer =null; // Timer
19.
20. @Override
21. public void onCreate(Bundle savedInstanceState) {

35. �final Button btn_StartTask = (Button) findViewById(R.

id.startTask);
36. �btn_StartTask.setOnClickListener(new /*View.*/

OnClickListener(){
37. public void onClick(View v) {
38. btn_StartTask.setEnabled(false);
39. btn_ExitApp.setEnabled(false);
40. tv_TaskStatus.setText("Task operation...");
41. startTask();
42. }
43. });

58. }

66. private void startTask() {
67. long millisecduration =
68. �((MyTaskTimer.lasthour * 60 + MyTaskTimer.

lastmin) * 60 + MyTaskTimer.lastsec)*1000;
69. timer = new Timer(); // Creating Timer
70. �timer.schedule(new MyTaskTimer(mHandler),

millisecduration); // Set the timer
71. }

79. }
 

Lines 35–43 are the response code when the Start Run button is clicked. The key
code line is line 41, which calls the custom function startTask. Lines 66–71 implement
this function code. The program first calculates the total number of milliseconds for
the timing. In line 69, the timer is created. Line 70 sets the timer and calls back the
MyTaskTimer object when timing ends.

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

477

4.	 Create a new MyTaskTimer class, and let it inherit from the
TimerTask class. It is responsible for notifying the activity
interface that the task has been completed. Edit the source
code file MyTaskTimer.java as follows:
 
1. package com.example.timerlast;
2. �import java.util.TimerTask; // TimerTask classes using Java
3. import android.os.Handler;
4. import android.os.Message;
5.
6. public class MyTaskTimer extends TimerTask {
7. private Handler mainHandler;
8. public static final int MSG_FINISHED = 1;
9. �public static final int lasthour = 0; 

// The task of operating hours
10. �public static final int lastmin = 0; 

// The task of operating minutes
11. �public static final int lastsec = 20; 

// The task of operating seconds
12.
13. public MyTaskTimer(Handler mh)
14. {
15. super();
16. mainHandler = mh;
17. }
18.
19. @Override
20. public void run(){
21. Message msg = new Message();
22. �msg.what = MSG_FINISHED; // Defined message

types
23. �mainHandler.sendMessage(msg); // Send a message
24. }
25. }
 

According to the Java timer framework, when the timer expires, the program callback
function of TimerTask runs. The previous code lets the MyTaskTimer class inherit from
TimerTask and allows the code for the self-timing timer to expire in the run function. In
this case, lines 19–24 hold the callback code that indicates timing is complete and sends a
“finished” message to the main interface. The main interface responds to this message in
its own handler and displays a message that the task is ended.

Now you can deploy the application to the target machine. As before this example
uses a Lenovo K800 smartphone with an Intel Atom processor.

Following the same procedure as previously, you can use Intel GPA to analyze the
optimized application, record the GPA monitoring information, and analyze the results,
as shown in Figure 13-11 and Figure 13-12.

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

478

(a) The application has just started

(b) After clicking the Start Run button

Figure 13-11.  Intel GPA CPU frequency analysis of TimerLast

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

479

(c) After the task has finished running

(a) The application has just started

Figure 13-11.  (continued)

Figure 13-12.  Intel GPA charge/discharge analysis of TimerLast

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

480

(b) After clicking the Start Run button

(c) After the task has finished running

Figure 13-12.  (continued)

Chapter 13 ■ The Low-Power Design of Android Application and Intel Graphics Performance
Analyzers (Intel GPA): Assisted Power Optimization

481

The frequency graph shown in Figure 13-11 is similar to the SleepLast graph from
Figure 13-9. The processor frequency does not change in Figure 13-11(b) after running
the task and has essentially the same frequency as before the task started
(Figure 13-11(a)) and after it ended (Figure 13-11(c)). It stayed in the low 600 MHz range.
The only difference is a rise in occasional glitches at the end of the task (Figure 13-11(c)).
The processor’s dynamic power consumption did not change significantly before, during,
and after the process: it maintained low load levels.

Figure 13-12 shows that overall machine power consumption is consistent with
Figure 13-11. Of course, the TimerLast graph is not as pretty as the display in
Figure 13-10, which shows the performance of SleepLast—discharge graphs always
have some glitches. However, the indicator did not change significantly before the task,
while the task ran, and after task completion. This proves that running the task did not
cause the extra power consumption. Compared with PollLast, which caused significant
overall power consumption, the optimized TimerLast application achieved an optimized
power-saving result.

Book Summary
In this book, you learned how to develop and optimize Android applications on Intel
Atom platforms, as well as how to develop power-efficient applications. Here is a
summary of the key concepts:

Most Android applications written in Java can execute on the •	
Intel Atom platform directly. NDK applications need to recompile
native code. If assembly code is included in the application, this
portion of the code must be rewritten.

Make full use of Intel Architecture features to improve your •	
Android application performance.

Add platform-specific compile switches to make the GCC build •	
code more effective.

Intel provides various useful tools to help Android developers. •	
Many of them focus on improving performance and can help you
optimize your applications.

The common methods of creating Android apps are as follows:

Java compiled using the Android SDK APIs, to run in the Dalvik •	
VM. Google is releasing a new Android Runtime (ART) for the
new Android L OS at the end of 2014.

Using the latest SDK, testing goes faster if you speed up your •	
Android emulation software with Intel HAXM.

Created in or ported to NDK. This is the preferred method if you •	
have the C++ code. Native C++ code is compiled into a binary
before execution and doesn’t require interpretation into machine
language.

Chapter 13 ■� The Low-Power Design of Android Application and Intel Graphics Performance
 Analyzers (Intel GPA): Assisted Power Optimization

482

If you don’t have an Android development environment (IDE), the new tool suite
Intel Integrated Native Developer Experience (INDE) loads a selected Android IDE and
also downloads and installs multiple Intel tools to help you make, compile, troubleshoot,
and publish Android applications. Go to https://software.intel.com/en-us/android
to download and use those tools. You can also visit this book’s Apress web page to keep
up with updates and any posted errata: www.apress.com/9781484201015.

https://software.intel.com/en-us/android
http://www.apress.com/9781484201015

A, B�       �
Advanced Linux Sound

Architecture (ALSA), 131
Android application

ART, 232
components

activities, 228
broadcast intent receiver, 230
intent and intent filters, 229
service process, 229

content provider, 231
Dalvik virtual machine, 231
file structure, 214

AndroidManifest.xml, 218
constant definitions, 222
layout files, 224
R.java file, 221
source code file, 227

Android application
cross-development, 341

Android application development, 47
debugging and simulation

cross-debugging, 57
debugging tools, 57
system simulators, 55

development environment, 48
cross-development

configuration, 48
programming languages, 49

development process, 51
construction stage, 52
debugging and optimizing stage, 54
deployment stage, 53
encoding, 52

emulator
DDMS interface, 98–99, 102
Eclipse interface, 97

home page, 100
IDE interface, 104
initial page, 103
Intel HAXM, 97
MainActivity application, 100–101
message box, 96
runtime configuration, 95

GNU toolsets, 61–62
GPL toolsets, 61
Intel GPA, 126
Intel ICC, 125
Intel INDE (see Intel Integrated

Native Developer Experience
(Intel INDE))

Intel performance libraries, 129
Intel Project Anarchy, 129
Intel system studio, 127, 129
LGPL toolsets, 61
new project creation

activity setting, 92–93
dialog box setup, 89–90
directory structure, 94
Eclipse, 88
icon setting, 91

real device, 104
tool chains, 60

aapt.exe, 71
adb.exe, 70
aidl.exe, 71
android.bat, 71
android.jar, 68
build manager, 63
in command-line format, 66
command line toolsets, 61
compiler and linker, 62
ddms.bat, 69
debugger, 63
dx.bat, 71

Index

483

■ index

484

full-screen editors, 62
gproof, 64
IDEs, 61
libraries, 66
line editors, 62
makefile, 63
sqlite3.exe, 71
vs. GNU toolsets, 65

Android customization
flash_device.sh, 201
generation and installation, 199–200
Intel Build Tools Suite features, 201
recovery, 199
reflashing, 199
ROM package/image

creation, 196
data\app directory, 197
development process, 193
embedded system, 194
files and folders, 195
file structure of, 195
Java environment, 198
Lenovo K900 Website, 197
process of, 196
system\app directory, 197
system\bin directory, 197
system\media directory, 197
zip packages, 198

SD card, 200
wiping, 199

Android Debug Bridge (adb)
command prompt, 70

device/phone simulator, 177
functions, 183
host machine’s Windows

command line, 177
installation command, 179
kill-server command, 183
push command, 183
shell command rm, 182
target machine, 178–179

Android devices vs. desktop computers
application windows, 209
copyright protection

problems, 214
keyboard input problems, 213
keys and buttons, 205
multimodal interactions, 208
onscreen keyboards, 208

screen size, 208
buttons and graphical

elements, 209
text and icon size, 209

screen size and densities, 204
software distribution, 214
storage devices, 208
tap-only touch screens

hover-over operations, 212
mapping errors, 210
moving the cursor without

clicking, 210
right-click functions, 212

touch screens and stylus, 207
Android interface design, 235. See also

GuiExam application
Android multithreaded design

in activity_main.xml, 363
extensions and support

assistive thread, 358
handler, 360
interface thread, 358
looper-message

mechanism, 358, 360
message queue, 359–360
UI thread, 358

GuiExam application, 361
button status, 366
demo app, 362
Handler class, 365
mainHandler variable, 367
MyTaskThread, 367
myThread, 365
response code, 365
setButtonAvailable function, 365
stepTime constant, 367
stop-the-thread prototype

function, 366
TextView widget, 365

Java thread programming
interface, 356

parallel execution, 355
programming framework, 356
thread communication

notifyAll function, 370
notify function, 370
wait function, 370

thread synchronization
competition, 367
critical section, 367

Android application development (cont.)

■ Index

485

generalized rules, 369
genlock, 368
static synchronization

method, 369
synchronization (general)

method, 369
Android OS, 131

adb command prompt (see Android
Debug Bridge (adb) command
prompt)

architecture, 133–134
AVD, 151
class reference page, 157
DDMS (see Dalvik Debug Monitor

Service (DDMS))
drivers and technologies, 131
emulator, 151

APIs, 184
creation, 186
event command, 187
geo command, 187–188
gsm command, 188
installation, 184
kill command, 188
network command, 189
power command, 189
redir Command, 189
scale command, 190
sms command, 190
Telnet command, 186

index.html file, 157
Lenovo K900 smartphone

DDMS, 139
drop-down menu options, 136
four-leaf clover design, 134
menu interface, 136
mobile device menu, 138
multiscreen interface, 136
parameters of, 138
Web browser, 139

Linux commands and operations
(see Linux commands and
operations)

online reading function, 158
SDK entry page, 159
UI subsystem, 132

Android Run Time (ART), 50, 232, 391
Android Virtual Device (AVD)

interface, 57, 151
Application binary interface (ABI), 400

C�       �
Cloud computing, 43
CMOS processor, 447
Complex instruction set

computer (CISC), 9
Customization

Android customization (see Android
customization)

Embedded OS
modes of, 192
principle of, 191

D�       �
Dalvik Debug Monitor Server (DDMS), 139
Dalvik Debug Monitor Service (DDMS)

command line, 160
editing and debug interfaces, 161–163
emulator

control interface of, 175
Location control, 175
SMS, 176
Telephony actions, 175
Telephony status, 175

file transfers
deletion, 167
host machine to target

machine, 163
target machine to host

machine, 167
process management

designation, 170
Eclipse, 168
emulator, 169
List of, 170

screen capture, 171
Dalvik virtual machine (DVM), 133

vs. ART, 232
vs. JVM, 231

Debugging
breakpoint setup, 112–113
cross-debugging, 57

adb debugger, 58
software environment, 58

tools, 57
Eclipse IDE, 115–116
Log.X function, 117
program execution techniques, 116–117
source code editing, 110

■ index

486

system simulators, 55
analog peripherals, 55
AVD interface, 56
two uses on one machine, 56
types, 55

terminate button, 123
variable observation, 121
warning dialog box, 114
Watch command, 121

Design applications
multiple activities

explicit match, 271 (see also Direct
intent triggering mechanism)

implicit match, 271
implicit match, 271 (see also

Indirect intent triggering
mechanism)

Development environment, Android
cross-development, 48
programming languages, 49

Development process, Android, 51
construction stage, 52
debugging and optimizing stage, 54
deployment stage, 53
encoding, 52

Dialog boxes
activity’s dialog theme

AlertDialog class, 323
dismissDialog() function, 323
onCreateDialog() function, 322
onPrepareDialog() function, 323
ProgressDialog class, 323
showDialog() function, 322
toast reminders, 323

AlertDialog.Builder class, 326
application interface, 324
code implementation, 324
DialogInterface class, 327
OnKeyDown response function, 327
setPositiveButton function, 327

Digital signal processing (DSP), 9
Direct intent triggering mechanism

without parameters
activity class, 277
application interface, 273
callee activity, 272, 280
class-name modifiers, 280
constructor, 280
drag-and-drop layout, 276
final configuration, 276

layout configuration, 279
layout file, 274–275
reflection, 273
setContentView() function, 278

with parameters
application interface, 282
callee activity, 281
executing application, 283
Intent.setClassName()

function, 286
layout design, 284, 288
layout file, 289
onActivityResult function, 287
property-value data pairing, 286
set result function, 291

Dynamic frequency scaling (DFS), 447–448
Dynamic voltage and frequency

scaling (DVFS), 448
Dynamic voltage scaling (DVS), 448

E�       �
Embedded OS

modes of, 192
principle of, 191

Embedded systems, 1, 203
advantages, 11
android devices vs. desktop

computers, 204
application layer, 17
basic architecture, 6
characteristics, 11, 17
comparison of RISC and CISC, 10
computer architecture, 7
consumer electronics and

information, 3
debug, 5
feature, 17
four layers, 15
general-purpose, 3
hardware abstraction layer (HAL), 16
hardware architecture, 6
Harvard architecture, 8–9
integrated hardware and software, 5
Intel Atom processor, 2
limited resources, 4
macro operation/macro-op, 11
microprocessor architecture, 9
MIPS architecture, 12
mobile phones, 3
OS layer, 16

Debugging (cont.)

■ Index

487

power constraints, 5
PowerPC architecture, 13
real-time aspect, 4
robustness, 5
SoC-based hardware

system structure, 14
software architecture, 15
SuperH (SH), 13
system on chip (SoC), 14
system service layer, 17
target machine, 18
typical hardware structure, 13
Von Neumann architecture, 7–8
x86 architecture, 12
x86 instruction fusion, 11

Emulator
APIs, 184
creation, 186
DDMS interface, 98–99, 102
Eclipse interface, 97
event command, 187
geo command, 187–188
gsm command, 188
home page, 100
IDE interface, 104
initial page, 103
installation, 184
Intel HAXM, 97
kill command, 188
MainActivity application, 100–101
message box, 96
network command, 189
power command, 189
redir Command, 189
runtime configuration, 95
scale command, 190
sms command, 190
Telnet command, 186

Engineering and Technology (IET), 4
Enhanced Intel SpeedStep

Technology (EIST), 25

F�       �
Field-programmable gate

array (FPGA), 15

G, H�       �
Garbage collector, 50
GNU development tools, 61–62

Graphical User Interface (GUI) design
embedded systems (see Embedded

systems)
system service layer, 17

GuiExam application, 248
activity state transition

active states, 235
finish function, 239
inactive states, 236
onCreate function, 237
onDestroy function, 239
onPause function, 238
onRestart function, 238
onResume function, 238
onStart function, 238
onStop function, 238
paused states, 235
schematic representation, 236
stopped states, 236
triggers, 239

applications and activities, 247
application interface, 268
DDMS view, 269
finish function, 266
ImageView, 266

buttons and events, 259
code implementation, 251
Context class

activity context, 241
context wrapper/direct context

methods, 242
dialog constructor, 240
offspring classes, 241
subclasses, 241

design layouts
interface structure, 255
text-edit widget, 254
text property, 253
user interface, 254

file structure, 249
ID attribute, 257
ImageView, 262
inner class listener, 260
intent, 243

action test, 245
category test, 246
components, 244
data test, 246
explicit matching/direct intent, 244
implicit matching/indirect

intent, 245

■ index

488

mechanism, 245
roles, 244

interface, 250
setContentView function, 255

GUiExam project
interface of, 311
touchscreen input

code implementation, 306
constructor function, 308
setStyle function, 308
View.onDraw function, 308

I�       �
Indirect intent triggering mechanism

built-in activity
ACTION constants, 296
Activity.startActivityForResult()

function, 292
application interface, 293
constructor function, 295
layout file, 294

custom activity
application interface, 297
Intent.ACTION_EDIT, 304
layout design, 299
layout file, 301

Intel architecture-32 (IA-32), 12
Intel architecture-64 (IA-64), 12
Intel Atom processor

architecture, 20
64-bit architecture

advantages, 32
memory and CPU register size, 33

chipset
computer system

architecture, 29
integrated graphics chip, 30
North Bridge chip, 30
PCI and ISA, 30
South Bridge chip, 30

description, 19
high performance, 25

floating-point-intensive
applications, 26

Intel HT Technology, 27
Intel VT, 27
multi-core technologies, 27
SIMD, realization procedure, 27
vector data, 26

IMVP-6, 25
integer execution area, 21
low power consumption, 25
reference platform (see Reference

platform)
Silvermont microarchitecture

advantages, 22
benefits and features, 24

SIMD/floating-point
execution area, 21

small form factor, 24
System on Chip (SoC), 30

Bay Trail, 32
Medfield, 31

technologies
burst mode, 28
enhanced data pre-fetch

technology, 28
low cost, 28
Power-optimized FSB, 28
Smart cache, 28

Intel Atom processors
backpack journalism, 44
learning, 44
portable video recording, 44
RFID tags, 44
wireless sensor networks, 43

Intel C++ Compiler (Intel ICC), 125
Intel embedded chipset

computer system architecture, 29
integrated graphics chip, 30
North Bridge chip, 30
PCI and ISA, 30
South Bridge chip, 30
variations, 29

Intel Galileo development board, 35
Intel Graphics Performance Analyzers

(Intel GPA), 126
on Android

application cross development, 341
MoveCircle application, 346
MoveCircle operation, 345

installation, 344
interface monitoring, 342
System Analyzer, 341
windows and toolbar, 343–344

Intel Integrated Native Developer
Experience (Intel INDE)

AVD (Emulator) creation, 79
Eclipse configuration, 77
environment setup, 72

GuiExam application (cont.)

■ Index

489

host machines, 73
installation

download screen, 75
install window, 76
launch process, 77
setup process, 76

setup, 75
tools and libraries

compiling, 74
compute code builder, 74
threading, 74

Intel Integrated Performance Primitives
(Intel IPP), 426

Intel Mobile Voltage Positioning
(IMVP)-6, 25

Intel NUC Kit DE3815TYKHE, 34
Intel’s Silvermont microarchitecture, 22
Internet of Things (IoT), 34
Inter-process communications (IPC)

functions, 132

J, K�       �
Java Native Interface (JNI)

AOT, 391
ART, 391
C/C++ function, 392
Dalvik virtual machine, 391
host platform, 391
Java methods and C Function, 394
Java vs. C/C++

correspondence, 395
Java array processing, 397
resource release, 397
uses, 396

local platform, 391
scenarios, 392
system level approach, 392
System.loadLibrary() method, 393
System.load() method, 393
workflow, 392

Java Thread Programming Interface, 356
Java virtual machine (JVM), 50

L�       �
Large-scale integration (LSI), 1
Lenovo K900 smartphone

DDMS, 139
drop-down menu options, 136
four-leaf clover design, 134

menu interface, 136
mobile device menu, 138
multiscreen interface, 136
parameters of, 138
Web browser, 139

Linux commands and operations
Android file-operation

commands, 144–145
cd command, 143
change command, 141
check command, 141
clear command, 142
executable file path, 147
File/Directory

permission-modification, 145
find command, 144
grep command, 148
Linux ping command, 149
ls command, 143
su command, 142
uname command, 149

Linux power-control mechanism
PowerTOP, 455
Tickless idle, 454

Log.X function, 117
Low-power design, 445

in application, 459
data acquisition and

communications, 463
event-driven programming, 462
fast algorithm, 460
hardware, types of, 460
periodic operations reduction, 462
polling method, 460
power-aware program, 463
processor and peripherals, 459

dynamic power dissipation, 446
linux power-control mechanism

PowerTOP, 455
Tickless idle, 454

mobile device, 446
power consumption control

technology
ACPI, 451
Advanced Power

Management (APM), 451
Clock gating, 449
DFS, 447–448
DVS, 448
EIST, 450
hibernate mode, 453

■ index

490

Intel SpeedStep, 450
Sleep mode, 453
standby mode, 452
ULV processor, 449

power-optimization aids, 456
static power consumption, 446

M�       �
Macro operation/macro-op, 11
Mobile phone settings, 85, 130

android application development
(see Android application
development)

debugging
breakpoint setup, 112–113
Eclipse IDE, 115–116
Log.X function, 117
program execution

techniques, 116–117
source code editing, 110
terminate button, 123
variable observation, 121
warning dialog box, 114
Watch command, 121

host and target machines, 88
Lenovo K900 smartphone, 85
USB driver installation, 85

MoveCircle application
Analyzable application list, 349
CPU loads, 354
document framework, 346
Intel GPA, 346
Internet write/read access, 347
OpenGL metrics, 354
operation interface, 345

Multithreaded optimization
Intel GPA, 373

SerialPi app interface, 374
ThreadPi user interface, 381

principles
hyperthreading/multi-core

support, 372
start/scheduling, 372

N�       �
Native Development Kit (NDK), 397

ABI, 400
Android API, 399

Android application files, 398
application projects, 399
benefits, 397
CDT installation, 401
command line, 403

APP_ABI parameters, 410
classpath, 406
command parameters, 406
jnitest project, file structure, 404
libs and obj, 410
LoadLibrary function, 405
LOCAL_SRC_FILES variable, 410
stringFromJNI local

function, 408–409
compiler optimizations, 419

anotherCCodeTask function, 436
anotherCCodeTask prototype, 440
CCodeTaskThread class, 439
command options, 441
Original Application

Accelaration, 437
SSE instructions, 442
System.loadLibrary function, 441

components, 398
dynamic libraries, 398
integrated optimization

C/C++ native library function, 427
CCodeTaskThread, 432, 434
JavaTaskThread class, 435
MyTaskThread class, 434
NdkExp layout, 429
System.loadLibrary function, 435

Intel Processor-Related Compiler
Switch Options, 422

01 optimization level, 424
gcc command options, 425
gcc–march parameters, 423
-march option, 423
-mtune option, 423
SSE instructions, 425

Java native library files, 398
library file, 411
loop unrolling, 421
machine independent compiler

switch options, 420–422
performance optimization, 428
workflow analysis

.apk file, 417
Eclipse Logcat window, 418
project file structure, 417

Next Unit of Computing (NUC), 34

Low-power design (cont.)

■ Index

491

O�       �
Original device manufacturers (ODMs), 5

P, Q�       �
Performance optimization

combined value principle, 336
compiler optimization, 338
efficacy principle, 335
equal value principle, 335
execution frequency, 336
faster instruction selection, 336
GPA tool, 338 (see also Intel Graphics

Performance Analyzers
(Intel GPA))

high-performance libraries, 339
instruction-level parallelism, 337
machine-dependent, 338
machine-independent, 338
manual optimization

assembly-language level, 340
compiling-instruction level, 340
source-code level, 340

reducing instructions, 336
register cache

high-speed cache, 337
locality principle, 337
space locality, 337
temporal locality, 337

user optimization, 340
Personal computers (PCs), 1
Power optimization, 463

PollLast application
CPU frequency analysis, 466, 468
creation, 464–465
definition, 464
interface, 464
layout of, 465
processor computing

resources, 466
SleepLast application

CPU frequency analysis, 471–473
creation, 470–471
try-catch statement block, 471

timer method
CPU frequency analysis, 477–479
creation, 475–476
MyTaskTimer class, 477

Programmable logic device (PLD), 15

R�       �
Radio-frequency ID (RFID), 44
Recent platform

cloud computing, 43
in-Vehicle Infotainment (IVI)

systems, 42
robotics, 43
smartphones, 36

Lenovo K900, 37
Vexia Zippers phone, 38
ZTE Grand X2, 38

tablets, 39
Acer Iconia A1-830, 41
ASUS MeMO Pad FHD 10, 41
Dell Venue 7/8" tablet, 40
Samsung Galaxy

Tab 3 10.1, 40
Reduced instruction set

computer (RISC), 9
Reference platform

Intel NUC Kit DE3815TYKHE, 34
Internet of Things (IoT), 34–35
IoT, 34

Robotics, 43
ROM package/image

creation, 196
data\app directory, 197
development process, 193
embedded system, 194
files and folders, 195
file structure of, 195
Java environment, 198
Lenovo K900 Website, 197
process of, 196
system\app directory, 197
system\bin directory, 197
system\media directory, 197
zip packages, 198

S�       �
SerialPi app interface, 375
Silvermont microarchitecture, 22
Single instruction, multiple

data (SIMD), 21
Streaming SIMD Extensions (SSE), 27
System on Chip (SoC), 30

Bay Trail, 32
Medfield, 31

■ index

492

System simulators, 55
analog peripherals, 55
AVD interface, 56
two uses on one machine, 56
types, 55

T�       �
Thermal design power (TDP), 446
ThreadPi user interface, 382
Tool chains

aapt.exe, 71
adb.exe, 71
aidl.exe, 71
android.bat, 71
android.jar, 68
build manager, 63
by companies and organizations, 61
in command-line format,

Android SDK, 66
command line toolsets, 61
compiler and linker, 62
ddms.bat, 69
debugger, 63
dx.bat, 71
full-screen editors, 62
GNU toolsets, 61, 65
gproof, 64
IDEs, 61
Intel tools, 66
libraries, 66
line editors, 62
Makefile, 63
sqlite3.exe, 71
types, 60

Touchscreen input
application settings

applying properties, 329
icon dialog box, 332
menulist, 328
screen resolutions, 329
target device, 328

dialog boxes
activity’s dialog theme, 322
AlertDialog.Builder class, 327
AlertDialog class, 323
application interface, 323
code implementation, 324

DialogInterface class, 327
OnKeyDown response

function, 327
ProgressDialog class, 323
setPositiveButton function, 327
toast reminders, 323

display framework
application interface, 309
code implementation, 309
fill mode parameters, 308
GuiExam project (see GUiExam

project)
onDraw function, 305
setContentView function, 306

drawing framework
application interface, 311
code implementation, 311
invalidate function, 310
postInvalidate function, 310
View.onDraw function, 310
View.onTouchEvent, 310

keyboard input
application interface, 318
code implementation, 319
keyCode parameter, 321
onKeyDown function, 317
virtual machine, 319

multi-touch code framework
application interface, 314
code implementation, 315
getx/gety functions, 313
onDraw function, 317
touch event class, 313

U�       �
Ultra-low voltage (ULV)

processor, 449
Universal asynchronous

receiver/transmitter (UART), 14

V�       �
Very-large-scale integration (VLSI), 1

W, X, Y, Z�       �
Wi-Fi communication, 463

Android Application
Development for the

Intel® Platform

Ryan Cohen, Lead Project Editor
Tao Wang, Lead Contributing Author

Android Application Development for the Intel® Platform

Ryan Cohen & Tao Wang

Copyright © 2014 by Apress Media, LLC, all rights reserved

ApressOpen Rights: You have the right to copy, use and distribute this Work in its entirety, electronically
without modification, for non-commercial purposes only. However, you have the additional right to use
or alter any source code in this Work for any commercial or non-commercial purpose which must be
accompanied by the licenses in (2) and (3) below to distribute the source code for instances of greater than
5 lines of code. Licenses (1), (2) and (3) below and the intervening text must be provided in any use of the
text of the Work and fully describes the license granted herein to the Work.

(1) License for Distribution of the Work: This Work is copyrighted by Apress Media, LLC, all rights reserved.
Use of this Work other than as provided for in this license is prohibited. By exercising any of the rights herein,
you are accepting the terms of this license. You have the non-exclusive right to copy, use and distribute this
English language Work in its entirety, electronically without modification except for those modifications
necessary for formatting on specific devices, for all non-commercial purposes, in all media and formats
known now or hereafter. While the advice and information in this Work are believed to be true and accurate
at the date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or
implied, with respect to the material contained herein.

If your distribution is solely Apress source code or uses Apress source code intact, the following licenses
(2) and (3) must accompany the source code. If your use is an adaptation of the source code provided by
Apress in this Work, then you must use only license (3).

(2) License for Direct Reproduction of Apress Source Code: This source code, from Android Application
Development for the Intel® Platform, ISBN 978-1-4842-0101-5 is copyrighted by Apress Media, LLC,
all rights reserved. Any direct reproduction of this Apress source code is permitted but must contain this
license. The following license must be provided for any use of the source code from this product of greater
than 5 lines wherein the code is adapted or altered from its original Apress form. This Apress code is
presented AS IS and Apress makes no claims to, representations or warrantees as to the function, usability,
accuracy or usefulness of this code.

(3) License for Distribution of Adaptation of Apress Source Code: Portions of the source code
provided are used or adapted from Android Application Development for the Intel® Platform,
ISBN 978-1-4842-0101-5 copyright Apress Media LLC. Any use or reuse of this Apress source code must
contain this License. This Apress code is made available at Apress.com/9781483201015 as is and Apress makes
no claims to, representations or warrantees as to the function, usability, accuracy or usefulness of this code.

ISBN-13 (pbk): 978-1-4842-0101-5

ISBN-13 (electronic): 978-1-4842-0100-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Publisher: Heinz Weinheimer
Associate Publisher: Jeffrey Pepper
Lead Editors: Steve Weiss (Apress); Stuart Douglas and Paul Cohen (Intel)
Coordinating Editor: Melissa Maldonado
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

http://Apress.com/9781483201015
http://orders-ny@springer-sbm.com
http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com

iii

About ApressOpen

What Is ApressOpen?
ApressOpen is an open access book program that publishes •	
high-quality technical and business information.

ApressOpen eBooks are available for global, free, •	
noncommercial use.

ApressOpen eBooks are available in PDF, ePub, and Mobi formats.•	

The user-friendly ApressOpen free eBook license is presented on •	
the copyright page of this book.

vii

Contents

About the Lead Project Editor��� xvii

About the Lead Contributing Author�� xix

About the Technical Reviewer��� xxi

Introduction��� xxiii

�Chapter 1: Overview of Embedded Application Development ■■
for Intel Architecture��� 1

Introduction to Embedded Systems��� 1

Mobile Phones��� 3

Consumer Electronics and Information Appliances��� 3

Definition of an Embedded System�� 4

Limited Resources��� 4

Real-Time Performance��� 4

Robustness�� 5

Integrated Hardware and Software��� 5

Power Constraints��� 5

Difficult Development and Debugging��� 5

Typical Architecture of an Embedded System�� 6

Typical Hardware Architecture��� 6

Microprocessor Architecture of Embedded Systems��� 9

Typical Software Architecture�� 15

Special Difficulties of Embedded Application Development������������������� 17

Summary�� 18

■ Contents

viii

Chapter 2: Intel Embedded Hardware Platform■■ ����������������������������� 19

Intel Atom Processor�� 19

Intel Atom Processor Architecture��� 20

Features of the Intel Atom Processor�� 24

Other Technologies Used by the Intel Atom Processor�� 28

Intel Embedded Chipset��� 29

Intel System on Chip (SoC)��� 30

Medfield��� 31

Bay Trail��� 32

64-Bit Android OS on Intel Architecture�� 32

64 Bits vs. 32-bit Android�� 32

Memory and CPU Register Size��� 33

Reference Platform for Intel Embedded Systems���������������������������������� 34

Internet of Things (IoT) and Next Unit of Computing (NUC)�������������������������������������� 34

Smartphones��� 36

Tablets��� 39

In-Vehicle Infotainment��� 42

Other Application Platforms and Fields��� 42

Robotics �� 43

Summary�� 45

�Chapter 3: Android Application Development Processes ■■
and Tool Chains for Intel® Architecture���47

Android Application Development�� 47

Development Environment of Android Applications��� 48

The Android Application Development Process��� 51

Debugging and Simulation of Android Systems�� 55

■ Contents

ix

Typical Development Tool Chains �� 60

Editor��� 62

Compiler and Linker�� 62

Debugger��� 63

Build Manager��� 63

Makefile Auto Generation Tool��� 63

Optimizing Tools -- gprof��� 64

Overview, Installation, and Configuration of Android Application
Development Tool Chains on Intel® Architecture������������������������������������ 65

Intel Environment Setup for Android (OS X Host)����������������������������������� 72

Android Development on Linux-based Host Machines��������������������������� 73

Intel® Integrated Native Developer Experience beta������������������������������ 73

Tools and Libraries�� 74

Setup��� 75

Intel INDE Installation�� 75

Summary�� 83

Chapter 4: Real Device Environment Installation■■ �������������������������� 85

Mobile Phone Setting��� 85

Installing the USB Driver on the Host Machine ��� 85

Interaction between the Host Machine and the Target Machine����������������������������� 88

Developing Android Applications��� 88

Debugging Android Applications�� 110

Intel Auxiliary Tools for Android Application Development������������������� 124

Intel C++ Compiler (Intel ICC) ��� 125

Intel Graphics Performance Analyzers for Android OS��� 126

Intel System Studio��� 127

Intel Project Anarchy: a Free Mobile Game Engine by Havok�������������������������������� 129

Intel Performance Libraries �� 129

Summary�� 130

■ Contents

x

Chapter 5: The Android OS■■ �� 131

Android Overview��� 131

Android Architecture ��� 133

Basic Android Functionality from a Programming Perspective������������ 134

Android System Interface�� 134

Common Linux Commands and Operations��� 140

Using the Android Development and Auxiliary Tools���������������������������� 151

Using the Emulator�� 151

Accept “yes” for custom hw and choose x86 for hw.cpu.arch propertyUsing
the Help File��� 156

Using DDMS��� 160

Using adb at Command Prompt��� 177

Using Android Commands��� 183

Using Telnet for Emulator Commands��� 186

Summary�� 190

Chapter 6: Customization and Installation of Android■■ ����������������� 191

Tailoring and Customization of an Embedded OS��������������������������������� 191

Overview of Android Customization��� 192

ROM Package/Image��� 193

Overview of Android Image Customization�� 196

Example of Android Image Customization��� 196

Installation/Reflash of the Android Image��� 199

Image Installation Example��� 200

Intel Build Tools Suite�� 201

Summary�� 202

■ Contents

xi

�Chapter 7: GUI Design for Android Apps, Part 1: ■■
General Overview�� 203

Overview of GUIs for Embedded Applications�������������������������������������� 203

Characteristics of Interaction Modalities of Android Devices�������������������������������� 204

UI Design Principles for Embedded Systems��������������������������������������� 208

Considerations of Screen Size��� 208

Size of Application Windows�� 209

Considerations Arising from Touch Screens and Styluses������������������������������������� 210

Keyboard Input Problems�� 213

Software Distribution and Copyright Protection Problems������������������������������������ 214

Android Application Overview�� 214

Application File Framework �� 214

Component Structure of Applications�� 228

Content Provider�� 231

Android Emulator��� 231

Introducing Android Runtime (ART)��� 232

Summary�� 233

�Chapter 8: GUI Design for Android Apps, Part 2: ■■
The Android-Specific GUI��� 235

State Transitions of Activities��� 235

Activity States�� 235

Important Functions of Activities��� 237

The Context Class��� 240

Introduction to Intent�� 243

The Main Roles of Intent�� 244

Intent Resolution�� 244

■ Contents

xii

The Relationship between Applications and Activities������������������������� 247

The Basic Android Application Interface �� 247

GuiExam Application Code Analysis��� 248

Using Layouts as Interfaces�� 253

Using the View Directly as an Interface��� 255

Component ID�� 257

Buttons and Events�� 259

Inner Class Listener��� 260

Using ImageView��� 262

Exit Activities and Application�� 266

Summary�� 269

�Chapter 9: GUI Design for Android Apps, Part 3: ■■
Designing Complex Applications��� 271

Applications with Multiple Activities�� 271

Triggering an Explicit Match of Activities with No Parameters������������������������������ 272

Triggering Explicit Matching of an Activity with Parameters of Different
Applications��� 281

Implicit Matching of Built-In Activities��� 292

Implicit Match that Uses a Custom Activity��� 297

Summary�� 304

�Chapter 10: GUI Design for Android Apps, Part 4: ■■
Graphic Interface and Touchscreen Input������������������������������������ 305

Display Output Framework��� 305

Drawing Framework for Responding to Touchscreen Input����������������� 310

Multi-Touch Code Framework�� 313

Responding to Keyboard Input��� 317

■ Contents

xiii

Dialog Boxes in Android��� 322

Using an Activity’s Dialog Theme��� 322

Using a Specific Dialog Class�� 323

Using Toast Reminders�� 323

Dialog Box Example��� 323

Application Property Settings��� 328

Summary�� 333

�Chapter 11: Performance Optimization for Android ■■
Applications on x86�� 335

Principles of Performance Optimization��� 335

Reducing Instructions and Execution Frequency��� 336

Selecting Faster Instructions��� 336

Improving the Degree of Parallelism��� 337

Using the Register Cache Effectively��� 337

Performance Optimization Methodology �� 338

Performance Optimization Approaches�� 338

Intel Graphics Performance Analyzers (Intel GPA)�������������������������������� 341

Introduction to Intel GPA�� 341

Installing Intel GPA��� 344

Using Intel GPA on Android�� 345

Android Multithreaded Design�� 355

Android Framework of a Thread�� 356

Thread Synchronization��� 367

Thread Communication��� 370

Principles of Multithreaded Optimization for the Intel Atom Processor����������������� 372

■ Contents

xiv

Case Study: Intel GPA-Assisted Multithreaded Optimization for an
Android Application�� 373

Original Application and Intel GPA Analysis��� 374

Optimized Application and Intel GPA Analysis��� 381

Summary�� 390

Chapter 12: NDK and C/C++ Optimization■■ ����������������������������������� 391

Introduction to JNI�� 391

Java Methods and C Function Prototype Java��� 394

Introduction to NDK��� 397

Installing NDK and Setting Up the Environment����������������������������������� 401

Installing CDT��� 401

NDK Examples�� 403

Using the Command Line to Generate a Library File��� 403

Generating a Library File in the IDE��� 411

Workflow Analysis for NDK Application Development �� 417

NDK Compiler Optimization�� 419

Machine-Independent Compiler Switch Options��� 420

Intel Processor-Related Compiler Switch Options��� 422

Optimization with Intel Integrated Performance Primitives (Intel IPP)� 426

NDK Integrated Optimization Examples��� 427

C/C++: Accelerating the Original Application�� 427

Extending Compiler Optimization ��� 436

Comparing Compiler Optimizations��� 441

Summary�� 443

■ Contents

xv

�Chapter 13: The Low-Power Design of Android Application ■■
and Intel Graphics Performance Analyzers (Intel GPA):
Assisted Power Optimization�� 445

Overview of Low-Power Design��� 445

The Basics of Consumption��� 446

Power Consumption Control Technology��� 447

Linux Power-Control Mechanism��� 454

Tickless Idle��� 454

PowerTOP�� 455

Intel Power-Optimization Aids�� 456

Low-Power Considerations in Application Design�������������������������������� 459

The Most Basic Principle of Low-Power Optimization��� 459

General Recommendations: High Performance = Low Power Consumption��������� 460

Use Low-Power Hardware as Much as Possible to Achieve the Task�������������������� 460

Polling Is the Enemy of Low-Power Optimization�� 460

Event-Driven Programming��� 462

Reduce Periodic Operations Similar to Polling in Application Programs��������������� 462

Low-Power Recommendations for Data Acquisition and Communications����������� 463

Establishing a Power-Aware Program��� 463

Case Study 1: Intel GPA Assisted Power Optimization for an Android
Application��� 463

Original Application and Intel GPA Power Analysis�� 464

Optimized Applications and an Intel GPA Power Analysis�������������������������������������� 470

Case Study 2: Timer Optimization and Intel GPA Power Analysis��������� 475

Book Summary��� 481

Index��� 483

xvii

About the Lead Project Editor

Ryan Cohen is the contributing editor responsible for
leading the international team of content contributors
who created this Intel learning resource; he’s also an
Android enthusiast and Portland State graduate. Ryan
has been following Android since 2011 when he made
the switch from Apple iOS. When he is not writing about
Android, he spends his time researching anything and
everything new in the world of Android.

xix

About the Lead Contributing
Author

Tao Wang came to the United States as a Ph.D. student
to study at Oregon State University in 1993. He has
been a software engineer with Intel Corporation since
2002. Tao began blogging and writing about Android
in 2008; and, since 2011, he has served as a technical
collateral manager for the Intel Android Developer
Zone, the developer resource for all things Android at
Intel. In his spare time, Tao also runs his own mobile
app/client education startup called E-k12. He follows
closely the latest progress in application development,
as well as testing/debugging/performance
optimization for mobile devices and Android on x86
platforms. Tao is skilled in many platforms, including
Android SDK and NDK; Intel Android tools, game
engines such as Cocos2D-x, AndEngine, and libgdx;

OpenGL ES; RenderScript; and Android Runtime. His other areas of interest include
mobile Internet technologies such as online content management, cloud-based mobile
technologies, embedded devices, robotics, and mobile learning on the go.

xxi

About the Technical
Reviewer

Xavier Hallade is Developer Evangelist for the Intel
Software and Services Group in Paris, France. Since
2012 and the public release of the first Android
smartphone based on an Intel platform, he has been
helping Android developers improve their support for
new hardware and technologies made or supported
by Intel.

	Android Application Development for the
Intel® Platform
	Contents at a Glance
	Contents
	About the Lead Project Editor
	About the Lead Contributing
Author
	About the Technical
Reviewer
	Introduction
	Chapter 1: Overview of Embedded Application Development for Intel Architecture
	Introduction to Embedded Systems
	Mobile Phones
	Consumer Electronics and Information Appliances

	Definition of an Embedded System
	Limited Resources
	Real-Time Performance
	Robustness
	Integrated Hardware and Software
	Power Constraints
	Difficult Development and Debugging

	Typical Architecture of an Embedded System
	Typical Hardware Architecture
	Von Neumann Architecture
	Harvard Architecture

	Microprocessor Architecture of Embedded Systems
	RISC: Advanced RISC Machines (ARM) Architecture
	CISC: x86 Architecture
	MIPS Architecture
	PowerPC Architecture
	SuperH
	Typical Structure of an Embedded System

	Typical Software Architecture
	Hardware Abstraction Layer
	Operating System Layer
	System Service Layer
	Application Layer

	Special Difficulties of Embedded Application Development
	Summary

	Chapter 2: Intel Embedded Hardware Platform
	Intel Atom Processor
	Intel Atom Processor Architecture
	Silvermont: Next-Generation Microarchitecture

	Features of the Intel Atom Processor
	Small Form Factor
	Low Power Consumption
	Dynamic Low-Voltage Technology for Mobile and Embedded Devices
	High Performance
	SSE3 Instruction Set Enhances the Processing Power of Digital Media
	Intel Virtualization Technology (Intel VT)
	Intel Hyper-Threading Technology (Intel HT Technology) and Multi-Core Technologies

	Other Technologies Used by the Intel Atom Processor

	Intel Embedded Chipset
	Intel System on Chip (SoC)
	Medfield
	Bay Trail

	64-Bit Android OS on Intel Architecture
	64 Bits vs. 32-bit Android
	Memory and CPU Register Size

	Reference Platform for Intel Embedded Systems
	Internet of Things (IoT) and Next Unit of Computing (NUC)
	Intel Galileo Development Kit for IoT

	Smartphones
	Lenovo K900
	Vexia Zippers Phone
	ZTE Grand X2*

	Tablets
	Samsung Galaxy Tab 3 10.1
	Dell Venue 7/8" Tablet
	Acer Iconia A1-830*
	ASUS MeMO Pad FHD 10*

	In-Vehicle Infotainment
	Other Application Platforms and Fields
	Cloud Computing

	Robotics
	Wireless Sensor Networks
	Learning
	Backpack Journalism and Portable Video Recording
	RFID Field Tools

	Summary

	Chapter 3: Android Application Development Processes and Tool Chains for Intel® Architecture
	Android Application Development
	Development Environment of Android Applications
	Cross-Development
	Programming Languages

	The Android Application Development Process
	Encoding
	Construction
	Deployment
	Debugging and Optimizing Stage

	Debugging and Simulation of Android Systems
	System Simulator
	Other Debugging Tools
	Cross-Debugging
	adb shell
	adb shell[command]

	Typical Development Tool Chains
	Editor
	Compiler and Linker
	Debugger
	Build Manager
	Makefile Auto Generation Tool
	Optimizing Tools -- gprof

	Overview, Installation, and Configuration of Android Application Development Tool Chains on Intel® Architecture
	android.jar
	ddms.bat
	adb.exe
	aapt.exe
	aidl.exe
	sqlite3.exe
	dx.bat
	android.bat

	Intel Environment Setup for Android (OS X Host)
	Android Development on Linux-based Host Machines
	Intel® Integrated Native Developer Experience beta
	Tools and Libraries
	Setup
	Intel INDE Installation
	Downloading Intel INDE
	Installing Intel INDE
	Launching Intel INDE
	Configure Eclipse
	Create AVD (Emulator)

	Summary

	Chapter 4: Real Device Environment Installation
	Mobile Phone Setting
	Installing the USB Driver on the Host Machine
	Interaction between the Host Machine and the Target Machine
	Developing Android Applications
	Creating a Project
	Editing and Running (on the Emulator)
	Running on the Real Device

	Debugging Android Applications
	Editinging the Source Code
	Setting Breakpoints
	Starting Debugging
	Program Execution Techniques
	Observing the Debugging Output of the Log.X Function
	Observing Variables
	Ending Debugging

	Intel Auxiliary Tools for Android Application Development
	Intel C++ Compiler (Intel ICC)
	Intel Graphics Performance Analyzers for Android OS
	Intel System Studio
	Intel Project Anarchy: a Free Mobile Game Engine by Havok
	Intel Performance Libraries

	Summary

	Chapter 5: The Android OS
	Android Overview
	Android Architecture
	Basic Android Functionality from a Programming Perspective
	Android System Interface
	Terminating an Application in Android
	Method 1 (for Real Devices)
	Method 2
	Method 3

	Using the Web Browser in the Android Emulator

	Common Linux Commands and Operations
	Check Users
	Changing a Password
	Clearing the Screen
	Superuser Root Operation
	Displaying Files and Directories
	Changing and Displaying the (Current) Directory
	Searching for Files
	File Operation
	Modifying File/Directory Permissions
	Working with the Executable File Path
	Piping and Screening
	Running Commands in the Background
	Interrupting the Execution of Commands in the Foreground
	Checking Hardware Information (Such as OS Version and CPU)

	Using the Android Development and Auxiliary Tools
	Using the Emulator
	Method 1
	Method 2
	Method 3

	Accept “yes” for custom hw and choose x86 for hw.cpu.arch propertyUsing the Help File
	Using DDMS
	Showing the DDMS Button
	Starting DDMS
	File Transfer between Host and Target Machines, and File Management
	Copying a File from the Host Machine to the Target Machine
	Copying a File from the Target Machine to the Host Machine
	Deleting a File

	Process Management on the Target Machine
	Starting Process Management for the Target Machine
	Stopping a Designated Process

	Taking a Target Machine Screen Capture
	Emulator Operation

	Using adb at Command Prompt
	Running Commands on the Target Machine
	Installing Application Packages on the Target Machine
	Uninstalling Software on the Target Machine
	Transferring Files between the Host and Target Machines
	Enabling and Disabling the adb Service
	Other Functions

	Using Android Commands
	Viewing the Installed Emulator
	Viewing the Version Information of the Currently Supported APIs
	Creating an Emulator
	Starting the Emulator

	Using Telnet for Emulator Commands
	event Command
	geo Command
	gsm Command
	kill Command
	network Command
	power Command
	redir Command
	sms Command
	Window scale? Command

	Summary

	Chapter 6: Customization and Installation of Android
	Tailoring and Customization of an Embedded OS
	Overview of Android Customization
	ROM Package/Image
	Overview of Android Image Customization
	Example of Android Image Customization
	Installation/Reflash of the Android Image
	Image Installation Example
	Automating the Procedure with flash_device.sh

	Intel Build Tools Suite

	Summary

	Chapter 7: GUI Design for Android Apps, Part 1: General Overview
	Overview of GUIs for Embedded Applications
	Characteristics of Interaction Modalities of Android Devices
	Screens of Various Sizes, Densities, and Specifications
	Keypads and Special Keys
	Touch Screens and Styluses, in Place of Mice
	Onscreen Keyboards
	Few Multimodal Interactions
	Few Large-Capacity Portable External Storage Devices

	UI Design Principles for Embedded Systems
	Considerations of Screen Size
	Size of Text and Icons
	Clickability of Buttons and Other Graphical Elements

	Size of Application Windows
	Considerations Arising from Touch Screens and Styluses
	Correctly Interpreting the Movement and Input of the Cursor (Mouse) on Tap-Only Touch Screens
	Setting Screen Mapping Correctly
	How to Solve Hover-Over Problems
	Providing Right-Click Functionality

	Keyboard Input Problems
	Restricting the Input of Various Commands
	Meeting Keyboard Demand

	Software Distribution and Copyright Protection Problems

	Android Application Overview
	Application File Framework
	AndroidManifest.xml
	R.java
	Definition File of Constants
	Layout Files
	Source Code File

	Component Structure of Applications
	Activity
	Intent and Intent Filters
	Service
	Broadcast Intent Receiver

	Content Provider
	Android Emulator
	Introducing Android Runtime (ART)

	Summary

	Chapter 8: GUI Design for Android Apps, Part 2: The Android-Specific GUI
	State Transitions of Activities
	Activity States
	Important Functions of Activities
	onCreate State-Transition Function
	onStart State-Transition Function
	onResume State-Transition Function
	onPause State-Transition Function
	onStop State-Transition Function
	onRestart State-Transition Function
	onDestroy State-Transition Function
	The finish Function

	The Context Class
	Introduction to Intent
	The Main Roles of Intent
	Triggering a New Activity or Letting an Existing Activity Implement the New Operation
	Triggering a New Service or Sending New Requests to Existing Services
	Trigger BroadcastReceiver

	Intent Resolution
	Action Test
	Category Test
	Data Test

	The Relationship between Applications and Activities
	The Basic Android Application Interface
	GuiExam Application Code Analysis
	Using Layouts as Interfaces
	Using the View Directly as an Interface
	Component ID

	Buttons and Events
	Inner Class Listener
	Using ImageView
	Exit Activities and Application

	Summary

	Chapter 9: GUI Design for Android Apps, Part 3: Designing Complex Applications
	Applications with Multiple Activities
	Triggering an Explicit Match of Activities with No Parameters
	Triggering Explicit Matching of an Activity with Parameters of Different Applications
	Implicit Matching of Built-In Activities
	Implicit Match that Uses a Custom Activity

	Summary

	Chapter 10: GUI Design for Android Apps, Part 4: Graphic Interface and Touchscreen Input
	Display Output Framework
	Drawing Framework for Responding to Touchscreen Input
	Multi-Touch Code Framework
	Responding to Keyboard Input
	Dialog Boxes in Android
	Using an Activity’s Dialog Theme
	onCreateDialog(int) Function
	showDialog(int) Function
	onPrepareDialog(int, Dialog) Function
	dismissDialog(int) Function

	Using a Specific Dialog Class
	Using Toast Reminders
	Dialog Box Example

	Application Property Settings
	Summary

	Chapter 11: Performance Optimization for Android Applications on x86
	Principles of Performance Optimization
	Reducing Instructions and Execution Frequency
	Selecting Faster Instructions
	Improving the Degree of Parallelism
	Using the Register Cache Effectively
	Performance Optimization Methodology
	Automatic Optimization by the Compiler
	Performance Optimization Assisted by Development Tools
	Using High-Performance Libraries
	Manual Optimization

	Performance Optimization Approaches
	Intel Graphics Performance Analyzers (Intel GPA)
	Introduction to Intel GPA
	Installing Intel GPA
	Using Intel GPA on Android

	Android Multithreaded Design
	Android Framework of a Thread
	Java Thread Programming Interface
	Android Threaded Programming Extensions and Support
	Message
	Handler
	Message Queue
	Looper

	Thread Example

	Thread Synchronization
	Thread Communication
	Principles of Multithreaded Optimization for the Intel Atom Processor

	Case Study: Intel GPA-Assisted Multithreaded Optimization for an Android Application
	Original Application and Intel GPA Analysis
	Optimized Application and Intel GPA Analysis

	Summary

	Chapter 12: NDK and C/C++ Optimization
	Introduction to JNI
	Java Methods and C Function Prototype Java
	Java and C Data Type Mapping
	Java Array Processing
	Resource Release

	Introduction to NDK

	Installing NDK and Setting Up the Environment
	Installing CDT

	NDK Examples
	Using the Command Line to Generate a Library File
	Generating a Library File in the IDE
	Workflow Analysis for NDK Application Development

	NDK Compiler Optimization
	Machine-Independent Compiler Switch Options
	-O or -O1
	-O2
	-O3
	-O0

	Intel Processor-Related Compiler Switch Options

	Optimization with Intel Integrated Performance Primitives (Intel IPP)
	NDK Integrated Optimization Examples
	C/C++: Accelerating the Original Application
	Extending Compiler Optimization
	Comparing Compiler Optimizations
	Example 1. Comparing Optimization Results Using SSE Instructions

	Summary

	Chapter 13: The Low-Power Design of Android Application and Intel Graphics Performance Analyzers (Intel GPA): Assisted Powe...
	Overview of Low-Power Design
	The Basics of Consumption
	Power Consumption Control Technology
	Dynamic Voltage/Frequency Scaling Technology
	Clock Gating
	Energy-Saving Circuit Design and Manufacturing Processes
	Intel SpeedStep and Enhanced Intel SpeedStep Technology
	First-Generation Intel SpeedStep Technology
	Second-Generation Intel SpeedStep Technology (EIST)
	Third-Generation Intel SpeedStep Technology (Improved EIST)

	APM and the ACPI Standard
	Low-Power Operating System States
	Standby
	Hibernate
	Sleep

	Linux Power-Control Mechanism
	Tickless Idle
	PowerTOP

	Intel Power-Optimization Aids
	Low-Power Considerations in Application Design
	The Most Basic Principle of Low-Power Optimization
	General Recommendations: High Performance = Low Power Consumption
	Use Low-Power Hardware as Much as Possible to Achieve the Task
	Polling Is the Enemy of Low-Power Optimization
	Event-Driven Programming
	Reduce Periodic Operations Similar to Polling in Application Programs
	Low-Power Recommendations for Data Acquisition and Communications
	Establishing a Power-Aware Program

	Case Study 1: Intel GPA Assisted Power Optimization for an Android Application
	Original Application and Intel GPA Power Analysis
	Optimized Applications and an Intel GPA Power Analysis

	Case Study 2: Timer Optimization and Intel GPA Power Analysis
	Book Summary

	Index

