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Part I
Introduction

Hans-Georg Weigand, William McCallum, Marta Menghini,
Michael Neubrand and Gert Schubring

Throughout his professional life, Felix Klein emphasised the importance of
reflecting upon mathematics teaching and learning from both a mathematical and a
psychological or educational point of view, and he strongly promoted the mod-
ernisation of mathematics in the classroom. Already in his inaugural speech of
1872, the Erlanger Antrittsrede (not to be mistaken with the Erlanger Programm
which is a scientific classification of different geometries) for his first position as a
full professor at the University of Erlangen—at the age of 23—he voiced his view
on mathematics education:

We want the future teacher to stand above his subject, that he have a conception of the
present state of knowledge in his field, and that he generally be capable of following its
further development. (Rowe 1985, p. 128)

Felix Klein developed ideas on university lectures for student teachers, which he
later consolidated at the beginning of the last century in the three books Elementary
Mathematics from a higher standpoint.1 In part IV of this book, the three volumes
are analysed in more detail: Klein’s view of elementary; his mathematical, historical
and didactical perspective; and his ability to relate mathematical problems to
problems of school mathematics. In the introduction of the first volume, Felix Klein
also faced a central problem in the preparation of mathematics teachers and
expressed it in the quite frequently quoted double discontinuity:

The young university student finds himself, at the outset, confronted with problems,
which do not remember, in any particular, the things with which he had been concerned at
school. Naturally he forgets all these things quickly and thoroughly. When, after finishing
his course of study, he becomes a teacher, he suddenly finds himself expected to teach the
traditional elementary mathematics according to school practice; and, since he will be

1The previous English translation of the first two volumes by Earle Raymond Hedrick and Charles
Albert Noble, published in 1931 and 1939, had translated “höheren” erroneously by “advanced”;
see the comment by Schubring in: Klein 2016, p. v–vi, and the regular lecture of Jeremy Kilpatrick
(2008) at ICME 11 in Mexico.



scarcely able, unaided, to discern any connection between this task and his university
mathematics, he will soon fell in with the time honoured way of teaching, and his
university studies remain only a more or less pleasant memory which has no influence
upon his teaching. (Klein 2016 [1908], Introduction, Volume 1, p. 1)

At the 13th International Congress on Mathematical Education (ICME-13) 2016
in Hamburg, the “Thematic Afternoon” with the The Legacy of Felix Klein as one
major theme, provided an overview of Felix Klein’s ideas. It highlighted some
developments in university teaching and school mathematics related to Felix
Klein’s thoughts stemming from the last century. Moreover, it discussed the
meaning, the importance and the legacy of Klein’s ideas nowadays and in the future
in an international, global context.

Three strands were offered on this “Thematic Afternoon”, each concentrating on
one important aspect of Felix Klein’s work: Functional Thinking, Intuitive Thinking
and Visualisation, and Elementary Mathematics from a Higher Standpoint—
Conception, Realisation, and Impact on Teacher Education. This book provides
extended versions of the talks, workshops and presentations held at this “Thematic
Afternoon” at ICME 13.

Felix Klein was a sensitised scientist who recognised problems, thought in a
visionary manner, and acted effectively. In part I, we give an account of some
biographical notes about Felix Klein and an introduction to his comprehensive
programme. He had gained international recognition through his significant
achievements in the fields of geometry, algebra, and the theory of functions. Based
in this, he was able to create a centre for mathematical and scientific research in
Göttingen. Besides his scientific mathematics research, Klein distinguished himself
through establishing the field of mathematics education by having such high
regards for the history of mathematics as a keystone of higher education. He was far
ahead of his time in supporting all avenues of mathematics, its applications, and
mathematical pedagogy. He never pursued the unilateral interests of his subject but
rather kept an eye on the latest developments in science and technology (see the
article by Renate Tobies in this book).

Klein investigated functions from many points of view, from functions defined
by power series and Fourier series, to functions defined (intuitively) by their graphs,
to functions defined abstractly as mappings from one set to another. Part II
examines the development of the concept of function and its role in mathematics
education from Klein’s time—especially referring to the “Meraner Lehrplan”
(1905)—to today. It includes students’ and teachers’ thinking about the concept of
function, the communication (problems) and the obstacles this concept faces in the
classroom. Klein made an important distinction between functions arising out of
applications of mathematics and functions as abstractions in their own right. This
distinction reverberates in mathematics education even today.

Alongside the concept of function or functional thinking, the idea of intuition
and visualisation is surely another central aspect to Klein’s mathematical thinking.
The articles in part III highlight Felix Klein’s ideas. The contributions look for the
origins of visualisation in Felix Klein’s work. They show the influences of Felix
Klein’s ideas, both in the national and in the international context. They then go on

2 H.-G.Weigand et al.



to confront these ideas with the recent possibilities of modern technological tools
and dynamic geometry systems.

Part IV presents the newly translated versions of the three books on “Elementary
Mathematics from a Higher Standpoint”. At ICME-13, the third volume Precision
and Approximation Mathematics appeared in English for the first time. Referring to
these three famous volumes, this chapter presents a mathematical, historical and
didactical perspective on Klein’s thinking.

The whole book intends to show that many ideas of Felix Klein can be rein-
terpreted in the context of the current situation, and give some hints and advice for
dealing today with current problems in teacher education and teaching mathematics
in secondary schools. In this spirit, old ideas stay young, but it needs competent,
committed and assertive people to bring these ideas to life.
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Chapter 1
Felix Klein—Mathematician, Academic
Organizer, Educational Reformer

Renate Tobies

Abstract Having been a full professor at the University of Erlangen, the Technical
University in Munich, and the University of Leipzig, Klein joined the University
of Göttingen in 1886. He had gained international recognition with his significant
achievements in the fields of geometry, algebra, and the theory of functions. On this
basis, he was able to create a center for mathematical and scientific research in Göt-
tingen. This brief biographical notewill demonstrate that FelixKleinwas far ahead of
his time in supporting all avenues of mathematics, its applications, and instruction. It
will be showed that the establishment of new lectures, professorships, institutes, and
curricula went hand in hand with the creation of new examination requirements for
prospective secondary school teachers. Felix Klein’s reform ofmathematical instruc-
tion included all educational institutions from kindergarten onward. He became the
first president of the International Commission on Mathematical Instruction in 1908
at the Fourth International Congress of Mathematicians in Rome.

Keywords Felix Klein · Biographical note
MaxBorn (1882–1970),who received theNobel Prize in Physics for his contributions
to quantum mechanics, once reminisced as follows about Felix Klein (1849–1925)
in Göttingen: “Klein commanded not only mathematics as a whole but also all of
the natural sciences. Through his powerful personality, which was complemented by
his handsome appearance, he became a leading figure in the faculty and at the entire
university. […] Over the years, Klein became more and more of a Zeus, enthroned
above the other Olympians. He was known among us as ‘the Great Felix’, and he
controlled our destinies” (Born and Born 1969, p. 16).

How didKlein develop into this Zeus-like figure? By the timeMaxBornwas com-
pleting his studies in Göttingen during the first decade of the twentieth century, Klein
had already reaped the fruits of his mathematical accomplishments and achieved an
international reputation. In 1904, while attending the Third International Congress
of Mathematicians in Heidelberg, he expressed what might be called his guiding

R. Tobies (B)
University of Jena, Jena, Germany
e-mail: renate.tobies@uni-jena.de
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6 R. Tobies

words: “In order for science to flourish, it is necessary for all of its components to
be developed freely” (Klein 1905, p. 396). With this motto in mind, he aspired to
promote all aspects of mathematics equally, including its practical applications and
instruction. He was also an admirer and supporter of newly formulated approaches
to mathematics and the natural sciences, including actuarial science, aerodynamics,
the theory of relativity, modern algebra, and the didactics of mathematics.

Of course, Klein’s wide-reaching program expanded gradually into its mature
form. Yet even as a young scholar, he was characterized by the breadth of his inter-
ests, the tendency to systematize and unify things, his desire to create an overview of
the whole, and his concern for pedagogy. The present contribution will concentrate
on three aspects: the centers of activity that defined Klein’s life; the characteristic
features of his work; and the way in which he integrated educational reform with his
broader ideas about reorganization in order to transform the University of Göttin-
gen into an internationally renowned center for mathematical and natural-scientific
research.

1.1 Felix Klein’s Upbringing, Education, and Academic
Career

Felix Klein was born on April 25, 1849 in Düsseldorf, which was then the seat of
government for the Rhine Province of the Prussian kingdom. He was the second
of four children born to Peter Caspar Klein (1809–1889), a senior civil servant and
chief treasurer of the Rhine Province, and his wife Sophie Elise Klein (née Kayser;
1819–1890), who came from a family of fabric manufacturers.

After being tutored at home by his mother, he spent two and half years at a private
elementary school before transferring, in the fall of 1857, to the Humanistisches
Gymnasium in Düsseldorf, which continues to exist today. In August of 1865, just
sixteen years old, he completed his Abitur, for which he was examined in nine
subjects: German, mathematics, Latin, Greek, Hebrew, French, Protestant theology,
natural history, as well as the combined subject of history and geography. He decided
to pursue further studies inmathematics and the natural sciences, a fact that is already
noted on his Abitur diploma. His interest in the natural sciences was aroused less
by the curriculum of his humanities-based Gymnasium than it was by his earlier
experiences in elementary school and by his extra-curricular activities.

On October 5, 1865, Klein applied to the nearby University of Bonn, which had
been founded through the sponsorship of the Prussian king in 1818. There were
not many students enrolled at the time, so it did not take long for Julius Plücker
(1801–1868), a professor of physics and mathematics, to recognize Klein’s talent.
Plücker chose Klein, who was just in his second semester, to be his assistant for
his course on experimental physics. However, because Plücker’s own research at the
time was devoted to his concept of “line geometry” (Liniengeometrie), he involved
his assistant in this work as well. By the time Plücker died—onMay 22, 1868—Klein
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had thus been educated on two fronts. Regarding his achievements in physics, it is
documented that he received an award for his work on theoretical physics during the
celebration of the university’s fiftieth anniversary (see Tobies 1999). Firm evidence
for his mathematical abilities is the faith that Plücker’s family placed in him as a
young man; they entrusted him with the task of preparing the second volume of
Plücker’s Liniengeometrie (Klein 1869). By way of this work, Klein independently
developed a topic for his doctoral dissertation, about which he sought advice from
Alfred Clebsch (1833–1872) and Rudolf Lipschitz (1832–1903). Under Lipschitz’s
supervision, Klein defended his dissertation in Bonn on December 12, 1868, and he
received the highest grade for his work. In January of 1869, he moved to Göttingen
to continue his studies with Clebsch and participate in the latter’s school of alge-
braic geometry. During the winter semester of 1869/70, Klein studied in Berlin, after
which he travelled with the Norwegian mathematician Sophus Lie (1842–1899) to
Paris, where they published two short papers together in the Comptes Rendus heb-
domadaires des séances de l’Académie de sciences de Paris and prepared additional
publications. In July of 1870, his time in Paris was brought to an end by the outbreak
of the Franco-Prussian War.

Declared unsuitable for military service, Klein applied to serve as a paramedic.
After a few weeks on the front, he contracted typhus and returned to his parents’
home in Düsseldorf. In January of 1871, he completed his Habilitation with Clebsch
in Göttingen, where he remained for three semesters as a lecturer (Privatdozent). His
work during this time yielded significant results on the relation between linear and
metric geometry and in the areas of non-Euclidian geometry, equation theory, the
classification of third-order surfaces, and the systematization of geometrical research,
which would form the basis of his “Erlangen Program”. As a Privatdozent, too, he
supervised his first doctoral student. Recommended by Clebsch, and at the age of
just twenty-three, Klein was soon hired as a full professor by the small University of
Erlangen in Bavaria.

A unique feature at the University of Erlangen was that every newly appointed
professor had to produce an inaugural work of scholarship outlining his research
program. Klein’s work, which he completed in October of 1872, bore the title Ver-
gleichende Betrachtungen über neuere geometrische Forschungen (Klein 1872) and
later appeared in English as “A Comparative Review of Recent Researches in Geom-
etry.” The key novelty of this much-discussed “Erlangen Program,” lay in Klein’s
insight that geometries could be classified by means of their associated transforma-
tion groups, each of which determines a characteristic collection of invariants. This
fundamental idea is still cited and used by mathematicians today (see, for example,
Ji and Papadopoulos 2015). Klein also had to deliver an inaugural lecture for his
new position. This took place on December 7, 1872 before a university audience
of largely non-mathematicians. In his lecture, he spoke about his ideas concerning
teaching activity, which, in addition to lectures, also included practica, seminars, and
working with models. Because mathematical education in Germany at the time was
primarily intended for future teachers at secondary schools, he was sure to under-
score the following point: “If we create better teachers, then education will improve
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on its own and its traditional form will be filled with new and vital content!” (Jacobs
1977, pp. 15–16).

During his short time in Erlangen (1872–1875), Felix Klein supervised six doc-
toral dissertations and managed a number of affairs brought about by early death of
Alfred Clebsch, who passed away inNovember of 1872. For instance, Klein arranged
for one of his students, Ferdinand Lindemann (1852–1939), to edit Clebsch’s lectures
on geometry. Clebsch’s death also resulted in a vacancy on the editorial board of the
journal Mathematische Annalen, which he had founded in 1868 with Carl Neumann
(1832–1925); this was filled in 1873 by two of Clebsch’s students, Felix Klein and
Paul Gordan (1837–1912). One year later, Klein secured an associate professorship
for Gordan so that they could work together in Erlangen. While in Erlangen, too,
Klein met his wife Anna Hegel (1851–1927), the eldest daughter of the historian
Karl Hegel (1813–1901) and granddaughter of the great philosopher GeorgWilhelm
Friedrich Hegel (1770–1831). From this marriage, which was consecrated on August
17, 1875, one son and three daughters would be born.

On April 1, 1875, Klein accepted a more challenging position at the Polytechni-
cal School in Munich (as of 1877, a Technical College or Technische Hochschule),
which, after its reorganization in 1868, began to educate teachers as well as engi-
neers. His appointment there was as a professor of analytic geometry, differential and
integral equations, and analytical mechanics. In order to manage the growing num-
ber of students at the college, the creation of an additional professorship had been
authorized, and Klein ensured that this position was offered to another of Clebsch’s
former students, Alexander Brill (1842–1935). At Klein’s initiative, they founded
a new Institute of Mathematics, created a workshop for producing mathematical
models, and reorganized their teaching duties so that time remained for their own
research. It was here that, as Klein himself believed, he developed his own mathe-
matical individuality—as well as that of many students. To earn doctoral degrees,
however, Klein’s talented students had to submit their dissertations to the University
of Munich (see Hashagen 2003); the Technical College in Munich did not receive
the right to grant doctorates until 1901. This and other reasons led Klein to seek a
position elsewhere.

This transition was made possible by Adolph Mayer (1839–1908), a professor of
mathematics at LeipzigwithwhomKlein had been editing the journalMathematische
Annalen since 1876 (see Tobies and Rowe 1990). In October of 1880, Klein was
appointed a professor of geometry at the University of Leipzig (Saxony). While
there, he founded a new institution, the so-called Mathematisches Seminar (1881),
and began to give lectures on geometric (Riemannian) function theory. Noting that
the French mathematician Henri Poincaré (1854–1912) had started to work in the
same field, Klein began a fruitful correspondence with him (see Rowe 1992; Gray
2012). This resulted in the development of a theorem for the uniformization of
algebraic curves by means of automorphic functions, something that Klein regarded
among his most important findings and that would further occupy him and other
mathematicians later on. After this intensive period of research (1881–82) Klein felt
somewhat exploited and began to reorient his work. He turned to writing textbooks.
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In 1884, the desirable opportunity arose for Klein to return to the small university
townofGöttingen;MoritzAbrahamStern (1807–1894) had resigned fromhis profes-
sorship there. Encouraged by the physicist Eduard Riecke (1845–1915), with whom
Klein had already had a good working relationship as a lecturer (Privatdozent), the
majority of the Philosophical Faculty (which was then still a single unit) voted in
Klein’s favor. He was offered the position in the summer semester of 1886, despite
official opposition from the other professors of mathematics at Göttingen, Hermann
Amandus Schwarz (1843–1921) and Ernst Schering (1833–1897) (see Tobies 1991,
2002). Before Klein left Leipzig, he hadmanaged to ensure that he would be replaced
there by Sophus Lie. This move intensified the aversions and differences that already
existed between Klein and a number of other German mathematicians, who disap-
proved of granting the position to a foreigner.

While in Göttingen, Klein gradually developed the Zeus-like status mentioned by
Max Born. It was not until 1892, when he rejected an invitation from the University
of Munich and when Hermann Amandus Schwarz took a new position in Berlin, that
Klein became increasingly free to make his own decisions and began to hold some
sway at the Prussian Ministry of Culture in Berlin. With the support of the influential
civil servant Friedrich Althoff (1839–1908), Klein was finally able to initiate and
realize a sweeping reorganization and renovation of the University of Göttingen’s
institutions, personnel, curricula, and research programs. He justified many of these
changes by referring to his experiences during visits to the United States in 1893 and
1896 (see Parshall and Rowe 1994; Siegmund-Schultze 1997). By this time, Klein’s
influence had spread even further throughout Germany and beyond.

1.2 The Characteristics of Klein’s Methods

Klein’s growing influence can only be understood by examining the way in which
he worked, which David Hilbert (1862–1943) once described as selfless and always
in the interest of the matter at hand.

(1) The young Felix Klein internalized, from his upbringing and early education, a
strong work ethic, which he maintained throughout his life. Stemming from a
family of Westphalian tradesmen and farmers, his father had risen high through
the ranks of the Prussian civil service and had impressed upon his children such
virtues as unwavering discipline and thriftiness. That such lessons continued
to be imparted throughout Klein’s time at secondary school is evident from his
following recollection: “We learned towork and keep onworking” (Klein 1923).
The essay that Klein wrote for his Abitur contains the following sentence, with
a reference to Psalm 90:10: “Indeed, if a life has become valuable, it has done
so, as the Psalmist says, on account of labor and toil” [GymnasiumDüsseldorf].
This creed increasingly defined his daily approach to work.

Whereas, in his younger years, Klein was known to meet up with colleagues
and hike in the mountains, and although he continued take walks with colleagues
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and with his family into old age, over time he refrained, on account of his health,
more and more from participating in pleasantries unrelated to his work. He devoted
every possible minute to pursuing his research and to helping his (male and female)
doctoral students and post-doctoral researchers, from Germany and abroad, advance
their own work. To this end, he met with each of them on a regular basis. The
number of projects and positions that he took on reduced his free time to such an
extent that his supportive wife was able to remark that they could hardly ever spend
their wedding anniversary or birthdays together because priority was always given
to his duties at the university. This tendency to overwork took its toll. After a long
stay in a sanatorium, Klein retired early at the age of sixty-three. Even in retirement,
however, he remained highly active. He gave lectures on the history of mathematics,
made contributions to the theory of relativity, and continued to exert influence over
hiring decisions, the formation of new committees, and book projects, among them
his own collected works (Klein 1921–1923). Collaborators and colleagues would
visit him at home where, though confined to a wheelchair, he refused to waste any
time.

(2) Klein was aware that he could not work without cooperation, and this pertained
to both his scientific and organizational undertakings. On October 1, 1876, for
instance, he wrote the following words to Adolph Mayer: “It is a truly unfortu-
nate scenario:When, as on this vacation, I only havemyself to consult, then I am
unable to complete anything of value. […] I need scholarly exchange, and I have
been yearning for the beginning of the semester for some time now” (quoted
from Tobies and Rowe 1990, p. 76). Already accustomed, while studying under
Plücker, to developing new ideas through discussion, he had carried on this
practice while working with his second teacher, Clebsch. Clebsch’s ability to
find connections between distinct areas of mathematics that had hitherto been
examined in isolation became a point of departure for Klein’s own research
methods.

During his time studying in Berlin, Klein cooperated with the Austrian mathe-
matician Otto Stolz (1842–1905) to develop the idea of combining non-Euclidian
geometry with the projective metric devised by the British mathematician Arthur
Cayley (1821–1895). With Ludwig Kiepert (1846–1934), a student of Karl Weier-
straß (1815–1897), Klein made his first attempt to delve into the theory of elliptic
functions. His most fruitful collaboration, however, was with the aforementioned
Sophus Lie. They supported one another, published together, and maintained an
intensive mathematical correspondence. Klein, moreover, went out his way to pro-
mote Lie’s career (see Rowe 1989; Stubhaug 2002). Even though they came to
disagree over certain matters later in life, Klein took these differences in stride and,
in 1897, even endorsed Lie’s candidacy to receive the inaugural Lobatschewski Prize
(see Klein, GMA 1923).

Beginning in 1874, Klein also enjoyed a strong collaborative relationship with
Paul Gordan, who had likewise studied under Clebsch. Both Lie and Gordan found
it difficult to formulate their own texts, and so Klein was often asked to help them by
editing their writing and systematizing their ideas. By recording their thoughts, he
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immersed himself in themand expanded his ownknowledge. Through his discussions
with Gordan, and on the basis of the latter’s knowledge of algebra, Klein entered into
a wide—ranging field of research. Working together with students and colleagues
at home and abroad, he combined the methods of projective geometry, invariant
theory, equation theory, differential equations, elliptic functions, minimal surfaces,
and number theory, thus categorizing various types of modular equations.

Klein applied this cooperative approach wherever and whenever he worked, vaca-
tions and research trips included.Even if not everymathematician fromwithinKlein’s
sphere in Leipzig and Göttingen was willing to collaborate with him, everyone who
sought his advice benefited from it. Here there is not enough space to list all of these
beneficiaries. Prominent examples include Robert Fricke (1861–1930) and Arnold
Sommerfeld (1868–1951), who edited books based on Klein’s lectures and took his
ideas in their own creative directions. Another mathematician worthy of mention is
David Hilbert, who profited in Königsberg from the tutelage of Klein’s student Adolf
Hurwitz (1859–1919) and earned his doctoral degree under the supervision ofKlein’s
student Lindemann, who was mentioned above. Klein personally supported Hilbert
beginning with the latter’s first research stay in Leipzig (1885/86); he recommended
Hilbert to travel to Paris, maintained a correspondence with him (see Frei 1985), and
secured a professorship for him in Göttingen (1895). There they conducted several
research seminars together, and Hilbert, despite many enticing invitations to leave,
remained Klein’s colleague at that university.

Klein’s skill at cooperating was also reflected in his activities as an editor: for the
aforementioned Mathematische Annalen; for the Encyklopädie der mathematischen
Wissenschaften mit Einschluss ihrer Anwendungen (B. G. Teubner, 1898–1935),
which appeared in an expanded (and partially incomplete) French edition (see
Tobies 1994; Gispert 1999); for the project Kultur der Gegenwart (see Tobies 2008);
and for the Abhandlungen über den mathematischen Unterricht in Deutschland,
veranlasst durch die Internationale Mathematische Unterrichtskommission (5 vols.,
B. G. Teubner, 1909–1916). Klein was able to connect a great number of people
who collaborated on these projects.

Ever since Klein’s years at the Technical College in Munich (1875–80), engi-
neers and business leaders also numbered among his collaborative partners. While
a number of engineers and technical scientists in the 1890s were initiating an anti-
mathematics movement (Hensel et al. 1989), Klein was able to keep things in bal-
ance. In 1895, he joined the Association of German Engineers (Verein deutscher
Ingenieure) as a mathematician; and, regarding mathematical instruction, he insti-
tuted a more applications-oriented curriculum that included actuarial mathematics
and teacher training in applied mathematics. In order to finance the construction
of new facilities in Göttingen, Klein followed the American model and sought
funding from industry. His solution, which was novel in Germany at the time, was
the Göttingen Association for the Promotion of Applied Physics and Mathematics
(Göttinger Vereinigung zur Förderung der angewandten Physik und Mathematik).
Initially founded exclusively for applied physics in 1898 and extended to include
mathematics in 1900, this organization brought together Göttingen’s professors of
mathematics, physics, astronomy, and chemistry with approximately fifty financially
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powerful representatives of German industry. In this way, Klein convinced indus-
trial leaders that one of their goals should be to improve the application-oriented
education of future teachers. The Ministry of Culture supported this initiative by
introducing a new set of examinations—developed by Klein—that, for the first time,
included the field of applied mathematics (1898). This, in turn, provided the impetus
for establishing new institutes and professorships for applied mathematics, techni-
cal mechanics, applied electricity research, physical chemistry, and geophysics (see
Tobies 1991, 2002, 2012, ch. 2.3). With these developments in mind, Klein began
to shift the focus of his teaching more and more toward applications and ques-
tions of pedagogy. In his seminars, he no longer only cooperated with Hilbert and
others on teaching “pure” mathematics but rather also with newly hired professors
and lecturers to teach applied fields as well mathematical didactics (see [Proto-
cols]).

(3) From the beginning, Klein’s approach was distinguished by its internationality.
He profited early on from the international networks of his teachers Plücker
and Clebsch, and he came away with the general impression “that we restrict
ourselves to a level that is far too narrow if we neglect to foster and revitalize our
international connections” (a letter to M. Noether dated April 26, 1896; quoted
from Tobies and Rowe 1990, p. 36). Klein lived by these words even when the
officials at the Prussian Ministry of Culture did not yet value such things: “We
have no need for French or English mathematics,” or so the ministry responded
in 1870 when, at his father’s prompting, he sought a recommendation for his
first trip abroad (see Klein 1923).

Proficient in French since his school days and an eager learner of English, Klein
developed his own broad network of academic contacts beginning with his first
research trips to France (1870), Great Britain (1873), and Italy (1874). This served
his research approach well, which was to become familiar with and integrate as many
areas of mathematics as possible, and it also benefited the Mathematische Annalen,
for which he sought the best international contributions in order to surpass in prestige
the competing Journal für die reine und angewandte Mathematik (Crelle’s Journal),
which was edited by mathematicians based in Berlin. His international network also
helped to the extent that many of his contacts sent students and young scientists
to attend his courses. Even while Klein was in Erlangen, Scandinavian students
(Bäcklund, Holst) came to study with him at the recommendation of Lie; while in
Munich, he was visited by several Italian colleagues, and after his second trip to Italy
(1878), young Italian mathematicians (Gregorio Ricci-Curbastro, Luigi Bianchi)
came to study under him (see [Protocols], vol. 1; Coen 2012). Gaston Darboux
(1842–1917), with whom Klein had corresponded even before his first trip to Paris
and with whom he had collaborated on the review journal Bulletin des sciences
mathématiques et astronomiques, sent young French mathematicians to work with
him both in Leipzig and in Göttingen. Darboux was the first person to commission
a translation of one of Klein’s works into a foreign language—Sur la géométrie dite
non euclidienne (1871)—and they would go on to work together for many years,
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work that included their participation on prize committees, teaching committees,
and bibliographies (Tobies 2016).

During Klein’s first semester in Leipzig (1880/81), the following international
students (among others) came to work with him: Georges Brunel (1856–1900), rec-
ommended by Darboux; the Englishman Arthur Bucheim (1859–1888), who had
been educated at Oxford by Henry John Stephen Smith (1826–1883); Guiseppe
Veronese (1854–1917), at the instigation of Luigi Cremona (1830–1903); and Irving
W. Stringham (1849–1917), who had already earned a doctoral degree under James
Joseph Sylvester (1814–1897) at Johns Hopkins University in Baltimore. Under
Klein’s direction, they produced findings that were published in the Mathematische
Annalen (Veronese in 1881 and 1882, Brunel in 1882) or in the American Jour-
nal of Mathematics (Stringham in 1881). To Daniel Coit Gilman, the president of
Johns Hopkins, Stringham wrote enthusiastic letters about Klein’s critical abilities
and about the international nature of his seminars. When Stringham’s former teacher
Sylvester left his position in Baltimore, Klein was invited in 1883 to be his successor.
Klein declined the offer for financial reasons, which was itself a sign of his interna-
tional reputation. Ever since his time in Leipzig, Klein also made conscious efforts
to enhance his relations with Russian and other Eastern European mathematicians.
Wishing to foster exchange, he would always request his students from these areas to
provide him with an overview of the institutions there, their staff, and their research
trends.

In Göttingen, and thus back under the purview of the PrussianMinistry of Culture,
Klein had to decline an invitation in 1889 to work as a visiting professor at Clark
University in Worcester, Massachusetts (USA) because the Ministry did not approve
([UBG] Ms. F. Klein I, B 4). After securing his position, however, he ultimately
travelled in 1893 with the official endorsement of the Ministry to Chicago for the
World’s Fair, which included an educational exhibit and which was being held in
conjunction with a mathematics conference. While there, Klein gave twelve presen-
tations on the latest findings in mathematics. He spoke about the work of Clebsch
and Sophus Lie, algebraic functions, the theory of functions and geometry, pure and
applied mathematics and their relation, the transcendence of the numbers e and π ,
ideal numbers, the solution of higher algebraic equations, hyperelliptic and Abelian
functions, non-Euclidean geometry, and the study ofmathematics atGöttingen (Klein
1894). In his talks, Klein gave particular weight to his own recent findings and to
those of his students and collaborators, thus waging a successful publicity campaign
for studying at the University of Göttingen (see Parshall and Rowe 1994). With these
lectures, which were later translated into French at the instigation of Charles Hermite
(1822–1901), Klein did much to increase his international profile.

During the 1890s, Hermite occasioned additional translations of Klein’s work (on
geometric number theory, the hypergeometric function, etc.), most ofwhich appeared
in the Nouvelles annales de mathématiques, journal des candidats aux écoles poly-
technique et normale, which was then edited by Charles-Ange Laisant (1841–1920).
Hermite gushed that Klein was “like a new Joshua in the Promised Land” (comme
un nouveau Josué dans la terre promise) and nominated him, in 1897, to become
a corresponding member of the Académie des Sciences in Paris (Tobies 2016). By
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this time, Klein was already a member of numerous other academies in Germany,
Italy, Great Britain, Russia, and the United States. When, in 1899, Laisant and the
Swiss mathematician Henri Fehr (1870–1954) founded the journal L’Enseignement
mathématique, Klein was made a member of its Comité de Patronage, which con-
sisted of twenty mathematicians from sixteen countries. As the first international
journal devoted to mathematical education, it published several reports concerning
educational reforms, including essays byKlein (in French translation). Fehr reviewed
Klein’s books for the journal, among them his Elementarmathematik vom höheren
Standpunkte aus (“Elementary Mathematics from an Advanced Standpoint,” as the
work would be known in English).

L’Enseignement mathématique became the official organ of the International
Commission on the Teaching of Mathematics, which was founded in 1908 at the
Fourth International Congress of Mathematicians in Rome. Klein’s election to the
board of this commission, which took place despite his absence from the conference,
was a testament to his international reputation (see Coray et al. 2003). As president of
this commission (from 1908 to 1920), Klein initiated regular conferences and publi-
cations devoted to the development of mathematical education not only in Germany
but in all of the countries involved.

(4) Felix Klein followed a principle of universality. When asked to characterize his
efforts, he himself spoke about his universal program. As a young researcher, he
wanted to familiarize himself with all branches ofmathematics and to contribute
to each of them in his own work, an approach that gave rise to his principles
of transference (Übertragungsprinzipien) and his “mixture” of mathematical
methods. Inspired by Clebsch, he also attempted from quite early on to bring
together people with different areas of mathematical expertise in an effort to
overcome disciplinary divides (see Tobies and Volkert 1998). This end was like-
wise served by his large-scale undertaking of the Encyklopädie der mathema-
tischen Wissenschaften, for which he recruited international experts to provide
an overview of all of mathematics and its applications (Tobies 1994). Klein’s
participation in the preparations for the International Catalogue of Scientific
Literature (1902–21), which was directed by the Royal Society of London, can
also be interpreted in this way.

Klein’s universal program not only involved supporting and advancing new and
marginal disciplines. He applied his universal approach to teaching as well. He pro-
moted talented scholars regardless of their nationality, religion, or gender. Although a
university professor, he was deeply interested in improving and fostering mathemati-
cal and scientific education from kindergarten onward. In this regard, Klein operated
according to one of the guiding pedagogical mottos of the nineteenth century: “Teach
everything to everyone.”
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1.3 Educational Reform and Its Institutional
and International Scope

From early on, Klein felt that the mathematical education being offered at secondary
institutions, which neglected applied mathematics and was based primarily on syn-
thetic geometry, was in need of reform. Even while still a doctoral student, he argued
that new geometric methods ought to be introduced into the curriculum to comple-
ment Euclidian geometry. In this matter, he found an ally in Gaston Darboux, as is
documented in their correspondence from the 1870s (Richter 2015).

In 1890, the teachers ofmathematics and the natural sciences at secondary schools
founded an Association for the Promotion of Mathematical and Natural-Scientific
Education (Verein zur Förderung des mathematischen und naturwissenschaftlichen
Unterrichts) in order to be on equal footing with their colleagues in the philological
and historical disciplines. When public discussions began to be held about designing
new curricula, Klein felt that the time was ripe for reform. He developed a course of
study for educating teaching candidates at the university level; he began to teach, as
of 1892, continuing education courses for teachers who were already working; and
he soon developed contacts with the association named above (Tobies 2000). For the
year 1895, Klein invited the association to hold its annual conference in Göttingen.
Here he was sure to showcase the university’s modern facilities, and he celebrated the
event by presenting the attendees with a book concerned with question of elementary
geometry (Klein 1895), a work which was soon translated into French (1896), Italian
(1896), and English (1897).

The Prussian Ministry of Culture honored Klein with decorations and titles.
Althoff turned to Klein as an advisor in matters of hiring and other affairs. In Göt-
tingen, two additional professors were hired to join Klein and Hilbert: Hermann
Minkowski (1864–1909) in 1901, who was succeeded in 1909 by the number theo-
rist Edmund Landau (1877–1938); and Carl Runge (1856–1927) in 1904, who was
appointed as the first professor of appliedmathematics at a German university. Under
Klein’s guidance, further expansions were made in the fields of technical mechanics,
applied electricity theory, and geophysics.

In 1899, and with the backing of the Ministry of Culture, Klein supported an
initiative that would allow Prussian technical colleges to grant doctoral degrees.
By preparing a series of commissioned reports and by participating in a school
conference in Berlin in 1900 (see Schubring 1989), Klein contributed to an imperial
decree (issued that same year) which mandated that the diplomas (Abitur) granted by
the three existing types of secondary schools for boys (the so-called Humanistisches
Gymnasium, Realgymnasium, and Oberrealschule) would henceforth be regarded
as equal. Until then, the graduates of Oberrealschulen had been at a disadvantage.
At the same time, a process was begun to modernize mathematical and scientific
education at all sorts of schools. The principle aims were to accord a central position
of the notion of the function, to teach of analytic geometry, and to in corporate
elements of differential and integral calculus, application-oriented instruction, and
genetic methods. Having served three terms (1897, 1903, 1908) as the chairman
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of the German Mathematical Society (Deutsche Mathematiker-Vereinigung), which
was founded in 1890, Klein also took advantage of this venue to enhance discussions
about pedagogical issues.

In the wake of the school conference in Berlin, Klein also came to be regarded as
an expert by biologists, who requested his assistance in reintroducing the subjects of
botany and zoology as components of higher education (the latter had been banned
in Prussia since 1879 on account of the Darwinian theory of evolution). In response,
Klein convened a meeting of Göttingen professors on the philosophical faculty in
order to weigh the demands of the biologists without disadvantaging any other fields.
This led to the creation of an additional organization within the framework of the
Society of German Natural Scientists and Physicians (Gesellschaft deutscher Natur-
forscher und Ärzte), which, at its annual meeting in 1904, formed a twelve-member
education committee in order to develop reformed curricula for all types of schools.
Klein deployed his friend August Gutzmer (1860–1924) as the director of this com-
mittee, while Klein himself acted on behalf of the German mathematical society and
spoke to audiences of philologists and historians in order to win their support for the
proposed reforms to the mathematical and scientific curricula.

Plans for the reform were presented and discussed at conferences in Merano
(1905), Stuttgart (1906), and Dresden (1907), and they were ultimately published.
In order to implement them, a board was formed in 1908 in Cologne—the Ger-
man Commission for Mathematical and Natural-Scientific Education (Deutscher
Ausschuss für mathematisch-naturwissenschaftlichen Unterricht)—and Klein was
asked to lead its division concerned with teacher education. In the same year,
Klein was not only made the president, as mentioned above, of the International
Commission on the Teaching of Mathematics; on February 17, 1908, he was also
named a member of the upper chamber (House of Lords) of the Prussian House
of Representatives (Tobies 1989). The invitation to join the House of Lords was
an expression of Klein’s status at the University of Göttingen, for his mandate
as a member was to representative the university. Klein, who was nonpartisan,
succeeded Göttingen’s previous representative, the professor of ecclesiastical law
Richard Wilhelm Dove (1833–1907), in this lifelong position (which, for Klein,
ended in 1918 with the end of the German Empire). Here he took advantage of
the alliances formed by the Göttingen Association for the Promotion of Applied
Physics and Mathematics between science, industry, and the government to abet the
implementation of educational reforms. In the speeches that he delivered in House
of Representatives, he advocated for improving educational standards at all types of
schools, including primary schools, schools for girls, and trade schools.

Klein was a firm believer in the equal abilities of men and women, and he accord-
ingly believed that they should have access to the same educational opportunities.
As early as 1893, he arranged for the first women to study under his supervision,
even thoughwomenwere officially not allowed to enroll in Prussian universities until
1908. By 1895, the Englishwoman Grace Chisholm (1868–1944) and the American
Mary F. Winston (1869–1959) had submitted their dissertations to him. Numerous
additional students—bothmen andwomen, fromGermany and abroad—would come
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to study under him (Tobies 1991/1992, 2019); in all, he supervised more than fifty
dissertations.

The fact thatKlein took a parliamentary position—and that hewas thefirstGerman
mathematician to do so—is best understood from an international perspective. In
this matter, his role models were colleagues from Italy and France. According to
Hilbert, Darboux influenced Klein’s interest in educational reform in a particular
way. Since 1888, Darboux had been a member of the French High Council for Public
Education (Conseil supérieur de l’instruction publique), and in 1908 he was made
the vice president of the Council’s standing committee for advising the government
in educational affairs (Richter 2015, p. 20). Darboux directed the French branch of
the International Commission on the Teaching of Mathematics while the German
subcommittee was being led by Klein.

Asoriginally planned, the aforementionedEncyklopädie der mathematischen Wis-
senschaften mit Einschluss ihrer Anwendungen, which appeared in six comprehen-
sive volumes, was intended to contain a seventh volume devoted to the history,
philosophy, and didactics of mathematics. After initial plans were discussed in May
of 1896, publications in L’Enseignement mathématique and further studies commis-
sioned by the International Commission on the Teaching of Mathematics promoted
the preparation of the volume. As late as April of 1914, Klein arranged for Heinrich
Emil Timerding (1873–1945), the intended editor of the work, to attend the Congrès
de philosophie mathématique in Paris. The First World War, however, prevented the
project from being completed (Tobies 1994, pp. 56–69), just as it had stalled so many
international collaborations (see Siegmund-Schultze 2011).

On March 15, 1915, the Académie des Sciences in Paris annulled Klein’s mem-
bership because he had signed the so-called “Manifesto of the Ninety-Three,” a
nationalistic proclamation in support of German military action. In a detailed study,
Tollmien (1993) has demonstrated that Klein, like a number of other German sci-
entists, had not been fully aware of what he was signing, that he regretted doing
so, and that—unwilling to repay like with like—he discouraged German academies
from expelling French scientists. As a member of the Prussian House of Lords, Klein
issued a memorandum in March of 1916 that called for a thorough investigations of
conditions abroad after war’s end. To the international boycott of German scientists
after thewar, Klein respondedwith themotto “Keep quiet andwork.” In hismemoirs,
he looked back fondly on his strong contacts with foreign scientists, and he lamented
the period of nationalistic antagonism (Klein 1923).

When, in 1920, the Emergency Association of German Science (the German
Research Foundation today) was formed as an organization for funding research,
Klein was elected as the first chairperson of the committee (Fachausschuss) for
mathematics, astronomy, and geodesy. While an anti-technical mood was setting in
after the defeat in theFirstWorldWar, andwhile the number of lessons inmathematics
and the natural sciences at secondary schools were being reduced, Klein supported a
nationwide union, theMathematischer Reichsverband (1921), to counter such trends.
When, in the same year, Richard von Mises (1883–1953) founded the Zeitschrift für
angewandte Mathematik und Mechanik, which is still in circulation today, Klein
applauded this achievement and saw in it the realization of one of his own goals,
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which he had attempted to achieve in 1900 by coordinating the specializations of
German mathematical journals.

Klein’s vision was to accommodate all branches of mathematics and to secure
a firm place for mathematics within the “culture of the present,” that is, to make
it a necessary component of other sciences, technology, and general education. He
had been pursuing this vision with greater and greater vigor and detail ever since he
had delivered his Erlangen inaugural lecture in 1872. To realize it, he endeavored to
cater his arguments to the interests of his audiences, which included industrialists
and government officials, and to underscore the importance of international connec-
tions to developments in Germany (see Siegmund-Schultze 1997). In light of Klein’s
integrative approach to mathematics, its applications, and its instruction, it might
be appropriate to end with the following remark about him by Richard von Mises:
“We see that the value and dignity of the works that he accomplished are in perfect
harmony with the significance of the man behind them” (1924, p. 86).

Translated by Valentine A. Pakis
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Chapter 2
What Is or What Might Be the Legacy
of Felix Klein?

Hans-Georg Weigand

Abstract Felix Klein was an outstanding mathematician with an international repu-
tation. He promoted many aspects of mathematics, e.g. practical applications and the
relation between mathematics and natural sciences but also the theory of relativity,
modern algebra, and didactics of mathematics. In this article about the The Legacy of
Felix Klein we firstly refer to his ideas in university teaching of mathematics teacher
students and the three books “Elementary Mathematics from a higher (advanced)
standpoint” from the beginning of the last century. Secondly we refer to his interests
in school mathematics and his influence to the “Merano Resolution” (1905) where he
pleaded for basing mathematics education on the concept of function, an increased
emphasis on analytic geometry and an introduction of calculus in secondary schools.
And thirdly we especially discuss the meaning and the importance of Klein’s ideas
nowadays and in the future in an international, worldwide context.

Keywords Felix Klein · History · Legacy · University teaching

2.1 Felix Klein as a Sensitised Mathematician

When we talk about the legacy of Felix Klein, we are interested in the significance
of Felix Klein’s work for mathematics and especially mathematics education, for
our current theory and practice, and above all for tomorrow’s ideas concerning the
teaching and learning of mathematics. We are interested in Felix Klein as a math-
ematician, as a mathematics teacher; but most of all, we are interested in his ideas
on teaching and learning mathematics, the problems he saw at university and at sec-
ondary school level, and the solutions that he suggested for these problems. We are
interested in these solutions because we recognize that we are nowadays confronted
with similar or even the same problems as 100 years ago (Klein 1909–1916). Talking
about Felix Klein’s legacy means hoping to find answers to some of the problems we
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are struggling with today. Talking about the Felix Klein’s legacy today means giving
answers to—at least—three basic questions:

• Which situations and which problems at the end of the 19th and the beginning of
the 20th century can be seen in analogy to present situations?

• How did Felix Klein react to these problems and which solutions did he suggest?
• What dowe know nowadays about the effect of the answers and solutions provided
by Felix Klein 100 years ago?

Analogies between the situation 100 years ago and today can immediately be
seen if we think about the current discussions concerning the goals and contents of
teacher education at university level and especially the problems of students with
the transition from high school to college or university and the transition back to
high school. The problems with these transitions are expressed in Felix Klein’s most
famous statement, the “double discontinuity” from the introduction to the “Elemen-
tary mathematics from a higher standpoint, Volume I” (1908):

The young university student finds himself, at the outset, confronted with problems, which
do not remember, in any particular, the things with which he had been concerned at school.
Naturally he forgets all these things quickly and thoroughly. When, after finishing his course
of study, he becomes a teacher, he suddenly finds himself expected to teach the traditional
elementary mathematics according to school practice; and, since he will be scarcely able,
unaided, to discern any connection between this task and his university mathematics, he will
soon fell in with the time honoured way of teaching, and his university studies remain only a
more or less pleasant memory which has no influence upon his teaching. (Klein 2016 [1908],
Introduction, Volume 1, p. 1)

Whenwe hear the lamentations of today’s university professors about the decreas-
ing abilities of freshmen, and when we note the negative views of young teachers
about the effects of their mathematics studies, you can surely be in doubt whether
there has been any change, or indeed any change at all in the last 100 years.

However, we also know that answers to problems in education—not limited to
mathematics education—can only be offered taking full recognition of the current
political, social and scientific situation. Answers are not and will never be general
statements, they always have to be newly evaluated in an ongoing process of discus-
sion between different social groups. What is or what might be the impact of Felix
Klein’s ideas on these current discussion processes?

Felix Klein’s life shows that it always needs a sensitised person to analyse the
environment and to think in a visionarymanner. FelixKlein is an example of just such
a person who recognized problems, thought about solutions, suggested changes, was
driven by external requests and changed his mind based on personal experiences. In
the following we try to highlight some characteristics of Felix Klein we see as the
background of his way of thinking and the basis of the legacy of Felix Klein.
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2.2 Felix Klein Recognized Problems and Described Them
in Detail

In 1872—at the age of 23—Felix Klein became professor at the University of Erlan-
gen. In his inaugural address, the Erlanger Antrittsrede (see Rowe 1985)—which
was not published during his lifetime and must not be confused with the “Erlangen
programme”—he considered the dichotomy, the division, between humanistic and
scientific education. He therefore felt there was a lack of widespread knowledge of
mathematics in society. For Felix Klein mathematics had been a formal educational
tool for training the mind and he claimed mathematics lessons at school were not
“developing a proper feeling for mathematical operations or promoting a lively, intu-
itive grasp of geometry.” (ibid., p. 139). Further, he voiced his view on mathematics
education:

We want the future teacher to stand above his subject, that he have a conception of the
present state of knowledge in his field, and that he generally be capable of following its
further development. (ibid., p. 128)

Felix Klein recognized problems concerning the acceptance of mathematics in
society and deficits of school mathematics, but—at this age or state of his think-
ing—he did not have a detailed plan or strategy to solve these problems. But it was
the beginning of a long standing lifelong involvement in mathematics education at
the university and at secondary school level.

2.3 Felix Klein Thought About Solutions for Problems

Felix Klein wanted to improve secondary mathematics by improving the preparation
of teachers.

It is here thatwe, as university teachers ofmathematics, have awide, andhopefully rewarding,
field for our activity. At stake is the task, precisely in the sense just mentioned, of raising
the standards of mathematical education for later teaching candidates to a level that has not
been seen for many years. If we educate better teachers, then mathematics instruction will
improve by itself, as the old consigned form will be filled with a new, revitalized content! In
recent years the situation has already improved in many respects, as the number of younger
teachers. (Rowe 1985, p. 139)

“Better education” means—for Felix Klein—going beyond the contents of school
level, but moreover, teachers should be aware of the present state of mathematics
science.

We want the future teacher to stand above his subject, that he has a conception of the present
state of knowledge in his field, and that he generally be capable of following its further
development. (ibid.)

Also nowadays, we—of course—support Felix Klein in his opinion on teachers
standing above their subject, and we also agree and support him for wanting teacher
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students to do “an independent research study” and asked for “mathematical exer-
cises and seminars for student participants” (ibid.). In the meanwhile, bachelor or
master thesis and seminars are compulsory for teacher students which means this is
a possibility to integrate them into research studies, either in mathematics, mathe-
matics education, pedagogy or psychology. But it was and still is an open question
how this education influenced and influences mathematics teaching and learning at
school. Moreover, the more general question can be asked of how the connection
between school and university mathematics can be established.

2.4 Felix Klein Suggested Changes not Only in General,
but also in a Specific Way

Criticizing mathematics teacher education, mathematics in school or the way mathe-
matics is taught at school was and is quite popular. The present state of an education
system is always a compromise and will never fulfil the widespread and sometimes
contradictory interests of professors, teachers, students, parents, heads of schools,
policymakers and economic people. But criticizing is only a first step; moreover, it is
important to provide suggestions for changes or alternative ways of teaching. Felix
Klein not only criticized education circumstances and thought about alternatives in
a general way, he suggested changes in specific ways and presented very particular
moves to new approaches.

In the following we give two examples for Klein’s ideas about changes in teacher
education:

• In his Antrittsrede (inaugural address) 1880 at the university of Leipzig “Über die
Beziehungen der neueren Mathematik zu den Anwendungen” (Concerning the
connection between the newer mathematics and the applications—published first
in 1895a), Felix Klein wanted to respond to the fragmentation of the science of
mathematics by introducing general elementary as well as specialization lessons
and—what was completely new at this time—a with his university colleagues
concerted study plan for students.

• Nowadays, we have the suggested subdivision in the form of bachelor and master
studies. But although these ideas might point in a direction of Felix Klein’s ideas,
it cannot be assumed that he also had supported the reduction and bureaucratic
regimentation of the bachelor studies especially.

• Teacher education at university should be restructured by introducing new lectures,
seminars and student exercises especially. Felix Klein supported exercises at uni-
versity because he saw the necessity of educating students to work individually
and independently and he created working and reading rooms for students at the
university. These suggestions are well-accepted nowadays and hit the spirit of the
Reform Pädagogik at the beginning of the last century. Moreover, he emphasized
the importance of individual scientific homework for students, nowadays called
bachelor or master thesis (Klein 1895b).
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2.5 Felix Klein Asked for Change Not Only
on the Organizational Level, but He also Suggested
Changes in the Way Mathematics Should Be Taught
at University

The present discussion about the adequate way of teaching and learningmathematics
at the university asks on the one side for the contents, the changes, and refreshment
of the current contents, on the other side it asks for new methods of learning and
teaching. While there is a common agreement on the importance of the traditional
lectures “calculus” and “linear algebra”, there are open questions about the neces-
sity of “bridging-the-gap-lectures” and additional tutoring classes for freshmen or
basic lectures in set theory, number theory, logics or computational mathematics.
Concerning new teaching methods there are a lot of suggestions like integrating dig-
ital technologies, fostering self-reliance of students and introducing new concepts
like the “inverted classroom”, “learning by teaching”, “research-based learning”,
“e-learning” or “blended learning” in university teaching.

For Felix Klein, the abstract character of mathematics was a big problem in teach-
ingmathematics: “It is the great abstractnesswe have to combat”1 (1895a, p. 538). He
asked for more visualization or—in German—“Anschauung” in university lectures,
but also in the whole learning process. “Anschauung” was of great importance not
only for research but also for teaching. He saw “Anschauung” as a basis for a strict
logical formalway of thinking. In this context, he had awide viewon “Anschauung”2:

• Workingwith graphs in the frame of functional thinkingwas part of “Anschauung”.
• Felix Klein created collections of geometrical models at the universities of Erlan-
gen,Munich, Leipzig and he completed the already existing collection inGöttingen
(see also the article of Halverscheid and Labs in this book). He always emphasized
the interrelationship between the representation ofmathematical objects asmodels
and in their symbolic form.

• Felix Klein always saw the connectivity between pure and applied mathematics.
He pleaded for an education in applied mathematics and he even recommended a
few semesters of study at a technical university for teacher students.3

• Moreover, FelixKlein saw the value of “new technologies” for universities, but also
for high school teaching. In the first volume of “Elementary Mathematics from
a higher Standpoint” (2016a [1908]) he recommended the calculation machine
(Figs. 2.1 and 2.2), a tool which went into mass production towards the end of the
19th century and was widely used in industry and natural sciences: “Above all,
every teacher of mathematics should be familiar with it.” (2016a, p. 24). At these
times, however, it was too expensive and too unwieldy to be actually used in class
rooms. But he also expressed his wish or vision “that the calculating machine, in

1“Es ist ihre (die der Mathematik, author) große Abstraktheit, die wir bekämpfen müssen”.
2For some information and more details, see the chapter “Intuitive Thinking and Visualisation” in
this book.
3For an overview of the role of pure and applied mathematics in Germany, see Schubring (1989).
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Fig. 2.1 Pictures in Klein
(1908)

Fig. 2.2 A calculating
machine from the beginning
of the 20th century

view of its great importance, may become known in wider circles than is now the
case.” (ibid.).

The mechanical calculating machine is an example of a tool that enhances human
skills by performing mechanical calculations quickly. But it is also a visualizer for
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arithmetic calculation methods during multiplication, division or square root extrac-
tion.

2.6 Felix Klein Was—Like Many of Us—(also) Driven
by External Requests, but When He Was Involved
in an Activity, He Was Extensively Committed

Until 1900, Felix Klein criticized mathematics instruction at secondary school level,
he gave some constructive proposals for changes, but he did not have or give an
overarching strategy for new approaches.4 In 1900, he was asked by the Prussian
ministry to compile an expert report for changes in high school mathematics. Now
he thought more deeply about mathematics classrooms and he suggested analytic
geometry, descriptive geometry and calculus as new subjects for high school mathe-
matics. With this external request, Felix Klein began his commitment to high school
mathematics, leading to the Merano reform in 1905 and finally to the international
involvement of Felix Klein as the first president of ICMI in 1908.

It is characteristic of a competent, committed and assertive person who is con-
vinced of the correct goals which are recognised as important that he or she thinks
globally about achieving these goals. Felix Klein wanted not only to change the cur-
riculum in schools and teaching education at the university level, he also asked for
a special in-service teacher training. At this point, he could build on his experience
because he had previously organized courses for teachers during their holidays (see
Tobies 2000). And—like always—Felix Klein saw the interrelationship of his activ-
ities: On the one hand, teacher training is professional development for the teacher,
but on the other hand, he saw these courses as a possibility to give university teachers
feedback on the effect of their teaching education.

Nowadays, “scaling up”, or the transfer of research results to schools and class-
rooms, is an important aspect in educational research (e.g. Wylie 2008). To make
this transfer constructive, a close cooperation of teachers, teacher educators, profes-
sors from universities, administration people and policy makers is necessary. Felix
Klein’s commitment in mathematics education at high school (Gymnasium) level is
an example of the effect of the cooperation of different institutions in the education
process.

4In 1898, Felix Klein presented his ideas about future structural changes of the high school system
(Klein 1900) in public for the first time. See also Mattheis (2000).
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2.7 Felix Klein Permanently Critically Considered
and Reconsidered His Own Ideas

In his 1923 published memoirs (“Lebenserinnerungen”), Felix Klein mentioned that
he already presented a “detailed programme” of his “planned teaching activities”
in his inaugural address at Erlangen (Erlanger Antrittsrede). If you read the text of
the Antrittsrede and especially the “summary of the Antrittsrede in fifteen points”
(Rowe 1985, p. 125), you only recognize fragments of this programme.

Compared to his ideas in his inaugural address in 1872, FelixKlein later on—based
on his experience at the Technical University Munich5—emphasised much more
the meaning of applications in mathematics education, and he also changed his
mind concerning teaching of mathematics at school and university. David E. Rowe
summarizes these changes of mind:

The ‘Erlanger Antrittsrede’ of 1872, presented herein, gives a clear expression of Klein’s
views on mathematics education at the very beginning of his career. While previous writers,
including Klein himself, have stressed the continuity between the Antrittsrede and his later
views on mathematics education, the following commentary presents an analysis of the text
together with external evidence supporting exactly the opposite conclusion. (1985, p. 123)

Originally, Felix Klein saw the teaching of mathematics at the university not
in relation to special lectures; later on he emphasized the importance of lectures
like “Elementary mathematics from a higher standpoint”. Initially, he was very cau-
tious about new contents or subjects at secondary school, later on—especially in the
Meraner Lehrplan—he emphasized the meaning of calculus as “the coronation of
functional thinking”.

These changes of mind should be seen very positively. It shows Felix Klein as a
person, who continuously reflected his own ideas.

2.8 Final Remark

The “Legacy of Felix Klein” can only be understood and evaluated if you value
the competent, committed and assertive person who reflected throughout his pro-
fessional life and with his background as a mathematics scientist upon mathematics
teaching and learning. We are convinced that Felix Klein is, in his attitude, belief
and strength, an example for all people nowadays who are interested in improving
mathematics education at university and high school. Many of Felix Klein’s ideas
can be reinterpreted in the context of the current situation, and give some hints and
advice for dealing with problems in teacher education and teaching mathematics in
secondary schools today.

5Technische Hochschule München.
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Part II
Functional Thinking

William McCallum

Part II examines the function concept in school mathematics as it has evolved from
Klein’s time.

Katja Krüger describes the goals of the Prussian reform movement at the
beginning of the twentieth century in the Meraner Lehrplan, particularly their call
for functional thinking as a foundational principle. Krüger describes the impact of
this movement on German mathematics education, using examples from textbooks
and writings for teachers, which shows a focus on a dynamic conception of func-
tion. She also describes the work of mathematics teachers influenced by Klein and
the wider group of educators and mathematicians of which he as a member.

Patrick W. Thompson and Fabio Milner describe the results of a comparative
study of secondary teachers from South Korea and the USA. They examine the
meanings that teachers attached to functions and function notation by looking at
results from the instrument Mathematical Meanings for Teaching secondary
mathematics developed by the first author and collaborators. They find significant
differences between the mathematical meanings of South Korean and US teachers
and conclude with the observation that in the US Klein’s double discontinuity is in
fact a continuity of flawed meanings that prospective teachers carry throughout their
university careers and bring back to the school classroom.

Hyman Bass studies an important component of the function concept in school
mathematics, the notion of a continuous number line that provides the domain for
most functions students encounter. There is evidence that many students in the US
lack a robust understanding of this continuum. Bass compares the construction
narrative of the number line, common in US curricula, with the occupation narrative
proposed by V. Davydov, in which numbers are discovered rather than built. The
article describes activities from Davydov’s work and concludes with a description
of some advantages of the approach.

Finally, William McCallum examines the image of the function concept in
school mathematics, using internet image search. Searches in different languages
produce collections with a greater or lesser degree of mathematical coherence and
mathematical fidelity. The results vary along multiple dimensions: the presence of



visible connections between ways of presenting functions; the density of mean-
ingful annotation; the degree to which components are semantic rather than pic-
torial; and the extent to which extraneous features of an image violate mathematics
properties. This also reveals a tension between the dynamic and static conceptions
of function. These variations suggest directions of growth in professional discern-
ment for in communities of educators.
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Chapter 3
Functional Thinking: The History
of a Didactical Principle

Katja Krüger

Abstract Establishing the habit of functional thinking in higher maths education
was one of the major goals of the Prussian reform movement at the beginning of the
20th century. It had a great impact on the German school system. Using examples
taken from contemporary schoolbooks and publications, this paper illustrates that
functional thinking did not mean teaching the concept of function as we understand
it today. Rather, it focusses on a specific kinematic mental capability that can be
described by investigating change, variability, and movement.

Keywords Functional thinking · Meraner Lehrplan · Principle of movement
Mathematical mental representations · Fundamental ideas

The Prussian Meraner Lehrplan (Meran curriculum) first called for education in
functional thinking as a requirement of teachingmathematics in high schools in 1905.
Henceforth it became a widely accepted motto of the reform movement in Germany
and elsewhere (Hamley 1934). What then did Felix Klein and his contemporaries
mean by this concept?

Firstly, this paper outlines the objectives of the Meraner Lehrplan. Secondly,
it illustrates how functional thinking focussed on a specific habit of think-
ing with examples from contemporary representative textbooks and mathemati-
cal journals for teachers. Furthermore, functional thinking emerged in the Mer-
aner Lehrplan as a guiding category for teaching mathematics in order to con-
centrate, unify and structure different areas of mathematics taught in schools.
It marks an important stage in the development of so-called fundamental ideas
(fundamentale Ideen), a didactical category that is now widely used in German-
speaking countries. This paper pays particular attention to the practical work of
mathematics teachers—contemporaries of Felix Klein—highlighting their efforts
in developing subject-related teaching methods. This paper will demonstrate
that education in functional thinking was connected with the idea of using mental
representations of mathematical concepts (Grundvorstellungen, according to vom
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Hofe and Blum 2016). The focus lies on the conceptual interpretation that gives it
meaning (Greefrath et al. 2016).

3.1 The Demand for Functional Thinking in theMeraner
Lehrplan, 1905

The motto “education in functional thinking” is connected to an extensive reform
movement of high school mathematics at the beginning of the 20th century. In the
history ofmathematical teaching, this reformbecame known as theKleinsche orMer-
aner Reform. Felix Klein is recognized as the leader of this reform movement. He
succeeded in combining reform proposals of the late 19th century (see Krüger 2000;
Hamley 1934, p. 49 ff.; Schubring 2007) and initiated the establishment of a teaching
committee at the annual general assembly of the Society of German Researchers and
Physicians (Gesellschaft Deutscher Naturforscher und Ärzte) in 1904. The commit-
tee was instructed to reform the curricula for the whole complex of mathematical and
scientific education. A prime objective was to close the gap between school and uni-
versity mathematics education. As one means of doing this, the reformers introduced
the function concept as the central theme in school mathematics. In addition, they
included elements of analytical geometry and differential and integral calculus in
secondary mathematical education. Furthermore, the committee put greater empha-
sis on applications in school mathematics and the so-called principle of movement
(Prinzip der Bewegung), referring to the Neuere Geometrie (for elements of projec-
tive geometry as the “new geometry”, see Krüger 2000, Chaps. 3.2 and 5.3).

The reformers’ resolutionswere condensed in a curriculum that was presented one
year later in the next general assembly in Meran. Therefore, the so-called Meraner
Lehrplan was not an official national curriculum but a proposal for mathematics
education in high schools from Grade 5 to Grade 13, in the classical humanistis-
ches Gymnasium.1 Besides Felix Klein, the university mathematician Prof. August
Gutzmer and representatives of high schools such as Dr. Friedrich Pietzker and Dr.
Heinrich Schotten took a great role in this reform ofmathematics education (Gutzmer
1908, p. 88). Both teachers were well known in these times as they were editors of
relevant mathematical journals for teachers and board members of the Verein zur
Förderung des Unterrichts in Mathematik und Naturwissenschaften (Association for
the Promotion of Teaching ofMathematics and Sciences, founded in 1891; shortened
to Förderverein) (Fig. 3.1).

Using the motto “education in functional thinking,” the Meraner Lehrplan not
only refers to the subject-related modernisation of teaching mathematics, but also
incorporated educational principles that were central in public debates at that time
(Hamley 1934, p. 53; Krüger 2000, p. 168 f.; Schimmack 1911, p. 210; Schubring
2007). The efforts for alignment are already conveyed in the introduction of the
Meraner Lehrplan:

1An orientation toward classical humanities was a characteristic of this type of high school.
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Fig. 3.1 Meran reformers: members of the teaching commission (Lorey 1938, pp. 18, 20, 26, 41)

It is necessary (as it is for all other subjects) to bring the course of teachingmore closely in line
with the natural process of mental development than has formerly been, to take preliminary
mental representations everywhere into account, to establish organic connections between
new insights and previous knowledge, and finally to bring the coherence of mathematical
knowledge in itself as well as its relation to other educational subjects [Bildungsstoff ] to
mind gradually. With full recognition of the formal educational value [Bildungswert] of
mathematics, it will furthermore be necessary to relinquish all unilateral and practically
meaningless specialized knowledge, but rather to develop as far as possible the faculty for
contemplating natural phenomena from amathematical point of view. Two special tasks arise
from here: the development of the ability of space perception and education in the habit of
functional thinking. (Gutzmer 1908, p. 104; own translation, for original see Appendix 1)

In this preface, a psychological principle is described, as the students’ mental
development should be taken into account with regard to teaching mathematics.
Special emphasis is placed on the role of previous knowledge and mental represen-
tations of mathematical concepts. With regard to functions and differential calculus,
this psychological principle will be concretised in Sects. 3.2.1 and 3.3. In German-
speaking countries, this idea of mental mathematical representations was developed
later into the didactic category ofGrundvorstellungen (see vomHofe andBlum2016)
in the tradition of Stoffdidaktik (subject matter didactics).

The demand for developing “as far as possible the faculty for contemplating
natural phenomena from a mathematical point of view” (Gutzmer 1908, p. 104) can
be attributed to earlier reform attempts.2 This “utilitarian principle” was associated
with the plea for better introduction of applications in mathematical education that
was recommended by theFörderverein at its inception. Students should thereby learn
to contemplate “the mathematical in phenomena from their environment” instead of
applying mathematics to artificial contexts (Braunschweiger Beschlüsse 1891; see
Lorey 1938, p. 243). Functions and differential and integral calculus had proven
themselves to explore motion and change as well as methods of analytical geometry.

The preface to theMeraner Lehrplan emphasised the didactical principle in math-
ematics teaching of requiring greater coherence of mathematical knowledge per se

2It took about 100 years to establish Heinrich Hertz’s idea of mathematical modelling in schools’
curricula. Hertz described the process of modelling as the basis of mathematization in natural
sciences (Ortlieb et al. 2009, Chap. 1.2).
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as well as greater coherence in relation to other educational subjects (Bildungsstoff ).
The recognized mathematical educationalist Walther Lietzmann later characterised
it as a concentration principle (Konzentrationsprinzip), as this demand leads to the
concentration of the whole of school mathematics to one “unified basic idea,” the
concept of function “in the guise of algebra or arithmetic.”

They saw an essential demand in concentrating all of the subjects of the curriculum to
one thought. The various mathematical branches that needed to be covered at school were
supposed to be reconciled to one unified basic idea…

The Meraner Lehrplan chose the function concept as a binder. This concept had caught on
in the guise of algebra or arithmetic and was not foreign to schools.… But the systematic
enforcement of whole school mathematics on the basis of this idea was missing. (Lietzmann
1926, p. 231; own translation, for original see Appendix 2)

When characterising the “concentration principle,” Lietzmann does not speak of
functional thinking but of the function concept as a “binder” (Bindemittel) that unifies
different branches of school mathematics such as geometry, arithmetic, and algebra.
In his main work, Methodik des mathematischen Unterrichts, Lietzmann describes
the idea of concentrating and unifying the subject matter of school mathematics as
an important didactical achievement of the Meran reform movement. He was a close
confidant of Felix Klein and popularised the function concept through numerous
textbooks and writings on mathematics teaching. Revised editions of his renowned
Methodik havebeenpublished inGermanyuntil as late as 1985.Thismay explainwhy
the idea of concentrating and unifying the subject matter in mathematics education
has remained influential until the present day.

From the present point of view, functional thinking as a “unifying principle” or
“concentration principle” can be described as a prototype of a fundamental idea
(Fundamentale Idee; Krüger 2000, Chap. 9.4). Vohns (2016) describes fundamental
ideas as a guiding category of mathematical teaching. Up to the present, no other
fundamental idea (such as symmetry, approximation, measure, and algorithm) has
caused so many discussions about its importance for educational issues.

The demand for “education in the habit of functional thinking” has been attributed
as a “special task” and a consequence of the aforementioned didactic, utilitarian, and
psychological principle. “Functional thinking” in the Meraner Lehrplan does not
mean a habit of thinking with respect to the function concept in arithmetic teaching
only, rather it applies to mathematical education overall. Therefore, formal mental
training remained the main objective of higher mathematics education. However, the
adjective “functional” indicates a shift: In contrast to the traditional goal ofmathemat-
ics instruction of “formation of logical thinking” with a focus on classical Euclidean
geometry, functional thinking implied material aspects such as the selection and
organisation of subject matter. Under the new programmatic principle, “education
in the habit of functional thinking,” isolated mathematical topics and methods of
problem solving that were based on special techniques were excluded from the cur-
riculum. Some subjects, such as “unilateral and insignificant special knowledge” in
the fields of teaching equations and trigonometry (see quote from Gutzmer [1908] in
Sect. 1) were considered as expandable by the Meran reformers. The remaining and
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newly added topics were organised to align with the principle of “education in the
habit of functional thinking.” But what did the Meran reformers around Felix Klein
mean by this principle?

3.2 Education in the Habit of Functional Thinking
in Arithmetic, Algebra, and Geometry

During his lecture “DieMeranerVorschläge in derPraxis desmathematischenUnter-
richts” at the general meeting of the Förderverein in 1909, Schotten characterised
the principle of functional thinking as follows:

Considering functional thinking first, it has not always been understood as it was meant
to be. It is about making students aware of the variability of quantities in arithmetic or
geometric contexts and of their shared dependence and mutual relationship, and getting
them accustomed to observing the “vitality” of quantities and to engaging in contemplating
the “variable”. (Schotten 1909, p. 97; own translation, for original see Appendix 3)

Education in functional thinking soon became a motto of the reform movement
at that time, as it was referred to as a coherent and universally agreed-upon princi-
ple. This consensus was pointed out by the Austrian philosopher and professor of
pedagogy Alois Höfler in his book Didaktik des mathematischen Unterrichts:

As one of the two content-related aims of theMeran proposals, “functional thinking,” gained
universal and unreserved approval, the general thesis does not need to be proven, but propos-
als for its didactical effective realisation are required. (Höfler 1909, p. 19; own translation,
for original see Appendix 4)

In fact, one can find many didactic and methodical instructions on how to realise
functional thinking in mathematical education in the form of exercises or teaching
materials. In the following, this comprehension of functional thinking is presented by
giving extracts of curricula from that time and representative textbook exercises from
themain areas of secondarymathematics education at that time: arithmetic (including
algebra) and geometry. Therefore, textbooks that have been specially designed in the
“spirit of theMeran reformmovement” (Schimmack 1911, Chap. C.4; Hamley 1934,
pp. 86–89) are used to exemplify what the reformers around Felix Klein meant by
using functional thinking as a means of unifying these areas of school mathematics.

3.2.1 Functional Dependencies in Arithmetic and Algebra
Teaching

Education in the habit of functional thinking began to be prepared in Grade 7
(Quarta). By evaluating and interpreting algebraic expressions such as terms and
exploring functional aspects of formulas, studentswould practice functional thinking.
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Fig. 3.2 Graphs of linear functions: How does the position of the line in the coordinate system
change when “Factor 2” or “Summand 1” are varied? (Malsch et al. 1929, p. 89)

The following exercises are taken from textbooks of teachers who actively supported
theMeran reform (Schwab andLesser 1912,Chap. IA,Behrendsen andGötting 1911,
III. Sects. § 5, §10, §18, §22).

• Which value does the term s �a +b have for a �6, b �3, … ?
• Which values do n �a +b · c and m � (a +b) · c have for a �2, b �3, c=4, …?

This approach is comparable with recent teaching methods when introducing
algebra at schools. The above mentioned Grundvorstellungen of variables (Einset-
zungsaspekt and Veränderlichenaspekt) refer to the first steps towards teaching the
variable and the function concept (Malle 1993, p. 46 ff.).

From Grade 9 (Obertertia) up to Grade 11 (Obersekunda), students were to be
familiarised with different types of functions (e.g., linear, quadratic, trigonometric,
exponential, logarithmic) and different representations such as equations, graphs,
and tables. Graphical representations were considered very important, as they were
already introduced in Grade 8 (Untertertia). Students should for example explore
the effects of parameter variations (Fig. 3.2): How do variations of a parameter in a
function equation affect the location and shape of the graph? In this way, functions
and their graphical representations became a central issue in high school curricula,



3 Functional Thinking: The History of a Didactical Principle 41

F
ig
.3
.3

G
ra
ph
ic
al
tr
ai
n
sc
he
du
le
of

th
e
ro
ut
e
N
or
th
ei
m
–M

ün
de
n
in

w
in
te
r
19
06
/7

(K
le
in

an
d
Sc
hi
m
m
ac
k
19
07
,p

.3
5)



42 K. Krüger

Fig. 3.4 Triangle transformations from Treutlein (1911, Appendix)

which has remained so even to the present day. The effects of parameter variations
maynowbe easily investigatedwith digital tools (Vollrath andWeigand 2007, p. 153).

In addition, graphical representations were used to solve equations and illustrate
empirical functional dependencies or time functions. Distance-time graphswere used
to represent motion. Figure 3.3 shows a variety of such distance-time functions in
a graphical train schedule. Each graph represents a train ride. Students could learn
to read these graphs to determine in which direction the train goes, which trains are
faster, and what the relationship between the slope of the graph and the velocity of
the train is.

From today’s point of view, it is conspicuous that theMeraner Lehrplan does not
demand a formal definition of the function concept as a one-to-one correspondence
of the elements of a domain and a co-domain. Instead, the curriculum refers tomutual
or functional dependencies and thereby to prior conceptions of functions established
during the history of mathematics. Felix Klein reflected on this pedagogical decision
later in his famous book Elementarmathematik vom höheren Standpunkt:

We desire merely, that the general concept of function, according to theone or other of
Euler’s understandings should permeate as a ferment the entire mathematical teaching in the
secondary schools. It should not, of course, be introduced by means of abstract definitions,
but should be transmitted to the student as a living possession, by means of elementary
examples, such as one finds in large number in Euler. (Klein 1933, p. 221)

These conceptions of functionswere consideredmore adaptable to themain appli-
cation contexts (predominantlymechanics) as theywere connected to the exploration
of “variation behaviour” (Änderungsverhalten according to Vollrath und Weigand
2007, p. 140). A coherent view of different types of functions was not developed
until Grades 11 and 12 (Prima). Functions were then regarded as “a whole” and
mutual dependencies and motion could be explored by methods of calculus (see
Sect. 3.3).
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3.2.2 The Principle of Movement and Functional Thinking
in Geometry

In the geometry part of theMeraner Lehrplan one can also find instructions on how
to familiarise students with functional thinking.

This habit of functional thinking should be cultivated also in geometry by perpetually explor-
ing the changes that result from variation of length, position, or form of geometric figures
such as quadrilaterals or circles. At the same time, the consideration of the occurring rela-
tionships, which can be arranged in rows by various aspects, offers an exquisite technique
to the education to logical thinking. This technique is to be made advantage of as well as
the consideration of transitional cases and the examination of limits. (Gutzmer 1908, p. 113;
own translation, for original see Appendix 5)

By introducing the concept of moving geometric objects (Prinzip der Bewegung),
the Meran reformers turned against the traditional Euclidean method of teaching
geometry that had dominated mathematical education during the 19th century. The
Euclidean method was criticised at that time, as it was considered to be inappropriate
for the students’ mental development. It was described as “stiff” and “lifeless” on
two accounts. Firstly, it followed a stiff pattern of definition, theorem, and proof.
Secondly, the Euclidian method was seen as a stiff mathematical proof technique
makinguse of congruencies. The intent of focussing constantly on functional thinking
was to invigorate geometry teaching.

At the beginning, the focus was on mobilising whole figures or parts of figures in
order to make underlying measures and location relations emerge: How do changes
in size and position of single parts affect the characteristics of a whole figure? Move-
able figures should be increasingly represented in the mind when exploring func-
tional dependencies. Considering previous Euclidean methods, activities involving
Flächenverwandlungen (transformation of geometric figures where the area remains
invariant) were very popular. The following invariants are fundamental for teaching
the subject of areas: If base and height of parallelograms and triangles are both of
equal length, the areas are also equal. In his bookDer geometrische Anschauungsun-
terricht, Treutlein (1911) emphasises Gestaltveränderungen (changes of geometric
shape), for which he provided various exercises that included sequences of illus-
trations. In addition, a draft of a student’s workbook based on Treutlein’s proposal
for geometry teaching was published as an appendix. The following geometric con-
structions show different triangles that are built by holding the base and varying one
point of the triangle along a parallel to the basis. In Fig. 3.4 one can find dashed
lines illustrating that the area of a triangle is based on the one for a parallelogram.
These sketches make clear that Treutlein used the movement of geometrical forms
by showing them merging into each other or originating from each other. By con-
sidering geometric figures in a functional way and studying their varying structures,
one could explore whether features remain invariant or change systematically.

In the years that followed, many teaching materials that realised the demand for
movement bymechanical techniques or animated illustrationswere developed. Other
teachers came up with mathematical films, flicker books (geometrische Kinohefte;
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see Fig. 3.5), and mechanical models with joint mechanisms (Krüger 2000, Chap.
7.5, Kitz). Thereby the students reinforce their functional imagination. From a con-
temporary point of view, access to the subject matter was provided through all of
Bruner’s (1974, p. 16 ff.) modes of representation: enactive, iconic, and symbolic.
Nowadays, the exploration of moveable figures may be facilitated by digital tools
such as dynamic geometry systems.

The Meraner Lehrplan proposed that transitional cases should be explored, for
example, when introducing triangles. Both equilateral and right-angle triangles as a
transitional case to the family of triangles are presented in Fig. 3.4. Other examples
are variations in shape of quadrilaterals such as squares and rectangles as limit cases
to rhombuses and parallelograms. By exploring these Gestaltverwandlungen, the
notion of limit should be prepared in a geometrically vivid way. Taking into account
these geometric proposals for education in functional thinking, the habit of mind can
be characterised as kinematic and flexible.

3.3 Functional Thinking and Mental Representations
in Differential Calculus

The new subject matter about differential and integral calculus was not supposed to
act as additional theme on top of the curriculum. Rather, an “organic” structure of
school mathematics would be realised by underlining calculus as a culmination of
higher mathematical education. Thinking in variations and functional dependencies
should be practiced and made more flexible in order to prepare for learning calculus.
Education in the habit of functional thinking can therefore be considered as an attempt
to establish a propaedeutic of calculus in high schools.

The Förderverein’s vote about this issue ended in a draw. Friedrich Pietzker,
who was the association’s chairman, claimed that calculus was only described as an
optional subject within theMeraner Lehrplan.

Coherent consideration of the functions that have hitherto occurred with respect to trends in
decrease or increase (possibly bringing in the notions of Differenzialquotient and integral),
using numerous examples fromgeometry and physics, especiallymechanics. (Gutzmer 1908,
p. 111; own translation, for original see Appendix 6)

Pietzker doubts regarding infinitesimal calculus were not without cause.

An integration of infinitesimal calculus into school mathematics will result in teaching stu-
dents another formal techniquewithout enabling them to have a use for it. Instead of providing
them further mental education, an external skill will be achieved that will be soon forgotten
by all those who are not concerned with those precise sciences at a later time. (Pietzker 1904,
p. 129; own translation, for original see Appendix 7)

Even a century later, procedure-orientated teaching of calculus in German high
schools is being criticised (see Blum and Schmidt 2000).

https://doi.org/10.1007/978-3-319-99386-7_3
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Fig. 3.5 Geometric flicker
book visualising moving
figures (Detlefs 1913, p. 39)
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The journal Zeitschrift für den mathematisch-naturwissenschaftlichen Unterricht
published a column about the Meran reform movement, showcasing both supporters
and opponents of the movement:

As is well known, infinite calculus contains many formulas that need to become second
nature to students if mathematics education is to fulfil its purpose. As a result, there is the
risk of students’ believing that the substance lies within these formulas and that knowing
and applying them suffices to a mathematical qualification (Weinmeister 1907, p. 13; own
translation, for original see Appendix 8).

It took another 20 years until differential and integral calculus became a compul-
sory topic within Richerts’ Richtlinien (1925), the new curriculum for high schools
(Gymnasien) in Prussia. The Meran reformers took the chance to broaden their ideas
about advanced teacher training. Summer schools (Ferienkurse) at different univer-
sities (e.g., Göttingen, Berlin, and Frankfurt a. M.; see Tobies 2000, p. 23 ff.) were
offered so that high school teachers could become familiar with functional thinking
and teaching infinitesimal calculus. Subject-related teaching methods were devel-
oped and set down in textbooks based on the Meraner Lehrplan. Felix Klein found
support in Otto Behrendsen and Eduard Götting, two experienced teachers in Göt-
tingen. Both were familiar with secondary mathematics education and were able to
realise the reformers’ proposals. Together they developed a course in school math-
ematics that provided ideas about functional thinking across several grades. This
course functioned as a model for the Meran curriculum (Götting 1919).

The familiarisation with functional thinking in geometry and arithmetic teaching
was supposed to help close the gap between mathematics education on the university
and high school levels and help make the transition from school to university less
arduous. This didactical approach is realised inBehrendsen andGötting’swell known
textbooks Lehrbuch der Mathematik nach modernen Grundsätzen (1911, 1912).

If students who have followed our course of instruction come to differential calculus, it
will be taken for granted and as a natural consequence of the representation of functions
that have been dealt with for many years up to this stage. It would be almost unnatural
to follow certain dubiousness apostles’ demand for stopping at this point. Nevertheless,
differential and integral calculus are based on purely empirical geometric and related real
mental representations that are clear of speculations. (Behrendsen andGötting 1912, preface;
own translation, for original see Appendix 9)

By taking a closer look at the following textbook extracts, the authors’ concep-
tion of teaching differential calculus in a “purely empirical” way can be illustrated.
Practical experience had shown that it was difficult for students to understand the
notions of limit and Differenzialquotient dy/dx (derivative of a function). The term
Differenzial was found to be particularly challenging as it was characterised as an
“infinitely small quantity” (ibid.). It took Behrendsen and Götting some time until
these complex concepts were considered sufficiently developed from an educational
point of view. Their introduction in differential calculus starts with a question that
arises from generalising known characteristics of the slope of a linear function: Can
the slope of any graph of a function be described by the ratio �y/�x? Figure 3.6
leads to functional considerations how the slope of single small arcs varies:
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Fig. 3.6 Exploring slope of
secants (Behrendsen and
Götting 1912, p. 232)

We simply notice that on the arc PP1 the slope of smaller sections of this arc changes, in
fact increases. When we move point P1 closer to P up to P2, meaning we decrease �x1, the
chord PP2 coincide with the arc in more detail. But this will be even more the case with
PP3, so that the quotient

P3Q3
PQ3

can be considered as the PP3 arc’s slope quotient with greater

approximation as P2Q2
PQ2

and P1Q1
PQ1

. (Behrendsen and Götting 1912, p. 232; own translation,
for original see Appendix 10)

Hereby they obtain the slope of not only a single small arc but also the slope in a
certain point of a function graph. This method visualises the moving secants, with a
tangent as a mentally represented limit.

It is easy to realise that accuracy increases when the points P and P3 come closer to each
other, meaning the secant P3T approximates the characteristics of a tangent. The actual slope
in a certain point of the curve is given by the direction of the tangent in the same point.…
(ibid., p. 233; own translation, for original see Appendix 11)

It is remarkable that neither the tangent nor the slope of a function (by using
tangents) are formally defined until this point. Instead, the authors use the mental
geometrical representation of a tangent as a limit case and the idea of approximation
instead. Behrendsen andGötting then provided a new function, the Steigungsfunktion
(function of slopes). Therefore, they use a graphical method to obtain this function
of slopes by sketching the curves’ tangents and their slopes and thereby represent
the Steigungsfunktion in a graphical manner (see Fig. 3.7).

After providing a geometric-graphical approach to the approximation of a func-
tion’s slope, the Differenzenquozient (increment ratio) was used to find the “true”
slope of a tangent by analytical means. Finally, the Differenzialquotient (derivative)
was introduced as the limit of increment ratios. Thereby, an additional meaning with
regard to its application in mechanics was obtained: velocity (Grundvorstellung of
local rate of change) or, more explicitly, the instantaneous velocity or speed of a
process (see Greefrath et al. 2016, p. 108).
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Fig. 3.7 Graphisches Differenzieren according to Behrendsen and Götting (1912, p. 235)

These textbook extracts document that the concept of a derivative was introduced
using a geometric mental representation as a tangent slope (Grundvorstellung of
tangent slope; ibid., p. 109). By determining a function’s slope with the help of the
limit of the secant’s slopes, Behrendsen and Götting provided an approach to the
concept of derivative. This was popular in German high school mathematics for the
following decades; however, it was also criticised (see Danckwerts and Vogel 2006,
p. 45).

By familiarising students with functional thinking in the context ofmoving figures
and shapes, the concept of limit was used in an informal manner in school math-
ematics but not established by a formal definition. This qualitative approach uses
functional imaginations of limit processes as the basis for concept formation: How
does the incremental ratio or slope change when the secant shifts?

The “coherent consideration of functions that have hitherto occurred with respect
to trends in decrease or increase” was then established as a possibility for practicing
functional thinking (Gutzmer 1908, p. 111). Graphical representations were still
used to explore slopes of function graphs with the help of the Differnzialquotient
(derivative).

When discussing bandy lines, determinations of maxima and minima, etc., one gets along
with simple considerations of geometric sketches. The maximum, for example, is charac-
terized by the fact that the tangent is first increasing and then decreasing afterwards. The
graphical representation of the first Differenzialquotienten as a curve itself therefore is a
decreasing function merging from positive to negative at the point in question. Regarding
this consideration, long calculations can be avoided and functional thinking can be trained
in an excellent way. (Behrendsen and Schimmack 1908, p. 21; own translation, for original
Appendix 12)

Many school teachers developed concepts and materials for teaching calculus
that aligned with functional thinking in the 20 years following the publication of
theMeraner Lehrplan. Soon, the demand for more rigor in secondary mathematical
education arose in terms of how to combine the need for scientific rigor and the
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respect for students’ mental capacity. In 1925, differential and integral calculus were
finally introduced in the national Prussian curriculum.

By introducing infinitesimal methods, students gain knowledge about the most important
tool of mathematics. It is a task of mathematical education on the one hand to steer a middle
course between entitled scientific rigor and the regard to practical needs and on the other
hand to use the tool of geometric visualizations extensively. (from annotations on methods
for mathematics education in the 1925 Prussian directives; quoted from Lietzmann 1926,
p. 263; own translation, for original see Appendix 13)

3.4 Conclusion

Functional thinking in the sense of the Meran reformers meant more than provid-
ing knowledge about elementary functions and techniques of calculus. “Education
in the habit of functional thinking” has to be considered a certain ability to per-
ceive and analyse the variability of quantities and their functional dependencies.
It was regarded as a didactical principle for teaching mathematics in high schools
that refers to the modernisation of subject matter and focusses on the concentration
and unification of different branches of school mathematics. Therefore, it may be
indicated as a precursor of the didactic category of fundamentale Ideen. Moreover,
the attempt to build school curricula on psychological principles leads to the use
of mental representations of mathematical concepts (Grundvorstellungen) emerg-
ing together with the demand for functional imagination. This idea became widely
accepted and extended in German-speaking countries at the end of the 20th century.
Grundvorstellungen of numerous basic mathematical concepts were elaborated at
that time (such as variable, function, number, fraction, probability, derivative, and
integral). The development of the subject-related didactic categories of fundamentale
Ideen and Grundvorstellungen was stimulated by the challenging task of teaching
calculus in high schools.

In addition to Felix Klein’s Göttingen colleagues, Behrendsen, Götting, Lietz-
mann, and Schimmack, dedicated mathematics teachers such as Oskar Lesser, Georg
Wolff, Peter Treutlein, and many more played important roles in modernising school
mathematics based on Felix Klein’s reform agenda. Without their creative applica-
tion of these concepts into school curricula, theMeraner Lehrplanmay not have had
such an influence on high school mathematics. When highlighting Klein’s unques-
tionable merits in initiating and organising the Meran reform movement, the efforts
of these practitioners in mathematical education should not be understated.

Appendix

1 Einmal gilt es (wie in allen anderen Fächern), den Lehrgangmehr als bisher dem
natürlichenGange der geistigenEntwicklung anzupassen, überall an den vorhan-



50 K. Krüger

denen Vorstellungskreis anzuknüpfen, die neuen Kenntnisse mit dem vorhan-
denen Wissen in organische Verbindung zu setzen, endlich den Zusammenhang
des Wissens in sich und mit dem übrigen Bildungsstoff der Schule von Stufe zu
Stufe mehr und mehr zu einem bewußten zu machen. Ferner wird es sich darum
handeln, unter voller Anerkennung des formalen Bilduugswertes der Mathe-
matik doch auf alle einseitigen und praktisch bedeutungslosen Spezialkennt-
nisse zu verzichten, dagegen die Fähigkeit zur mathematischen Betrachtung
der uns umgebenden Erscheinungswelt zu möglichster Entwicklung zu bringen.
Von hier aus entspringen zwei Sonderaufgaben: die Stärkung des räumlichen
Anschauungsvermögens und die Erziehung zur Gewohnheit des funktionalen
Denkens.

2 Sie erkannten es als eine wesentliche Forderung an, den gesamten Lehrstoff
um einen großen Gedanken zu konzentrieren. Das Vielerlei der mathematischen
Gebiete, die auf der Schule zu Wort kommen, mußte unter eine einheitliche
Grundidee gebracht werden …
Die Meraner Vorschläge wählten als Bindemittel den Funktionsbegriff. Dieser
Begriff, der ebenso im geometrischen wie im arithmetischen Gewande die
gesamte Mathematik durchsetzt, war selbstverständlich der Schule vorher nicht
fremd. …Was aber fehlte, war die systematische Durchdringung des gesamten
Schulstoffs mit diesem Gedanken.

3 Was zunächst das funktionale Denken betrifft, so ist es nicht überall so aufge-
faßt worden, wie es aufgefaßt werden sollte. Es handelt sich darum, die Vari-
abilität der Größen –, seien es arithmetische oder geometrische –, ihre gemein-
same Abhängigkeit und ihren wechselseitigen Zusammenhang den Schülern
zu Bewußtsein zu bringen: und sie daran zu gewöhnen, gerade auf diese
‘Lebendigkeit’ der Größen zu achten und ihr ihr Denken auf die Betrachtung
des ‘Veränderlichen’ einzustellen.

4 Von den beiden inhaltlichen Zielpunkten der Meraner Vorschläge … hat der
zweite, das ‘funktionale Denken’, so allgemeine und rückhaltlose Zustimmung
gefunden, daß nicht mehr Beweise für die allgemeine These nötig, sondern nur
noch Ratschläge für ihre didaktisch wirksame Durchführung erwünscht sind.

5 Diese Gewohnheit des funktionalen Denkens soll auch in der Geometrie durch
fortwährende Betrachtung der Änderungen gepflegt werden, die die ganze Sach-
lage durch Größen- oder Lageänderung im einzelnen erleidet, z. B. bei Gestalt-
sänderung der Vierecke, Änderung in der gegenseitigen Lage zweier Kreise
usw. Zugleich aber bietet die Betrachtung der hierbei auftretenden Beziehun-
gen, die man nach mannigfachen Gesichtspunkten in Reihen ordnen kann,
ein vorzügliches Mittel zur Schulung des logischen Denkens, das möglichst
auszunützen ist, ebenso die Betrachtung der Übergangsfälle und die Herausar-
beitung der Grenzfälle.

6 Zusammenhängende Betrachtung der bisher aufgetretenen Funktionen in ihrem
Ge-samtverlauf nach Steigen und Fallen (unter eventueller Heranziehung der
Begriffe des Differentialquotienten und des Integrals), mit Benutzung zahlre-
icher Beispiele aus Geometrie und Physik, insbesondere der Mechanik.
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7 … eine Aufnahme der Systematik der Infinitesimal-Rechnung in den Unter-
richt [wird] im allgemeinen nur darauf hinauslaufen, den Schülern eine formelle
Technik mehr beizu-bringen, ohne dass sie dadurch befähigt werden, nun mit
dieser Technik gegebenenfalls viel anzufangen, statt der Erhöhung der geistigen
Durchbildung, die man ihnen dadurch ver-schaffen möchte, wird eine gewisse
äusserliche Fertigkeit erzielt werden, die bei allen, die nachher keine Veran-
lassung zur Beschäftigung mit den exakten Wissenschaften haben, bald genug
vergessen werden wird.

8 Bekanntlich enthält die Unendlichkeitsrechnung sehr viel Formeln, die dem
Schüler in Fleisch und Blut übergehen müssen, soll der Unterricht seinen Zweck
erfüllen. Da liegt denn die Gefahr nahe, dass der Schüler glaubt, das Wesen des
Unterrichts liege in diesen Formeln, und es genüge deren Kenntnis und ihre
Anwendung zu seiner mathematischen Ausbildung.

9 Wenn der Schüler, der unserem Lehrgange gefolgt ist, an die Differentialrech-
nung ge-langt, so pflegt ihm dieselbe als etwas so Selbstverständliches und als
eine so notwendige Konsequenz der seit Jahren gepflegten Funktionsdarstel-
lungen zu erscheinen, daß es geradezu unnatürlich wäre, wollte man den War-
nungsrufen gewisserBedenklichkeitsapostelwirklich Folgschaft leisten und hier
halt machen. Allerdings ist die Differential- und Integralrechnung in einer rein
empirischen, von allen Spekulationen freien Weise auf geometrische und ähn-
liche reale Vorstellungen gestützt gegeben worden.

10 Wir bemerken ohneweiteres, daß auf demKurvenbogenPP1 die Steigung einzel-
ner kleinerer Teilbogen desselben wechselt und zwar in unserer Figur zunimmt.
Rücken wir den Punkt P1 naher an P heran bis P2, d.h. machen wir … �x1
kleiner, so fällt schon die Sehne PP2 genauer mit dem Bogen zusammen als
vorher; noch mehr wird dies bei PP3 der Fall sein, so daß der Quotient

P3Q3
PQ3

mit
größerer Annäherung als Steigung des Bogens PP3 angesehen werden kann als
P2Q2
PQ2

und P1Q1
PQ1

.
11 Es ist leicht einzusehen, daß dieGenauigkeit zunimmt, wenn die Punkte P und P3

einander näher kommen, d.h. wenn die Sekante P3T also immer mehr sich dem
Charakter einer Tangente nähert. Die wirkliche Steigung in einem bestimmten
Punkte der Kurve wird somit durch die Richtung der Tangente an dieselbe in
diesem Punkt gegeben, …

12 Bei der Diskussion krummer Linien, Bestimmung von Extremwerten usw.
kommt man mit einfachen Überlegungen an geometrischen Skizzen aus. Das
Maximum ist beispielsweise dadurch gekennzeichnet, daß die Tangente vorher
ansteigt, nachher fällt; die graphischeDarstellung des erstenDifferentialquotien-
ten selbst als Kurve ist daher an der betreffenden Stelle, eine abnehmende, vom
Positiven zum Negativen übergehende Funktion. Bei dieser Behandlungsweise
wird alles lange Rechnen vermieden und das funktionale Denken vor-trefflich
geschult.

13 Durch die Einführung inifinitesimaler Methoden erhalten die Schüler Ken-
ntnis von dem wichtigsten Werkzeug der Mathematik. Hier hat der Unter-
richt einen Mittelweg zu suchen zwischen berechtigten Anforderungen an wis-
senschaftliche Strenge und der Rücksicht auf die praktischen Bedürfnisse, und
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er wird das Hilfsmittel geometrischer Veranschaulichung ausgiebig benutzen
müssen.
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Chapter 4
Teachers’ Meanings for Function
and Function Notation in South Korea
and the United States
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Abstract Teachers’ thinking about the concept of function is well researched. How-
ever, most research focused on their understanding of function definitions and prop-
erties. This paper addresses a more nuanced examination of teachers’ meanings and
ways of thinking that are affiliated with what might come to mind as teachers deal
with functions in day-to-day interactions with students, such as “What does f mean
in f(x)?”. We report results from using theMathematical Meanings for Teaching sec-
ondary mathematics (MMTsm) instrument (Thompson in Handbook of international
research in mathematics education. Taylor & Francis, NewYork, pp. 435–461, 2016)
with 366 South Korean middle and high school teachers and 253 U.S. high school
mathematics teachers. South Korean middle and high school teachers consistently
performed at a higher level than U.S. high school teachers, including U.S. teachers
who taught calculus.

Keywords Function · Mathematical meanings for teaching
International comparison · Double discontinuity · Cultural regeneration
Felix Klein

Research reported in this article was supported by NSF Grant No. MSP-1050595. Any recommen-
dations or conclusions stated here are the authors’ and do not necessarily reflect official positions
of the NSF.
A more complete description of this study’s theoretical foundation and presentation of results can
be seen at http://pat-thompson.net/Presentations/2016ICME-Funcs.

P. W. Thompson (B) · F. Milner
Arizona State University, Tempe, USA
e-mail: pat@pat-thompson.net

F. Milner
e-mail: fabio.milner@asu.edu

© The Author(s) 2019
H.-G. Weigand et al. (eds.), The Legacy of Felix Klein, ICME-13 Monographs,
https://doi.org/10.1007/978-3-319-99386-7_4

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99386-7_4&domain=pdf
http://pat-thompson.net/Presentations/2016ICME-Funcs


56 P. W. Thompson and F. Milner

4.1 Introduction

The concept of function played a central role in Felix Klein’s vision of secondary
school mathematics. His Elementary Mathematics from an Advanced Standpoint
(1932) developed a concept of function that mathematized a sketched graph, “re-
structuring school in the direction of giving more emphasis to geometrical aspects of
meaning (intuition,Anschauung)” (Biehler 2005, p. 63). Biehler also noted that Klein
(1932) wrote his “Elementary Mathematics from an Advanced Standpoint” book
with the understanding that teachers already had a firm knowledge of the secondary
mathematics curriculum. Klein’s intention was to connect ideas in this curriculum to
their brethren in higher mathematics. He pointed to a “double discontinuity” in the
preparation of high school mathematics teachers: the discontinuity that high school
students experience when they first meet higher mathematics in college, and then
the discontinuity they experience when going from studying higher mathematics to
teaching school mathematics (Buchholtz and Kaiser 2013; Kaiser et al. 2017; Kil-
patrick 2008). We will return to the issue of double discontinuity in our concluding
section.

4.2 A Focus on Meanings Instead of on Knowledge

We focus on teachers’ mathematical meanings for teaching for a number of reasons.
First, the word “knowledge” in “teachers’ mathematical knowledge” is used largely
as a primitive (undefined) term in researching teachers’ mathematical knowledge for
teaching. Second, “knowledge” is used most commonly as justified true belief, with
an emphasis on “true”. From this perspective, one cannot “know” something that is
incorrect. We believe, as argued in Thompson (2013), that teachers operate mostly
with ideas formulated for themselves in terms that could not be called true or justified
from an expert perspective. We therefore cast aside concern with whether teachers
“know” a concept and focus instead onmeanings andways of thinking teachers bring
to mind in their moments of acting—interacting with students, planning instruction,
or implementing their plan.

To this end, we designed an instrument calledMathematical Meanings for Teach-
ing secondary mathematics (MMTsm; Thompson 2016). The MMTsm is a 46-item
instrument containing items addressing teachers’ meanings for function (definition
and properties, notation, and modelling), variation and covariation, proportionality,
rate of change, frames of reference, and structure sense. In this paper, we focus on
teachers’ meanings for functions.
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Fig. 4.1 Two images of functions as mappings—static (left) and dynamic (right)

4.3 Our Perspective on Productive Meanings for Function

We take it as axiomatic that students profit when their teachers hold rich, coherent
meanings and ways of thinking regarding ideas they teach. Also, different types of
coherence are more or less appropriate to help different levels of students in learning
those ideas. Figure 4.1 illustrates two teachers’ images of function as mapping. Both
images capture essential features of the commondefinition of function: every element
of the domain is paired with a unique element of the range. The left image illustrates
a teacher’s strong focus on the idea of function as mapping elements of the domain to
unique elements of the range. It also expresses the teacher’s inattention to the nature
of the domain and an inattention to how one might think about the independent
variable’s values varying. The right image illustrates a teacher who aims for students
to think that a function’s domain is a continuum of values. This teacher’s image
entails the action of “moving through” the continuum, so that every value of the
continuum is mapped to one and only one value in the range. (Unfortunately, a static
diagram cannot capture the dynamism of the teacher’s image.) The left image could
be productive for a teacher of higher-level mathematics, where domains can have
arbitrary elements and structures. The right image could be productive for a high
school teacher who hopes that students be able to envision functions as mapping
continuous intervals to intervals.

Any design of items that probe teachers’meanings for a conceptmust be grounded
in a scheme of meanings that the designers take as a target understanding of the
concept. For our purposes, we emphasize two aspects: (1) That a function is a named
relation between two sets of elements such that the relation constitutes a rule of
association between them, and (2) that one understands all the features of the relation
being packed into the notation f (u), so that “f (u)” means “The value in f ’s range that
is associated with the value u in f ’s domain.” Figure 4.2 illustrates a common way
that this way of understanding function is depicted in textbooks.

U.S. students commonly experience function notation with the attitude that “f (x)”
is an unnecessarily complicated way to say “y”. This is understandable when we
consider the density of meanings that are packed into function notation in relation
to the concept of function. Figure 4.3 illustrates a coherent way in which one can
understand a function f defined using function notation as denoting the same scheme
of meanings as in Fig. 4.2.
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Fig. 4.2 Image of a function
as a relation between values
of A and B according to a
rule of association

Fig. 4.3 Connections
between function concept
and components of function
notation

In the sequel, we discuss several items in the MMTsm, and results from 619
teachers from U.S. or South Korea, that probe ways they thought about function and
function notation. We discuss this with the assumption that the meanings teachers
have regarding functions and function notation influence the ways students under-
stand these ideas.

4.4 Method

The study included 366 South Korean mathematics teachers (264 high school, 102
middle school) and 253 U.S. high school mathematics teachers. South Korean (SK)
teachers constituted a geographic national sample; US teachers were from one state
in the Southwest and one state from the Midwest. Teachers sat for the MMTsm in
groups of varying size in summer 2013 and summer 2014. SK teachers taught a mean
of 3.99 years (s.d. � 1.97); US teachers taught a mean of 4.35 years (s.d. � 4.22).
SK teachers congregated for their required recertification examination; US teachers
participated voluntarily in government-funded summer professional development
programs. Teachers sat for the MMTsm in groups of sizes ranging from 40 to 150.
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Here are two function definitions. 

w(t) = sin(t – 1) if t ≥ 1

Here is a third function c, defined in two parts, whose definition refers to w and q.
Place the correct letter in each blank so that the function c is properly defined.

Fig. 4.4 MMTsm item addressing teachers’meanings for function notation. © 2016Arizona Board
of Regents. Used with permission

Items on the MMTsm were validated and refined over a three year period as
described in Thompson (2016). Scoring rubrics assigned levels to teachers’ responses
according to the criterion productivity of conveyed meaning for student learning. For
example, we deemed a meaning for variable that might convey to students that a
variable stands for one number at a time as less productive for students’ learning
than a meaning that conveyed that a variable stands for the value of a quantity whose
value varies.

4.5 Results

The MMTsm includes 18 items on functions (6 on definitions and properties, 8 on
function notation, and 4 on functions asmodels).We present results from three items,
one in each category, that exemplify the overall results. The items reported here were
also reported in Musgrave and Thompson (2014) with data collected during item
development.

Item 1: Function Notation
The function notation item display in Fig. 4.4 was designed to see the extent to which
teachers thought of the left-hand side as a name for the rule on the right-hand side.
A similar item, given prior to the MMTsm to calculus students, showed that many
students thought that they should use the same letter as appeared in the original
definition in any re-use of the function with function notation. They thought that the
letter within parentheses was part of the function name.

We considered teachers who placed t and s in the blanks as having thought of
“w(t)” and “q(s)” as names and not in terms of a scheme of meanings as depicted in
Fig. 4.3.

Results for this function notation item are given in Table 4.1.



60 P. W. Thompson and F. Milner

Table 4.1 Results from function notation item. Cell entries are count (% of row total)

v through-
out

Mix of s,
t, and v

s, t Other I don’t
know

No
answer

Total

Korea HS 203 1 14 39 2 5 264

(76.9%) (0.4%) (5.3%) (14.8%) (0.8%) (1.9%) (100.0%)

Korea MS 65 0 6 19 1 11 102

(63.7%) (0.0%) (5.9%) (18.6%) (1.0%) (10.8%) (100.0%)

US < calc 53 7 74 20 13 12 179

(29.6%) (3.9%) (41.3%) (11.2%) (7.3%) (6.7%) (100.0%)

US ≥ calc 32 5 25 7 3 2 74

(43.2%) (6.8%) (33.8%) (9.5%) (4.1%) (2.7%) (100.0%)

Calculus is a standard part of the high school curriculum in South Korea but not in
the United States. We therefore disaggregated US teachers into teachers who never
taught calculus and teachers who taught calculus at least once.

In many respects, the entries in Table 4.1 speak for themselves. SK high school
teachers were the most sensitive to the role that s and t played in the definitions of w
and q (77%) and the least likely to think of s and t as part of a function name (5%).
US high school teachers who never taught calculus were the least sensitive to the
role of s and t (30%) and the most likely to think that s and t were part of a function
name (41%). It struck us that South Korean middle school teachers were 50% more
likely to understand the role of s and t in their respective function definitions than
were US high school teachers who taught calculus as a subject at least once.

Item 2: Function Definition
Part of a holistic meaning of function is that its definition is relative to a domain of
values. The item in Fig. 4.5 was designed to address this issue.

Highest level responses explained that w is defined only for input values greater
than 0, and therefore the graph of y � w(x) + w(x − 10) + w(x − 20), x > 0, exists
only for values of x greater than 20.

The first two columns of Table 4.2 contain valid answers. The distinction is that
responses in the first column explained why y was undefined for values of x less
than or equal to 20 whereas responses in the second column gave an example or
were given without explanation. The third column contains two different types of
responses. The first type (“time cannot be negative”) explained that the value of the
input to w is time, and there is no such thing as negative time. The second type
(“w(t) < 0”) explained that there actually is a graph, but it is below the horizontal
axis, off the viewing pane shown on the page. The fourth column contains responses
that explained the missing segments in Billy’s graph in terms of pumps’ behaviour,
such as they malfunctioned and did not start until 20 min had elapsed (Fig. 4.6).

Sixty-three percent (63%) of SK high school teachers related the function defini-
tion to the domain of w by noting that the value of x in y � w(x) + w(x − 10) + w(x −
20) had to be greater than 20 for y to be defined, whereas 44% of SK middle school
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Fig. 4.5 MMTsm item addressing the extent to which teachers’ meanings for function definition
entails attention to a domain of definition. © 2016 Arizona Board of Regents. Used with permission

teachers, 11% of US precalculus teachers, and 12% of US calculus teachers said this.
While we were not surprised by US precalculus teachers’ non-normative responses,

Table 4.2 Results from MMTsm item on function domain as part of function definition

y
undefined
for x ≤ 20
because …

x > 20
example
or no
explana-
tion

Time
cannot be
negative or
w(t) < 0

Behaviour
of pumps

Other, or
could not
interpret

I don’t
know

No answer Totala

Korea HS 141 23 22 6 63 4 5 264

(53.4%) (9.7%) (8.4%) (2.3%) (23.9%) (1.5%) (1.9%) (100.0%)

Korea MS 35 10 16 10 26 0 5 102

(34.3%) (9.8%) (15.7%) (9.8%) (25.5%) (0.0%) (4.9%) (100.0%)

US < calc 9 2 5 25 46 10 1 98

(9.2%) (2.0%) (5.1%) (25.5%) (46.9%) (10.2%) (1.0%) (100.0%)

US ≥ calc 5 2 5 12 33 3 0 60

(8.3%) (3.3%) (8.8%) (20.0%) (55.0%) (5.0%) (0.0%) (100.0%)

aUS totals exclude data from 95 teachers who responded to a different version of Item 2
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Hari dropped a rock into a pond creating a circular ripple that spread 
outward. The ripple’s radius increases at a non-constant speed with the 
number of seconds since Hari dropped the rock. Use function notation to 
express the area inside the ripple as a function of elapsed time.

Fig. 4.6 MMTsm item for function as model (using function notation representationally)

we were quite surprised that US calculus teachers responded at essentially the same
levels as precalculus teachers.

One might think that Item 2 is heavily reliant on teachers’ meanings for function
notation since it involves function notation in the definition ofw and its use in defining
y. However, the Kendall’s tau statistic for these items is 0.07, so performance on the
two seems unrelated.

Item 3: Function as Model (Using Function Notation Representationally)
An important aspect of using functions to model situations is to use function notation
representationally. For example, one could define the function d as the distance from
Earth to Mars at each number of years since 00 CE. Then d(1999.7) − d(1998.2)
would represent the net change in distance from Earth to Mars from 1998.2 years CE
to 1999.7 years CE. We can do this meaningfully even without a rule of association
for d that would allow us to compute these distances.

We anticipated that many teachers would use function notation on the left side of a
function definition because this is customary when defining a function using function
notation. We judged teachers to use function notation representationally when they
used function notation on the right side of the function definition, defining the circle’s
radius as a function of time within the formula for area of a circle. A response using
function notation on both sides of the function definition was scored at the highest
level.

We scored responses according to whether they used function notation on both
sides, right side only, or left side only. We were forced to include two additional
categories of responses: Level 0 (could not interpret) and inconsistent use of variables
(using different letters on either side of the definition).

Table 4.3 gives examples of responses in four categories. The first “both sides”
example is quite impressive. This teacher used the Fundamental TheoremofCalculus
to define the length of the radius as an integral of its velocity. The second example
was the most common for “both sides” responses. The “right side only” example
is straightforward. As we explained, we judged teachers to use function notation



4 Teachers’ Meanings for Function and Function Notation … 63

Table 4.3 Examples of responses to Item 3 in selected categories

Category Example

FN (function notation) both sides:

FN right side only:

FN left side only:

Inconsistent use of variables:

Table 4.4 Results for MMTsm item on function as model (using function notation representation-
ally)

FN both
sides

FN right
side only

FN left
side only

Inconsistent
use of
variables

Level 0 I don’t
know

No answer Totala

Korea HS 86 77 20 10 50 9 12 264

(32.6%) (29.2%) (7.6%) (3.8%) (18.9%) (3.4%) (4.6%) (100.0%)

Korea MS 24 15 16 5 27 5 10 102

(23.5%) (14.7%) (15.7%) (4.9%) (26.5%) (4.9%) (9.8%) (100.0%)

US < calc 20 11 58 24 32 12 10 167

(12.0%) (6.6%) (34.7%) (14.4%) (19.2%) (7.2%) (6.0%) (100.0%)

US ≥ calc 19 6 27 7 8 6 1 74

(25.7%) (8.1%) (36.5%) (9.5%) (10.8%) (8.1%) (1.4%) (100.0%)

aUS totals do not include 12 teachers who responded to a version of the MMTsm that did not include this item

representationally when they used it on the right side, to represent the circle’s radius
as a function of time.

The example for “left side only” typifies responses in this category. Teachers
responding with function notation on left side only wrote a formula on the right side.
The example of “inconsistent variables” has a large intersection with “left side only”
responses in that they used function notation only on the left side, but used different
letters in the function’s argument and in the defining formula.

Table 4.4 presents results for Item3.We categorized teachers’ responses according
to the scheme presented in Table 4.3.

The first two columns in Table 4.4 represent teachers who have richer and more
accurate meanings for function notation and the use of functions as models than
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teachers included in the other columns. As in the previous examples, teachers from
SK’s high schools are 83% more likely than their U.S. counterparts (understood as
those who taught calculus at least once) to have answered with function notation
on the right-hand side or both sides (61.8% compared with 33.8%), the latter being
more comparable to SK’s middle school teachers.

The disparity becomes much larger when comparing SK’s middle school teachers
with those from U.S. high schools who had not taught calculus. SK’s teachers’
likelihood of having answered with function notation on the right-hand side or both
sides is essentially double that of U.S. teachers in the comparison group. On the
positive side for U.S. teachers who had taught calculus, when looking at the first
column of Table 4.4, we see that they are only 21.1% less likely than SK’s high
school teachers to give such answers. This may be partly a consequence of the fact
that high school calculus classes (just like those in college) include a fairly large
number of modelling problems.

However, the larger disparity in response rates with function notation on the left-
hand side only (34.7% for US teachers with calculus compared with 7.6% for SK’s
high school teachers) possibly reflects a rather weak meaning of function notation in
the case of US teachers. The majority of teachers and calculus students interviewed
prior to item development had the schema shown in line three of Table 4.3. “Using
function notation”, to them, meant writing “f (x)” instead of y. They also felt that
function notation by itself was meaningless, that a statement with function notation
required an explicit rule of association on the definition’s right side. Such an explicit
representation is impossible in Item 3 because we only know that the rate of change
of the radius of the circular ripples with respect to time is not constant—that the
radius is not a linear function of time. But we do not know what function it is.

Also, whenwe compare all teachers fromSKwho participated in the studywith all
those from theU.S., we see the percentage in the first column (FNon both sides) being
almost twice for SK (30.0%) compared with the US (16.2%). Even more extreme is
the comparison for column three (FN left side only), where the percentage for the
US (35.3%) is 3.6 times as large as for the SK teachers collectively (9.8%).

The statistics for these three sample items, because they are representative of the 18
items in theMMTsmon functions, indicate unequivocally that high school teachers in
SK have more productive meanings for function definitions and properties, function
notation, and for functions as models than their US counterparts. Future research will
be required to investigate ways that these differences play out in teachers’ instruction
and students’ learning.

4.6 Discussion

Results from TIMSS and other studies (Judson and Nishimori 2005; Tarr et al. 2000)
indicate that U.S. students use calculators more frequently than their foreign counter-
parts. Possibly, by analogy, U.S. teachers may rely more on calculator use than their
counterparts in South Korea and thus become more focused on how to input data on
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the calculator than on the correct notation to write intended formulas on paper. Also,
given the gender bias in TIMSS Advanced (end of high school) in favour of boys,
we should check for gender differences in the MMTsm study.

We suspect, however, that deeper, cultural differences might be at play. Our expe-
rience is that the meanings and ways of thinking exhibited by a preponderance of US
teachers are common among US school students, too. If teachers’ meanings shape
students’ meanings by way of intersubjective operations of negotiation of mean-
ing, then many of these teachers’ students will pass through university with those
meanings largely untouched only to become future high school mathematics teach-
ers. This is the process Lortie (1975) described as a way that schools regenerate
themselves. The evidence for the “Lortie hypothesis” is that US teachers we tested
were school students before they were teachers, and their study of university math-
ematics evidently left the meanings they developed as school students (as shaped
by their teachers) largely untouched. To study this hypothesis requires evolutionary
and sociological research methods that, at this moment, do not exist in mathematics
education.

Wehasten to note thatwhatwe described above is notKlein’s double discontinuity.
Rather, for a majority of US teachers in our sample, it seems there was a continuity
of mathematical meanings that teachers carried from school to university and back
to school. They seem to have maintained these meanings despite their experiences
in higher mathematics courses.

The problem we face in the US is to enrich future teachers’ school mathematical
meanings so that they are truly foundational, instead of irrelevant, for higher math-
ematics. Thompson (2013) outlines a number of long-term strategies that address
this problem. One effort that is central to all of them is that university mathematics
programs must take into account the mathematical meanings that students (not just
future teachers) bring to their university studies. Again, this will require a long-term
effort. Culturally embedded meanings and ways of thinking are difficult to dislodge
among university instructors as well as high school instructors.
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Chapter 5
Is the Real Number Line Something to Be
Built, or Occupied?

Hyman Bass

Abstract Klein emphasized geometry and intuition, and made the concept of func-
tion central to mathematics education. In fact, number and operations form the back-
bone of the school mathematics curriculum. A high school graduate should com-
fortably and capably meet an expression like, “Let y� f(x) be a function of a real
variable x,” implying that the student has a robust sense of the real number continuum,
the home of x. This understanding is a central objective of the school mathematics
curriculum, taken as a whole. Yet there are reasons to doubt whether typical (U.S.)
high school graduates fully achieve this understanding. Why? And what can be done
about this? I argue that there are obstacles already at the very foundations of number
in the first grades. The construction narrative of the number line, characteristic of
the prevailing curriculum, starts with cardinal counting and whole numbers and then
builds the real number line through successive enlargements of the number systems
studied. An alternative, based on ideas advanced by V. Davydov, the occupation nar-
rative, beginswith pre-numerical ideas of quantity andmeasurement, fromwhich the
geometric (number) line, as the environment of linear measure, can be made present
from the beginning, and wherein new numbers progressively take up residence. I
will compare these two approaches, including their cognitive premises, and suggest
some advantages of the occupation narrative.
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5.1 Introduction

Klein’s mathematical work emphasized geometry and intuition.

As regards my own higher lectures, I have pursued a certain plan in selecting the subjects
for different years, my general aim being to gain, in the course of time, a complete view of
the whole field of modern mathematics, with particular regard to the intuitional or (in the
highest sense of the term) geometrical standpoint.

—Klein (2000, p. 96)

His work in school mathematics education gave center stage to the concept of
function (Klein 2000, p. 4).

We, who are called the reformers, would put the function concept at the very center of
instruction, because, of all the concepts of the mathematics of the past two centuries, this
one plays the leading role wherever mathematical thought is used. We would introduce it
into instruction as early as possible with constant use of graphical method, the representation
of functional relations in the x y system, which is used today as a matter of course in every
practical application of mathematics.

The learners that Klein had in mind were presumed to have a well-founded under-
standing (both formal and intuitive) of the real number line, of the “x” in f(x), of
Euclidean geometry in dimension one. This paper addresses the fact that this essen-
tial foundational understanding may be less secure with some current curricular
treatments.

The device beyond praise that visualises magnitudes, and at the same time the natural num-
bers articulating them, is the number line, where initially only the natural numbers are
individualised and named. In the didactics of secondary instruction the number line has been
accepted, though it is often still imperfectly and inexpertly exploited.

—Freudenthal (1983, p. 101)

My purpose here is to contrast the development of the number line common to
most current curricula with an alternative proposed by V. Davydov, one that, I would
argue, is closer in spirit to Klein’s sensibility.

… the students’ creation of a detailed and thorough conception of a real number, underlying
which is the concept of quantity, is currently the end purpose of this entire instructional
subject, from grade 1 to 10 … the teacher, relying on the knowledge previously acquired by
the children, introduces number as a… representation of a general relationship of quantities,
where one of the quantities is taken as a measure and is computing the other.

—Davydov (1990, pp. 167, 169)

5.2 The Construction Narrative of the Real Number Line

For intuitively meaningful parts of mathematics, there is a significant difference
between the logical and the psychological points of entry, the latter being typically
located somewhere midlevel in the logical hierarchy. The logical foundations are no
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less intuitively abstract than are themore sophisticated structures that expand beyond
our initial intuitions.

In the case of the real number line, R, its twentieth century, set theory based,
construction starts with the whole numbers, and continues (Peano Axioms) with
successive enlargements, to integers, Z, rational numbers,Q, and finally reaching
R, by a process of geometric completion (filling invisible holes). This is what I call
the construction narrative of the number line. In many school curricula the real num-
ber line is constructed by some rough approximation of this construction narrative:
First, counting (whole) numbers; then, in some order, negative integers and positive
fractions; merging into rational numbers; and finally real numbers, either constructed
using some form of limits, or, commonly, just noting the existence of some irrational
numbers, like

√
2, and vaguely leaving the real numbers underspecified as “the ratio-

nals plus the irrationals.”
The starting point of the construction narrative seem natural enough since humans

(and other species) are biologically endowed with some primordial sense of small
cardinal counting:

It is now widely acknowledged that the typical human brain is endowed by evolution with a
mechanism for representing and discriminating numbers … when I talk about numbers I do
not mean just our familiar symbols – counting words and ‘Arabic’ numerals, I include any
representation of the number of items in a collection, more formally the cardinality of the
set, including unnamed mental representations. Evidence comes from a variety of sources.

—Brian Butterworth (2015)

A more spiritual, but less scientific evocation of this is Kronecker’s dictum, “God
made the integers, all else is the work of man.”

The construction narrative begins with whole numbers and counting and progres-
sively introduces new number systems. In all but one case (from rational to real
numbers), the new system is created to enable solutions to equations formulated, but
not solvable, in the previous system. In each extension it is tacitly presumed, but
not generally proved, that the arithmetic operations extend and that Basic Rules of
Arithmetic (commutativity, associativity, distributivity, etc.) continue to hold.
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The Construction Narrative of the Real Number Line
Cognitive Premise:  Children’s early discernment of small cardinals and large 

differences
Number Systems Models Conceptual frame
Whole numbers (Finite) sets; disjoint union as sum;

the “Number Queue”
Cardinal/Ordinal

Fractions n/d (≥ 
0) 

Part-whole images
Solve:  a • x  =  b

Use 1/d as unit.  Need 
common d for 

addition
Integers* Negatives; subtraction

Solve:  a  +  x  =  b
Reflection through 0
Take away; compare.

Rational 
numbers

Formal synthesis of fractions ≥ 0 and 
negative numbers

Mirror reflection of 
fractions ≥ 0

Irrational 
numbers

Miscellaneous natural examples:  √2, π,
e 

Only √2 is proved

Incommensurability 
with 1

Real numbers “Everything else.” Infinite decimals.
A significant conceptual gap

All points on the 
(continuous) number 

line
Complex 
numbers

“The complex plane”
Solve:  x2 + 1  =  0

5.3 Difficulties with the Construction Narrative

5.3.1 The Whole Number/Fraction Divide

Whole numbers are conceived as cardinals of (discrete) sets, while fractions are con-
ceived as relative measures of two (continuous) quantities, and so they seem, at first
sight, to be different a species of numbers. The whole number 7 is treated as a noun,
whereas, when thinking of 3/4, it is hard to resist adding the word “of.” A fraction is
conceptually an operator on quantities, not a conceptually free-standing mathemati-
cal object, since, unlike cardinal, the unit of measure is unspecified and not implicit.
This difference makes it difficult to arrange for these two number populations and
their interactions to harmoniously cohabit the same (real) number universe. Of course
cardinal is appropriately viewed as a special (discrete) regime of measurement, but
this perspective is not initially needed, and so not made explicit.
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Whole numbers        ––––> Fractions
A whole number is, conceptually, a 
mathematical object.   “7”

A fraction is, conceptually, a 
mathematical operator.  “3/4 of . . .”

A whole number is the (discrete) 
measure (cardinal) of a set

A fraction is the relative measure of two 
quantities

Addition/subtraction corresponds to 
composition/decomposition (set union)

Addition/subtraction corresponds to 
composition/decomposition of quantities

Multiplication corresponds to repeated 
addition (or whole number rescaling), 
or to Cartesian arrays

Multiplication corresponds to 
composition of operators, or to 
rectangular area (in which case the 
product is a different species of 
quantity.)

Whole numbers are denoted with base-
10 positional notation

Fractions are denoted with the fraction 
bar notation

Computational algorithms are anchored 
in this notation

Computational algorithms are anchored 
in this notation

Whole numbers are born in the 
cardinal/ordinal world

Fractions are born in the worlds of 
(possibly continuous) measure. (The 
cardinal world is one of these, though it 
is not typically seen this way.)

5.3.2 The Continuum Gap

The passages from rational numbers to irrationals, and then to real numbers is frag-
mentary and pretty much clouded in mystery in the school curriculum. The student
may know little more than, “some numbers are irrational.” To build the real numbers
with analytic rigor might exceed the resources of many school curricula, with the
result that students are left with a weakly developed concept image of real numbers.
How would a high school student explain the meaning of

√
2+π, or

√
2 · π? Or 2π

(“the product of π copies of 2?)” Our base-10 algorithms act first on the right most
digits, and so could not be applied to infinite decimal expansions.

5.4 The Occupation Narrative of the Real Number Line

I contrast the construction narrative with what I call the occupation narrative of
the real number line. Its cognitive premise is that, in addition to our early sense of
counting, we come also with some primordial sense of continuous, pre-numerical
measurement of quantity. This is an idea advanced anddevelopednotably byDavydov
(1975), and it is supported by current research:

Children’s understanding of measurement has its roots in the preschool years. Preschool
children know that continuous attributes such as mass, length, and weight exist, although
they cannot quantify or measure them accurately. Even 3-year-olds know that if they have
some clay and then are given more clay, they have more than they did before. Preschoolers
cannot reliably make judgments about which of two amounts of clay is more; they use
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perceptual cues such as which is longer. At age 4-5 years, however, most children can learn
to overcome perceptual cues andmake progress in reasoning about andmeasuring quantities.
Measurement is defined as assigning a number to a continuous quantity.

—Clements and Stephan (2001, pp. 2–3)

In this perspective the line is, intuitively, the natural environment for linear mea-
surement, of quantities of length, measured by intervals on the line. Intuitively, the
line is like a stretch of string—inelastic, so that length is not distorted—but flex-
ible—so that, for example, it can measure your hat size as well as your height.
Eventually it is allowed to have infinite extent in both directions.

It is in this sense that the (continuous) geometric line is made intuitively present
from the early grades, and, as new kinds of numbers are introduced, they quickly
take up residence on the line. In contrast with the construction narrative, wherein
more and more points are installed to build the line, all points are present from the
start in the occupation narrative, and more of them acquire numerical names across
the curriculum. The numbers are like the “addresses” assigned to the geometric
points. One could think of this as “coordinatizing the geometric line,” or “Cartesian
coordinates in dimension one.”

The geometric line is coordinatized with numbers by choice of an ordered pair
of points, that we typically call 0 and 1. Then we take the interval [0, 1] as the unit
of linear measure. Note that the line has an intrinsic “linear structure,” arising from
“betweenness:” Given three points, one will lie between the other two. This does
not yet specify which one is largest. There are two possible “linear orders” on the
geometric line. In choosing the ordered pair (0, 1) we specify not only the unit of
measure [0, 1], but also the order (orientation) of the line, by declaring that 1 is
greater than 0, so 0 to 1 is the positive direction on the line. Our general convention
is to depict the line horizontally, and to take (left → right) as the positive direction.

A whole number N is then placed on the line by concatenating, to the right, N
copies of the unit, starting at 0, and placing N at the final right endpoint. Note that
this placement is essentially measure theoretic, not based exclusively on cardinal.
Children are sometimes confused by counting hash marks, where the copies of the
unit meet, instead of counting intervals. Fractions are similarly placed on the line
using a subunit [0, 1/d], where d is the denominator of the fraction.

This in fact foreshadows the general geometric concept of number on the (coor-
dinatized) number line: A point a on the number line represents the number which
is the measure of the oriented interval from 0 to a. (This will be negative if 0 lies
between a and 1.) In fact, one may reasonably think of the oriented interval [0, a] as
a one-dimensional vector. From this point of view, adding a to a general number x
can be geometrically viewed as translation of the line by the vector [0, a]: a given
distance in a given direction.

Davydov’s Approach
Young children have a primordial sense of

• quantity, an attribute of physical objects (not only cardinalities): length, area,
volume, weight, … without numerical associations.
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• And of addition (composing and decomposing quantities of the same species)
• They can make rough comparisons of size (“Which is more?”), which Davydov
has them express symbolically, as “B>T.” And then infer that “B�T+C” for the
“quantity difference” Venenciano and Dougherty (2014) describe this as “Con-
current representation used to model change from a statement of inequality to a
statement of equality”

Using two unequal areas of paper, the papers can be stacked such that the area of the 
larger piece that is not covered by the smaller piece can be cut off. The piece that is 
removed is defined as the difference. Similarly, beginning with the unequal areas of 
paper, by taping the precise amount of area to the smaller area to create a combined area 
equal to the larger area, defines the difference.

Given quantity B > quantity T: If B – C = T  then B = T + C, i.e.  “B = T by C.” 
The last statement is read, “Quantity B is equal to quantity T increased by the 
difference, quantity C.”

• Davydov develops in children such algebraic relations, involving “pre-numerical”
quantities, and hence involving no numerical calculation.

• This practice also functions as a pre-cursor of algebraic thinking.
• And it imparts the correct sense of the meaning of the “=” sign, meaning that
the (eventually numerical) value of the two sides is the same. This meaning is
sometimes distorted when equations are used primarily in the context of numerical
computation: Students come to think that, “the right side is the computation of the
left side.”

• Davydov develops these ideas in first grade, prior to the introduction of whole
numbers, in a measurement context. Whole numbers appear only late in the first
term of first grade.

5.5 Quantity, Unit, Measure, Number

A quantity has no intrinsically attached number. Rather, given two quantities, A and
U, then, taking U as a “unit,” the number we attach to A is, “How much (or many)
of U is needed to constitute A?” Thus a number is a ratio of two quantities.

To understand a numerical quantity, it is necessary to specify, or know, the unit.
And, for a given species of quantity, different units may be chosen: (feet, inches,
meters—for length), (quarts, pints, liters—for liquid volume), etc. To numerically
simplify a sum of two numerical quantities they must be of the same species and
expressedwith the same unit. (“Can’t add applies and oranges.”) That is why, in place
value algorithms for addition, we vertically align the digits with the same place value
position, i.e. with the same base-10 units. That is why, in adding fractions, we seek
common denominators (“unit fractions”).

In principle, numerical quantities manifest the full continuum of (positive) real
numbers. Whole numbers arise, in every measure regime, when a quantity is com-
posed exactly of a set of copies of the unit. This is how to comprehendwhole numbers
in the general measure context, not simply cardinal counting. (In the cardinal world,
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the default unit is the one element set, and each set is composed of a set of copies of
this unit.)

Of course cardinal can be viewed as a (discrete) measurement context. However,
since it is natural to choose the one-element set as unit, there is no a priori need to even
introduce the concept of unit. Thus, in the cardinal introduction of whole number,
the very concepts of unit, and of measure relative to a unit, do not immediately rise
to conscious consideration. Later, when introducing multiplication, and place value,
other sets are taken to function as units, but again this typically is not explicitly
linked conceptually to the domain of continuous measure. This is related to the
“whole number/fraction divide” discussed above.

This notion of number as a ratio of quantities may seem somewhat sophisticated,
and not appropriate for very young children. Davydov argues the contrary, as demon-
strated by the following activity design, to solve what he calls the “fundamental
problem of measure:” Given a quantity A, reproduce A in a different place and
time.

Here is how he enacts this with children: See Moxhay (2008).

1. A strip of tape, A, is on a table. In the next room is a roll of tape.
2. Task: Cut off a piece of that roll of tape exactly the length of A. But you are not

allowed to move A.

3. Different approaches:

1. Make a guess, from a remembered image. This is very inexact.
2. If given a spool of string and scissors, cut off a piece of string the length of

A. This is exact, but needs a customized mediating equivalent quantity, the
string segment.

3. Suppose you are given a stick of wood, longer than A. Mark it at the length
of A, and use this to measure off the tape.

4. Suppose you have a stick of wood shorter than A. Then you can count off
lengths of the stick to measure A. In this case, the child actually constructs
the idea of measurement, and engages the concept of unit.
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Case 2 Case 3 Case 4

5. Of course the short stick of wood will not, in general, measure A exactly. A
number of iterates of the stick will measure a part of A with a remainder shorter
than the stick.But then, since the stick is longer than that remainder, the remainder
can be captured as in step 3.

This activity design,which leads the learner to the concepts ofmeasure and of unit,
creates what Harel (2003) calls intellectual necessity, and exemplifies a didactical
situation, in the sense of Brousseau (1997). If we imagine this experiment with
cardinal instead of linear measure, several conceptual and cognitive steps would be
missing, and the first approach would suffice.

5.6 Who Was Vasily Davydov?

Vasily Davydov (1930–1988) was a Vygotskian psychologist and educator in
the Soviet Union. With colleagues, in the 1960s, he developed a curriculum starting
with quantity (of real objects) and measure. Adaptations of the Davydov early grades
curriculum have been implemented in the U.S., with some claims of success. See,
for example: Schmittau (2005), and Moxhay (2008). Many of these ideas are present
in the NCTM and Common Core Standards, in the context of measurement, but not
integrated with the development of number.

In Bass (1998) I speculated about the possibility of an early introduction of the
continuous number line in the school curriculum, without then being aware of Davy-
dov’s work.
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5.7 Conclusion: What Is Achieved by the Occupation
Narrative of the Number Line?

• As mentioned earlier, Davydov’s early introduction of pre-numerical quantities
provides an introduction to algebraic notation and relations, and to a robust sense
of the meaning of the “=” sign.

• The whole number/fraction divide is bridged: The part-whole introduction of frac-
tions is inherently a measurement approach, the whole being the unit of measure.
Though cardinal counting is also a measurement context, that point of view is
not emphasized, since there is a natural default choice of unit (the 1-element set),
and so the very concept of unit, and its possible variability, need not at first enter
conscious reflection or discussion. Here it is proposed that one emphasize the
appearance of whole numbers in every measurement context. In fact, placement
ofwhole numbers on the number line already requires appeal to (continuous) linear
measure.

• Themain point is that the geometric line, anchored in the context of linearmeasure,
is present almost from the beginning. The progressive enlargements of the number
world simply supplies numerical names to more and more of the (already present)
points on the line.

• While a few irrational numbers can be identified and located on the number line, it
can be pointed out that many (even “most”) numbers are irrational, and that even
though we have not named them, they are there, as points on the geometric number
line, leaving no “holes” (the line is connected).

• The number line makes it possible, from the beginning, to geometrically interpret
the operations of adding, or multiplying by, a real number. (See Ji Yeong and
Dougherty (2015) for a measurement treatment of multiplication.)
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Chapter 6
Coherence and Fidelity of the Function
Concept in School Mathematics

William McCallum

Abstract We define notions of mathematical coherence and mathematical fidelity
and apply them to a study of the function concept in school mathematics, as repre-
sented by the results of image searches on the word “function” in various languages.
The coherence and fidelity of the search results vary with the language.We study this
variation from a mathematical viewpoint and distill dimensions which characterize
that variation, and which can provide insights into the characteristics of professional
communities of school educators and into principles for selection and evaluation of
curriculum resources.

Keywords Klein · Function · Mathematical coherence · Mathematical fidelity

6.1 Introduction

We, who use to be called the reformers, would put the function concept at the very center of
teaching, because, of all the concepts of the mathematics of the past two centuries, this one
plays the leading role wherever mathematical thought is used. We would introduce it into
teaching as early as possible with constant use of the graphical method, the representation
of functional relations in the xy system, which is used today as a matter of course in every
practical application of mathematics.

—Klein, 1908 (Klein et al. 2016)

Klein’s vision of the “function concept at the center of instruction” was part of a
broader school reformmovement at the beginning of the 20th century, as recounted by
Krüger (2018) in this volume. Today many aspects of that vision have been realized
in mathematics education. The function concept is firmly embedded in the school
curriculum,with an explicit definition of the concept usually occurring in later grades.
In earlier grades the influence of the function concept on curriculum varies. In many
curricula, for example the reform curricula of the 90s in the US, functional thinking
in early grades can be seen in the use of patterns and tables, even if the concept

W. McCallum (B)
Department of Mathematics, The University of Arizona, Tucson, AZ 85721, USA
e-mail: wmc@math.arizona.edu

© The Author(s) 2019
H.-G. Weigand et al. (eds.), The Legacy of Felix Klein, ICME-13 Monographs,
https://doi.org/10.1007/978-3-319-99386-7_6

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99386-7_6&domain=pdf


80 W. McCallum

was not explicitly defined. Recent standards in the US have partially reversed this
trend, with a greater emphasis on arithmetic and the properties of operations in the
early grades (National Governors Association Center for Best Practices & Council
of Chief State School Officers 2010).

In this paper it is our purpose to analyze the function concept as it appears in
school mathematics from a mathematical point of view. We intend this to be a work
of mathematical analysis, not a work of educational research. It is not our purpose,
nor our expertise, to investigate the relationship between the function concept on the
one hand and students, teachers, and classrooms on the other hand. We focus on two
aspects of the function concept in school mathematics: mathematical coherence and
mathematical fidelity. By mathematical coherence we mean the strength and consis-
tency of mathematical connections, the tendency of a curriculum, or of a collection
of curriculum materials, to form a mathematically logical and consistent whole. By
mathematical fidelity we mean the extent to which a curriculum, or a collection of
curriculum materials, faithfully presents the underlying mathematical concept as it
is situated in the discipline of mathematics. Note that mathematical fidelity is not the
same as mathematical formality; a mathematical concept can be presented in a way
that is appropriate for the age of the students, while still being presented with fidelity.
We hope that the mode of mathematical analysis presented here may be useful to the
producers of curriculum and other resources for students, teachers, and classrooms.

We illustrate the concepts of mathematical coherence and mathematical fidelity
with an analysis of the results of internet image searches on the word “function” in
various languages. One reason for doing this is simply that it is a convenient way
of producing raw material with which to illustrate the mode of analysis. However,
there is some reason to believe that the collection of images so obtained is telling
us something about how the function concept is presented in schools. It is common
to think of the internet as a network somewhat similar to the network of neurons in
the brain (see, for example, Woodford 2017). Furthermore, searching on the word
“function” in various languages leads to results that are largely related to school
mathematics. The algorithms behind search engines are designed to give prominence
to results that are highly interconnected with other sites on the internet; thus they
might be seen as giving results that are prominent in the community using thenetwork.
Putting these observations together suggests that structural features of the results of
an image search bear some relation to structural features of school mathematics in
the language of the search. We do not, however, investigate that relationship, nor is
such an investigation necessary for our purpose.

The paper is organized as follows. We start with a brief survey of various school
mathematics definitions of the function concept, on order to ground the analysis that
takes place in later sections. We then present the results of image searches in various
languages, and discuss the mathematical coherence and mathematical fidelity of
the results. We conclude with some thoughts on a possible connection between the
analysis and the idea of concept image inmathematics education, and on implications
of the analysis for the selection and evaluation of curriculum materials.

A note on terminology:We follow Zimba (2017) in using the word “presentation”
rather than “representation.” The concept of representation inmathematics education
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research is complex. It is linked to thoughts and processes which are not recoverable
from mere contemplation of presentations. A presentation is an artifact—a written
definition, an image, a physical model—that is the result of someone saying “here
is a function.” Our goal in this paper to observe presentations with a mathematical
eye, attempting to excavate their mathematical structure and meaning.

6.2 The Definition of Function in School Mathematics

We present seven definitions from various sources: three from widely used US high
school textbooks, three from highly ranked internet search results on “definition of
function,” and one provided by one of the lead authors of the US Common Core State
Standards in Mathematics. In choosing these definitions, we have tried to illustrate
a range, and have avoided choosing definitions that were badly flawed or wrong. We
have also limited the choice to definitions that were intended for school students, not
university students. Since the search was conducted in English, it naturally reflects
a bias to sources from English speaking countries. Later in this article we look at
image searches in other languages.

1. “In mathematics, relations like these—where each possible value of one variable
is associatedwith exactly onevalueof another variable—are called functions.. . .”
(Core-Plus Mathematics 2015).

2. “A relationship between inputs and outputs is a function if there is no more than
one output for each input.” (Core Connections Algebra 2013).

3. “A function is a rule that assigns to each value of one quantity a single value of
a second quantity.” (EngageNY/Eureka Math, Grade 8, Module 5 2017).

4. “A variable quantity regarded in relation to one or more other variables in terms
of which it may be expressed or on which its value depends.” (Top ranked result
from a Google search performed on 11 December 2017).

5. “A mathematical correspondence that assigns exactly one element of one set to
each element of the same or another set.” (Merriam-Webster 2017).

6. “[A] function is a relation in which each element of the domain is paired with
exactly one element of the range.” (iCoachMath.com 2017).

7. “A function is any sort of process, or calculation, or lookup table, or rule, that
links input quantities and output quantities in a repeatable way.” (Jason Zimba
2017).

Compare these definitions with two definitions that bracket the period from the
beginning of Klein’s “past two centuries” to the current day:

Those quantities that depend on others in this way, namely, those that undergo a change
when others change, are called functions of these quantities. This definition applies rather
widely and includes all ways in which one quantity can be determined by others. (Euler,
1755, Euler and Blanton 2000)

A function from a set A to a set B is a relation R ⊂ A × B with the property that if (a, b) ∈ R
and (a, b′) ∈ R then b = b′. (Standard modern definition)
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The first of these definitions, which we call the dynamic definition, conceives of a
function as a dynamic object, a coordination of two varying quantities. In the second
definition, which we call the static definition, there is no movement, only logic. An
important difference between the two is that in the dynamic definition the condition
on outputs—that no input produces more than one output—goes without saying;
how could it be otherwise in a situation where one quantity changes in response to
changes in another quantity? Whereas in the static definition, situated as it is in the
wider context of relations on sets and subject to the demands of precision needed for
formal mathematical proofs, it is necessary to state the condition explicitly. (See the
chapter by Thompson and Milner in this volume for a comparison of dynamic and
static definitions as they relate to teachers’ mathematical meanings, Thompson and
Milner 2018.)

The definitions in (1)–(7) feel the pull of both these bracketing definitions. On the
one hand, the dynamic definition is the most natural one for a school context. Many
early examples of functions that students encounter are functions of time representing
moving objects. The definition (4) is close to the dynamic definition. On the other
hand, with the possible exception of (7), the remaining definitions pay homage to
the static definition by presenting the logical condition on outputs in some form (in
(7) this is captured naturally and implicitly by the idea of a lookup table and by the
word “repeatable”). One is compelled to wonder how this looks to the student, whose
initial experience with functions rarely involves situations where the issue of having
more than one output for a given input arises naturally, except in artificial examples
constructed for the exact purpose of emphasizing that point. It might make sense to
wait until the issue arises naturally, such whenwe consider implicit functions defined
by equations in two variables, or when we consider scatter plots of statistical data.
At that point, the idea of an input-output process might automatically suggest that
only one output can be chosen.

6.3 Probing the Image of Function in the Internet Brain

We now move from definitions to images. We conducted searches using Google
Image Search in various languages on the word “function” or on its translation into
another language. Figures6.1, 6.2, 6.3, 6.4 and 6.5 show the results for English,
French, German, Japanese, and Spanish respectively.

Our purpose in conducting searches in different languages is not to attempt any
international comparisons. There are many reasons why such comparisons are likely
to be invalid. Some languages are spoken in many countries around the world, others
are concentrated in a small number of countries. It would not be surprising if searches
in a concentrated language showed less variation. Also, the proportion of search
results that pertain to school mathematics could vary widely from country to country,
depending on the extent to which school teachers in the country rely on the internet
for materials.
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Fig. 6.1 Image search on “function”, 11 December 2017

Nonetheless, different languages partition the internet into distinct networks, and
therefore the comparison of different language searches using the same search engine
is a source of variation that can reveal structure in the underlying network. This helps
determine whether the search results are merely random noise, or whether they are
revealing a discernible artifact of school mathematics amenable to analysis.

In Fig. 6.1 we see a profusion of ways in which the function is presented. There are
graphs, tables, and algebraic expressions. There are input-output machines. There
are arrow diagrams with two sets representing domain and codomain and arrows
between them showing the function. What does this collection of images tell us
about the concept of function in school mathematics in English speaking countries?

For one thing, it reveals the attractive force of the static definition noted in the
previous section. We see a graphical example in the top row (thus a highly ranked
search); examples using arrow diagrams in the second row; and an example com-
paring two tables in the bottom row, one of which is a function and one not. None
of these are natural examples of relations, such as equivalence or congruence, but
rather examples of relations that almost satisfy the condition to be a function—every
input has a unique output—but that fail this condition with one or two inputs. Note,
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Fig. 6.2 French image search at google.fr, 11 December 2017

for example, the two arrows emanating from the number 2 in the second row, or that
the x-value 1 unnaturally occurs twice in the table on the right in the bottom row.
One would think that the world was full of impostors pretending to be functions and
that it is the role of education to train students in ceaseless vigilance against them.

The Spanish language search yields results similar to English. (Note that both
Spanish and English are much more widely spoken languages than the other three.)
The searches in French, German, and Japanese produce a narrower range of results,
focused mainly on graphs. Thus there are discernible differences in structure be-
tween the searches on different networks. In the next two sections we analyze these
differences through the lenses of mathematical coherence and mathematical fidelity.

6.3.1 Mathematical Coherence

We have defined mathematical coherence to be the strength of mathematical con-
nections. There are five major ways in which functions are presented in Fig. 6.1:
table, graph, expression or equation, input-output process, and arrow diagram. Each
of these is useful for presenting a different aspect of the function concept. We assess
the strength of connections by observing the extent towhich onemode of presentation
contains signposts to another.
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Fig. 6.3 German image search at google.de, 11 December 2007

Take for example the connection between a graph and an input-output machine.
The input-output nature of a graph is not clearly visible, in that the process of reading
outputs from inputs involves seeing hidden lines from the axes. Thus a possible sign
that the graphical presentations arewell connectedmathematically to the input-output
diagrams is the presence on the graph of auxiliary vertical and horizontal lines to a
particular point on the graph. One sees such lines in the bottom left image in Fig. 6.4
or the second image in the top row in Fig. 6.3. One might also consider the presence
or absence of grids on graphs as an indicator of the strength of this connection. There
are marked differences on these indicators between the various searches.

Another possible connection to look for is between tables and input-output pro-
cesses. A naked table depends on a convention that the column on the left is the input
and the column on the right is the output, a convention that may or may not be strong
in the mind of the student. However, some of the table images, for example the one
on the bottom right in Fig. 6.4, are presented in spreadsheet form, which indicates an
approach to tables that explicitly builds the input-output process into the production
of the table.
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Fig. 6.4 Japanese image search at google.co.jp, 11 December 2007

Fig. 6.5 Spanish image search at google.es, 11 December 2007
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There are other important connections between ways of presenting functions that
cannot reasonably be expected to be fully revealed in a search on images alone. For
example, the connection between graphs and expressions or equations depends on
written texts. However, there are some indications of the strength of that connection
here. Consider, for example, the graph on the right of the third row in Fig. 6.1.
Although the scale on the axes is not given, the graph of y = x2 suggests that a grid
square represents a unit in this graph. But then the graph labeled y = 5 is in fact the
graph of y = 6. It is not particularly striking that among the millions of graphs on
the internet there is one with a a mistake, but it is worth noting that a mistaken graph
receives a rank of 15 among those millions. The rank is determined by the density
of connections to the image. The internet brain in this case seems to be treating the
equation as merely a label for the graph, rather than a related way of describing it.
Contrast this image with the image second from the left in the bottom row of Fig. 6.3.
The graphs are color coded with the equations and the scale is indicated on the axes.
The high rank given to this graph by the German internet brain suggests a greater
appreciation of the connection.

6.3.2 Mathematical Fidelity

Mathematical fidelity refers to the extent to which a presentation is faithful to the
concept as it is situated in the discipline of mathematics. The static definition is the
canonically accepted one in the discipline, and the presence of arrow diagrams, with
their representation of the two sets A and B and arrows linking elements of those
sets, might at first sight be seen as an indicator of fidelity to the static definition.

However, fidelity is not the same thing as formality. A question that must be
considered is the meaning and function of arrow diagrams in school mathematics. In
practice, in their later lives using mathematics, students rarely if ever encounter such
diagrams. Even in school mathematics, they only encounter them in the environment
of tasks designed specifically to see if students understand the logical condition
in the static definition. But, as we have seen, that condition goes without saying
in the dynamic definition, which is more suited to the real functions most students
encounter in their learning pathways during and after school. Understanding the static
definition seems to be an isolated learning goal with little relation to other areas of
school mathematics, and it is, furthermore, a goal which is not usually pursued to
any great depth in modern curricula. Arrow diagrams of the sort seen here seem to
be a non-functional stub in the web of school mathematical knowledge. It is worth
noting that a different type of arrow diagram that uses two parallel number lines,
which does not appear in our searches, is potentially much richer. See for example
Gilbey (2017).
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Although the connection between the arrow diagrams and the static definition
is obvious to an advanced observer, it is worth wondering what it conveys to the
novice. From an advanced point of view it is clear that they are intended to indicate
an association between inputs and outputs. But arrows are also used to indicate
movement, so the diagrams could be construed as suggesting that the inputs are
somehow moved to the outputs. This could be problematic when compared with
other ways of presenting functions. In a graph, for example, the inputs and outputs
remain firmly fixed on the axes.

The input-output machines in our search results vary in their degree of fidelity to
the function concept. Look particularly at the apple slicing machine on the left of
the fourth row in Fig. 6.1. This would seem to violate the fundamental property that
every input should have a unique output. Of course, it is not surprising that flawed
images of functions exist on the internet, but it is striking that they receive such a
high ranking, indicating that many of the neurons in the English internet brain have
found this image valuable. Compare the apple-slicing machine with the image on
the left of row 2 in Fig. 6.4, which carefully labels the inputs, the machine, and the
outputs, indicating that the output is the result of adding the inputs.

Finally, consider the variation in the graphs across the different image searches.
From amathematical point of view the graph is possibly the richest way of presenting
a function, as Klein suggested in the quotation at the beginning of this article. On the
one hand it is faithful to the static definition, in that it shows a subset of the Cartesian
product of the domain and codomain. On the other hand it can capture the dynamic
quality of Euler’s definition and the school definitions if it is used to visualize the
coordination of two varying quantities by means of an imagined or digital moving
image where a point moves along the graph linked to inputs and outputs on the axes.
If equipped with a grid and a scale on the axes it captures the numerical information
in a table. The degree of fidelity is captured by the extent to which the graph presents
all these features, and one sees considerable variation in that extent as one looks
at the different graphical images. Some are annotated in a way that is dense with
meaning, others appear to mere pictorial images.

6.4 Concluding Thoughts

The collections of images from the internet brain considered in this paper bring to
mind the idea of concept image in the sense of Tall and Vinner (1981):

We shall use the term concept image to describe the total cognitive structure that is asso-
ciated with the concept, which includes all the mental pictures and associated properties
and processes. It is built up over the years through experiences of all kinds, changing as the
individual meets new stimuli and matures.
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It would be interesting to know to what extent the digital images considered here
reflect the concept images in the minds of individual students and teachers, or in the
collective consciousness of the community of K–12 mathematics educators, if such
a thing exists. Is it possible to investigate the coherence and fidelity of the entire
collection of “mental pictures and associated properties and processes” related to the
function concept in a particular community of practice in school mathematics?

Whether or not the idea of concept image can be extended that far, the exploratory
analysis presented here shows significant variation betweendifferent networked com-
munities along the dimensions of mathematical coherence and mathematical fidelity.
At a more fine-grained level, for the function concept, we see variation in

• the extent to which a way of presenting functions makes visible connections to a
different way

• the density of meaningful annotation in a presentation
• the degree to which components of a presentation are semantic rather than pictorial
• the extent to which extraneous features of the presentation violate mathematical
properties.

The variation in these dimensions suggest that they are viable candidates for param-
eters of change in professional communities. Paying attention to them could lead to
improved judgement and evaluation of curricular materials, to better curation of large
resource collections, and to the creation of sub-communities with concept images
that are more coherent and faithful than the larger communities to which they belong.
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Part III
Intuitive Thinking and Visualization

Michael Neubrand

Introduction
Besides the concept of functional thinking, the idea of Anschauung is surely the
other central aspect in the Legacy of Felix Klein for mathematics education.
Anschauung—a term quite hard to translate—embraces many facets. It origins from
Felix Klein’s basic thinking: The mathematics teacher should make things “an-
schaulich erfassbar”, i.e. intuitively comprehensible. Drawings, pictures, models,
experiments, dynamic representations of any kind, etc., are among the various
possibilities for intuitive thinking and visualization. In this Strand, five authors
display the ideas of Felix Klein. The contributions start from the roots in Felix
Klein’s work and the influences of these ideas, both in the national, and in the
international context. Then, they move as far as to confront Felix Klein’s ideas to
the recent possibilities of modern technological tools and dynamic geometry
systems.

Martin Mattheis (Germany) reveals in his conceptual contribution the deeper
intentions of Felix Klein behind his central term “Anschauung”. He sticks to dif-
ferent aspects, like sensate, idealizing, and abstract intuition and illustrates how
Felix Klein dealt with intuition in the fields of numbers, functions, geometry, and
spatial intuition.

However, Felix Klein was not alone in distributing ideas of intuition and visu-
alization for the teaching of mathematics. Ysette Weiss (Germany) shows how Peter
Treutlein, a German contemporary of Klein, used models in his teaching.
Thoroughly esteemed by Felix Klein, Treutlein employed activities like paper
folding or the construction of models to develop space intuition and to teach
modern approaches to geometry.

Felix Klein had notable influence also in the international context.Masami Isoda
(Japan) shows that the road how Felix Klein’s ideas came into the Japanese
teaching was through the so-called Praktische Analysis. Even older roots which
were also seen by Felix Klein play a role. Thinking in graphs and considering
mechanical devices to foster geometric and functional intuition find their way in the
Japanese mathematics textbooks.



Modern technology, however, brings new life into the area of intuition, and we
should assume that Felix Klein would appreciate these new possibilities. Stefan
Halverscheid and Oliver Labs (Germany) exhibit a lot of opportunities how tech-
nology can stimulate the interplay between abstraction and visualization. Their
examples connect mathematical considerations about the surfaces of cubic and
quartic polynomial functions (over the complex numbers) with the real production
of models via 3-D-printers. Thus, the famous historical Göttingen collection of
mathematical models becomes now vivid by the modern technology tools.

Maria Flavia Mammana (Italy), finally, shows how Felix Klein’s Meran
Curriculum of 1905 can still be applied to the teaching of geometry in Grades
10–11 today. The intuitive approach to geometry is now facilitated using modern
information technology. She presents activities with dynamic geometry software to
intuitively set out geometric concepts between plane figures and spatial geometry.
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Chapter 7
Aspects of “Anschauung” in the Work
of Felix Klein

Martin Mattheis

Abstract Aimed at modernizing the teaching of mathematics at German secondary
schools around 1900, The “Kleinian ReformMovement” was characterized by Felix
Klein’s two key demands: “strengthening spatial intuition” and “training the habit
of functional reasoning”. This paper presents a number of examples demonstrating
the importance of the concept of intuition (Anschauung) for Klein and explains the
role he assigned to intuition in mathematics instruction at school and university.

Keywords Anschauung · Intuition · Space intuition · Kleinian reform movement
Meran curriculum proposal

7.1 Core Demands for Modernizing the Teaching
of Mathematics at Secondary Schools

For Felix Klein, the insistence that intuition (Anschauung)
1
—or more precisely

“space intuition” (Raumanschauung)—should be given a greater role inmathematics
and mathematics teaching was one of the core demands in the process of modern-
izing mathematical teaching not only at universities and engineering colleges but
also at secondary schools. Felix Klein played a key role in drawing up the Meran
Curriculum Proposal of the 1905 Breslau Teaching Commission of the Gesellschaft
Deutscher Naturforscher und Ärzte (GDNÄ), which essentially formulated two key
demands regarding mathematics teaching at secondary schools: “Strengthening the
capacity to think in three dimensions and training the habit of functional reasoning.”

1 In translating Felix Klein’s ideas into English, I largely use the term “intuition” to convey the
concept of “Anschauung”. The term “intuition” originates in the Latin for “consideration/looking
at” and is employed here not in the sense of a sudden insight without any conscious reasoning but
follows its use in the philosophical tradition as a discovering of truth through contemplation, i.e.
rational intuition.
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A further aspectwill be to dispensewith all one-sided and practically insignificant specialized
knowledge while fully recognizing the formal educational value of mathematics and to
facilitate an optimal development of the ability to view the world of phenomena surrounding
us from a mathematical angle. This entails two special objectives: enhancing the capacity
to think in three dimensions and training the habit of functional reasoning. – This does
not affect the objective of training logics, which has always been assigned to mathematics
teaching. In fact, it can even be said that this objective is enhanced by givingmore attention to
the above-mentioned orientation of mathematics teaching. (Breslau Teaching Commission
1905, p. 154, translated by Martin Mattheis)

The Curriculum Proposal of the Teaching Commission initiated at the GDNÄ
Assembly in Breslau in 1904 followed a lengthy and fundamental dispute over the
principal goals of mathematics instruction at secondary schools and the value of
mathematics for achieving a general education. The general educational character
of mathematics lay for many, beyond the circle of neo-humanist minded classical
philologists, above all in a formal development of the intellect.

Particularly from the second half of the 19th century on, the development and
consolidation of educational institutions aimed at preparing young people for life
and work in the modern world, the “realistische Bildungsanstalten”, was accompa-
nied by a heated debate over whether the leaving qualifications conferred by the
three different types of secondary school (Gymnasium, Realgymnasium and Ober-
realschule) prepared their graduates equally for admission to higher education and
to professional fields in the public services. In this context, especially in the period
before 1900, debate also centered on the issue of what general knowledge mathe-
matics teaching should look like. This is why efforts to modernize the mathematics
syllabus in secondary schools, which many mathematicians thought necessary, were
always potentially or actually confronted by the accusation of reducing the subject’s
general knowledge character to a narrow specialism. Since this would have led to the
status of the respective institutions being lowered from providers of general educa-
tion to technical or vocational institutions, the attempt was often made to argue that,
in addition to the goals proper of the desired change, the modernization would retain
or even enhance the formal education value of mathematics teaching. The different
objectives of the ever-increasing number of reform advocates ultimately culminated
in the two bold and simple demands that calculus and analytical geometry should be
introduced in secondary school curricula.

After the 3rd Prussian School Conference on Secondary School Teaching, in June
1900, had come out in favor of giving equal status to the qualifications conferred by
all three types of secondary school, this controversy was resolved, as far as Prussia
was concerned, on the 26th November 1900 by decree of the Prussian King, who
took a keen interest in secondary school education. In his role as state ruler, Wilhelm
II declared the equivalence of degrees conferred by Gymnasium, Realgymnasium
and Oberrealschule. In the years after 1900, the other constituent states in the con-
federation followed the Prussian example with respect to the equivalence of leaving
qualifications conferred by the three types of secondary school (Mattheis 2000a,
pp. 18–20).
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Felix Klein, who had initially dealt primarily with mathematics in higher edu-
cation and had—on this question and through his efforts to turn the University of
Göttingen into a center of mathematics—been in close contact with the Prussian
Ministry of Cultural Affairs, was requested at relatively short notice prior to the
3rd Prussian School Conference to produce two expert assessments of issues raised
by mathematics teaching in secondary schools (printed in Schubring 2000). Having
compiled his assessments, FelixKleinwas the only universitymathematician, among
the total of 34 participants, to attend the Schools Conference held in Berlin from the
6th to the 8th June 1900.

In his reports for the Schools Conference, Klein explained what he thought a
reform of mathematics teaching in secondary schools should look like. His demands
centered on graduates from all three types of secondary school being qualified to
study at both a university and a college of engineering (Technische Hochschule).
Having failed in his initial attempt, by way of negotiations with the Ministry of
Cultural Affairs, to have the modifications he desired implemented directly into the
new curriculum to take effect from1901, he followed other channels: rallying support
for his ideas among teachersworking in schools, the experimental schools established
by the Ministry, and associations such as the Gesellschaft Deutscher Naturforscher
und Ärzte. These ideas centered above all on the concept of functional reasoning
(funktionales Denken),2 i.e. that the concept of function should run through school
mathematics right from the start, and on the need to strengthen spatial intuition
(räumliche Anschauung), i.e. the capacity to think in three dimensions. Both ideas
were then prominently included as a core demand in the Meran Curriculum Proposal
in 1905 (Schubring 2007, pp. 5–8).

7.2 Intuition in Mathematics Teaching in Higher Education

In his inaugural lecture on assuming his first professorship in Erlangen, the 1872
Antrittsrede, Felix Klein was already emphasizing the importance of applications
and intuition for mathematics and the teaching of mathematics at universities. To
him, applying mathematics went significantly beyond “the predictive calculations of
the astronomer, […] the precision of geodetic measurements, […] [or] the accom-
plishments of the engineering art”. In the second half of the 19th century, the formal
educational value (formaler Bildungswert) of mathematics had come to be seen as
an essential to an advanced education in Germany, and Klein believed this value lay
in the “application of mathematical conceptions” above all in the fields of physics
and the natural sciences, but also in medicine (Rowe 1985, p. 137).

Klein characterized a mathematician’s work as such as “drawing further conclu-
sions fromprecisely formulated foundations”. To themathematician, it was irrelevant
whether the foundations were derived from hypotheses or from observed facts, i.e.
from intuition (Rowe 1985, p. 137). However, in contrast to the actual work math-

2On functional reasoning, see the corresponding chapter in this volume.
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ematician, this issue was, he said, relevant in applications such as mathematical
physics where “applying abstract mathematical thinking to a sensate (better said:
intuitive) domain” could be done in the same manner as in geometry (Rowe 1985,
p. 138). For both fields, Klein insisted that, having actually drawnmathematical con-
clusions, the results gained should be referred “back to the vivid realm of sensate
intuition” unless intuition and mathematical investigation happened to go hand in
hand (Rowe 1985, p. 138).

Viewing mathematics from the opposite perspective, Felix Klein highlighted the
considerable role played by the “intuition-oriented disciplines” in the progress made
bymathematics in recent centuries: The questions raised by astronomy,mathematical
physics and geometry had led to considerable advances in mathematics through the
18th and 19th century (Rowe 1985, p. 138).

However, when assessing Klein’s very broad definition of mathematics in 1872
and his remarks on its applications, one should always bear in mind that Klein was
seeking with his Erlangen Antrittsrede, above all to raise funding for the changes he
envisaged in mathematics instruction at Erlangen when assuming his professorship.
This overriding goal is reflected in his chain of reasoning: “If we educate better
teachers, then mathematics instruction will improve by itself”. This underpinned
Klein’s demand for improved teacher training to include mathematics seminars and,
importantly, “exercises in drawing and in building models” (Rowe 1985, p. 139).

The argument that mathematics had a formal educational value was also intended
to support this project. To humanist-oriented academics, i.e. to many among the
audience at his Erlanger Antrittsrede, the formal educational value of mathematics
was crucial to the characterization ofmathematics instruction as a general educational
task not only at the Gymnasium but also at all other secondary schools and in higher
education (Rowe 1985, p. 124pp; Mattheis 2000b, p. 42).

On assuming a professorship in geometry in Leipzig in 1880, Felix Klein once
again delivered a programmatic Antrittsrede, although this inaugural lecture was not
published until 1895. In the Leipzig Antrittsrede he presented a set of mathemati-
cal models, compiled in collaboration with Alexander von Brill at the Technische
Hochschule in Munich, in order to reaffirm the importance of intuition in geometry.
In particular, he criticized the way sensate objects such as fourth order curves or
third order surfaces, although developed out of mathematical propositions, were not
being brought into any relationship with the intuitive geometric objects on which
they were originally based (Klein 1895, p. 538).

He contrasted this observation with the approach he had chosen, together with
Brill, of using drawings and models—both for teaching purposes and for his own
research. Taking on the possible counter-argument that more intuition would reduce
mathematical abstraction, making mathematics more accessible and lowering stan-
dards, Klein stressed that the desired “visualization” should only be viewed as a
“complementary intervention” and that such an argument failed to see that modeling
can bring forth new ideas for abstract research (Klein 1895, pp. 539–540). Thus,
Felix Klein did not regard the application of mathematical models in mathematics in
higher education merely as a means of visualizing and clarifying familiar contents;
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rather, models were, to him, also objects for stimulated ideas in the pursuit of new
research findings (cf. Rowe 2013).

Here again, when assessing Klein’s Leipzig Antrittsrede, one should not forget
that, on assuming the professorship in Leipzig, hewas not only presenting his notions
of mathematics teaching in higher education but very directly making a case for
the additional funding required for the changes he envisaged—such as compiling a
collection of models.

On November 2, 1895, in the same year as the first publication of his Leipzig
Antrittsrede from 1880, Felix Klein delivered a lecture at the public session of the
Königliche Gesellschaft der Wissenschaften zu Göttingen under the title “On the
Arithmetization of Mathematics” (Über Arithmetisierung der Mathematik). Here,
Klein examines the role of intuition (Anschauung) in mathematics. He begins by
pointing out that in thework ofGaußwe still find the incautious use of spatial intuition
(Raumanschauung) as proof of the universal validity of propositions that were not
at all universally valid. Klein argued that this had led to demands for exclusively
arithmetical reasoning in mathematics. But this was unfortunate, so Klein, for his
part, now sought to demonstrate “that mathematics is certainly not exhausted in
logical deduction but that, alongside the latter, intuition completely retains its specific
importance” (Klein 1896, p. 144, translated by Martin Mattheis).

Especially in the case of geometry, Klein called for results gained through arith-
metical approaches to be reconnected with spatial intuition. He argued that imprecise
spatial intuition shouldfirst be idealized in the axioms in order to proceedwith amath-
ematical approach. This, Klein emphasized, gave rise to new concepts and insights.
Such an approach should, he said, also be pursued in mechanics and mathematical
physics (Klein 1896, p. 146). Here, the crux of his argument is that he wants to see
logical deduction and intuition given equal status alongside each other, demanding
that the role of intuition as both a source of ideas for reaching logical conclusions and
as a form of application through deduction, be understood as acquired mathematical
knowledge (Klein 1896, p. 149).

However, in addition to this view of intuition as something closely bound up with
logical deduction, Klein also stressed the importance ofwhat he called naïve intuition
(naive Anschauung):

Incidentally, naive intuition, which is in large part an inherited talent, emerges unconsciously
from the in-depth study of this or that field of science. The word ‘Anschauung’ has not
perhaps been suitably chosen. I would like to include here the motoric sensation with which
an engineer assesses the distribution of forces in something he is designing, and even that
vague feeling possessed by the experienced number cruncher about the convergence of
infinite processes with which he is confronted. I am saying that, in its fields of application,
mathematical intuition understood in this way rushes ahead of logical thinking and in each
moment has a wider scope than the latter. (Klein 1896, p. 147, translated byMartinMattheis)

Thus, Felix Klein subsumes under the general term of “Anschauung” a certain
degree of intuition gained through experience.
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7.3 Intuition in Felix Klein’s Lectures

Having looked at Felix Klein’s programmatic statements in his Antrittsreden and
papers, we will now consider some concrete examples taken from lecture courses
during Klein’s period at the University of Göttingen. Already in the 1898/90 win-
ter semester lectures on non-Euclidian geometry, published in handwriting in 1892,
Klein described his view of the interplay between axioms and spatial intuition. He
explicitly criticized the notion that intuition merely played a role in setting up the
axioms, insisting instead that, especially in geometric considerations, mathemati-
cians should always draw on intuition. Above all he thought the role of axioms was
to counter the inexactness of intuition and create exactness (Klein 1892, p. 354).

Rather, in true geometric thinking, spatial intuition accompanies us at every step we take.
[…] I assign the axioms the role that they represent postulations with the aid of which
we transcend the inaccuracy of intuition or the limitations of intuition in order to achieve
unlimited accuracy. (Klein 1892, p. 354, translated by Martin Mattheis)

A few pages on, taking the case of a common tangent of two curves, Klein then
discussed the issue of the extent to which proofs can be obtained from intuition in
pure mathematics. In the case of the two curves in Fig. 7.1, one may assume, based
on intuition, that they share a common tangent. From Klein’s viewpoint, however,
the drawing merely represents a “sensualization” (Versinnlichung) of the true curves.
He explicitly stated that without knowing which “mathematically precise law” the
two curves followed, one could not make any statement as to whether a common
tangent actually exists (Klein 1892, p. 359).

With our notion of the essence of intuition, an intuitive treatment of figurative representations
will tend to yield a certain general guide on which mathematical laws apply and how their
general proof may be structured. However, true proof will only be obtained if the given
figures are replaced with figures generated by laws based on the axioms and these are then
taken to carry through the general train of thought in an explicit case. Dealing with sensate
objects gives the mathematician an impetus and an idea of the problems to be tackled, but it
does not pre-empt the mathematical process itself. (Klein 1892, pp. 359–360, translated by
Martin Mattheis)

Fig. 7.1 In the case of a
common tangent (Klein
1892, p. 359)
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So Felix Klein regarded intuition as a useful heuristic aid for mathematicians
seeking to reach mathematical conclusions but, in his view, it was by no means a
substitute for correct proof.

7.3.1 Sensate, Idealizing and Abstract Intuition

The concept of intuition (Anschauung) is found in Felix Klein’s work in differ-
ent contexts of meaning. First, there is “sensate intuition” (sinnliche Anschauung),
for which, in his 1895 presentation, he also used the term “naive intuition” (naive
Anschauung) (Klein 1896, p. 147). Sensate intuition comprises everything that sur-
rounds us in real space and that we can touch and measure. In his lecture course on
“Elementary Mathematics from a Higher Standpoint”, he additionally presented a
further interpretation of spatial intuition in the form of “idealizing spatial intuition”
(idealisierende Raumanschauung), which addresses the abstract notion of geometri-
cal objects, i.e. the mathematical idea freed from the error-prone inexactness of the
real objects (Klein 1908, p. 88).

This is the proper place to say a word about the nature of space intuition. It is variously
ascribed to two different sources of knowledge. One the sensibly immediate, the empirical
intuition of space, which we can control by means of measurement. The other is quite
different, and consists in a subjective idealizing intuition, onemight say, perhaps, our inherent
idea of space, which goes beyond the inexactness of sense observation. (Klein 1908, p. 88
or Klein 2016a, p. 37)

Such a distinction between the sensately immediate intuition and the idealizing
inner intuition goes back to the respective concepts developed byKant (Allmendinger
2014, pp. 52–53).

In relation to the development of infinitesimal calculus, Felix Klein introduced
a further term to the circle of concepts that differentiate “intuition”. In the context,
he places alongside “sensate intuition” the notion of “abstract intuition” to refer to
what was in fact anything but an intuitive process of abstraction.

It is precisely in the discovery and in the development of the infinitesimal calculus that
this inductive process, built up without compelling logical steps, played such a great role;
and the most effective heuristic aid was very often sense intuition. And I mean here the
immediate sense intuition, with all its inexactness, for which a curve is a stroke of definite
width, not the abstract intuition, which postulates a completed passage to the limit, yielding
a one-dimensional line. (Klein 1908, pp. 455–456 or Klein 2016a, p. 226)

Klein exemplified this line of thought, using the integral being defined as the limit
of a sum of rectangles. From the perspective of sensate intuition, he thought it was
reasonable to define the surface area “as the sum of a large number of quite nar-
row rectangles”, since the width of the rectangles is obviously limited by the degree
of drawing accuracy. He gave further examples of the significance of the respec-
tive use of sensate intuition in the emergence of infinitesimal calculus, including
Kepler’s measuring of barrels and spheres, the “method of exhaustion” applied by
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Archimedes, Cavalieri’s principle or the differential quotient of a function (Klein
1908, pp. 456–460 or Klein 2016a, pp. 226–227). Ultimately however, when speak-
ing of abstract intuition, he meant the same as what he had already assigned the
concept of idealizing intuition to.

After considering the various examples of intuition in the development of infinites-
imal calculus, Klein then stressed that there were undoubtedly mathematical person-
alities who either found such a way of looking at things useful and or did not, and that
the respective approach continued to play an important role in the period after 1900
in the development of new mathematical ideas in mathematical physics, mechanics
and differential geometry (Klein 1908, p. 460 or Klein 2016a, p. 229).

The force of conviction inherent in such naïve guiding reflections is, of course, different for
different individuals. Some – and I include myself here – find them very satisfying. Others,
again, who are gifted only on the purely logical side, find them thoroughly meaningless and
are unable to see how anyone can consider them as a basis for mathematical thought. (Klein
1908, p. 460 or Klein 2016a, p. 229)

Referring toDavidHilbert’s paper “On the Foundations of Logics andArithmetic”
delivered at the International Congress of Mathematicians in Heidelberg in 1904,
Klein argued that even at the highest level of abstraction when one attempts to break
loose from any form of intuition, e.g. in the theory of numbers considered in purely
formal terms, a certain minimum amount of intuition still has to remain, even if it
is only to recognize the symbols with which one is operating merely in accordance
with axiomatic rules (Klein 1908, pp. 32–35 or Klein 2016a, p. 16).

7.3.2 Intuition and the Function Concept

Felix Klein’s lectures “On the teaching of mathematics at secondary schools”, deliv-
ered through the 1904/05 winter semester, were the first course in which Felix Klein
dealt not only with mathematics but also, explicitly, with questions of post-primary
education.Hediscussed not only higher secondary schooling for boys but also the role
of mathematics in compulsory public schools (Volksschulen), girl’s schools (Mäd-
chenschulen), intermediate-level vocational schools (mittlere Fachschulen), univer-
sities and engineering colleges (technische Hochschulen). Indeed, he also outlined
the historical development of mathematics teaching and examined the reforms that
were proposed for higher-level math teaching. The course was divided into two parts:
eight weeks of lectures on school education and, for the rest of the semester, an actual
mathematics part dealing with “elementary mathematics from a higher standpoint”
(Schimmack 1911, p. 40f.).

The first part, covering mathematics teaching, was later edited by Rudolf Schim-
mack for publication, appearing in 1907 under the title “Lectures on mathematical
teaching at secondary schools” (Vorträge über den mathematischen Unterricht an
den höheren Schulen), published by Teubner-Verlag. Schimmack was a close col-
laborator of Felix Klein’s and the first person to gain a post-doctoral award in the
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Didactics of Mathematics, receiving the Habilitation in 1911. Following the struc-
ture of the lecture course itself, the published work (Klein 1907) was subtitled Part
1: On the Organization of Mathematics Teaching (Teil 1 Von der Organisation des
mathematischen Unterrichts).However, the content ofKlein’s lectures on elementary
mathematics from the 1904/05 winter semester did not come to publication.

In his introduction to the printed lectures, Felix Klein affirmed his full support for
what he saw as the two primary demands of the Meran Curriculum Proposal (Mer-
aner Lehrplanvorschlag): “strengthening the capacity to think in three dimensions
(räumliches Anschauungsver mögen) and training the habit of functional reasoning”,
since these aspects of mathematics “played the most important role in modern life”
(Klein 1907, p. 6, translated by Martin Mattheis).

In the second chapter,Klein explored inter alia the questionof the function concept
and the relationship between functional reasoning and intuition. His emphasis here
lay on the need to ensure that the function concept always be introduced in lessons
as a “function concept in geometric form”, i.e. in today’s terms as a “function graph”
(Fig. 7.2) (Klein 1907, p. 21, translated by Martin Mattheis).

In contrast to current practice, where many school students seem to have the idea
that the function concept can be reduced to the representation of a graph, Felix Klein
stressed the representational form of the function graph and the importance of this
form in mathematics and beyond: “After all, Gentlemen, graphic representations are
found not only throughout the seminalmodern literature of the exact subjects but, one
may say, in all areas of present-day life!”. (Klein 1907, p. 21, translated by Martin
Mattheis) Klein was drawing attention here to a discrepancy in the 1901 Prussian
curriculum for secondary schools, which did not even mention functions in course
content requirements, yet demanded that they be grasped by students in the highest
grade. The methodology guidelines stated that teachers should equip “the students
with an in-depth understanding of the concept of function, with which they have

Fig. 7.2 The function concept in geometric form (Klein 1907, p. 21, reproduced with permission
of Springer Nature Customer Service Center)
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already been made familiar at earlier levels” (Klein 1907, pp. 21–22, translated by
Martin Mattheis).

Klein again made the same connection between function concept and intuition
(Anschauung) in the first part of his 1907/08 winter semester lecture course on
“Elementary mathematics from a higher standpoint”. This material first appeared in
a handwritten edition, published by Teubner Verlag. It was published in print in 1924
by Springer Verlag. The first volume enjoyed a second printing, with the whole series
becoming something of a bestseller that is still in demand today. Indeed, a complete
retranslation appeared in English in 2016.

With regard to the graphic representation of functions, Klein again stressed in Ele-
mentary Mathematics that such representation was important in any practical appli-
cation of mathematics. Moreover, he also called for school students to be acquainted
as early as possible with the function concept (Klein 1908, p. 10 or Klein 2016a,
p. 4).

We, who used to be called the ‘reformers’, would put the function concept at the very center
of teaching, because, of all the concepts of themathematics of the past two centuries, this one
plays the leading role wherever mathematical thought is used. We would introduce it into
teaching as early as possible with constant use of the graphical method, the representation
of functional relations in the x-y system, which is used today as a matter of course in every
practical application of mathematics. (Klein 1908, p. 10 or Klein 2016a, p. 4)

With regard to removing someof the traditional subjectmatter from the curriculum
to make way for this approach, Klein believed that it was important that “ Intense
formation of space intuition, above all, will always be a prime task” (Klein 1908,
p. 11 or Klein 2016a, p. 4).

7.3.3 Proof Through Intuition

We noted above that Klein rejected in principle the idea of accepting proofs from
intuition, as argued in his lectures on non-Euclidian geometry that were delivered in
the 1889–90 winter semester (Klein 1892, p. 359). However, in his “Elementarmath-
ematik vom höheren Standpunkte” (Elementary Mathematics from a Higher Stand-
point) he derives just such proofs, showing that an algebraic question can be resolved
intuitively purely by graphic geometric presentation (Fig. 7.3) (Allmendinger 2014,
pp. 47–50).

1. Given a>b and c>a, where a, b, c are positive. Then a − b is a positive number and is
smaller than c, that is, c − (a − b) must exist as a positive number. Let us represent the

Fig. 7.3 Representation on the axis of abscissas (Klein 1908, p. 64, reproduced with permission
of Springer Nature Customer Service Center)
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numbers on the axis of abscissas and note that the segment between the points b and a has
the length a − b.

A glance at the figure shows that, if we take away from c the segment a − b the result is the
same as though we first took away the entire segment a and then restored the part b, i.e., (1)
c − (a − b)�c − a+b. (Klein 1908, pp. 64–65 or Klein 2016a, p. 28)

Here, Klein proves the parenthesis rule c− (a− b)�c− a+b exclusively through
an intuitive approach by considering the number line, without any need for algebraic
transformations.

7.4 Intuition and the Genetic Method

On the question of the didactical method to be followed by teachers ofmathematics at
secondary schools, Felix Klein argued—alongside his demand for the “cultivation of
spatial intuition”—for the course material to be designed in line with the respective
age group of students. In the Volume II of “Elementary Mathematics from a Higher
Standpoint”, he writes that instruction in geometry at secondary level should follow
the basic principle of moving from the concrete to the abstract.

Let us first ask, what requirements should be made today of a sound geometrical education.
Everyone will surely admit for this that: 1. The psychological aspects must substantially
prevail. Teaching cannot only depend on the subject matter, but it depends above all on
the subject that you have to teach: one will present the same topic to a six-year-old boy
differently than to a ten-year-old-boy – and this, in turn, differently to a mature man.

Applied in particular to geometry, this means that in schools you will always have to connect
teaching at first with vivid concrete intuition and then only gradually bring logic elements
to the fore; in general, the genetic method alone will provide a legitimate means slowly to
develop a full understanding of concepts. (Klein 1909, pp. 435–436 or Klein 2016b, p. 238)

Felix Klein set out in detail the importance of the genetic teaching method in the
first volume of “Elementary Mathematics from a Higher Standpoint”.

In order to give precise expression tomy own viewon this point, I should like to bring forward
the biogenetic fundamental law, according to which the individual in his development goes
through, in an abridged series, all the stages in the development of the species. […] Now, I
think that instruction in mathematics, as well as in everything else, should follow this law,
at least in general. Taking into account the native ability of youth, instruction should guide
it slowly to higher things, and finally to abstract formulations; and in doing this it should
follow the same road along which the human race has striven from its naïve original state
to higher forms of knowledge. (Klein 1908, pp. 588–589 or Klein 2016a, pp. 291–292)

The genetic method of teaching was regarded by Klein as essential not only for
geometry, but also for every aspect of mathematics instruction. He illustrated this
with inter alia the example of the notion of number. A child understands numbers
as numbers of concrete objects, like nuts or apples, and not as axiomatically defined
objects devoid of intuitive meaning with which one can operate according to formal
rules. (Klein 1908, p. 9 or Klein 2016a, p. 4)
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Corresponding demands to apply the principle of guiding school students learn-
ing mathematics from the intuitively concrete the abstract can be found in Felix
Klein’s writings back in 1895 in his lecture “On the Arithmetization of Mathemat-
ics” (Klein 1896, p. 148). They also appear in his expertise on the Prussian Schools
Conference of 1900 (Klein 1900, p. 70) and in his paper delivered at the assembly
of the Gesellschaft Deutscher Naturforscher und Ärzte in Breslau in 1904 (Klein
1904, p. 135), which constituted the teaching commission that was to present the
Meran Curriculum Proposal in the following year. Without explicitly referring to
it by name, Klein outlined as early as 1895 the principle of the genetic method in
saying that “learners will naturally pass through, on a small scale, the same devel-
opmental path that scholarship has passed through on a grand scale” (Klein 1896,
p. 148, translated byMartin Mattheis). In his formulating his thoughts on the genetic
method of teaching, Felix Klein clearly distinguished between a form ofmathematics
instruction suitable for secondary schools, which was to follow the basic principle
of moving from the concrete to the abstract, and the deductive structure of teaching
material—commonly used in higher education—aligned to the systematics of the
discipline.

The manner of teaching as it is carried on in this field in Germany can perhaps best be
designated by the words intuitive and genetic, i.e., the entire structure is gradually erected
on the basis of familiar, concrete things, in marked contrast to the customary logical and
systematic method in higher education. (Klein 1908, p. 14 or Klein 2016a, p. 9)

It does seem doubtful, however, whether Klein was describing here the teaching
really being practiced at secondary schools in 1908. It is more likely that he was
presenting the way school mathematics should, in his view, be taught.

7.5 Conclusion

The calls to “strengthening spatial intuition” and “training the habit of functional
reasoning” were not only central to the Meran Curriculum Proposal, in which Felix
Klein played such a leading role, but had already been fundamental to his over-
all idea of what mathematics teaching should look like in secondary schools and
higher education. For Felix Klein, however, the concept of “intuition” (Anschauung)
referred to more than the physically sensate intuition one needs to describe concrete
three-dimensional objects. While “intuition” was, of course, an important means for
learners to gain newmathematical insights, he also saw it as a tool in research. More-
over, Felix Klein extends the concept of “intuition” to mean a source of inspiration
with which people contemplating mathematical questions arrive intuitively at ideas
for their solution. Thus, in this wider sense, intuition plays an important role in all
fields of mathematics and not only—as one might initially expect—in geometry.



7 Aspects of “Anschauung” in the Work of Felix Klein 105

References

Allmendinger, H. (2014). Felix Kleins Elementarmathematik vom höheren Standpunkte aus: Eine
Analyse aus historischer und mathematikdidaktischer Sicht (Siegener Beiträge zur Geschichte
und Philosophie der Mathematik, Band 3). Siegen: universi – Universitätsverlag Siegen.

Breslauer Unterrichtskommission. (1905). Bericht der Unterrichtskommission über ihre bisherige
Tätigkeit: I. Bericht betreffend den Unterricht in der Mathematik an den neunklassigen höheren
Lehranstalten.Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte, 77. Versamm-
lung zu Meran 1905, Erster Teil, 154–165.

Klein, F. (1892). Nicht-Euklidische Geometrie I. Vorlesung gehalten während des Wintersemesters
1889–90. Göttingen: Autograph. Available at http://gdz.sub.uni-goettingen.de/dms/load/img/?
PID=PPN51697307X|LOG_0003&physid=PHYS_0003.

Klein, F. (1895).Über dieBeziehungen der neuerenMathematik zu denAnwendungen.Antrittsrede,
gehalten am 25. Oktober 1880 bei Übernahme der damals an der Universität Leipzig neuer-
richteten Professur für Geometrie. Zeitschrift für mathematischen und naturwissenschaftlichen
Unterricht, 26, 535–540. Available at http://digital.slub-dresden.de/id404375774-18950260.

Klein, F. (1896). Über Arithmetisierung der Mathematik. Zeitschrift für mathematischen und
naturwissen-schaftlichen Unterricht, 27, 143–149. Available at http://digital.slub-dresden.de/
id404375774-18960270.

Klein, F. (1900). Gutachten vom 21. Mai 1900 zur Frage: Welche Fortschritte sind seit der Schul-
conferenz vom Jahre 1890 auf dem Gebiet des mathematischen und naturwissenschaftlichen
Unterrichts an den höheren Schulen, insbesondere auch nach der angewandten und technischen
Seite hin, zu verzeichnen und was kann dieser in Beziehung noch weiter geschehen? First pub-
lished on pages 69–74 of Schubring, G. (2000). Felix Kleins Gutachten zur Schulkonferenz
1900: Initiativen für den Systemzusammenhang von Schule und Hochschule, von Curriculum
und Studium. Der Mathematikunterricht, 46(3), 62–76.

Klein, F. (1904). Bemerkungen zummathematischen und physikalischenUnterricht.Verhandlungen
der Gesellschaft Deutscher Naturforscher und Ärzte, 76. Versammlung zu Breslau 1904, Erster
Teil, 130–144.

Klein, F. (1907). Vorträge über den mathematischen Unterricht an den höheren Schulen. Bearbeitet
von Rudolf Schimmack. Leipzig: Teubner.

Klein, F. (1908). Elementarmathematik vom höheren Standpunkte aus. Erster Band. Ausgearbeitet
von E. Hellinger. Leipzig: Teubner.

Klein, F. (1909).Elementarmathematik vom höheren Standpunkte aus. Zweiter Band. Ausgearbeitet
von E. Hellinger. Leipzig: Teubner.

Klein, F. (2016a). Elementary Mathematics from a Higher Standpoint: Vol. I. Arithmetic, algebra,
analysis (Translation of the 4th German edition, G. Schubring, Trans.). Berlin: Springer.

Klein, F. (2016b). Elementary Mathematics from a Higher Standpoint: Vol. II. Geometry (Transla-
tion of the 4th German edition, G. Schubring, Trans.). Berlin: Springer.

Mattheis, M. (2000a). Die Entwicklung des höheren Schulwesens in Preußen von 1871 bis 1900.
Der Mathematikunterricht, 46(3), 5–21.

Mattheis, M. (2000b). Felix Kleins Gedanken zur Reform des mathematischen Unterrichtswesens
vor 1900. Der Mathematikunterricht, 46(3), 41–61.

Rowe, D. E. (1985). Felix Klein’s “Erlanger Antrittsrede”. A transcription with English trans-
lation and commentary. Historia Mathematica, 12, 123–141. https://doi.org/10.1016/0315-
0860(85)90003-5.

Rowe, D. E. (2013).Mathematicalmodels as artefacts for research: FelixKlein and the case ofKum-
mer surfaces. Mathematische Semesterberichte, 60(1), 1–24. https://doi.org/10.1007/s00591-
013-0119-8.

Schimmack, R. (1911). Die Entwicklung der mathematischen Unterrichtsreform in Deutschland
(IMUK- Abhandlungen über den mathematischen Unterricht in Deutschland, Band III, 1).
Leipzig/Berlin: Teubner.

http://gdz.sub.uni-goettingen.de/dms/load/img/%3fPID%3dPPN51697307X%7cLOG_0003%26physid%3dPHYS_0003
http://digital.slub-dresden.de/id404375774-18950260
http://digital.slub-dresden.de/id404375774-18960270
https://doi.org/10.1016/0315-0860(85)90003-5
https://doi.org/10.1007/s00591-013-0119-8


106 M. Mattheis

Schubring, G. (2000). Felix Kleins Gutachten zur Schulkonferenz 1900: Initiativen für den Sys-
temzusammenhang von Schule und Hochschule, von Curriculum und Studium. Der Mathe-
matikunterricht, 46(3), 62–76.

Schubring,G. (2007).DerAufbruch zum„funktionalenDenken“:Geschichte desMathematikunter-
richts imKaiserreich. 100 JahreMeraner Reform.NTM International Journal of History & Ethics
of Natural Sciences, Technology & Medicine, 15(1), 1–17. (https://doi.org/10.1007/s00048-006-
0260-8).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/s00048-006-0260-8
http://creativecommons.org/licenses/by/4.0/


Chapter 8
Introducing History of Mathematics
Education Through Its Actors: Peter
Treutlein’s Intuitive Geometry

Ysette Weiss

Abstract This paper deals with the questions why and how to introduce into teacher
education the history of teaching practices and educational reforms. In particular, we
are interested in the developments of curricular school geometry during the 19th
century and the reforms at the beginning of the last century in Germany. The life
and work of Peter Treutlein—a contemporary of Felix Klein—and a conceptual
reformist of geometry instruction, schoolbook author, committed teacher and school
principal with educational experience of many years opens to us many opportunities
to link present teaching practices in Geometry to its traditions, some of which we
will discuss.

Keywords Felix Klein · Teacher education · History of mathematics education
Reforms in geometry teaching · Peter Treutlein

8.1 Introduction

Are Felix Klein’s ideas and the European didactic and German speaking tradition of
Intuitive thinking and visualizations still important for present and future theoretical
considerations as well as the practice of the teaching and learning of mathemat-
ics? In the contribution, we study this question with respect to mathematics teacher
education.
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The translation of Felix Klein’s Elementary Mathematics from an Advanced
Standpoint (Volume II: Geometry)1 by Hedrick and Noble from 1949 published
by Dover (Klein 2004) and earlier by Macmillan (Klein 1939) finishes after the
historical excursus to Euclid’s Elements. The last chapter [i.e. the fourth so-called
Schlußkapitel (Final Chapter)], of Klein’s book (Klein 1925) is missing. The title of
the missing chapter is “Observations of the Teaching of Geometry”.2

Here, Felix Klein gives a short overview of the development of the teaching
of geometry from the perspective of the goals of the Meraner Reform in England,
France, Italy andGermany. Felix Klein’s cultural-historical approach to development
already appears in the structure of his overviews (Klein 2016, pp. 226–231):

• Importance of the Historical Background
• Contrasting Modern Requirements
• Criticism of the Traditional Teaching.

The last section of the fourth chapter, “Teachingpractice inGermany”, is dedicated
to a critical reflection on the curricular development of geometry and to geometry
instruction inGermany.Here, FelixKleinmainly discusses thework of JuliusHenrici
(1841–1910) and Peter Treutlein (1845–1912). His esteem for the work of Henrici
and Treutlein (1883, 1896, 1897) becomes evident in the quote “Henrici-Treutlein is
an extremely noteworthy book” (Klein 1925, p. 261) and in the subsequent descrip-
tion of recent developments in geometry. As early as 1911, Felix Klein wrote the
introduction to Treutlein’s (1911a) theoretical work on the reform of the traditional
Euclidean curriculum in school geometry: “Geometrical intuitive teaching (Anschau-
ungsunterricht) as a first step in a two-stage geometrical instruction at our higher
schools”.

In this introduction, Felix Klein wrote: “However, I am pleased to express that I
mean to recognize everywhere the same principles that I follow in my own teaching.
Such a coincidence finally is a matter of personal disposition.” (Treutlein 1911a, p.
III, translation by the author).

In 1925, after the publication of various textbooks by different authors imple-
menting reforms of Euclidean school geometry, Felix Klein recommends Treutlein’s
conceptual work to teachers: “For this teaching, the following works will be of great
use for many teachers: (a) The book, that arose from a mature pedagogical experi-
ence of P. Treutlein “The geometrical intuitive teaching (Anschauungsunterricht) as
a first step in a two-stage geometrical instruction at our higher schools”, Leipzig
1911” (Klein 1925, p. 292). The second textbook recommended by Felix Klein is
Heinrich Emil Timerding’s “The education of intuition (Anschauung)” (Timerding
1912).

Peter Treutlein was not only a conceptual reformist of geometry instruction and a
schoolbook author, he was also a committed teacher and school principal with many

1The translated version of the second volume of Klein’s book was published in 1939, later than the
book on arithmetic, algebra, analysis, which was published as translation in 1932.
2In the meantime, Gert Schubring published a new translation (Klein 2016) of Felix Klein’s Ele-
mentary Mathematics from a Higher Standpoint with a translation of the “Schlußkapitel” in Volume
II.
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years’ educational experience, who implemented the realizations of his theoretical
concepts in everyday school life, resulting in his three-volume textbook with Julius
Henrici.

The study of the history of educational reforms and their theoretical foundation
is particularly relevant today. German students have experienced several reforms
during their school time, the theoretical foundation of which has not yet taken place.
Keywords for these reforms are output and competence orientation, the introduction
of educational standards and central tests, the abolition of the orientation classes
and pre-school education, the reduction of upper secondary classes by one year,
the digitalization of learning environments, the restructuring of secondary schools,
and the overall present inclusion. In particular, regarding the tremendous speed with
which these political reforms are pushed through, it is certainly worthwhile to engage
in reform, which had been prepared for half a century; the Meraner Reform was
discussed widely and implemented in small steps.

In this paper, we show how some activities related to the reform of geometrical
instruction, and in particular, historical collections of mathematical models for use
in schools could be used in current university training for mathematics teachers.

First, we take a look at some of the reasons why the history of mathematics
and the history of mathematics education not only can but should be included in
university teacher education. Hereby, we are particularly interested in the history of
mathematics education at the end of the 19th century and at the beginning of the 20th
century—a fascinating period of reforms of mathematical curricula as well as of the
German school system.

The second question in our paper is how the history of the teaching of mathemat-
ics can be introduced in university education for future mathematics teachers and
how the aforementioned school reforms could be meaningful for today’s students.
Here, we briefly glance at the history of mathematical models and instruments and
their industrial production as teaching tools. In doing so, we will not concentrate
on historical mathematical models for the visualization of higher mathematics and
their use in teaching mathematics at university, but on mathematical models which
illustrate and visualize school mathematics. This again leads us to Peter Treutlein
and the school models that he invented.

In the last section, we outline how Peter Treutlein’s collection of school models,
his three-volume joint school textbook with Henrici (1881–1883) and Treutlein’s
conceptual theoretical work on reforms in geometry teaching can be used in the
university education of mathematics teachers.

8.2 History of Mathematics in Mathematics Education

The topic of “the use of the history of mathematics in mathematics teaching” is
gaining popularity in the international discourse of mathematics education. Possible
reasons for this might be the introduction of topics from the history mathematics
in the curricula in such countries as Denmark, Austria or Great Britain, or likewise
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the new interest in concept development from a mathematical perspective and the
historical genetic method in the style of Toeplitz (1949).

There are numerous publications on the variety of ways of using the history of
mathematics in teaching mathematics as well as on the promotion of mathematical
interests which range from theoretical material for classification (e.g. Jankvist 2009;
Kronfellner 1998) to concrete descriptions of their realizations in teaching prac-
tices (e.g. Fauvel and van Maanen 2000; Katz and Michalowicz 2000; Jahnke 2006;
Shell-Gellasch 2007; Glaubitz 2011). It is important to note whether the history of
mathematics and mathematics education is used to inspire new perspectives on the
teaching of mathematics and concept development or whether the history of a math-
ematical idea, an authority or an institution are the subject of investigation. The latter
especially presumes methodology and knowledge of the history of mathematics.

A special challenge is presented by the use of original historical sources in order
to teach a mathematical idea as well as its historical conceptual development. In
this case, on top of the use of representations and mathematical languages that are
different to those the students are used to, problems may also occur due to a for-
eign or ancient language or to different translations of the original source. On the
other hand, working with artefacts bearing contemporary witness to a past period
is particularly attractive. The mathematical exploration of historical sources is often
easier if related to models, instruments, equipment or also mathematical toys, and
even better if accompanied by appropriate texts and descriptions of the experiments.
The mathematical concept development also benefits from the use of mathematical
instruments and visualizing models. Vollrath illustrates how this can be done with a
non-historical approach to historical drawing and measuring instruments in his book
“Verborgene Ideen” (en.: hidden ideas) (Vollrath 2013).

There is no doubt that it is important for future mathematics teachers to know
some of the history of their own discipline, that is, the history of mathematics, but
also the history of their own profession, i.e. the history of mathematics education.
Both topics are scientific disciplines with specialized knowledge and methodology.
Do student teachers have the prerequisites and capabilities to look into the history
of a mathematical concept in order to teach it later on with historical awareness?

To include the contents of the history of mathematics in their teaching, teachers
are required to have developed a particular interest in this field and to therefore gladly
accept the challenge of teachingmathematics in away that also embraces perspectives
of the humanities. Hardly any German university offers canonical lectures on the
cultural history of mathematics or on selected topics on the history of mathematics.
Therefore, an introduction to the history of school mathematics and its instruction
should not require any substantiated knowledge of history of mathematics as an own
scientific discipline.

The choice of topics related to the history ofmathematicalmodels and instruments
and their collections allows for rich access to the history of mathematics and its
education. The development and production of mathematical models was already
used in the 19th and early 20th centuries for the training of student mathematics
teachers. Nowadays this is an episode in the history of European science. The use
of historical mathematical models and their digital images in the study, teaching and
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development of mathematics allow us to relate historical, technical, educational and
information technology aspects to each other.

One opportunity to link today’s university teacher education to the last century
could be to complete similar tasks, for example to design and produce a mathemati-
cal model. In the framework of a project at the Georg-August-University Göttingen
to introduce the Göttinger Sammlung historischer mathematischer Modelle (Göttin-
gen’s collection of historical mathematical models) into teaching, students designed
and produced their own mathematical models. In this project, the digitally available
historical collection in Göttingen (Göttinger Sammlung mathematischer Modelle
und Instrumente 2017) became the subject of several teaching activities in the study
of mathematics as well as in mathematics education (see also Weiss-Pidstrygach
2015). Among the models of this collection are those produced by students a cen-
tury ago. The collection of historical mathematical models in Göttingen is closely
connected with the name and activities of Felix Klein (Rowe 2013). In 1880, when
appointed Professor of Geometry at the University of Leipzig, Felix Klein suggested
in his inauguration speech (Klein 1895, p. 538) acquiring a collection of mathemati-
cal models “to reduce the gap which already separates the theoretical mathematician
from math’s applications” and to improve teaching at the university. However, these
models visualize higher mathematics and are quite demanding in terms of hidden
mathematics.Understanding the background ofmost of theBrill and Schilling collec-
tion’smodels (Polo-Blanco 2007; Schilling 1903) is a very challengingmathematical
task for students.

Another approach to link modern teaching with historical collections of models
is the pedagogical perspective. There is a variety of literature with historical and
pedagogical perspectives on the development of mathematical models, which can
constitute the content framework for historical research (for instance Bartolini Bussi
et al. 2010).

Contemporary student mathematics teachers can have varied experiences with
mathematical models. Pedagogical reform is an important topic in educational stud-
ies. Fröbel, Pestalozzi, Kerschensteiner and Dewey (Führer 2000; Klafki 2000)
explore sense perception and activity orientation in mathematics education and their
approaches are part of the curriculum in educational science. Students are also famil-
iar with modern mathematical hands-on exhibitions, as most schools have their own
mathematical models and toys.

8.3 Treutlein’s Models and Textbooks in the University
Education of Mathematics Teachers

Anextremely suitable introduction fromapedagogical perspective—butwith amath-
ematician’s eye—is given by Treutlein in his book Intuitive Geometry as a First Level
of Two-Level Geometry Courses at Our Secondary Schools (Treutlein 1911a). The
first chapter is dedicated to the history of intuitive geometry and forms a solid foun-
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dation for the historical contextualization of his concept of a geometrical instruction
starting with intuitive geometry. From the second chapter, he moves from the his-
torical perspective to a mathematical and a pedagogical one. In this theoretically
conceptual work, he also incorporates two of his other works: A collection of cata-
loged school models (Wiener 1912) and a school textbook of three volumes, which
he composed between 1881 and 1883 with Julius Henrici—a school principal in
Heidelberg.

The study of this work is made significantly easier through its digital availability.
A historical excursus based on a few historical mathematical school models provides
students with an opportunity to develop their own questions in a field particularly
interesting to them and to discuss them afterwards.

The study of Treutlein is highly relevant with regard to curricular and methodical
reforms at the turn of the 19th century. His theoretical foundation, which includes
examples in his Intuitive Geometry Lesson, forms the basis of the discussion of Treut-
lein’s concept of a reform of geometry instruction. Treutlein suggests a division so
that one should start with intuitive spatial geometry (anschauliche Raumlehre) with
geometrical object lessons of two or three years, which are then followed by (aca-
demic) geometry lessons with the duration of five to six years. After a historical
contextualization of intuitive geometry, Treutlein lists the requirements and theo-
retical principles for an intuitive spatial theory as well as the respective methods
of instruction according to these principles. The last part of this work deals with
practical exemplary lesson planning.

Treutlein’s geometrical school models (Treutlein 1911b) put his concepts of
reform into practice as they result from his education experience of more than forty
years. The implementation and usage of his models are evident in some examples
of the third paragraph (Treutlein 1911a, p. 109) as well as in his school geometry
textbooks.

Treutlein’s programme contains three essential 19th century thoughts:

• The idea of an intuitive geometry lesson as a preliminary step for subsequent
formal deductive geometry instruction.

• The implementation of the most recent mathematical developments such as pro-
jective geometry and transformation geometry into mathematical instruction.

• The training of the spatial imagination and the fusion of both spatial and plain
geometry.

The developments, implementations and generalizations of the Pythagorean The-
orem (see Treutlein 1911a, pp. 183–184) can be used to compare assignments and
exercises in modern textbooks with historical ones from Treutlein (see also Henrici
and Treutlein 1897). Treutlein’s book starts with a step-by-step development of
the necessary technical terms through a comparison of areas which he constructs
by means of gnomones, in the spirit of Euclid. For the conversion of surfaces, he
uses self-constructed models while his arguments and demonstrations often derive
from abstract geometry. The arithmetic examples often explain the algebraic terms
(Figs. 8.1 and 8.2).
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Fig. 8.1 Examples of plain moveable models from Treutlein’s collection. The model 1175 is used
as a solution sketch (see Treutlein 1911a, p. 183) and as an important example in the first volume
of the tenth chapter “Comparison of areas” (see Henrici and Treutlein 1897, p. 88)

Fig. 8.2 Samples from Treutleins catalogue (Wiener 1912, pp. 50–53)

Students can choose for themselves a model accompanied by the respective prob-
lem provided in Treutlein’s and Henrici’s geometry book in order to compare the
development of concepts and demonstrations in modern schoolbooks and those writ-
ten in Treutlein’s era. The students can also experience the differences between mod-
ern teaching methods and those of Treutlein’s time by planning a unit using one or
more of Treutlein’s models. The comparison should clarify the difference between
the student’s idea of a concept and the one Treutlein describes in his book.

Another possible way to link today’s teaching practice with that of a century ago
comes from Treutlein’s criticism of the geometry classes of his time. He criticizes
the following four features of geometry teaching practice (Treutlein 1911a, p. 71):

1. Thewell-known,much celebrated, and often infrequently hard-bred, strictly dog-
matic teaching,

2. The sharp separation of general space geometry from plane geometry,



114 Y. Weiss

3. The retraction of the space considerations towards the very end of the usual
course,

4. Beginning with more abstract doctrines, on straight lines and planes, before
exploring the geometry of bodies.

One can similarly question the features of modern geometry teaching and whether
these criticisms have been overcome.

A historical contextualization of Peter Treutlein’s work and life gives Schön-
beck (1994), a historical classification and reception of Treutlein’s textbook in three
volumes with Julius Henrici can be found for example in Gerhard Becker’s paper
(1994).

One of the most surprising discoveries in my studies of Treutlein’s concept of
intuitive geometry was the activity orientation of his exercises and tasks. He already
uses paper folding, outdoormathematics and construction ofmodels to develop space
intuition and to teach modern approaches to geometry like transformation geometry.
A more detailed description of various possibilities how to relate Treutlein’s models
to present-day teacher university education the interested reader finds in Weiss-
Pidstrygach (2015, 2016).
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Chapter 9
The Road of the German Book Praktische
Analysis into Japanese Secondary School
Mathematics Textbooks (1943–1944):
An Influence of the Felix Klein
Movement on the Far East
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Abstract Japan caught up with the Klein movement at time it occurred and trans-
lated the movement into Japanese to be shared immediately. However, incidents such
as the huge earthquake in 1923 caused stagnations. Fruitful classroom experiments
were done over the years, and mathematics subjects up to calculus were integrated
into the mathematics Clusters I and II secondary school textbooks in 1943–44. The
textbooks included praktische Analysis in relation to mechanical instruments. This
paper shows, compared to some impact from the US, the clear influence of the von
Sanden’s Praktische Analysis on Japan. It also explains how the mechanics and
kinematics approaches, known since the era of van Schooten (De Organica Coni-
carum Sectionum In Plano Descriptione, Tractatus. Geometris, Opticis; Præsertim
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Æquationum resolutione. Elzevier, Lugdunum Batavorum, 1646), served as missing
link for integrating geometry and algebra into the concept of function in teaching in
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9.1 Background and Objective of This Paper

One of the major tasks of the history of mathematics education is to clarify
the current position of mathematics education by examining the viewpoints of
past reforms, which include the transition of issues, objectives, and materials.
One of the difficulties is the interpretation of curricular reform in the context
of earlier periods. In particular, based on the Japanese interpretation of the
new math movement,1 the secondary school curriculum was more oriented towards
algebraic representation. Thus, current mathematics educators have never had a
chance to study the mathematics that existed in the past. Historical mathematics
before our times is, therefore, a kind of lost mathematics based on different
conceptual frameworks, even though the technical terms look the same.

Reading and understanding historical textbooks gives the opportunity to relearn
lost mathematics and recognize their viewpoint. The mathematics Clusters I and II
textbooks from 1943 to 1944 (Grades 1 to 4, for 12- to 15-year-old students, Pub-
lished from Secondary School Publisher)2 for secondary school,3 were a decisive
achievement under the influence of the Klein movement4 in the Far East, since start-
ing with these books preliminary calculus became introduced into the mathematics
curriculum of Japanese secondary schools. Even though published in the middle of
World War II, the textbooks were very well organized and applied the principle of
mathematization. Thus, they are usually referred to as the mirror to reflect the cur-
riculum reform that was oriented towards mathematical activity. Indeed, after World

1Japanese NewMath (Ministry of Education 1968) includes, as in other countries, the movement to
introduce sets and structure. However, it also applied the principle of reorganizing mathematics as a
spiral cycle of extension and integration to foster mathematical thinking using appropriate activities.
It also added Freudenthal’s (1968) mathematization idea, since in Japan similar ideas had existed
already earlier (Nabeshima and Tokita 1957). The origin of this principle, i.e. the terminology of
mathematization, can also be traced back to the guidebooks for the textbooks Clusters I and II.
2The books were published by the Secondary School Textbook Publisher on demand of theMinistry
of Education. The authors were teachers and professors of the affiliate school of the Tokyo Higher
Normal School which leads after graduation to Tokyo University of Literature and Science, and the
Ministry.
3Until World War II, the Japanese school system was parallel, not linear, and has undergone a
complicated process since 1872. In short, secondary schools, which used Clusters I and II text-
books, were preparatory schools for high schools, and high schools were preparatory schools for
universities. The Clusters I and II textbooks were for exceptional and affluent students who were
able to study at secondary schools. Compulsory education was limited to elementary and senior
elementary school. Students normally went to senior elementary schools after the graduation from
elementary schools, but exceptional students who had the availability to go to higher education
went to secondary schools. Secondary and normal school teachers graduated from higher normal
schools, high school teachers graduated from universities, and elementary school teachers from
normal schools. Normal schools are a kind of vocational school after senior elementary school.
Tokyo University of Science and Literature was the university for students who graduated from the
Tokyo Higher Normal School which was the school for the graduated students of normal schools.
4Here, the Klein movement means the curriculum reform movement that took place up to World
War II involving the integration using graphs of functions of different subjects such as arithmetic,
algebra, and geometry into one mathematics culminating in calculus.
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Fig. 9.1 Van Schooten (1646), excerpted from pp. 1–3, 26, 28, and 30, and Cluster II (1943), Vol.
3 (Grade 3 for 14 year olds), excerpted from pp. 2, 3, 4, and 27

War II, Japanese curriculum reforms developed appropriate mathematical activities
(beginning in 1947), mathematical thinking (beginning in 1951), and mathematiza-
tion (after the war and again in 2017). For current educators, however, it is difficult
to understand these textbooks within the original meaning of the reform because it
is based on lost mathematics. However, what is that lost mathematics in Clusters
I and II? Several mathematics education research papers in Japan have examined
this question. However, due to their brevity, the papers mainly focused on historical
issues in the development of textbooks but did not provide an opportunity for current
readers to learn about the lost mathematics itself.

In light of this situation, Masami Isoda and Maria Bartolini Bussi published (in
Japanese) the Encyclopedia of Curve: Properties, History, and Construction (2009)
in order to share the geometrical origin and algebraic transition of mathematics
up to calculus (see Isoda 1996, 1998; Tall 2013). One finding in the book is the
correspondence between the teaching sequences of Frans van Schooten’s textbook
(1646) and the Cluster II textbook (1943) regarding the samemechanical instruments
(see Fig. 9.1).

The textbooks in Fig. 9.1, published almost 300 years apart, cannot be directly
connected. During those 300 years, historical processes were developed and revised
for reorganizing mathematics in mathematics textbooks.5 In the end, the same tasks
and sequences may emerge that were earlier based on Euclid. Thus, the sequence in
Fig. 9.1 can be understood as being based onEuclid.However, Clusters I and II did not

5The categories of mathematics textbooks used in schools after 1872 in Japan were developed in
Europe under the influence of the French school system in the early 19th century (Schubring 2015).
For the greater context see also: http://math-info.criced.tsukuba.ac.jp/museum/TGSW2015/.

http://math-info.criced.tsukuba.ac.jp/museum/TGSW2015/
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include Euclidean-geometric proofs even though they enhanced the demonstration
and proving by students. Before Clusters I and II, geometrical proof and construction
was employed in secondary school. To introduce content up until calculus, however,
Clusters I and II used intuitive explanation with practical experiments using various
instruments rather than exact proof.6

Even though the influence of Klein involves long historical processes, one piece
of evidence of the missing link connecting Japan and Europe is Hans von Sanden’s
Praktische Analysis (1914). This paper aims to illustrate the significance of this
missing link in order to understand the historical development of the Clusters I and
II mathematics textbooks. These books show the influence of the Klein movement on
the integration of subjects up to calculus into the curricula of the Far East, especially
in Japan, but not only there.7

9.2 The Influence of Klein on the Far East: The Case
of Japan

During the Meiji period (1868–1912), leading Japanese mathematicians studied in
Europe8 in countries such as UK, France, and Germany. Many of them studied in
Germany and the Klein movement in Europe was well known since its earliest stage.

The state of mathematics in schools at that time was summarized at the Fifth
International Congress of Mathematicians in Cambridge in 1912, when the Japanese
sub-commission of the International Commission of the Teaching of Mathemat-
ics published the Report on the Teaching of Mathematics in Japan (see Fujisawa
1912/2017). In the attached Divisional Report II, after the preface of Fujisawa,
Noriyuki Nishikawa, Professor at Tokyo Higher Normal School, already mentioned
for the middle school the movement “to give the pupils elementary concept of func-
tion is most important as a direct aim in teaching of algebra” (Nishikawa 1912, p. 13).
At that time, graphs and functions were recognized as content that bridged subjects
such as arithmetic, algebra, and geometry. However, the curricular reform of 1911
only mentioned that they should be treated in teaching and not as a means of integra-
tion of subjects. The curriculum at that time was influenced by the first generation of

6In Cluster II, Vol. 4 (Grade 4 for 15-year-olds, which is the last grade), there were tasks involving
proofs; however, exact bases for proving were not given in the textbook. In this context, it was
possible for students to use intuitive or algebraic explanations.
7Japanese was one of the teaching languages in many parts of the Far East. More than 10,000
Chinese students studied in Japan from 1896 to 1906. Some of them were related with the Xinhai
Revolution. Sun Yat-sen, the founder of the Republic of China, also studied in Japan. After World
War II, in the Republic of Korea, the first textbooks for secondary school mathematics were Korean
adopted editions of Clusters I and II.
8Before WW II, the newest achievements in mathematics were usually published in German and
French.Germanwas a necessary language for Japanesemathematicians, aswereFrench andEnglish.
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mathematicians who had studied in Europe, such as Dairoku Kikuchi,9 who finally
became the minister of education, and his colleague, Rikitaro Fujisawa.10 Fujisawa
insisted in the independence of every sub-discipline in mathematics to keep their
theoretical differences. In his context, he could not share the reform conception of
integrating the sub-disciplines.

It was against this conservative situation that under the order of the JapaneseMin-
istry of Education, GaisaburoMori translated Otto Behrendsen and Eduard Götting’s
Lehrbuch der Mathematik nach Modernen Grundsätzen (1908, 1911) for secondary
and high school teachers from German into Japanese in 1915–1916. To promote
the reform movement throughout Japan, Motoji Kunieda and his colleagues at the
Tokyo Higher Normal School established the Japan Society of Secondary School
Mathematics11 in 1919. The society shared the reform movement at every annual
meeting as a national issue. Secondary school teachers presented their research on
curriculum innovation at these meetings and it was published in the society’s journal.

In 1921, Tsuruichi Hayashi, the first president of the society, translated Klein’s
1904–1905 lectures for secondary school mathematics as the first book (1907) of the
University of Göttingen lecture series. Kinosuke Ogura supervised the translation
of Leçons d’Algèbre Elémentaire by Bourlet (1909) in 1919 and translated Prak-
tische Analysis by von Sanden (1914) in 1928. Before these translations, a limited
number of mathematicians, teachers and students had read the original books. The
reform’s intentions reached every secondary school teacher thanks to these Japanese
editions. Hayashi recommended in his preface to Klein’s book (1907) that secondary
school teachers read both books by Behrendsen and Götting and by Bourlet. Both
books treat functions and calculus in their later chapters, which follows the goals
of both textbooks. The book by Bourlet was dedicated to algebra. The book by
Behrendsen and Götting treated geometry, algebra (including coordinates, graphs,
and simple construction), trigonometry, calculus with functions for Gymnasium, and
projection.12

While the book by Behrendsen and Götting was written for secondary schools
(Gymnasium), the book by von Sanden (1914) was written for undergraduate stu-

9Kikuchi was trained according to the tradition of Wasan, the Japanese mathematics of the Edo
era. He received a top score in mathematics at Cambridge. Later, he became the president of the
University of Tokyo and University of Kyoto and became the Minister of Education. Fujisawa
studied in Germany before the Klein reform.
10Kikuchi and Fujisawa were founders of the mathematics department of the University of Tokyo
and Fujisawa was an advisor of the next generations. The second generation of mathematicians
related to this reform, such as Mori, Hayashi, and Kunieda, graduated mostly from the University
of Tokyo and worked at other universities and schools. Hayashi had been a professor of the Tokyo
HigherNormal School until the establishment of themathematics department of theTohoku Imperial
University. Many of them had opportunities to study in Europe. Mathematicians in the University
of Tokyo such as Teiji Takagi, a member of the first Fields’ Award committee, also studied in
Germany, but did not lead the reform himself, even though he was familiar with the reform. He
merely referenced the existence of the movement in the preface to his secondary school textbooks.
11It was the predecessor of the Japan Society of Mathematical Education.
12Gymnasium inGermany corresponds to secondary and high schools in Japan beforeWW II. Clus-
ters I and II for Japanese secondary schools corresponds to the first half of the German Gymnasium.
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dents based on his experience at the University of Göttingen.13 It treated integration
of algebra and geometry for calculus with graphs of functions, construction with
geometry, and plotting points as the sets of numerical solutions. This paper dis-
cusses how von Sanden’s book influenced the integration of subjects up to calculus
at secondary schools, comparing it with Hamley’s (1934) Relational and Functional
Thinking in Mathematics.

9.3 Integration of Algebra and Geometry with Mechanical
Instruments

Minoru Kuroda, a teacher at the affiliated secondary school of the Tokyo Higher
Normal School, was the first mathematics educator who studied abroad. He studied
in Göttingen and returned to Japan in 1913. He contributed to the establishment
of the Japan Society of Secondary Mathematical Education and to its proposal for
curriculum reform in 1919. Because in 1923, while Kuroda and others planned the
new curriculum, the metropolitan region of Tokyo was hit by a strong earthquake
and destroyed by fire, the Ministry of Education was not able to enact the cur-
ricular reform. Even in this situation, several reform ideas from Kuroda’s articles
(1927) for the integration of disciplines, such as those shown in Fig. 9.2, had been
kept from burning (see Isoda and Bartolini Bussi 2009). Because of this disaster,
Japanese mathematicians spent several decades working on the experimental design
of the integration of subjects up to calculus, including the relation between algebra
and geometry using the graphs of functions. In the middle of World War II, they
finally developed Clusters I and II (for 12- to 15-year-old secondary school students)
following the principle of mathematization (1943–1944).

The influences of reform movements in Japan came not only from Germany but
also from the UK and the US. Indeed, the Japanese respected John Perry, who began
his professional career as a mathematician in Japan at the beginning of Meiji era. He
became the president of the Physical Society of London in the early 20th century,
and his works were also translated into Japanese. Perry also emphasized practical
mathematics, even though he did not enhance the integration of the subjects including
calculus using the function concept as Klein did. Experimental methods developed
by Eliakin Hastings Moore in the US were also well known. Because the Japanese
were able to practice their experimental research for several decades, reforms were

13The books were published after the publication of Felix Klein’s world-famous book Elemen-
tarmathematik vom Höheren Standpunkte aus (1908–1928). The 1908 edition was polycopied as
handwriting. It was well read by Japanese mathematicians such as Ogura who introduced it in
Japanese in the Japanese journal Tokyo Buturigakko Zassi (1909, Vol. 18). Later, both Ogura (1950)
and Shokichi Iyanaga, President of ICMI (1975–1978), wrote about what they had learned. Iyanaga
wrote about his impressions upon reading it as a high school student on the book for Ogura’s 70th
Anniversary Celebration (1956). Klein (1908) was translated into English (1924) and retranslated
into Japanese (Toyama; 1959–1961) which did not include the Vol. 3 of Klein (2016).
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Fig. 9.2 Mechanical instruments to draw the graph of polynomial functions, bridging geometry and
algebra in Diderots’s Encyclopedia; cited in Vol. 19, of the Supplements (Diderot 1776): Equation,
pp. 832–840 and in Vol. 33. Planches (Diderot 1777) Algebrae, p. 18, Constructeur Universel
Equations, p. 14-E33-Nr. 33. The explanation on the right is from Kuroda (1927, p. 299) (Minoru
Kuroda was the first mathematics educator who had the opportunity to study in Europe. This book
was published posthumously in 1927 (he passed away in 1922) as a part of his collected publications.
One third of the content was based onwhat he learned in Germany in 1910–1911 and in England and
the US in 1912. The rest was his lectures at the open classes done by other teachers who promoted
reform ideas and tentative plans for curricular reforms.His textbooksweremostly familiar textbooks
that included the ideas of newmovements within the limitation of the old curriculum. After he came
back to Japan from abroad, he became a professor at the Tokyo Higher Normal School and wrote
secondary school textbooks based on what he learned and what he experimented with at the affiliate
secondary school of the Tokyo Higher Normal School.).

achieved by the third generations, and thus, they also knew the work of Hamley14

(1934), which was also translated into Japanese by Aoki (1940).
Figure 9.2 shows an example for the integration of geometry and algebra for

functions from Diderot (1776–1777) which is from Johann Andreas von Segner
(1704–1777). He was born in Hungary, and in 1735 he became the first professor
of mathematics at the newly founded University of Göttingen. This mechanism also
appeared in von Sanden (1914). Kuroda (1927) explained the idea in the context of
the reform movement proposed by Klein, which integrates geometry and algebra via
graphs of functions.

14The Japanese translation of Relational and Functional Thinking in Mathematicswas published in
1940 before Clusters I & II. The translator Seisiro Aoki was a scholar at the Tokyo Higher Normal
School (University of Tsukuba). Before Cluster I and II, several developments of the curriculum had
been done nationally since the establishment of the Japan Society of Secondary SchoolMathematics
in 1919, and three curriculum plans were proposed in Tokyo, Osaka, and Hiroshima under that
society (1940; see such as Mathematics Research Committee of the Affiliate School of the Tokyo
Higher Normal School 1940 and Koga, S. 1940). Professors of the Tokyo Higher Normal Schools
and teachers at the affiliated secondary school embedded their long-term experiments of lesson
studies at their affiliated secondary school and others into the textbooks which synchronized with
other countries such as Germany, England and USA.
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Fig. 9.3 Drawing the derivative and the primitive function from the given graph in Mathematics
Cluster I (1944), Vol. 4 (Grade 4 for 15-year-olds), p. 9

9.4 Embedded German Praktische Analysis in the Japanese
Textbook for Cluster I (1943)

The Japanese textbooks for Clusters I and II were the first textbooks in Japan that
integrated arithmetic, algebra, and geometry via the concept of function and graphical
representations including calculus. Figure 9.3 is a clear example that shows the
ideas in von Sanden (1914) that adopted for the Japanese curriculum for 15-year-old
students for realizing integration up to calculus.

Figure 9.3 can also be seen in von Sanden (1914, pp. 97 and 103).15 According to
the Japanese translators and editors, Ogura and Kondo (1928), Klein established the
course for praktische Analysis at the University of Göttingen in 1904. Von Sanden
became a lecturer at Göttingen and published the book based on his lecture courses.
Ogura explained in the Japanese edition thatPraktische Analysiswas the best book in
this area because of this origin. In addition to the English translation by Levy (1923),
the Japanese edition was an adaptation by Ogura due to his addition of content
and footnotes to make it more easily understood.16 Thus, various efforts have been
made to adapt the ideas of von Sanden from university mathematics into Japanese
secondary school mathematics.

9.5 The Influence of Klein: Germany or Origins from UK
and US?

Since the Japanese achievements were not only influenced by Germany but also the
UK and the US, we can at first not be sure whether the origin of Fig. 9.3 can be

15Figure 2 was also included in Sanden (1914, pp. 45–48) but was not in Clusters I and II.
16Before translating von Sanden, Ogura had already published Approximate Solution Using Dia-
grams and Graphs (1923) in Japanese. This implicates that he did not completely translate from
the English Edition. His translated books usually including many revisions and enlargements based
on his own studies.
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attributed to von Sanden or not. However, there is clear positive evidence that it
originated in Germany when we compare it with the discussions of Hamley (1934):

Klein has said that “for a thorough and fruitful treatment of the function concept, the fun-
damentals of mechanics may be taken as a necessary material.” With this opinion we are in
full agreement. It is not clear whether Klein restricts the term “mechanics” to kinematics, or
whether he also includes kinetics, which involves the concept of mass. In our course, we have
confined our attention almost exclusively to kinematics, not because of any unwillingness
to include kinetics, but because the space-time concept provides us with all the functional
material we need. (p. 112)

Klein emphasized mechanics as the foundation of the treatment of the function
concept. However, Hamley explained the space-time concept as an alternative to
kinematics.Mechanics herewas basically represented bygeometry.Klein propagated
the integration of algebra and geometry for teaching calculus. Hamley introduced
the space-time concept, which can be represented by numbers and algebra without
geometry. Even though the space-time concept is normally used for functions in
algebra, according to Hamley’s claim, Fig. 9.3 could not be explained because it
does not depend only on space-time. This is how we can affirm that Klein and von
Sanden’s view is shown in Fig. 9.3.

Of course, we also recognize that space-time situations appear in the introduc-
tion of calculus in Cluster I. However, in the case of Cluster I, differentiation and
integration are solved using Fig. 9.3 before introducing the algebraic operations of
differentiation and integration.17 Before algebraic operations, the idea of the fun-
damental theorem of calculus is introduced, and space-time situations are solved
by geometric operations as shown in Fig. 9.3. Additionally, in Cluster II, which is
taught in parallel with Cluster I, before learning calculus, kinematics is applied as
visualized in Fig. 9.1.

9.6 Conclusion

Due to the comparison between the books by von Sanden and Hamley, the integra-
tion of the sub-disciplines arithmetic, algebra, and geometry including calculus in
Japanese school mathematics, which was originally proposed by Klein, is evidenced
in Clusters I and II. We showed the book by von Sanden to be a missing link to the
currently lost mathematics, which we never learn up to university in these days.

This point of discussion is summarized as shown in Fig. 9.4.
Figure 9.4 shows the basic framework for Clusters I and II. However, the era of

the US occupation of Japan after WW II resulted geometry with constraction was

17The treatment of graphs involving space-time also appeared in Hayashi’s (1921) translation of
Klein (1907). The salient point is whether there is a reference to geometry or not. Cluster I and II
show the efforts that have been made to adapt the ideas of von Sanden from university mathematics
into Japanese secondary school mathematics based on geometry. Hamley focused on space-time
and did not treat geometry as the basis of functions.
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Fig. 9.4 Mechanics and kinematics as a missing link for teaching the integration of the sub-
disciplines including calculus

reintroduced but the functions up to calculuswere following space-time framework.18

There were two reasons. The first reason was the transforming of the school system
from parallel to linear. The curriculum for secondary schools was divided into one
part for new junior high and another for senior high schools, and student populations
were redefined. Compulsory education ended with junior high schools, at 15 years
old, with the curriculum reaching proofs in geometry and quadratic functions. Senior
high schools were divided into schools depending on student achievement, from
preparatory schools for the universities to various vocational schools. The second
reason was the New Math. Algebraic mathematics including vectors and matrices
were introduced, and construction and trigonometry in geometry became restricted.
In this context, the direction from geometry to calculus in Fig. 9.4 by kinematics and
mechanics becomes the missing link to understand Clusters I and II for our period.

Currently, technology such as dynamic geometry software enables anyone in the
world to approachmechanisms and kinematics of Figs. 9.1, 9.2 and 9.3. For example,
Isoda (2008) developed e-textbooks19 for Fig. 9.1 and engaged in lesson study to
demonstrate their significance in mathematics education (see Bartolini Bussi et al.
2010). The objectives of lesson study with e-textbooks are firstly to demonstrate
the close relationship between elementary geometry and mechanisms and recognize
that elementary geometry provides the intuition for reasoning about mechanisms,
and secondly, to recognize the difference between the mathematical systems for the
solutions for the loci of themechanism inFig. 9.1 using elementarygeometry, analytic
geometry and vectors, and so on. Analytic geometry usually uses the conclusions of
geometric reasoning in order to algebraically prove the equation for the algebraic
solution; however, this is the adaptation of the conclusion of elementary geometry.

18The General Headquarters of the Allied Forces governing Japan from 1945 to 1953 supervised
and directed the Japanese curricular reform according to the principle of activity and appreciation
especially for compulsory education (Makinae 2011), which is one of the bases for the current
Japanese problem-solving approach. This approach is well known as a part of the recent lesson
study movement aimed at developing children who learn mathematics by and for themselves.
19The lesson study video clips (Isoda 2008; Isoda & Yamamoto 2009; Isoda 2010) with Dr. Yuriko
Yamamoto Buldin for graduate students of the Universidade Federal do Rio de Janeiro can be
seen at: http://math-info.criced.tsukuba.ac.jp/museum/dbook_site/dbookEng_with_DGraph_2010
0402/CDImageEnglish/Schooten-Monbsho-VTR/SchootenVTR/index.html. A Japanese textbook
with simulation can be seen at: http://math-info.criced.tsukuba.ac.jp/museum/dbook_site/Schooten
OnWeb1/Schooten1/index.html. Van Schooten’s e-textbook requires Adobe Flash Player; click the
bottom to see the video (flv) and to use the simulation.

http://math-info.criced.tsukuba.ac.jp/museum/dbook_site/dbookEng_with_DGraph_20100402/CDImageEnglish/Schooten-Monbsho-VTR/SchootenVTR/index.html
http://math-info.criced.tsukuba.ac.jp/museum/dbook_site/SchootenOnWeb1/Schooten1/index.html
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From the perspective of elementary geometry, the ways of reasoning of analytic
geometry include tautology.20 Mechanisms and kinematics provide intuition that
is synchronized with elementary geometry which includes reasoning through the
embedded figures of the theorem but is not always synchronized with reasoning
using the form of algebra and calculus.

This paper concludes that the contents of the missing link between calculus and
geometry was specified by kinematics and mechanics and that the link was one of the
key ideas to be considered in the curricular integration of the subjects of arithmetic,
algebra, and geometry for calculus and shows good evidence of what the Klein
movement achieved in the Far East up until WW II. This paper also discussed how
the Klein movement was introduced. However, it does not deeply describe how the
Japanese worked on producing their own original adaptation through the decades
until the production of the textbooks for Clusters I and II at the secondary level.
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Chapter 10
Felix Klein’s Mathematical Heritage
Seen Through 3D Models

Stefan Halverscheid and Oliver Labs

Abstract Felix Klein’s vision for enhancing the teaching and learning of mathe-
matics follows four main ideas: the interplay between abstraction and visualisation,
discovering the nature of objects with the help of small changes, functional thinking,
and the characterization of geometries. These ideas were particularly emphasised in
Klein’s concept of mathematical collections. Starting with hands-on examples from
mathematics classrooms and from seminars in teacher education, Klein’s visions are
discussed in the context of technologies for visualisations and 3D models: the inter-
play between abstraction and visualisation, discovering the nature of objects with the
help of small changes, functional thinking, and the characterization of geometries.

Keywords Felix Klein · Visualisation · Göttingen · Collection
Mathematical models · Instruments · 3D models · Cubic and quartic surfaces
3D printing

10.1 Introduction

10.1.1 Klein’s Vision for Visualisations

At the age of 23, Felix Klein (1849–1925) became a professor at Erlangen. On such
occasions, professors used to give a speech.Klein’s speech,which is knownnowadays
as the Erlangen Programme, was published with an appendix (“notes”) containing a
paragraph entitled “On the value of space perception”. Even though the history of the
reception of the speech and the written publication of the programme is complicated
(Rowe 1983), and although its influence is contested (Hawkins 1984), this episode
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reveals that at an early stage of his career, Felix Klein was already interested in the
teaching and learning of mathematics and in methods of visualisation:

When in the text,we designated space-perception as something incidental,wemeant thiswith
regard to the purely mathematical contents of the ideas to be formulated. Space-perception
has then only the value of illustration, which is to be estimated very highly from the ped-
agogical standpoint, it is true. A geometric model, for instance, is from this point of view
very instructive and interesting. But the question of the value of space-perception in itself is
quite another matter. I regard it as an independent question. There is a true geometry which
is not, like the investigations discussed in the text, intended to be merely an illustrative form
of more abstract investigations. (Klein 1893, p. 244)

Klein’s point of view has undergone some changes over the years (Rowe 1985),
but the idea of visualisation remains a guiding theme in Klein’s work on teaching and
learning—for example, in his “Elementary mathematics from a higher standpoint”,
which was published much later, it is still quite present throughout the text. Klein
was keen on using cutting-edge technology to visualise modern mathematics. The
collections following his concept gather plaster models, diapositives, and newly
constructed machines. According to Klein, “A model—whether it be executed and
looked at, or only vividly presented—is not a means for this geometry, but the thing
itself” (Klein 1893, p. 42).1 In this text, we presents implementations of some of
today’s modern technologies following Klein’s main idea to offer objects of intense
study.

10.1.2 Four Threads of Klein’s Vision for Teaching
and Learning Mathematics

Klein worked out the idea to characterise geometries using group theory very early
in his career, together with Sophus Lie, as formulated in his Erlangen programme.
Looking back, this is certainly one of the more important aspects in Klein’s work, as
it is still theway geometries are treated today, particularly non-Euclidean geometries.
Hence, this is one of the four threads discussed here.

However, we start with another topic which is even more important for Klein’s
vision for teaching and learning mathematics, namely the interplay between abstrac-
tion and visualisation. For Klein, visualisations play a key role in experiences, both
in geometry and other areas of mathematics. He says: “Applied in particular to geom-
etry, this means that in schools you will always have to connect teaching at first with
vivid concrete intuition and then only gradually bring logic elements to the fore.”
(Klein 2016b, p. 238).

Three decades after his appointment as professor, FelixKlein developed an agenda
to push mathematics in schools with the help of the teaching commission inaugu-
rated by a society of German natural scientists and physicians. In a conference in
Meran in 1905, an influential syllabus was suggested for secondary education. In the

1Author’s translation.
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appendix for the first volume of his Elementary Mathematics from a Higher Stand-
point, Felix Klein writes: “TheMeran curricula, in particular, are of high significance
for the reform movement. They constitute already well-established norms according
to which the progress of reform movements for all changes occurring in secondary
education can be assessed. Their main demands are, as has already been explained
in various sections, a psychologically correct method of teaching, the penetration of
the entire syllabus with the concept of function, understood geometrically, and the
emphasis on applications” (Klein 2016a, p. 294).

Interestingly, he links functional thinking with geometry. More generally, Klein
wanted the “notion of a function according to Euler” to “penetrate (…) the entire
mathematical teaching in the secondary schools” (Klein 2016a, p. 221). In particular,
he very much wanted to implement calculus at school: “We desire that the concepts
which are expressed by the symbols y � f (x), dydx ,

∫
y dx bemade familiar to pupils,

under these designations; not, indeed, as a new abstract discipline, but as an organic
part of the total instruction; and that one advance slowly, beginning with the simplest
examples. Thus one might begin, with pupils of the age of fourteen and fifteen, by
treating fully the functions y � ax + b (a, b definite numbers) and y � x2, drawing
them on cross-section paper, and letting the concepts slope and area develop slowly.
But one should hold to concrete examples” (Klein 2016a, p. 223).

A recurring topic in Klein’s teaching and research is the use of small changes to
discover the nature of objects. Indeed, he started to apply this as an ongoing theme in
his very early years, e.g., in hiswork on cubic surfaces from1873 inwhich one type of
surface deforms into another by a tiny change in the coefficients. In his elementary
mathematics lectures, this topic is still an important method in many places, e.g.,
when he discusses multiple roots which transform into several nearby simple roots
under small changes. Again, these studies are accompanied by visualisations to stress
the related geometric aspects.

We thus identify four main ideas that describe Felix Klein’s concepts of visuali-
sation:

(1) interplay between abstraction and visualisation,
(2) discovering the nature of objects with the help of small changes,
(3) functional thinking, and
(4) the characterization of geometries.

In the following section, these aspects are locatedwithinKlein’swork.Aparticular
emphasis is made on 3D models, which Klein pushed strongly in his mathematical
collections. Examples from recent courses at schools and universities are used to
illustrate how these ideas can be approached with today’s technology.
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10.2 Building on Klein’s Key Ideas in Today’s Classrooms
and Seminars

10.2.1 Interplay Between Abstraction and Visualisation

10.2.1.1 Abstraction and Visualisation at the Core of Mathematical
Activities with Geometric Objects

Imagination and abstraction have haunted philosophers for a long time, a prominent
example being Kant, who—in his Critique of Pure Reason—dismissed anything
empirical as being part of geometry as a scientific discipline. Hawkins (1984) points
out thatKlein uses “geometry” in a rather liberalway. This is somehow ironic because
Klein’sErlangenProgramme significantly influenced thewaymathematicians nowa-
days agree what geometry actually means. In this very text, he works out the role of
visualisation for geometry: “Its problem is to grasp the full reality of the figures of
space, and to interpret—and this is the mathematical side of the question—the rela-
tions holding for them as evident results of the axioms of space perception” (Klein
1893, p. 244).

For Klein, any object, whether “observed or only vividly imagined”, is useful for
working geometrically as long as it is an object of intense study. Later, in his lectures
entitled Elementary Mathematics from a Higher Standpoint, he makes clear that the
main role of objects of study is to enhance the interplay between abstraction and
visualisation: “One possibility could be to renounce rigorous definitions and under-
take to construct a geometry only based on the evidence of empirical space intuition;
in his case one should not speak of lines and points, but always only of “stains”
and stripes. The other possibility is to completely leave aside space intuition since it
is misleading and to operate only with the abstract relations of pure analysis. Both
possibilities seem to be equally unfruitful: In any case, I myself always advocated
the need to maintain a connection between the two directions, once their differences
are clear in one’s mind.

Awonderful stimulus seems to lay in such a connection. This is why I have always
fought in favour of clarifying abstract relations also by reference to empiricalmodels:
this is the idea that gave rise to our collection of models in Göttingen.” (Klein 2016c,
p. 221).

Following this line of thought, a suitable task design involving geometric models
offers both opportunities for empirical experiences and the requirement to build up
abstract concepts.

10.2.1.2 The Interplay of Abstraction and Visualisation with 3D
Printing from Grade 7

The celebrated opportunities of 3D printers surely involve a great deal of mathe-
matics. However, while a CAD programme makes use of mathematics, it becomes
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Table 10.1 Part of an STL
code for a triangle

Facet normal 0 1 0 Normal vector of the triangle

Outer loop Start of the list vertices

Vertex 0 4 4 First corner of the triangle

Vertex 4 4 0 Second corner of the triangle

Vertex 0 4 0 Third corner of the triangle

Endloop Ends the list of vertices

invisible. Shapes can be constructed without any need for abstraction, and the soft-
ware creates files that 3D printers transform to create objects. Instead of disguising
mathematics in such a way, we report an approach that works at the interface of com-
puters to 3D printers. An example of this interface is the STL-code (STereoLithog-
raphy code), which describes the tessellation of a surface—namely, the boundary of
a solid.

This tessellation is done in triangles; the STL-code lists the corners of these
triangles. For complicated shapes, the printer needs the normal vector pointing to
the exterior of the solid. Table 10.1 represents the part of the code for the triangle
� f (0, 4, 4), (4, 4, 0), (0, 4, 0), which has the normal vector (0, 1, 0).

Curved surfaces need thousands of triangles to approximate the shape in a seem-
ingly smooth way. The code has been introduced to various groups in lower grades
with the trick of limiting ourselves to polytopes. Their boundary can be triangulated
in finitely many triangles very accurately, which avoids all questions of approxima-
tion. It is important, however, to have some experience with 2D coordinates. The
introduction of a third coordinate did not cause severe problems in our cases.

Variants of two tasks particularly enhanced the interplay between abstraction and
visualisation. They have been tried in various groups of students from grade 7 on.

First task type from abstraction to visualisation: The following task provides an
STL code of a polyhedron and asks to figure out its shape. The triangulation of a
cube’s surface often leads to first guesses which prove to be correct. For instance,
if twelve triangles are used to triangulate the six squares, a first guess can be a
dodecahedron. A rewarding discussion provides criteria as to when two triangles lie
in the same plane (Emmermann et al. 2016) (Fig. 10.1).

Second task type from visualisation to abstraction: With a number of congruent
regular tetrahedra, the experimental task is to determine whether these can be used
for a tessellation of space without any holes (Fig. 10.2). A cognitive conflict causes
trouble because eyesight cannot decide whether there is indeed a hole or whether
some of the tetrahedra’s movability is due to some artefacts in the production process
of the tetrahedra. This problem can be answered by measuring activities with 7th
graders or, more accurately, with the later help of the analytic geometry of angles.

In fact, determining whether packing of tetrahedra minimises the missing space
is an open and hard problem.
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Fig. 10.1 Visualizing the
triangulation of a cube by 7th
graders. Photo by
Halverscheid (2016)

Fig. 10.2 Activity on
tetrahedral tilings. Photo by
Halverscheid (2016)

10.2.2 Discovering the Nature of Objects with the Help
of Small Changes

Applying small changes to a formula or an equation was one of the most natural
things to do for Klein. Indeed, this was one of his main guiding themes in his early
years as a mathematics researcher. As we will see, this point of view also became an
important aspect of his teaching.
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Fig. 10.3 Varying a
parameter. From the first
page of the first section in
the algebra chapter of
Klein’s book on elementary
mathematics from a higher
standpoint (Klein 2016a,
p. 91)

10.2.2.1 Small Changes

As a first example of Klein’s teaching of mathematics with respect to small changes,
let us look at the first section on algebra in his book on elementary mathematics
(Fig. 10.3). Upon opening the book to this page, one immediately notices that there
is a figure. Asmentioned in the previous section,Klein always tries to explain abstract
mathematics with the help of drawings.

However, another aspect catches the eye: the fact that he considers a function
with a parameter lambda as his very first example. This clearly reflects his idea that
one should always try to understand the true nature of mathematical objects. To give
an example, let y � x3 − x + 1. This is a function with one variable of degree
three with one real root. Yet, this example does not reflect the nature of polynomial
functions of degree three in an adequate way. Only by introducing parameters such
as in y � x3 + px +q can one realise that such functions may indeed have up to three
roots and that a special case seems to be that of two roots with one of them doubled.
This brings Klein to the study of discriminants in order to understand whole classes
of mathematical objects globally.

The crucial points of these studies of classes of mathematical objects are the
moments when essential things change; in the example of cubic functions above,
this is the case when—suddenly—the function no longer has one real root but two
and then even three. Klein realizes that one may thus reduce much of the study of the
global picture to a local study in such special cases. To give an even simpler example,
take y � x2. When looking at small changes to this function, one realises that the
single root indeed splits up into two different roots. Thus, to reflect the true nature
of the single root, one should count it as a double root. Of course, algebraically,
this can also be seen by the fact that the factor x appears twice in the definition
of the function. Today’s dynamic geometry systems now provide this as a standard
technique for school teaching: a slider allows these small changes to be experienced
interactively (Fig. 10.4).

Klein deepens the understanding of concepts wherever appropriate. For functions
in one variable, their roots are certainly one of the more important features. Thus,
in the section on algebra in his elementary mathematics book, he spends quite some
time on roots of functions with algebraic equations and—again—discusses this topic
in a very visual and geometric way. From the well-known formula for roots of a
polynomial of degree two in one variable x with the equation y � x2 + px + q, it
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Fig. 10.4 A small change
reflects the true nature of the
single root—which should
be indeed counted twice

is immediate to see that it contains a single double root if and only if the so-called
discriminant p2 −4q is zero. Thus, geometrically, all points on the parabola q�¼p2

in the pq plane yield plane curves y � x2 + px + q with a double root; all points
above this curve (i.e., where q> ¼p2) correspond to functions with no real root, and
all points below correspond to functions with two real roots.

Similarly, one can study the parameters p and q for which the cubic polynomial
y � x3 + px + q has a double root—these are all points on the discriminant plane
curve with equation 27q2 � −4p3, a curve with a cusp singularity at the origin. For
studying the numbers of roots of a polynomial of degree four, with x4 +ax2 +bx + c,
one has to work with three parameters—a, b, and c—so that the parameter space is
three-dimensional. In this case, all points (a, b, c) yielding polynomial functions of
degree four with a double root lie on a discriminant surface in three-space of degree
6 with a complicated equation. Because of its geometry, this discriminant surface is
nowadays sometimes called a swallowtail surface. As in the case of the parabola,
the position of a point (a, b, c) with respect to the discriminant determines exactly
which number and kind of roots the corresponding function of degree four possesses.
Because of this feature, this discriminant surface had already been produced as a
mathematical model during Klein’s time, and Klein shows a drawing of it in his
elementary mathematics book. To give an example of this close geometric relation,
consider our modern 3D-printed version, which even shows the non-surface part of
this object—half of a parabola (see Figs. 10.5 and 10.6). Points (a, b, c) on this
space curve correspond to functions x4 + ax2 + bx + c with two complex conjugate
double roots. Klein was fascinated by these connections; he discussed such aspects
frequently in both his research and his teaching. For example, in his introductory
article to Dyck’s catalogue from 1892 for a famous exhibition of mathematical and
physical models (Dyck 1892), Klein discusses how discriminant objects describe in
detail how small changes to coefficients of a function change its geometry.

Klein applies exactly the same ideas to many other cases. To discuss just the
simplest spatial one here, take the double cone consisting of all points (x, y, z)
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Fig. 10.5 The discriminant
surface of a polynomial
function of degree four
(Klein 2016a, p. 105)

Fig. 10.6 A 3D-printed
mathematical sculpture by
the second author showing
this object

satisfying the equation x2 + y2 � z2. Similar to the case of the parabola where the
sign of epsilon in y � x2 ± ε decides about the geometry around the origin, the same
happens with x2 + y2 � z2 ±ε. Indeed, the two conical parts of the double cone meet
in a single point, but for ε > 0, the resulting hyperboloid consists of a single piece,
whereas for ε < 0, the resulting hyperboloid is separated into two pieces.

In 1872, Klein already had the idea that such local small changes could be used to
understand the global structure of large families. Indeed, when Klein presented his
model of the Cayley/Klein cubic surface with four singularities during the meeting at
Göttingen in 1872 where Clebsch presented his diagonal surface model, he thought
that it should be possible to reach all essential different shapes of cubic surfaces [as
classified by Schläfli 1863, see (Labs 2017)] by applying different kinds of small
changes near each of the four singularities independently, as published by Klein in
1873. For example, when deforming all four singularities in such a way that they join
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Fig. 10.7 The Cayley/Klein cubic surface with four singularities (left image) was Klein’s starting
point to reach all kinds of cubic surfaces with the help of small changes in 1872/73, such as a smooth
one with 27 straight lines (right image, Clebsch’s diagonal cubic). Photos from Klein (2016c)

the adjacent parts (thus looking locally like a hyperboloid of one sheet), one obtains
a smooth cubic surface with 27 real straight lines—one of the most classical kinds
of mathematical models (Fig. 10.7).

As a final remark to this section, note that this idea to deform a curve or a surface
locally without increasing its degree does not continue to work for surfaces of higher
degrees, because starting from degree 8, it is not always possible to deform each
singular point independently. For example, from the existence of a surface of degree
8 with 168 singular points [as constructed by S. Endraß (Labs 2005)], it does not
follow that a surface of degree 8 with 167 singularities exists, as D. van Straten
computed using computer algebra.

10.2.2.2 3D Scanner and Singularities of Surfaces in a Mathematics
Seminar for Pre-service Teachers

In a meeting report of the Royal Academy of Sciences of Göttingen of August 3,
1872, it was stated: “Mr. Clebsch presented two models, […] which refer to a special
class of surfaces of the third order. […] One of the two models represented the 27
lines of this surface, the other the surface itself, a plaster model on which the 27 lines
were drawn.” This surface is an example of a so-called cubic surface, defined by all
points (x, y, z) satisfying a polynomial equation of degree three (see Figs. 10.7 and
10.8, top left model).

One main feature of these cubic surfaces is that they are smooth if and only if they
contain exactly 27 lines. Singularities appear if the surfaces are varied and the lines
become identical. One idea for a current mathematics seminar was to study the small
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Fig. 10.8 Historical
collection of models of
surfaces of the third degree
(cubic surfaces). Photo by
Halverscheid (2015)

changes in the singularities. Each participant was given one of the singular models
with the following task:

1. Produce a 3D scan of one of the models, which results in about 70,000 points
describing the area in space.

2. Determine an approximate third-order equation describing the scanned area.
3. Reprint the surface and some variations.
4. Compare them with the original model (Figs. 10.9 and 10.10).

Comparing the reproductions with the original reveals the compromises made by
the producers of the original models. These compromises arise because of the accu-
rate visualisation of surfaces as a whole and of the “singularities”. The differences
also show some particular difficulties of modeling exact formulae. The reproduction
and the original can often be clearly distinguished in the vicinity of singularities.

The approach taken in these seminars mainly follows the intention to use mathe-
maticalmodels inmathematics education (Bartholdi et al. 2016). There are, of course,
more refined techniques to create suchmodels with singularitiesmore accurately (see
www.Math-Sculpture.com by the second author).

http://www.Math-Sculpture.com
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Fig. 10.9 3D scan of one of
the surfaces (step 1). Photo
by Halverscheid (2015)

Fig. 10.10 3D printout of
reproductions and variations
of third-order surfaces (step
3). Photo by Halverscheid
(2015)

10.2.3 Linking Functional Thinking with Geometry

As mentioned earlier, Klein stresses the link between functional thinking and geom-
etry. The Meran syllabi defined “education for functional thinking” as an aim, and
afterWorldWar I, functions indeed becamemuch more prominent in secondary edu-
cation in Germany. Krüger (2000) describes how “functional thinking” developed
historically and how Klein used this term to strengthen mathematics in secondary
education. Here, we will briefly mention some aspects appearing frequently in his
elementary mathematics book which make clear that Klein had quite a broad under-
standing of the term “functional thinking”.
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Fig. 10.11 A hyperbolic
paraboloid with its two
families of straight lines.
Retrieved from http://
modellsammlung.uni-
goettingen.de/ on 30 May
2017,
Georg-August-University
Göttingen

Fig. 10.12 A hyperbolic
paraboloid with horizontal
plane cuts. Retrieved from
http://modellsammlung.uni-
goettingen.de/ on 30 May
2017,
Georg-August-University
Göttingen

10.2.3.1 General Functions in Klein’s Elementary Mathematics Book

The first two examples in our section on small changes—the implicitly defined curve
in Fig. 10.3 and the parabola with parameters in Fig. 10.4—are instances of Klein’s
view of functional thinking. As always, Klein stresses the fact that one should visu-
alise a function—e.g., the parabola mentioned above—as a graph to obtain a geomet-
ric picture together with the abstract formulas. However, he proceedsmuch further by
considering not only functions fromR to R but also plane curves in polar coordinates,
families of plane curves, and functions in two variables.

During Klein’s time, many universities—including at Göttingen, of course—had
a collection of three-dimensionalmathematical sculptures illustrating important non-
trivial examples for teaching purposes. One of the premier examples of those were
certainly the so-called hyperbolic paraboloids, e.g., the figure given by the equation
z � xy. From this equation, one immediately realises that the surface contains two
families of straight lines, namely those for fixed values x � a with equations z � ay
and those for fixed values of y � b with equations z � xb. Other models show
different cuts of the surface, e.g., horizontal cuts yielding a family of hyperbolas.
See Figs. 10.11 and 10.12 for two historical plaster sculptures from the collection of
the Mathematics Department at the University of Göttingen.

Notice that the example of the hyperbolic paraboloid is particularly simple. In
fact, in his elementary mathematics book, Klein also discusses more pathological
cases such as the one given by z � 2xy

x2+y2 . The function is continuous everywhere,
except at the origin (x, y) � (0, 0), where it is not even defined. Klein discusses the

http://modellsammlung.uni-goettingen.de/
http://modellsammlung.uni-goettingen.de/
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Fig. 10.13 An image from
Klein’s book illustrating the
impossibility of extending
some rational function to a
continuous one. Klein copied
this image from B. St. Ball’s
book on the theory of screws
from 1900

question of whether the function may be defined at this position in such a way that
it becomes continuous everywhere. He accompanies his analytic explanations with
an illustration (Fig. 10.13), which clearly shows that no unique z-value can be given
for the origin because all points of the vertical z-axis need to be included into the
surface to make it continuous.

This example illustrates how, in his teaching, Klein tried to explain important
aspects both analytically and visually to provide some geometric intuition for the
mathematical phenomenon being discussed. He was not afraid of discussing patho-
logical cases and thus often used more involved and more difficult examples in his
university teaching to deepen the understanding of certain concepts, such as the
example of continuous functions in the case above. Moreover, from the examples
above, we see that for Klein, a function is not just a map from R to R; rather, it
should be seen in a much more general way. Such examples appear frequently in his
elementary mathematics book, which shows Klein’s belief that these ideas are very
important for future school teachers and thus form an essential part of mathematical
education.

10.2.3.2 General Functions in Today’s Teaching

Providing a general concept of functions is easier in today’s teaching than it was in
Klein’s time due to computer visualisations. However, as with around 1900, using
hands-on models—built by the students themselves, if possible—is an even better
approach in some cases. Here, we want to briefly mention three examples from a
seminar for teacher students, for which each session was prepared by one of the
students based on at least one mathematical model. The photos in Figs. 10.14, 10.15
and 10.16 shows an interactive hyperbolic paraboloid model constructed from sheets
of paper, similarly to 19th century models; an interactive ellipse drawer; and a model
illustrating the definition of Bezier curves.

For teaching a more general concept of functions, Bezier curves are a particularly
illustrative example: First, these are functions from the interval [0 ; 1] to R

2; thus,
the image is not a value but a point. Second, each of the points in the image is defined
by an iterative construction process. In mathematics, students are used to defining
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Fig. 10.14 A hyperbolic
paraboloid, constructed by
students using sheets of
paper. Photo by Labs (2011)

Fig. 10.15 Drawing an
ellipse in the seminar room.
Photo by Labs (2011)

Fig. 10.16 Students work
on understanding the
stepwise process of creating
Bezier curves. Photo by Labs
(2011)

functions by certain formulas. This can also be done in the case of Bezier curves,
but in computer-aided design software, internally, it is in fact usually better to use
the simple iterative process instead of quite complicated formulas.

10.2.4 The Characterization of Geometries

The history of an abstract foundation of geometry based just a few axioms goes
back to antiquity. Yet, it took over 2000 years for the mathematical community to
understand many of the essential problems involved, such as whether the Euclidean
parallel axiom may be obtained as a consequence of the other axioms or not. This
resulted in a new notion of “geometries” in the 19th century, particularly in different
kinds of non-Euclidean geometries.
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10.2.4.1 The Characterization of Geometries

In modern terms, the first Euclidean axioms state that for any two different points,
there is a unique, infinite straight line joining them, and that for any two points,
there is a circle around one and through the other. The famous antique parallel axiom
essentially asserts—in modern terms—that for any straight line and any point, there
is a unique line parallel to the given line through the given point. Here, parallel
means that the two lines have no point in common. In the Euclidean plane, this fact
seemed to be unquestionable.Yet,why should this be restricted to theEuclidean plane
and to straight lines that look straight? It is possible to find abstract mathematical
objects—and even geometric objects in real three-space—that satisfy all Euclidean
axioms except the parallel axiom. A quite simple one may be obtained by taking the
great circles on a unit sphere as “lines” and pairs of opposite points as “points”. Then,
for example, for any two “points” (in fact, a pair of opposite points on the sphere),
there is a unique “line” (i.e., a great circle) through those two “points” (lying in
the plane through the points and the origin). For the converse, there is a difference
from ordinary Euclidean geometry: any two “lines” intersect in a unique “point”
(because any two great circles meet at an opposite pair of points), so there are no
non-intersecting “lines”, which means that there are no parallel lines. To obtain this
kind of geometry in an abstract way, one may simply replace the parallel axiom by
a new one asking that for any “line” and any “point”, there is nothing parallel to the
“line” through the “point”. The geometry obtained in this way is nowadays called
projective geometry. Similarly, one obtains a valid geometry by asking that each line
has at least two parallels.

TogetherwithSophusLie—withwhomKlein spent some time inParis for research
in 1870—Klein developed the idea of characterising geometries via the set of trans-
formations leaving certain properties invariant. These transformations form the group
of the geometry at hand. For example, for the familiar Euclidean plane, these are the
translations, rotations, reflections, and compositions of thosemaps. All of them leave
lengths and angles—and thus all shapes—invariant. If one allows more transforma-
tions, such as scalings in the plane, then one obtains a new geometry. As scalings are
part of this group, the geometry obtained is the so-called affine plane, where lengths
and angles may change but parallel lines stay parallel. A projective transformation
is even more general: one just forces that lines map to lines so that parallelism is not
necessarily preserved by such a transformation. The geometry obtained in this way
is the projective geometry mentioned above.

The groups of transformations mentioned so far contain infinitely many elements.
However, these groups have interesting finite sub-groups. Nowadays, well-known
examples include all transformations leaving certain geometric objects invariant.
For example, a regular n-gon in the plane is left invariant by n rotations about its
center and n reflections (Fig. 10.17). In space, a regular tetrahedron is left invariant
by 24 transformations. To understand and describe all of these geometrically is an
interesting exercise.

In the 19th century, mathematicians increasingly realised that groups appear over
and over again. For example, the examples with large symmetry groups were of
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Fig. 10.17 The symmetries
of regular polygons,
rotations and reflections: the
case of the pentagon

Fig. 10.18 A smoothed
version of a Kummer
surface, created by the
second author (photo
retrieved from http://www.
math-sculpture.com/ on 5
June, 2017). Each of the 16
singularities has been
deformed into a tunnel by a
global small change of
coefficients

particular interest for geometric objects defined by equations such as Kummer’s
famous quartic surfaces with 16 singularities. This is one of the reasons why K.
Rohn produced the tetrahedral symmetric case as a plastermodel in 1877; themodern
object by the second author is a smoothed version of it (see Fig. 10.18).

http://www.math-sculpture.com/
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Fig. 10.19 Model 331, collection of mathematical models and instruments. Retrieved from http://
modellsammlung.uni-goettingen.de/ on 30 May 2017, Georg-August-University Göttingen

10.2.4.2 A Spiral Curriculum on the Geometry of Tilings
in a Mathematics Education Seminar

Our seminar conceptmeets the curricular challengeof using exhibits frompast epochs
for current curricula: pre-service teachers receive the subject-matter task of planning
to one or onlymodels from the third to the twelfth grade and to lead groups of different
age levels. This is based on the idea of a spiral organisation of the curriculum; as
Jerome Bruner put it, “any subject can be taught to act in some intellectually honest
form to any child at any stage of development” (Bruner 1960, p. 33). It would now be
a misunderstanding to conclude that the same lessons could be made for all grades.
Rather, the intellectually honest form is concerned with the gradual transformation
and adaptation of mathematical phenomena at different stages of abstraction.

For this seminar, both objects from the collection of mathematical models and
instruments as well as exhibits from the wandering mathematics exhibition “Mathe-
matics for touching” of the mathematics museum “Mathematicum” at Giessen were
taken as a basis. All pre-service teachers in the seminar were given an object or group
of objects along with the task of developing a theme and workshops for grades 3
through 12, and finally presenting them to small groups of 6 to 15 participants from
primary through high school. During the practice, 27 pre-service teachers offered 58
workshops to a total of about 650 participants from schools.

The collection of mathematical models and instruments in the Mathematics Insti-
tute at Göttingen University is composed of models and machines, some of which
are more than 200 years old. Felix Klein, who became responsible for the collection
in about 1892, promoted elements of visualisation for teaching mathematics and had
a vision to share mathematics with the wider public (Fig. 10.19).

http://modellsammlung.uni-goettingen.de/
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Fig. 10.20 Participating
high school students produce
tetrahedra. Photo by
Halverscheid (2015)

In the collection are models of tessellations of the three-dimensional Euclidean
space. The classification of planar and spatial lattices was intensively investigated
in the nineteenth century. In 1835, Hessel worked out the 32 three-dimensional
point groups; the works of Frankenheim in 1935 and Rodrigues in 1840 led to the
classification of the 14 types of spatial lattices by Bravais in 1851. In 1891, Schoen-
flies—who wrote his habilitation at Göttingen University in 1884—and Fjedorow
described these with the help of group theory. The eighteenth of Hilbert’s problems
asks whether these results can be generalised: “Is there in n-dimensional Euclidean
space also only a finite number of essentially different kinds of groups of motions
with a fundamental region?” Bieberbach solved his problem in arbitrary dimensions
in 1910.

Schoenflies,whowrote an instructional bookon crystallography in 1923, probably
designed the models for the tessellations of the Euclidean space himself. One can
obtain several reproductions of two of them with the help of 3D printing and can
perform this puzzle for tessellations of the Euclidean space. These reproductions
were made by the KLEIN-project, whose aim is to reproduce, vary, and use models
of the collection for today’s mathematics courses at schools and universities.

In relation to the level of abstraction, these questions are addressed already in
the primary school. In the three-dimensional case, one can approach the question-
ing using the first examples—see the task from visualisation to abstraction above,
which immediately illuminates that cubes have the property of filling the space, and
cuboids also function in this way. The use of parallelepipeds requires more care-
ful consideration. Schoenflies’s complete solution of the problem characterises the
geometry of grids and is still used today for the systematic description of solids in
chemistry and physics. The pre-service teachers arranged different activities on two-
to three-dimensional tessellations (Figs. 10.20 and 10.21).
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Fig. 10.21 3D printouts of
Schoenflies’s models as
duplicates, which enable
students to carry out tilings.
Photo by Halverscheid
(2015)

10.3 Klein’s Ideas on Visualisation and Today’s Resources
for the Mathematics Classroom as an Introduction
to Research Activities

As the previous section showed, visualisation is prominent within many places in
Klein’s work and teaching. Content-wise, the four threads discussed are some of
the major aspects involved. Regarding actual methods of teaching and learning,
however, Klein pleads for activating students by letting them experience some kind
of research, based on concrete examples. Indeed, at the beginning of the 1920s, Klein
wrote about the beginnings of the collection of models around 1800: “As today, the
purpose of the model was not to compensate for the weakness of the view, but to
develop a vivid clear perception. This aim was best achieved by those who created
models themselves” (Klein 1978, p. 78). Klein seems to express doubts here that the
use of models in mathematics will automatically be successful. However, the use of
manipulatives was characteristic for an epoche in pedagogy, which had an impact on
teaching in primary schools instead of in secondary schools (Herbst et al. 2017).

He considered the deep process of creating a mathematical model as a part of
teaching-learning processes to be particularly promising. In the quotation fromKlein
on the “weakness of intuition”, one may see skepticism glittering with mere illustra-
tive means consumed in amerely passive way. Amere consideration of the collection
of objects, in this respect,wouldnot bewithout problems andwouldhave to be accom-
panied by activating formats. In the task orientation of the scientific andmathematical
studies, the usage of historic models, computer-aided presentations, and 3D-printed
models can be an opportunity for providing taskswith a product-oriented component.

In this way, Klein’s quotes show him as a constructivist, with a striking feature
of his work being the idea of enabling students to carry out suitable mathematical
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operations (Wittmann 1981). At the same time, he considers the “genetic method” an
important argument for the confrontation with or the construction of models because
they allow an approach to mathematics using several methods: “In particular, applied
to the geometry, this means: at school, one would have to provide a link to the vivid,
hands-on visualisation and can just slowly move logical elements to the foreground”.
He continues: “The geneticmethod alonewill prove to be justified to allow the student
slowly to grow up into these things”. As research objects, models address all levels
of expertise. Klein seems to warn people not to underestimate methods to approach
mathematics in different levels, when he asks, “Is it not just as worthy a task of
mathematics to correctly draw as to correctly calculate?” (Klein 1895, p. 540). For
him, tools for visualisation are an ongoing mathematical activity at all levels. The
selection of the fourmajor threads presented in this article illustrates this via examples
from both Klein’s own research and his teaching.
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Chapter 11
The Modernity of the Meraner Lehrplan
for Teaching Geometry Today in Grades
10–11: Exploiting the Power of Dynamic
Geometry Systems

Maria Flavia Mammana

Abstract In 1905, at the meeting of the Deutschen Mathematiker-Vereinigung in
Meran, the “Meraner Lehrplan,” a mathematics syllabus, was proposed. This docu-
ment, which contains many of Felix Klein’s ideas on teaching geometry in school,
proposed approaching geometry via intuitive geometry, which is the ability to see in
space, in order to provide elements for both interpreting the realworld and developing
logical skills (see Treutlein inDer geometrische anschauungsunterricht als unterstufe
eines zweistufigen geometrischen unterrichtes an unseren höheren schulen. Teubner,
Leipzig/Berlin 1911). Klein’s ideas still hold today: An intuitive approach to geome-
try can be facilitated using information technology. Some activities related to a space
geometry approach based on the analogy among figures and on the use of a dynamic
geometry system will be presented in this chapter.

Keywords Teaching/learning geometry · Dynamic geometry system
Quadrilaterals · Tetrahedra

11.1 Introduction

At the beginning of the 20th century, teaching and pedagogical experience suggested
the opportunity to consider—at the school level—intuitive geometry as a preliminary
to Euclidean geometry. Proposals for intuitive handling of geometry came from a
variety of countries. Felix Klein was one of the major proponents of these ideas.

Klein’s ideas were well represented by the curriculum proposed in 1905 by a
special commission at a meeting of scientists in Meran (part of Austria at that time)
and then republished by Klein and Schimmak (1907). This document, the Meraner
Lehrplan, proposed that geometrical teaching begins with the observation of objects
of everyday life:
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Preliminary geometry: Introduction to fundamental ideas of space as it may be observed, in
such a way, however, that space appears chiefly as involving plane properties. Dimensions,
surface lines, points, explained first in relation to immediate objects and illustrated from
widely different bodies. Plane figures as part of the boundaries of bodies, then as independent
forms in which the idea of direction, angle, parallelism, symmetry are to be brought out….
(Price 1911, p. 179)

It continues with the study of basic concepts of figures, lines, triangles, and paral-
lelograms and then trapeziums and circles: “Properties of straight lines, angles and
triangles; variation of figures in shape and size;… simple properties of parallelogram
deduced from the construction of figures. Extension of the parallelogram properties.
The trapezium. Fundamental properties of the circle…” (Price 1911, p. 179). It then
follows the theoretical study of the properties of figures, for students of 13–17 years,
and the study of solid geometry, including exercises in drawing.

In textbooks that followed this proposal, intuitive geometry is seen as the ability
to see into space and will provide items both to interpret the real world and to develop
logical skills (Menghini 2010). Illustrating the work of various authors, Fujita et al.
(2004) define intuitive geometry as “a skill to see geometrical figures and solids,
creating and manipulating them in the mind to solve problems in geometry’” (p. 2).

Klein’s ideas still hold today: An intuitive approach to geometry can be facilitated
by the use of information technology. Some activities related to the space geometry
approach that are based on both the analogy among figures and on the use of dynamic
geometry software are presented here.

11.2 Teaching Space Geometry in School

Space geometry is part of school curricula but in classrooms it is often relegated to
the end of the year and therefore covered superficially at best, if not left out com-
pletely. In fact, even though we live in a three-dimensional space, teaching/learning
three-dimensional geometry presents difficulties in graphic representation and men-
tal visualization: It is not easy to draw a three-dimensional figure on a plane and it
is not easy to imagine the mutual positions of objects in space.

A new and catchy approach to three-dimensional geometry has been realized by
means of analogy. Analogy is a “sort of similarity among distinct objects. Similar
objects agree with each other in some aspect, analogous objects agree in clearly
definable relations of their respective parts” (Polya 1957, p. 37). A problem can be
solved using the solution of an analogous simpler problem: Use its method, result,
or both. In our case, an analogy between quadrilaterals and tetrahedra can be found.
In what follows, both results and method that were used to study some properties of
quadrilaterals are then traced step by step in facing analogous properties of tetrahedra.
The use of this analogy turns out to be very useful because it represents a bridge that
creates a significant link between two and three dimensions (Mammana et al. 2012).

The use of dynamic geometry software (DGS) can also help: Cabri Géomètre
(Geogebra can also be used) allows us to not only easily build plane and space geo-
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metric figures but also to dynamically change themwithout modifying the properties
used in building them. In particular, Cabri 3D, the three-dimensional version of Cabri
Géomètre, can be a really useful instrument to overcome problems inherent in the
visualization of three-dimensional figures.

The use of a DGS is not, of course, a panacea for all problems in teaching and
learning geometry.Moreover, usingDGS does notmean that you prove a geometrical
problem, but only see that a property might be true. But I agree with Hofstadter’s
words, related to the use of Geometer’s Sketchpad:

The beauty of Geometer’s Sketchpad is that it allows you to discover instantly whether
a conjecture is right or wrong—if it’s wrong, it will be immediately obvious when you
play around with a construction dynamically on the screen. If it’s right, things will “stay in
synch” right on the button nomatter how you playwith the figure. The degree of certainty and
confidence that this gives is downright amazing. It’s not a proof, of course, but in some sense,
I would argue, this kind of direct contact with the phenomenon is even more convincing than
a proof, because you really see it all happening right there before your eyes.… I just am not
one who believes that certainty can come only from proofs. (Hofstadter 1997, p. 10)

11.3 The Content of the Activity

The content of the activity refers to a paper by Mammana et al. (2009). This paper
shows the existence of a surprising analogy between quadrilaterals and tetrahedra,
determining some properties that hold for both families of figures. In the following,
only some definitions and properties that highlight the existing analogy between the
quadrilaterals and tetrahedra are reported.

A quadrilateral Q is determined by four coplanar points, A, B, C, and D, called
vertices, such that any three of them are non-collinear. The vertices determine six
segments, AB, BC, CD, DA, AC, and BD, called edges. There are six edges: four
sides and two diagonals.We call faces of Q the triangles determined by three vertices
of Q. Then there are four faces: ABC, BCD, CDA, and DAB (Fig. 11.1). In a similar
manner, a tetrahedron T is determined by four non-coplanar points, A, B, C, and
D, called vertices. The vertices determine six segments, AB, BC, CD, DA, AC, and
BD, called edges. We call faces of T the triangles determined by three vertices of T.
There are four faces: ABC, BCD, CDA, and DAB (Fig. 11.1).

From now on we will assume that F is a quadrilateral or a tetrahedron of vertices
A, B, C, and D.

Two edges of F are said to be opposite if they do not have common vertices. AB
and CD, BC and DA, and AC and BD are then opposite edges. A vertex and a face
of F are said to be opposite if the vertex does not belong to the face. For each vertex
there is one and only one opposite face. For example, BCD is the opposite face to
the vertex A.

A bimedian of F is the segment joining the midpoints of two opposite edges. Let
M1, M2, M3, M4, M5, and M6 be the midpoints of the edges AB, BC, CD, DA, AC,
and BD, respectively. Then F has three bimedians: M1M3, M2M4, and M5M6.
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Fig. 11.1 Quadrilateral or tetrahedron

Fig. 11.2 Bimedians and centroid

Theorem 1 The three bimedians of a quadrilateral or of a tetrahedron all pass
through one point which bisects each bimedian.

The point G common to the three bimedians of F is called the centroid of F
(Fig. 11.2).

A median of F is the segment joining a vertex with the centroid of the opposite
face (being the centroid of the opposite face the centroid of the triangle opposite to
the vertex). Let A′, B′, C′, and D′ be the centroids of the faces opposite to the vertices
A, B, C, and D, respectively. Then F has four medians: AA′, BB′, CC′, and DD′.

Theorem 2 The four medians of a quadrilateral or a tetrahedron F meet in its
centroid, which divides each median in the ratio 1:3, the longer segment being on
the side of the vertex of F (Commandino’s theorem; see Fig. 11.3).

A maltitude of a quadrilateral F, relative to an edge, is the line of the plane
containing F that is perpendicular to the edge and passes through the midpoint of
the opposite edge. Then F has six maltitudes.
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Fig. 11.3 Medians

Fig. 11.4 Maltitude

TheMonge plane of a tetrahedronF, relative to an edge, is the plane perpendicular
to the edge passing through the midpoint of the opposite edge. Then F has sixMonge
planes.

Theorem 3 The maltitudes of a cyclic quadrilateral are concurrent. The Monge
planes of a tetrahedron are concurrent (see Fig. 11.4).

The analogy of the definitions and properties is summarized in the following table.
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Quadrilaterals Tetrahedra

Q is a convex quadrilateral with vertices A, B,
C, D
The points A, B, C, D are such that any three
of them are non-collinear
The vertices detect six segments AB, BC, CD,
DA, AC, BD that are called edges. The edges
of Q are the four sides and the two diagonals
Two edges are said to be opposite if they do not
have common vertices
We call faces of Q the triangles determined by
three vertices of Q
A vertex and a face are said to be opposite if
the vertex does not belong to the face. For each
vertex there is one and only one opposite face

T is a tetrahedron with vertices A, B, C, D
The points A, B, C, D are non-coplanar
The vertices detect six segments AB, BC, CD,
DA, AC, BD that are called edges
Two edges are said to be opposite if they do not
have common vertices
We call faces of T the triangles determined by
three vertices of T
A vertex and a face are said to be opposite if
the vertex does not belong to the face. For each
vertex there is one and only one opposite face

The segment joining the midpoints of two
opposite edges of Q is called bimedian of Q
Q has three bimedians, two relative to a pair of
opposite sides and one relative to the diagonals
Theorem 1. The three bimedians of a
quadrilateral all pass through one point which
bisects each bimedian
The point G common to the three bimedians of
Q is called centroid of Q

The segment joining the midpoints of two
opposite edges of T is called bimedian of T. T
has three bimedians
Theorem 1. The three bimedians of a
tetrahedron all pass through one point which
bisects each bimedian
The point G common to the three bimedians of
T is called centroid of T

The segment joining a vertex of Q with the
centroid of the opposite face is called median
of Q. Q has four medians
Theorem 2. The four medians of a
quadrilateral meet in its centroid, which
divides each median in the ratio 1:3, the longer
segment being on the side of the vertex of Q

The segment joining a vertex of T with the
centroid of the opposite face is called median
of T. T has four medians
Theorem 2. The four medians of a tetrahedron
meet in its centroid, which divides each median
in the ratio 1:3, the longer segment being on
the side of the vertex of T. (Commandino’s
Theorem)

The line that is perpendicular to an edge of a
quadrilateral Q and passes through the
midpoint of the opposite edge is called
maltitude of Q. Q has six maltitudes
Theorem 7. The maltitudes of a cyclic
quadrilateral are concurrent
The common point to the six maltitudes of a
cyclic quadrilateral Q is called anticenter of Q

The plane that is perpendicular to an edge of a
tetrahedron T and passes through the midpoint
of the opposite edge is called Monge plane of
T. T has six Monge planes
Theorem 7. The Monge planes of a tetrahedron
are concurrent. (Monge Theorem)
The common point to the six Monge planes of
a tetrahedron T is called Monge point of T

The statements and the proofs of the theorems are the same for both families of
figures. The propositions presented are simple and easy to prove, so they can be
easily used by teachers. The analogy between known plane figures, quadrilaterals,
and figures that students do not usually study much, tetrahedra, allows the teacher to
develop a stimulating activity in three-dimensional geometry. The analogy between
quadrilaterals and tetrahedra offers an opportunity to develop geometry in two and
three dimensions in parallel (Mammana et al. 2009).
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11.4 Activities

The results contained in Mammana et al. (2009) have been successfully used in
several activities that have been carried out in the first two years of high school, pro-
moting an introduction of three-dimensional geometry and visualization (Mammana
and Pennisi 2010; Mammana et al. 2012; Ferrara and Mammana 2013, 2014). The
educational rationale of the activities was to have students experience 3D geometry in
order to enhance their sense of self-efficacy, help them reach an accurate vision of the
discipline, and experience positive emotional stimulation by fostering the students’
positive attitude towards space geometry.

Usually, the activity starts by studying quadrilaterals, already familiar to the stu-
dents, and then it continues by studying tetrahedra, using the numerous analogies
with quadrilaterals. Thus, space geometry is less difficult because students are faced
with 3D problems after having already become familiar with the solution of an anal-
ogous problem in the plane. The teaching/learning strategy that was used followed
the scheme:

• Explore and verify using Cabri
• Conjecture
• Prove

This is done, for example, by observing and exploring a figure, perceiving the
relations between objects, manipulating the figure, and experimentally verifying the
hypothesis. Once the hypotheses are confirmed, a conjecture is formulated and finally
proved.

During the whole activity, students usually work in pairs and on two computers:
One computer is used towork on plane figures, the other towork on space figures. The
whole activity is supported by worksheets that have been designed for this purpose:
For each 2D worksheet there is a 3D worksheet. In this way there is an immediate
correlation between the plane figures and space figures involved in the study. An
example of a worksheet can be found in Mammana and Pennisi (2010).

The passage from plane to space is done by means of a specific Cabri 3D tool,
the “redefinition” tool. This is the key to the activity that, from a teaching point of
view, makes the analogy work.

In Cabri 3D, given a quadrilateral with its diagonals (Fig. 11.5a), it is possible
to use the redefinition tool to redefine a point, for example D out of the plane of
ABC (Fig. 11.5b). In this way, the quadrilateral becomes a tetrahedron, the vertices
of the quadrilateral become the vertices of the tetrahedron, and the edges of the
quadrilateral become the edges of the tetrahedron.

With the redefinition tool we can move from plane to space when investigating
for bimedians (Fig. 11.6a, b) and medians (Fig. 11.7a, b). Once the tetrahedron is
built it is possible to see it from all sides by activating the “glass ball” function. This
action allows the students to change their point of view in order to see the figure
from different perspectives.

The whole activity can be carried out in a mathematics laboratory:
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Fig. 11.5 a Quadrilateral. b Tetrahedron

Fig. 11.6 a Bimedians of a quadrilateral. b Bimedians of a tetrahedron

We can imagine the laboratory environment as a Renaissance workshop in which the appren-
tices learned by doing, seeing, imitating, and communicating with each other, in a word:
practicing. In the laboratory activities, the construction of meanings is strictly bound, on
one hand, to the use of tools, and on the other, to the interactions between people working
together … [and] to the communication and sharing of knowledge in the classroom, either
working in small groups in a collaborative and cooperative way, or by using the methodolog-
ical instrument of the mathematic discussion, conveniently lead by the teacher. (Anichini
et al. 2004; own translation).

A math teaching laboratory, then, is intended as

a phenomenological space to teach and learn mathematics developed by means of specific
technological tools and structured negotiation processes in which math knowledge is sub-
jected to a new representative, operative, and social order to again become the object of
investigation and be efficaciously taught and learnt. (Chiappini 2007; own translation)

The mathematics laboratory is not just the use of a computer (or two computers,
since the students work in pairs). Rather, it is an activity for the classroom that has
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Fig. 11.7 a Medians of a quadrilateral. b Medians of a tetrahedron

been deeply thought through and structured by the teacher. The teacher, together
with the students, the topic, and the structured activity are the main actors of the
mathematics laboratory.

11.5 Conclusions

In an activity like the one that is proposed here, the following are crucial:

• The analogy between figures, an analogy that holds both in properties and in
proofs, in the sense of theMeraner plan: “Geometry. Similarity, with special stress
on similar situation.”

• The use of technology that helps in drawing the figure, in discovering properties
(with the dragging mode or the redefinition tool), and in seeing the figure (with
the glass ball), in the sense of the Meraner plan: “Ideas of space as it may be
observed.”

Among teachers and students, spatial geometry has a general reputation for being
difficult because it is difficult to see. Seeing in 3D geometry is, especially at a school
level, very important. Euclidean geometry also allows us to interpret the space we
live in: Seeing mathematics in everyday life is very crucial. We need to adjust our
eye to what we have right in front of us. For example, as recently as June 2012,
a 17-year-old student taking pictures during an excursion with her classmates near
Syracuse in Sicily noted that there was a face in the rock she was taking a picture
of (Fig. 11.8): “A simple click can bring out prodigious things that sometimes may
escape the naked eye” (Ferrara and Mammana 2013).

So, I ask you, reader, what do you see in the famous Kandinsky painting Squares
with Concentric Circles (Fig. 11.9)?
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Fig. 11.8 Face in the rock

Fig. 11.9 Squares with concentric circles

Maria Roberta, a seven-year-old second grader saw in the Kandinsky painting
an axial symmetry (Fig. 11.10) and, even more, multiples of four (Fig. 11.11) and
multiples of three (Fig. 11.12).

Maria Roberta, in her homework assignment on finding 3D geometrical objects in
the kitchen, brought to school a salt container (a cylinder), sugar crystals (a sphere), a
Toblerone box (a prism), and she carried everything in doll luggage (a parallelepiped).

The geometry activity presented here helps students approach 3D geometry: It
involves manipulative activities (with digital technologies) in order to get an intuitive
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Fig. 11.10 Axial symmetry

Fig. 11.11 Multiples of four

knowledge of the properties that will be then formalized. The whole process relies
on “similarity, with special stress on similar situation” (Klein and Schimmak 1907)
and developing the attitudes of “seeing objects.” Training the eye to explore can be
done not only in a dynamic geometry environment, but also at an early stage by
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Fig. 11.12 Multiples of three

observing carefully what surrounds us (see Maria Roberta’s activities that took her
to see mathematics even in a painting!).

Let’s help our students to see!
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Part IV
Elementary Mathematics from

a Higher Standpoint—Conception,
Realization, and Impact
on Teacher Education

Marta Menghini and Gert Schubring

Part IV is concerned with Klein’s three volumes on Elementary Mathematics from a
Higher Standpoint (Elementarmathematik vom höheren Standpunkte aus). These
lecture notes from the early twentieth century were a seminal contribution to
mathematics teacher education, presenting a methodological orientation, not just a
content-oriented course. They became a model for many later approaches.

From Hand-written Notes to a Bestseller
Klein’s first volume originated from a two-semester lecture course, given in
1907-08-09. It was published as a Nachschrift of notes taken by experienced stu-
dents and revised by the professor. In Klein’s adaptation of this practice, a great
number of lithographic copies could be distributed by the publisher Teubner in
Commission: not typeset, but handwritten. Right at the beginning of volume I, one
can find the famous quote about double discontinuity (see contribution by
Kilpatrick). Volume II, on Geometry, was distributed in 1909 in the same manner.
What became later volume III had originally, in 1901, been a separate lecture
course on application of differential and integral calculus to geometry.

After the publication of the third, complete and revised edition of the
Elementarmathematik from 1924 to 1928, now in regular book format, the German
series became a bestseller, was often reprinted, and translated into many languages;
the shortcomings, faults, and omissions of the hitherto dominant English translation
of 1932 and 1939 are superseded now by the new and complete translation of all the
three volumes, published in 2016. Indeed, all translations had so far excluded
Volume III. The only complete translation has been the Chinese one, published in
the People’s Republic in 1989 and reprinted in the Republic of China in 1996.

Contributions to part IV
Gert Schubring analyzes Klein’s new establishment of the word elementary: not in
its everyday meaning of “simple,” but as the outcome of a process of “elementa-
rization” of complex developments in mathematics. Klein does not propose to treat



the latest scientific results; rather, he allows proper choices according to criteria of
the school system, yielding a certain “hysteresis” behind the recent, not yet ele-
mentarized state.

Through examples from Volume III, Precision and Approximation Mathematics,
Marta Menghini shows how the relation between applied and pure mathematics was
of utmost concern for Klein. Starting from an intuitive or practical approach, Klein
develops abstract concepts working in rich “mathematical environments”; e.g.,
circular inversion is introduced in physics then creating point sets with particular
properties.

Klein’s mathematical, historical and didactical perspective is illustrated by
Henrike Allmendinger looking at the chapter on logarithmic and exponential
functions from Klein’s Volume I, Arithmetic, Algebra, and Analysis. Klein dis-
cusses the customary approach to logarithms in school, presenting an alternative
way led by the historical development.

Jeremy Kilpatrick shows how, in the three volumes, Klein was able to relate
problems in the main branches of mathematics to problems of school mathematics,
thus facing a central problem in the preparation of mathematics teachers: a double
discontinuity in going from school to university and then back to school, to teach.

168 M.Menghini and G.Schubring



Chapter 12
Klein’s Conception of ‘Elementary
Mathematics from a Higher Standpoint’

Gert Schubring

Abstract This chapter studies Klein’s conception of elementarisation; it is first put
into the context of other approaches for mathematics teacher education in Germany.
Then, approaches in mathematics education and in history of education to conceive
of the relation between academic knowledge and school disciplines are discussed.
The wrong translation of Klein’s German term “höher” in the long time prevailing
American translation is commented on, in preparation for the analysis of the concept
of “element” in the history of science.Klein’s practice and his introduction of the term
“hysteresis” to emphasise the independence of schoolmathematics are discussed.The
last section reflects the consequences of the hysteresis notion for integrating recent
scientific advances into school curricula.

Keywords Felix klein · Elementarisation · Elements · Apollonius · d’Alembert
Hysteresis · Set theory

12.1 Introduction

My main issue here is the notion of elementarisation. There is a widespread mis-
understanding to conceive of this term within connotations like “simple”, merely a
didactical category as the exact opposite to scientific and academic knowledge. For
Klein, however, these are completely misleading connotations; rather, deep philo-
sophical and epistemological meanings are revealed to be implied.
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12.2 A Differing View of Elementary Mathematics

Actually, the term “elementary mathematics” was not new in Klein’s times; there
existed a well-known publication for mathematics teachers and mathematics stu-
dents—likewise in three volumes—that used this term and Klein expressed his pro-
found disagreement with this work. It was the Encyclopaedia of Elementary Mathe-
matics, published from 1903 with various re-editions, by Heinrich Weber and Josef
Wellstein, both mathematics professors at the University of Straßburg.

As Klein pointed out, the Weber-Wellstein Encyclopaedia gave a systematic pre-
sentation of the various parts relevant to the school curriculum (Klein 2016a, b,
third preface) whereas he was highlighting those issues that deserved methodologi-
cal comments. More importantly, Klein criticised that ‘elementary’ meant for them
“fundamental for higher mathematics” (see on Epstein’s 4th revised edition 1922:
Klein 2016a, b, 300). And, that as a consequence, Weber-Wellstein did not address
the relevance for teaching in schools:

Thus, we find in his book detailed and abstract discussions of the concept of number, limit
concept, number theoretic issues, etc., while the elements of calculus remain disregarded,
although the author supports their teaching in schools. (ibid., p. 300)

And Klein criticised that they did not reflect the pedagogical dimension of teach-
ing, neglecting in particular Klein’s plea for intuitive approaches (p. 33):

I shall indicate at once certain differences between thiswork and the planofmy lecture course.
InWeber-Wellstein, the entire structure of elementary mathematics is built up systematically
and logically in the mature language accessible to the advanced student. No account is taken
of how these things actuallymay come up in school teaching. The presentation in the schools,
however, should be psychological – to use a ‘catch word’ - and not systematic. (ibid., p. 4)

Even worse, Weber-Wellstein did not follow Klein’s conception of elementarisa-
tion by reconstructing school mathematics via the function concept:

• Another difference between Weber-Wellstein and myself has to do with delim-
iting the content of school mathematics. Weber and Wellstein are disposed to
be “conservative”, while I am “progressive”. […] We, who use to be called the
“reformers”,would put the function concept at the very centre of teaching, because,
of all the concepts of the mathematics of the past two centuries, this one plays the
leading role wherever mathematical thought is used.

• As opposed to these comparatively recent ideas, Weber-Wellstein adhere essen-
tially to the traditional limitations of the subject matter. In this lecture course I
shall of course be a protagonist of the new conception (ibid., pp. 4–5).
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12.3 Differing Views of the Relation Between Academic
Mathematics and School Mathematics

In fact, the basic epistemological issue implied by the concept of elementarisation is
the relation between school mathematics and academic mathematics. This relation is
far frombeing evident or easily resolvable. This is documented by two extreme recent
positions in mathematics education and history of education about this relation. Both
poles are represented by French researchers: Yves Chevallard and André Chervel.

Chevallard’s conception of transposition didactique is well known: the concep-
tion of the didactic transposition proposes to examine how academic knowledge of
mathematics (“savoir savant”) becomes school mathematical knowledge. For this,
the concept distinguishes three types of knowledge:

– “Objet de savoir”—subject of knowledge;
– “Objet d’enseigner”—subject to be taught: the academic knowledge becomes
teachable knowledge by the efforts of mathematics educators (their community
being called “noosphère”);

– “Objet d’ enseignement”—teaching subject (Chevallard 1985, 39).

As has been criticized by several researchers, the explanation offered by the trans-
position notion conceives of a unilateral process: it has as its starting point a pole
designed as advanced, the academic or university knowledge and as its final point
another pole inferior to it, made at school and involving the teacher in the classroom.

The other extreme is represented by the research area history of school disci-
plines. In fact, researchers of this area typically work on subjects such as literature,
the humanities, the native language, history and geography, religion, and even phi-
losophy. Thus, the focus of their approach is the socializing function of school and
hence, in particular, of school disciplines. The school culture and school subjects are
thus characterized by autonomies: it is believed that school disciplines enjoy auton-
omy with respect to the other disciplines (Chervel 1988, 73), while the example of
mathematics shows that the set of all disciplines influence strongly the status, the
level and the views of school mathematics (Schubring 2005). Moreover, Chervel
emphasises the generative nature of the school, which results in creating, due to its
character understood as relatively autonomous, school disciplines (see Vinao 2008).

12.4 Implications of the Term “Advanced”

Kilpatrick had emphasised in his lecture at ICME-11, 2008, in Mexico that the term
“advanced” used by the American translators in the title is profoundly mislead-
ing and does not correspond to Klein’s conceptions of elementarisation (Kilpatrick
2008). In fact, the term “advanced” corresponds best to Chevallard’s conception of
transposition.
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The term “advanced” implies a fundamental misunderstanding of Klein’s notion
of elementary and of Elementarmathematik. The term “advanced” means that ele-
mentary mathematics is somewhat delayed, being of another nature. It means exactly
the contrary of what Kleinwas intending. By contrasting two poles, ‘elementary’ ver-
sus ‘advanced’, one would admit just that discontinuity between school mathematics
and academic mathematics that Klein wanted to eliminate.

ForKlein, therewas no separation between elementarymathematics and academic
mathematics. His conception for training teachers in higher education departed from
a holistic vision of mathematics: mathematics, steadily developing and reforming
itself within this process, leading to ever new restructured elements, and provides
therefore new accesses to the elements. There is a widespread understanding of the
term “elementary” as meaning it something ‘simple’ and not loaded with a concep-
tual dimension—perhaps even approaching ‘trivial’. Connected, in contrast, with
the notion of element, ‘elementary’ means for Klein to unravel the fundamental
conception. What is at stake, hence, is the concept of elements.

12.5 The Concept of Elements

Beyondmere factual information, with his lecture notes Klein led the students to gain
a more comprehensive and methodological point of view on school mathematics.
The three volumes thus enable us to understand Klein’s far-reaching conception of
elementarisation, of the “elementary froma higher standpoint”, in its implementation
for school mathematics: the elements are understood as the fundamental concepts of
mathematics, as related to the whole of mathematics and according to its restructured
architecture.

Clearly, Klein was not the first to reflect about the concept of elements. It is in
particular in mathematics that one finds reflections about its meaning and its use.
This strand of reasoning was brought about by the very title of Euclid’s paradigmatic
geometry textbook. The analysis of a masterpiece of Hellenistic mathematics has
also given rise to a revealing discussion of “elements” with regard to compendium,
encyclopaedia and textbook: Fried and Unguru, in the introduction to their new
editionof theConicabyApollonius of Perga, discuss the divisionmadebyApollonius
himself in his presentation of his work to the mathematician Eudemus “regarding
the contents of the Conica, namely, that the first four books ‘belong to a course in
the elements,’ while the latter four ‘are fuller in treatment’” (Fried et al. 2001, p. 58).
They understand Apollonius’ comments as implying that an “elementary treatment”
did not mean for him rather trivial parts, which can be omitted, but instead essential
conceptual expositions (ibid.). To approach Apollonius’s meaning of “elementary”,
they refer to the analyses by historians of mathematics of the difference between the
first four books of the Conica and the further books. They refer in particular to Heath
who had published in 1896 an edition of Apollonius’ Conica:
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According to Heath, the elementary nature of the first four books distinguishes them from the
rest by the “fact that the former contain a connected and scientific exposition of the general
theory of conic sections as the indispensable basis for further extensions of the subject in
certain special directions, while the fifth book is an instance of such specialization…”. Heath
also calls the first four books a “text-book or compendium of conic sections,” and the last
four books “a series of monographs on special portions of the subject.” (ibid., pp. 58–59)1

And they largely agree with Gerald Toomer in his entry “Apollonius of Perga” in
the Dictionary of Scientific Biography:

Toomer adopts the same kind of image when he writes, “[Apollonius’] aim was not to
compile an encyclopedia of all possible theorems on conic sections, but to write a systematic
textbook on the ‘elements’ and to add some more advanced theory which he happened to
have elaborated.” (ibid., p. 59)

Fried and Unguru agree in particular with the distinction of “elements” from an
encyclopedia but disagree with Heath’s assessment as a compendium. They insist on
the systematic character of exposition and on the connected and scientific exposition
as indispensable basis for refinements and extensions.

In Modern Times, probably the most profound reflection on the concept of ele-
ments has been undertaken in the wake of Enlightenment, among the first approaches
tomaking sciencegenerally accessible.2 Itwas Jean leRondd’Alembert (1717–1783)
who conceptualized what he called to “elementarise” the sciences. It was his seminal
and extensive entry “élémens des sciences” in the Encyclopédie, the key work of the
Enlightenment, where he gave this analysis of and reflection on how to elementarise
a science, that is how to connect the elements with the whole of that science. This
procedure is to be able to identify the elements of a science, or in other words, rebuild
in a new coherent way all parts of a science thatmay have accumulated independently
and not methodically:

“On appelle en général élémens d’un tout, les parties primitives & originaires dont on peut
supposer que ce tout est formé”. (d’Alembert 1755, 491 e)3

In this sense, there is no qualitative difference between the elementary parts and
the higher parts. The elements are considered as the “germs” of the higher parts:

“Ces propositions réunies en un corps, formeront, à proprement parler, les élémens de la
science, puisque ces élémens seront comme un germe qu’il suffiroit de développer pour
connoitre les objets de la science fort en détail”. (d’Alembert 1755, 491 d)4

1Quotes from ibid, p. lxxvi and lxxvi–lxxvii.
2Alain Trouvé has studied contributions to the notion of element by philosophers, scientists and
pedagogues, since Antiquity until the early 19th century (Trouvé 2008). Essentially, it is a doc-
umentation of positions taken, without a deeper analysis. Trouvé understood “élémenter” in the
traditional sense, as “simplifying the contents of teaching”, a first form of what would later be
called “transposition didactique” (ibid., p. 93).
3In general, one calls elements of a whole the primitive and original parts, of which one might
suppose that this whole is formed.
4These propositions, united in one body, will properly constitute the elements of science, since
these elements will be like a germ, which it would be sufficient to develop in order to know the
objects of science in great detail.
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An extensive part of the entry is dedicated to the reflection on elementary
books—livres élémentaires, such as schoolbooks, which are essential, on the one
hand, to disseminate the sciences and, on the other, to make progress in the sciences,
that is, to obtain new truths. In his reflection on elementary books, d’Alembert empha-
sised another aspect of great importance regarding the relationship between the ele-
mentary and the higher: he underlined that the key issue for the composition of good
elementary books consists in investigating the “metaphysics” of propositions—or in
terms of today, the epistemology of science.

In the first phase of the French Revolution, the composition and publication of
livres élémentaires constituted a key issue of the concerns for building a new society.
The elaboration of livres élémentaires was conceived of as essential for instituting
the new system of public education; practically the first measure for this task was
to organise a concours for composing these textbooks (Schubring 1984, pp. 363 f.;
Schubring 1988).5 It is highly characteristic that in the later Napoleonic period the
emphasis on livres élémentaireswas replaced by a policy of creating livres classiques,
focussing on the humanities (Schubring 1984, p. 371).

12.6 Klein’s Practice

In fact, Klein’s work can be understood exactly as providing an epistemological, or
methodological access to mathematics as analysed and propagated by d’Alembert.
It was not to provide factual knowledge—Klein presupposed it to have already been
studied:

I shall by no means address myself to beginners, but I shall take for granted that you are all
acquainted with the main features of the most important disciplines of mathematics. (Klein
2016a, b, p. 1 ff.)

Whereas he outlined as his goal:

And it is precisely in such summarising lecture courses as I am about to deliver to you that
I see one of the most important tools. (ibid., p. 1)

Indeed, Klein explicitly exposed the epistemological aspect of his work: explain-
ing the connections, in particular the connections between sub-disciplines, which
normally are treated separately, and pointing out the links of particular mathematical
issues and questions with a synthetic view of the whole of mathematics. Thus, future
teachers would achieve to deepening of their understanding of the basic concepts of
mathematics and appreciate the nature of mathematical concepts:

My task will always be to show you the mutual connection between problems in the various
disciplines, these connections use not to be sufficiently considered in the specialised lecture

5Recently, Barbin has proposed a seemingly related notion: élémentation. It means, according to
her, “the process by which a science is organized in view of its presentation or its teaching, and
especially in the case oft he writing of a textbook” (Barbin 2015, p. 41). This notion is rather near
to transposition.
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courses, and I want more especially to emphasize the relation of these problems to those of
school mathematics. In this way, I hope to make it easier for you to acquire that ability which
I look upon as the real goal of your academic study: the ability to draw (in ample measure)
from the great body of knowledge taught to you here vivid stimuli for your teaching. (ibid.,
p. 2)

I should remark here that, given the methodological task of these lecture courses,
Klein evidently did not aspire to elaborate any teaching unit or to propose a didactical
sequence—as he always emphasised, this should be the exclusive task of the teacher,
given his autonomy with regard to teaching methods. Klein was therefore always
distant from what became later the dominant practice of so-called Subject didactics
(Stoff -Didaktik) in Western Germany (see Schubring 2016).

There is a decisive difference between d’Alembert’s and Klein’s notion of ele-
mentarisation. Basically, d’Alembert’s notion was not a historical one; he did not
reflect the effect of scientific progress on the elements. But this was exactly Klein’s
notion. He emphasised:

The normal process of development […] of a science is the following: higher and more
complicated parts become gradually more elementary, due to the increase in the capacity
to understand the concepts and to the simplification of their exposition (“law of historical
shifting”). It constitutes the task of the school to verify, in view of the requirements of general
education, whether the introduction of elementarised concepts into the syllabus is necessary
or not. (Klein and Schimmack 1907, p. 90)

The historical evolution of mathematics entails therefore a process of restructura-
tion of mathematics where new theories, which at first might have been somewhat
isolated and poorly integrated, become well connected to other branches of mathe-
matics and effect a new architecture ofmathematics, based on re-conceived elements,
and thus on a new set of elementarised concepts.

For Klein’s conception of elementarisation there is a second concept, comple-
menting the notion of “historical shifting”: it is the notion of hysteresis. Hysteresis
is a term from physics and since it is not so well known, here a definition within
physics:

A retardation of the effect when the forces acting upon a body are changed (as if from
viscosity or internal friction); esp.: a lagging in the values of resulting magnetization in a
magnetic material (such as iron) due to a changing magnetizing force.

Klein continued in applying this term to the relation between scholarly mathe-
matics and school mathematics:

In this connection I should like to say that it is not only excusable but even desirable that the
schools should always lag behind the most recent advances of our science by a considerable
space of time, certainly several decades; that, so to speak, a certain hysteresis should take
place. But the hysteresis, which actually exists at the present time is in some respects unfor-
tunately much greater. It embraces more than a century, in so far as the schools, for the most
part, ignore the entire development since the time of Euler. (Klein 2016a, b, pp. 220–221;
my emphasis, G.S.) (Fig. 12.1).

Klein’s conception of elementarisation thus implied, regarding the curriculum,
that newdiscoveries and developments in scholarlymathematics should have reached
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Fig. 12.1 Original handwriting of the lithographic second edition

a certain maturity, and integration with the remainder of mathematics—in other
words, a restructuration of mathematics from newly conceived elements of science.
The concept of hysteresis thus meant that new developments should enter after this
process of renewed elementarisation. It is evident that Klein did apply the concept
of hysteresis in particular to set theory (Fig. 12.2) .

12.7 Modernism and the Challenge by Set Theory

Set theory was a case for Klein where this theoretical development was too fresh,
and not yet accomplished and even further from having matured to the point of
having induced an intra-disciplinary process of integration and restructuration. The
concepts of set theory did not (yet) provide new elements for mathematics—hence
Klein’s polemic against Friedrich Meyer’s schoolbook of 1885 who’s intention had
been, in fact, to use set theory as new elements for teaching arithmetic and algebra
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Fig. 12.2 Title page of
Meyer’s schoolbook

(see Klein 2016a, b, p. 289, note 181). Meyer, mathematics teacher at a Gymnasium
in Halle and friend of Cantor, introduced there the notions of set theory—not yet
fully developed then by Cantor—as foundations for the number concept. Klein had
sharply criticised this schoolbook in his first edition, but softened his critique in
subsequent editions. In Klein’s times, mathematics had not achieved the level of
architecture established by Bourbaki—and hence not of “modern math”.

Given that set theory has been almost identified with modernism in math-
ematics, I need to comment somewhat on the book by Herbert Mehrtens:
Modeme—Sprache—Mathematik (1990), where he models Göttingen mathemat-
ics as bi-polar: Hilbert representing “modernism” and Klein representing “counter-
modernism”. I was always critical of this book and Mehrtens’ assessments, since he
misrepresents both mathematicians: Hilbert was not that theoretician and formalist
who freely created abstract theories whom Mehrtens compared with the artists of
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that time as no longer bound by any claim to represent reality. And depicting Hilbert
as “anti-intuitive” (1996, p. 521) deeply misunderstands Hilbert’s vision and practice
of mathematics. Klein is, on the other hand, denounced by Mehrtens to be tied to
reality and to intuition largely because German Nazi mathematicians later abused
these notions.

Yet, one has to admit that Klein showed scepticism and reservation regarding set
theory and axiomatics. On the one hand, he praised the progress in function theory
brought about by Cantor’s new theories:

The investigations of George Cantor, the founder of this theory, had their beginning precisely
in considerations concerning the existence of transcendental numbers. They permit one to
view this matter in an entirely new light.

On the other hand, Klein warned against the abstractness of set theory. Thus, he
showed misgivings when he spoke of the “modern” function concept launched by
Cantor:

In connection with this, there has arisen, finally, a still more far-reaching entirely modern
generalisation of the function concept. Up to this time, a function was thought of as always
defined at every point in the continuum made up of all the real or complex values of x, or
at least at every point in an entire interval or region. But since recently the concept of sets,
created by Georg Cantor, has made its way more and more to the foreground, in which the
continuum of all x is only an obvious example of a “set” of points. From this new standpoint
functions are being considered, which are defined only for the points x of some arbitrary
set, so that in general y is called a function of x when to every element of a set x of things
(numbers or points) there corresponds an element of a set y. (Klein 2016a, b, p. 220)

Clearly, this abstract function concept was not at all adapted for Klein’s curricular
reform programme with a function concept as its kernel, which could interrelate
analysis and geometry. His misgivings were even stronger concerning his doubts as
to whether all this might have applications:

Let me point out at once a difference between this newest development and the older one.
The concepts considered under headings 1. to 5. have arisen and have been developed with
reference primarily to applications in nature. We need only think of the title of Fourier’s
work! But the newer investigations mentioned in 6. and 7. are the result purely of the drive
for mathematical research, which does not care for the needs of exploring the laws of nature,
and the results have indeed found as yet no direct application. The optimist will think, of
course, that the time for such application is bound to come. (ibid.)

Given Klein’s intense plea for applications, one should remark, furthermore, that
he not only alerted, in the first volume in the context of the emergence of set theory,
against pushing a formalist programme for the foundations of mathematics too far,
but he also had taken up the issue again in volume III of his Elementarmathematik,
advising against searching for the New only for the sake of doing it:

Provided that a deep epistemological need exists, which will be satisfied by the study of a
new problem, then it is justified to study it; but if one does it only to do something new, then
the extension is not desirable. (Klein 2016a, p. 157)
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Klein did even not exempt Hilbert from his critical scepticism: he commented
upon Hilbert’s research on the foundations of arithmetic to establish the consistency
of operating with numbers:

Obviously one can then operate with a, b, c,…, precisely as one ordinarily does with actual
numbers. (Klein 2016a, b, p. 14)

commenting:

The tendency to crowd intuition completely off the field and to attain to really pure logical
investigations seems to me not completely realisable. It seems to me that one must retain a
remainder, albeit a minimum, of intuition. (ibid., p. 15)

Klein added, however, a cautious remark that he did not want to criticise Hilbert,
albeit in a rather implicit manner:

I have felt obliged to go into detail here very carefully, in as much as misunderstandings
occur so often at this point, because people simply overlook the existence of the second
problem. This is by no means the case with Hilbert himself, and neither disagreements nor
agreements based on such an assumption can hold. (ibid., p. 16)

The second problem, which Klein is emphasising here, was put by him as the
epistemological aspect of the task of justification of arithmetic—and his intention
was to say that it should not be overlooked when researching upon the logical aspect
of justification of arithmetic.

12.8 Concluding Remarks

In fact, school mathematics will always be confronted with the tension between
logical and epistemological aspects; there can be no definite solution. But Klein’s
concept of hysteresis offers a viable approach to realising an elementarisation that
puts school mathematics into a productive relation with the progress of mathematics.

The attractiveness of Klein’s lecture notes is due to his epistemological under-
standing of the elements, and to not falling into the trap of practicing elementarisation
as a simplification but as the challenge to understanding the connectivity and coher-
ence of the branches and specialities of mathematics.
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Chapter 13
Precision Mathematics
and Approximation Mathematics: The
Conceptual and Educational Role
of Their Comparison

Marta Menghini

Abstract The relationship between applied and pure mathematics is of utmost
concern for Klein. Examples from Volume III of his “Elementarmathematik” illus-
trate how, starting froman intuitive and sometimes practical approach,Klein develops
abstract concepts working in rich “mathematical environments”. The examples con-
cern the concept of empirical function and its comparison with an idealised curve,
point sets obtained through circular inversion that lead to compare rational numbers
and real numbers, and the “continuous” transformation of curves with the help of a
point moving in space.

Keywords Precision mathematics and approximation mathematics
Mathematical environments · Mathematics teacher training · Empirical functions
Circular inversion · Transformation of curves · Felix Klein

13.1 The Lecture Course of Felix Klein

Felix Klein’s Präzisions- und Approximationsmathematik appeared in 1928 as vol-
ume III of the seminal series of lecture notes on elementary mathematics from a
higher standpoint (Elementarmathematik von einem höheren Standpunkte aus; Klein
1928). The 1928 edition was in its turn a re-edition of a lecture course delivered by
Klein in 1901 with the title Anwendung der Differential- und Integralrechnung auf
die Geometrie: eine Revision der Prinzipien, published in 1902 in lithographic form
(Klein 1902; a reprint of 1908, edited by Conrad Heinrich Müller, left the text essen-
tially unchanged).

In this third volume Klein explores the relationship between precision mathe-
matics and approximation mathematics. He crosses between various fields of math-
ematics—from functions in one and two variables to practical geometry to space
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curves and surfaces—always underlining the relationship between the exactness of
the idealised concepts and the approximations to be considered in applications.

The point of view is not that of mathematics as a service subject, rather that of

… the heuristic value of the applied sciences as an aid to discovering new truths in mathe-
matics. (Klein 1894, 6th Conference, p. 46)

Of course there is also “a universal pedagogical principle to be observed in all
mathematical instruction”, namely that,

It is not only admissible, but absolutely necessary, to be less abstract at the start, to have
constant regard to the applications, and to refer to the refinements only gradually as the
student becomes able to understand them. (ibid., p. 50)

Therefore, the logical procedures that lead to theorems are confronted with the
way in which concepts are formed starting from observations.

The final part of the book concerns gestalt relations of curves and surfaces, and
shows how Klein masters the art of describing geometrical forms; Klein appeals to
intuition leading the reader to think at continuous transformations of the geometric
objects considered.

Volume III was translated for the first time in English in 2016 (Klein 2016; see
Fig. 13.1). It is not clear why it was not translated jointly with the first two volumes
in the 1930s. Maybe its value for the training of teachers, clearly recognised as
concerns the two first volumes, had not yet been understood (see Kilpatrick, this
volume; Menghini and Schubring 2016). Or, maybe, the decision was made because
of the different role played by Klein in the 1928 edition of the third volume: Klein
participated, together with Fritz Seyfarth, in the whole project of re-editing the three
volumes on Elementary mathematics from a higher standpoint, but he died in 1925,
after the first two volumes had appeared. The third volumewas, therefore, edited only
by Seyfarth; changes and insertions had been nevertheless discussed with Klein, as
Seyfarth writes in his preface to the third edition (see Klein 2016, xiii). Probably for
this same reason the third volume contains no particular indications of its importance
for the training of the future mathematics teachers.

A translation after nearly a century, joined with a new edition of the two first
volumes, must not be considered strange: this translation has an historical value,
since Klein is one of the greatest mathematicians of history (books by Felix Klein
are still in use today: Klein’sNicht-euklidische Geometrie has been re-edited in 2006,
the English version of the Lectures on the Ikosahedron re-edited in 2007, and his
Development of mathematics in the nineteenth century was translated in 1979); it
also has a mathematical value—because of the interesting approaches and the links
to applications. But, above all, it has a didactical value, concerning the training of
mathematics teachers, for the reasons given at the beginning of this chapter, which
we will try to explain more in depth through some examples.

The third volume focuses on precision and approximation mathematics, that is on
the link between mathematics and its applications:

Precision mathematics includes all the propositions that can be logically deduced
from the axioms of geometry or of analysis—obtained by abstraction from experi-
ence;
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Fig. 13.1 The 2016 edition
of Precision Mathematics
and Approximation
Mathematics, translated from
the third German edition
(1928) by Marta Menghini
with Anna Baccaglini-Frank
as collaborator and Gert
Schubring as advisor

Approximation mathematics includes the results that can be obtained from expe-
rience with a certain degree of approximation.

Klein starts by considering those properties that applied mathematicians take for
granted when studying certain phenomena from a mathematical point of view. These
properties must be seen as supplementary conditions for the ideal objects of pure
mathematics. In the meantime, these very properties prove to be the more intuitive
ones. Therefore the comparison moves towards another field: it is a comparison
between properties that can be considered only in the theoretical field of abstract
mathematics and properties that can be grasped by intuition. This distinction still has
repercussions in mathematics education today.
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13.2 First Example: Empirical and Idealised Curve

Klein makes an important distinction between functions arising out of applications
of mathematics and functions as abstractions in their own right. This topic had been
introduced by Klein in his American conferences of 1984:

In imagining a line, we do not picture to ourselves “length without breadth”, but a strip of a
certain width. Now such a strip has of course always a tangent (Fig. 13.2); i.e. we can always
imagine a straight strip having a small portion (element) in common with the curved strip;
similarly with respect to the osculating circle. The definitions in this case are regarded as
holding only approximately, or as far as may be necessary. (Klein 1984, p. 98)

So we need to examine which restrictions we have to put to an idealised curve y
� f (x) so as to obtain that it corresponds to the concept of an empirical curve.

We have the perception that the empirical curve,

(a) is connected in its smallest parts, that is, it takes on all values between the
ordinates of two of its points.

(b) encloses a specific area between the x-axis and the ordinates of two of its points.
(c) has everywhere a slope (and a curvature, …).
(d) has a finite number of maxima and minima.

How can we translate these intuitive properties into mathematical properties of
f (x) (Fig. 13.3)? The connectedness of point (a) can be expressed by saying that
f (x) must be “continuous” (even if there is not a complete equivalence of the two
meanings); point (b) is simply translated into the fact that f (x) is integrable; point
(c) means that f (x) has a first (and second, …) derivative at any point; finally point
(d) is expressed by the property that f (x) must split—in the given interval—into a
finite number of monotonous parts.

So, for instance, a function as y � sin 1/x (Fig. 13.4) exists only in the ideal field:
it belongs only to precision mathematics.

But the properties (theorems) that we can study mathematically on our idealised
curve f (x)—oncewe have considered the restrictions suggested by our experience—-
can then apply also to our empirical curve. So we go back from abstraction to appli-
cations.

In 1913/14 the Italian geometer Guido Castelnuovo gave a series of lectures
at the University of Roma entitled Matematica di precisione e matematica delle

Fig. 13.2 Taken from Klein
(1984, p. 98)
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Fig. 13.3 Taken from Klein (1928, p. 22)

Fig. 13.4 The function y � sin 1/x

approssimazioni. The course was explicitly inspired by the course delivered by Felix
Klein in 1902.

Castelnuovo states clearly at the beginning of his lecture course that the teaching
and learning of mathematics would be more successful if it included, besides the
logical procedures that lead to the theorems, also the way in which concepts are
formed starting from observations, and how they can be verified in practice.

In 1911 the Liceo Moderno was established (Legge 21 July 1911, n. 860), which
effectively started in 1913. In this school, the preparation towards university studies
(not necessarily of a scientific nature) was achieved through the study of Latin,
modern languages, and the sciences (Marchi and Menghini 2013). Mathematics is
presented as an apt language for describing natural phenomena and a part of the
programmes is concerned with approximation mathematics and its heuristic nature.
Its mathematics programs were ascribed to Castelnuovo:

The renovation of the mathematics of the 17th century is linked to the blooming of the
natural sciences. Within this context, the teacher will have to explain how the fundamental
concepts of modern mathematics, particularly the concept of function, are implied by the
observational sciences, and – being then rendered precise by mathematics – have in turn had
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a positive influence on the development of the latter. (Castelnuovo 1912, p. 124, translated
by the author)

Castelnuovo’s course on precision and approximation mathematics is therefore
very apt to train the teachers of his modern lyceé, which he hopes to become
widespread. In particular, the comparison between empirical and idealised function
describes verywell the reciprocal aid of observational sciences and puremathematics
mentioned in the above quotation.

13.3 Second Example: Iterated Inversion with Respect
to Three Touching Circles

One of the reasons for putting applications at the beginning of a teaching sequence
is, as already said, the heuristic value of applied sciences. Even when starting from
a practical approach Klein develops more abstract concepts working in rich “mathe-
matical environments”, which form the core of a pertinent program for mathematics
teacher education. In this case we are not necessarily interested in going back to
applications: we take the idea from applications, and we work as mathematicians in
the ideal field.

Let us start from an example taken from physics:
The method of image charges (also known as the method of images or method of

mirror charges) is a technique to solve problems in electrostatics. The name comes
from the fact that charged objects in the original problem are replacedwith equivalent
imaginary discrete point-charges, still satisfying the boundary conditions associated
with the problem.

A simple case of the method of image charges is that of a point charge q, which
we can consider located at the point (0, 0, a) above an infinite grounded (i.e.: V �
0) conducting plate in the xy-plane. The problem can be simplified by replacing the
plate of equipotential with a charge −q, located at (0, 0, −a).

The method of images may also be applied to a sphere or to a cylinder. In fact,
the case of image charges above a conducting plate in a plane can be considered as a
particular case of images for a sphere. In this case a point-charge q lying inside the
sphere at a distance l1 from the origin has as its image another point-charge lying
outside the sphere at a distance of R2/l1 from the origin. So, the relation between
the two charges is given by circular inversion. The potential produced by the two
charges is zero on the surface of the sphere (Fig. 13.5).

Klein states that already in 1850 William Thomson and Bernhard Riemann, when
studying the equilibrium of charges on three rotating cylinders with parallel axes,
observed that the “method of image charges” leads to the generation of a certain
point set (see Thomson 1853; we could not find anything explicit on this topic in
Riemann’s legacy).
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Fig. 13.5 Image charges in the case of a plate (left) and of a sphere (right)

We leave now the field of applications and turn completely to the ideal field
considering three disjoint circles (which correspond to the normal section of the
three rotating cylinders).

We consider the point set obtained from the points of a given region (the one
outside the 3 circles) by applying any combination of the inversions in the three
given circles, that is applying to the region the whole group of “transformations” that
arises from the three “generators”.

The text of Klein contains wonderful and clear drawings on this subject, but the
use of a software like Geogebra, which has circular inversion in its menu, helps in
following the probable development of the explanation that was delivered to Klein’s
students during the lecture course. In the following the drawings are either taken from
the text of Klein or made with Geogebra. In this second case the “historic overview”
of the various constructions is didactically important. Here we can only show some
snapshots.

So, let us start from two circles (Fig. 13.6). In the first step we apply circular
inversion with respect to the left circle, that is we reflect in the left circle the whole
region outside, including the right circle. All the points of the infinite region outside
the left circle are transformed in the points internal to the circle, and the right circle
is transformed in a smaller circle inside the left circle.

To simplify our language we will from now on only speak of the reflection of the
circles, without mentioning all the points of the regions contained in or outside them.
So, the next step is the reflection of the left circle into the right one.

Now we can proceed in any order, for instance reflecting again the right circle
with its internal circle into the smaller circle at the left (Fig. 13.7).

It is easy to understand that we obtain a configuration made by chains of circles
each inside the other (Fig. 13.8).
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Fig. 13.6 Each circle is reflected in a smaller circle inside the other one

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

–5

–4

–3

–2

–1

0

1

2

3

4

5

6

7

8

9

Fig. 13.7 Reflection of an internal circle in another internal circle

We then add the third circle, and continue to apply the circular inversion reflecting
the whole configuration in the new circle, and also reflecting the new circle in the
two former ones. We see that many chains of circles are appearing. In fact, an infinite
number of chains (Fig. 13.9).
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Fig. 13.8 Further reflections
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Fig. 13.9 Reflections in and of a third circle

And now we have the fundamental transition from an empirical construction to
the idealised field. We use the axiom of the nested intervals: For every indefinitely
decreasing sequence of closed intervals (segments, parts of curves, plane regions,
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Fig. 13.10 Taken from
Klein (1928, p. 140)

parts of spaces), each of which contains all the following ones, there exists one and
only one point common to all the intervals. This point is therefore univocally defined
by the interval sequence.

The axiom of the nested intervals allows us to say that each chain (sequence) has
a limit point.

Speaking again of the regions transformed, we can say that we obtain a net of
regions that fill the plane except for an infinite set of limit points: What can we say
about this limit point set?Wefind out that it is nowhere dense, but nevertheless perfect
(it contains all of its accumulation points) and has the cardinality of the continuum
(like the Cantor set).

Now we continue to play with circular inversion and consider three touching
circles. And again we repeat the inversions. In the first step (Fig. 13.10) each circle
contains the image of the two others. Each circle, as well as the external regions,
contains curvilinear triangles.

The points of contact of the arising curvilinear triangles (and of the arising circles)
accumulate on the orthogonal circle, that is the circle that is orthogonal to the three
given ones (Figs. 13.10 and 13.11), as was also suggested by Fig. 13.9. Proceeding
with the construction, the orthogonal circle is filled more and more densely with the
points of contact of two circles (Fig. 13.12).

The next question is then: What can be said about the set of points of contact? It is
easy to understand that in the set of the points of contact each point is an accumulation
point for the others, and that the set is everywhere dense on the periphery of the
orthogonal circle.

“Until now I have spoken of these things in a somewhat indeterminate manner,
because I did not refer to any quantitative relations but only to the figure as such.
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Fig. 13.11 Taken from Klein (1928, p. 141)

Fig. 13.12 Circles accumulate on the orthogonal circle

However, it is easy to give to the figure a form that allows an arithmetic interpretation
of everything” (Klein 2016, p. 157).

Following the idea of Klein, let us consider a circle with its centre on the contact
point of two of the three touching circles. If we reflect the two circles in it, these
are transformed into lines, due to the rules of circular inversion. The third circle is
instead transformed into a smaller circle (Fig. 13.13). Now we add the orthogonal
circle, which is in its turn reflected into a line, perpendicular to the former two
(Fig. 13.14), which divides the smaller circle in two parts.
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Fig. 13.13 Circle centred in the contact point of two circles

Fig. 13.14 Reflections in the new circle

We thus obtain a curvilinear triangle delimited by two parallel straight lines and
by a semi-circle touching these lines (Fig. 13.15).

Now we choose the line QQ (as called by Klein in Fig. 13.16) as x-axis, and the
origin and the scale so that the points x � 0, x � 1 fall at the two finite vertices.
Then the whole figure is easy to construct, mirroring Fig. 13.15 unlimitedly on the
right and on the left, and reflecting the sequence of infinitely many triangles such
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Fig. 13.15 Taken from Klein (1928, p. 143)

Fig. 13.16 Taken from
Klein (1928, p. 144)

obtained in each of the occurring semi-circles. In this way all the points of contact
can be found on the x-axis, and it is easy to calculate exactly arithmetically what
had been explained in our first figure only with the help of our immediate geometric
sense. Indeed, the formulas of the circular inversion indicate that a circle with rational
centre and rational radius is transformed in another circle with rational centre and
rational radius:

More precisely, the equation of circular inversion is given, in its simple vector
form, by

O P · O P ′ � r2

where O is the centre of the circumference, r its radius, P and P′ two corresponding
points collinear with O. It is clear that a point on the circumference corresponds
to itself. Moreover, the image of the centre is a point at infinity, and—since the
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Fig. 13.17 Starting form a circle of diameter 1

Fig. 13.18 Chain of consecutive inversions

correspondence is an involution—all points at infinity have the centre as their image
point.

Let us consider the circle C1 whose diameter is the segment [0;1] on the number
line. Its centre has abscissa ½. The straight line x � 0 (circle with infinite radius),
perpendicular to the line QQ′, has as its correspondent with respect to C1 the circle
C2, which has as end points of its diameter 0 and ½. In its turn, the image of C1 with
respect to C2 is a circle C3, whose diameter has as endpoints 0 and 1/3, and so on
(Figs. 13.17 and 13.18).
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Therefore all the points of contact have rational abscissas x and every point with
a rational x becomes a contact point. So, there is not only an analogy between the
set of the points of contact and the set of the rational points on the x-axis, but there
exists an identity. In particular it turns out that the set of the points of contact is
denumerable. We have found a method of construction of the rational numbers on
the real line, which provides a wonderful mental image of the relationship between
rational numbers and real numbers on the number line.

13.4 Third Example: Gestalt Relations of Curves

The final part of Volume III concerns gestalt relations of curves in space and surfaces
and shows Klein to be the master of the art of description of geometric forms. In
part II, concerning—as above—the free geometry of plane curves (that is a geometry
independent from a coordinate system), Klein discusses “the possibility to deduce
properties of the idealised curve from the empirical shape” (Klein 2016, p. 189).
Klein considers again the relation between an empirical and an idealised curve and
poses the question:

Can I now deduce from the gestalt relations of the empirical curve, which I see before my
eyes, the corresponding properties of the idealised curve?

To answer this question, Klein’s conception is necessarily decisive, that the ide-
alised curve is something that goes beyond sensorial intuition and exists only on the
base of definitions. So we cannot appeal only to intuition. “Rather, we always need to
reflect onwhether, respectivelywhy, things thatwe roughly see—so to speak—before
our eyes in an empirical construction can be rigorously transferred to the idealised
object thanks to the given definitions.”

As an example Klein considers the following figure (Fig. 13.19), namely a closed
convex curve cut by a straight line:

In our mind, we substitute the straight line of the figure by an idealised straight
line, and the drawn curve—at first—by a regular curve (a Jordan-curve). Intuition
teaches us that the idealised straight line passes inside and outside the Jordan curve,

Fig. 13.19 Taken from
Klein (1928, p. 176)
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giving rise to two intersection points. But, even admitting that the drawn curve is a
continuous curve, we cannot deduce from the figure that any closed curve has two
intersectionswith a straight line. It is, for instance, possible that in the neighbourhood
of the point in which the empirical figure shows only one intersection, the idealised
figure presents three or five of them. This is in fact not excluded, if we do not further
limit with definitions the type of curve.

Now we pass to considering an algebraic curve and let us suggest general proper-
ties of the algebraic curves by looking at some of them, starting from simple repre-
sentations, and passing from one curve to the other by continuous transformations.
As Klein says, we perform a proof by continuity. What do we mean by continuous
transformation of a curve? Let us follow Klein’s interesting idea:

The general equation of a curve of the n-th degree Cn has n(n+3)
2 constants. For

instance, the general equation of a conic section has 2(2 + 3)/2� 5 constants (in fact,
six parameters which can be multiplied or divided by one of them):

ax2 + by2 + cxy + dx + ey + f � 0

We consider these as coordinates of a point in a higher dimensional space and call
this point the “representational point” belonging to the curves Cn. If the Cn assumes
all possible shapes, that is if the coefficients vary arbitrarily, the representational
point varies in the whole n(n+3)

2 —dimensional space.
It is very useful to choose for support such a space and to consider it alongside

all the Cn. Indeed, Klein states, we do not know exactly what it means that a curve
varies with continuity, but we can easily imagine a point moving continuously in the
space.

To help furthermore imagination, let us take as a first example (which is not present
in Klein) a conic section centred in the origin (with only three constants):

ax2 + by2 � c.

In this case the representational point P has coordinates a, b, c and varies in the
3D-space. We realise, with the help of Geogebra,1 a simulation in which the point
P moves in space while the conic section takes on the coefficients of the point P
(Fig. 13.20a, b).

According to the values of a, b, c we get all kind of conic sections, but not the
parabola as we do not have a term of the first degree.

We can also observe that we have the degenerate conics (a point or two lines) when
the point P crosses the xy plane (that is, the constant c is � 0, as in Fig. 13.20c).
During this transition a hyperbola becomes an ellipse or vice versa. This can be used
in schools to show the way in which conic sections are transformed one into the other
by continuity.

Klein himself considers a second example. It is a quartic.Klein is notworried about
the number of constants: even if the representational space is of higher dimension

1I thank Anna Baccaglini-Frank for her collaboration in creating these files.
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Fig. 13.20 a–c “Continuous” transformation of a conic section

Klein wants to stimulate our intuition: we have to imagine point P moving in the
space, we have to understand how the quartic varies accordingly, understand that
we find double points when P crosses certain surfaces, and that we have higher
singularities (which can be avoided in our “walk in the space”) crossing certain
curves on the surfaces.

Nevertheless we tried to simulate the situation with the help of Geogebra using,
once again, only three coordinates. This does not change Klein’s example.

(
ax2 + by2 − ab

)(
bx2 + ay2 − ab

) � c

The starting point, corresponding to c � 0, is constituted by two ellipses
(Fig. 13.21).

Moving P in space, the quartic takes on various forms (Fig. 13.22). For instance,
when c becomes negative, the quartic becomes like the one of Fig. 13.23.
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Fig. 13.21 Taken from Klein (1928, p. 191)

Fig. 13.22 One of the forms
of the quartic

Klein observes how inflection points, double points or bitangents (namely tangents
to two points of the curve) change when transforming the quartic, in particular Klein
proves by continuity certain regularities concerning their number. For instance, the
number of real inflection points (8 in Fig. 13.24) added to twice the number of isolated
bitangents (4 in Fig. 13.25) is constant.

But from a didactic point of view, to look at the continuous transformation of such
a quartic is sufficient.
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Fig. 13.23 The case of
negative c

Fig. 13.24 Taken from
Klein (1928, p. 202)

13.5 Conclusion

The history of mathematics education presents at different times and in different
countries “utilitarian” periods inwhich applications ofmathematics are considered an
end of the curriculum, and even mathematical subject matter which cannot be linked
to external use comes under attack (Niss 2008). On the other hand, applications can
be regarded as a means to support learning, by providing interpretation and meaning.
When considering the two aspects of applied mathematics, a means or an aim, we
are not faced with a contradiction but, as Niss states, with a duality. Klein tries to
support an even stronger conception of a continuous exchange between empirical
observation and formalised objects.



200 M. Menghini

Fig. 13.25 Taken from
Klein (1928, p. 202)

The third part of Klein’s work has the interesting title “About the perception of
idealised structures by means of drawings and models”. In this last section Klein
presents the collection of models in Göttingen with the related explanations. Klein
continues to reason by continuity, appealing to intuition. He writes, at the beginning
of this section, that a main theme within the topics treated in his lecture course has
been the distinction between empirical space intuition, with its limited precision, and
the idealised conceptions of precision geometry. As soon as one becomes aware of
this difference, one can choose his way unilaterally in one or in the other direction.
But both directions seem to be equally unfruitful.

Klein strongly advocates the need to maintain a connection between the two
directions, once their differences are clear in one’s mind:

A wonderful stimulus seems to lay in such a connection. This is why I have always fought
in favour of clarifying abstract relations also by reference to empirical models.

The examples shown above surely support this statement.
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Chapter 14
Examples of Klein’s Practice Elementary
Mathematics from a Higher Standpoint:
Volume I

Henrike Allmendinger

Abstract In the first volume of ElementaryMathematics from a Higher Standpoint:
Arithmetic, Algebra and Analysis, Klein closely adheres to several principles which
contribute a great deal to the understanding of Klein’s higher standpoint—such as the
principle of mathematical interconnectedness, the principle of intuition, the principle
of application-orientation, and the genetic method of teaching. In addition, Klein
conveys not only a mathematical but also a historical and a didactical perspective,
all of which broaden this standpoint. This versatile approach to the mathematical
content will be illustrated in this article by taking a closer look at the chapter on
logarithmic and exponential functions.

Keywords Felix Klein · Elementary mathematics · Higher standpoint
Logarithms · Perspectives

14.1 Introduction

The young university student finds himself, at the outset, confronted with problems, which
do not remember, in any particular, the things with which he had been concerned at school.
Naturally he forgets all these things quickly and thoroughly. When, after finishing his course
of study, he becomes a teacher, he suddenly finds himself expected to teach the traditional
elementary mathematics according to school practice; and, since he will be scarcely able,
unaided, to discern any connection between this task and his university mathematics, he will
soon fall in with the time-honoured way of teaching, and his university studies remain only a
more or less pleasant memory which has no influence upon his teaching. (Klein 1908/2016,
p. 1)
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Klein called this situation a double discontinuity1 and met this problem by giv-
ing a series of lectures entitled Elementarmathematik vom höheren Standpunkte aus
(Elementary Mathematics from a Higher Standpoint).2 In total, three manuscripts
were published: one on arithmetic, algebra, and analysis; a second one on geome-
try; and a third one on precise and approximative mathematics.3 The third volume,
however, aims to show the connection between approximative mathematics and pure
mathematics. Klein does not cover questions on mathematics education in the last
volume.

In the first two volumes, Klein provides an overview of school mathematics to
connect the differentmathematical branches and to point out the connection to school
mathematics (see Klein 1908/2016, p. 2). As described in Schubring (this book),
Klein expected his students to have a basic knowledge of higher level mathematics,
such as functions theory, number theory, and differential equations:

I shall by no means address myself to beginners, but I shall take for granted that you are
all acquainted with the main features of the chief fields of mathematics. I shall often talk of
problems of algebra, of number theory, of function theory, etc., without being able to go into
details. You must, therefore, be moderately familiar with these fields, in order to follow me.
(Klein 1908/2016, p. 1)

In teachers’ education in Germany, there has been some intention to re-establish
Felix Klein’s ideas: In the COACTIV study, Krauss et al. (2008) stated that a large
number of students lack profound knowledge in elementary mathematics and school
mathematics when leaving university. In TEDS-M (Tatto et al. 2012) this was con-
firmed with representative samples. This led to the conclusion that

clearly, teachers’ knowledge of the mathematical content covered in the school curricu-
lum should be much deeper than that of their students. We conceptualised CK [content
knowledge] as a deep understanding of the contents of the secondary school mathematics
curriculum. It resembles the idea of “elementary mathematics from a higher viewpoint”
(Krauss et al. 2008, p. 876)

In 2008, IMU and ICMI commissioned a project to revisit the intent of Felix Klein
when he wrote Elementary Mathematics from a Higher Standpoint. The authors’
aim was to write a book for secondary teachers that showed the connection between
ongoing mathematical research and the senior secondary school curriculum (www.
kleinproject.org).

However, in all discussions, the term higher standpoint was used intuitively and,
without making it explicit or naming concrete characteristics, Klein’s lectures were

1In Kilpatrick (this book) Klein’s notion of the double discontinuity is described precisely.
2As Kilpatrick (2014) noted, the original English translation of the title using the word advanced as
translation for höher is misleading, as the term advanced could be interpreted as “more developed,”
which Klein, who was aiming for a panoramic view, did not have in mind. Taking Kilpatrick’s
concerns into account, the new edition of Klein’s lectures was released under that newly translated
title.
3The latter has recently been translated into English by Marta Menghini and Gert Schubring (Klein
1902/2016). It is based on a lectureKlein held in 1901. InKlein’s last years, he decided to republish it
as a third part of theElementary Mathematics from a Higher Standpoint series. Formore information
on that volume, see Meghini (this book).

http://www.kleinproject.org
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assumed to have functioned as a rolemodel. Inmy Ph.D. thesis (Allmendinger 2014),
I attempted to help close this academic gap by analysing the lectures of Klein in an
attempt to answer the guiding question: What is Klein’s understanding of the term
higher standpoint?

I decided to focus on the first volume of Klein’s lecture notes, as the different
approaches in all three volumes—described by Kilpatrick (this book)—make it diffi-
cult to compare them directly. In the first volume on arithmetic, algebra, and analysis,
Klein includes pedagogical remarks throughout the whole lecture, while in the sec-
ond volume on geometry Klein focuses in the first chapters on the mathematical
aspects and then discusses pedagogical questions in a final chapter. Kilpatrick even
concludes, that “the organization of the first volume allows Klein to make specific
suggestions for instruction and references to textbooks and historical treatments of
topics, whereas the comments in the second volume tend to be more general” (Kil-
patrick 2014, p. 34).

For the analysis of the manuscript of the first volume, I used a phenomenological
approach, as found in Seiffert (1970, p. 42). This approach analyses a source in its
historical sense, as it concentrates on the source itself and does not focus on the
historical background in the first place.

Additionally, I integrated didactic concepts and vocabulary to describe and specify
Klein’s procedure. I was able to show that today’s movement towards improved
mathematical university studies for teacher trainees bears some resemblance to and
coherence with Klein’s ideas.

As Klein directly comments on his intentions in his lecture notes, analysing these
seems to be a possible procedure to locate the characteristics. But especially with
regard to how Klein’s concept is being adapted today, it is important to understand
the circumstances that led Klein to construct this lecture and the conditions he faced.
In Klein’s days, there was no distinction between teacher trainees and mathematics
students pursuing a scientific career. Therefore, the students in Klein’s lectures had
relatively broader background knowledge than today’s teacher students. That is why
I embedded my analysis in its historical context.4

In order to holistically describe Klein’s understanding of the term higher stand-
point, one must also take into account its counterpart—elementary mathematics (see
Schubring in this book). As this term, like higher standpoint, has always been used
quite intuitively, it is not possible to give a concrete definition.5 For this article, I will
use a preliminary definition: Everything is “elementary” that can be made accessi-
ble to an “averagely talented pupil” (Klein 1904, p. 9). Klein’s lectures cover both
subjects of the established school curriculum and subjects that Klein felt should be
part of school curriculum, for example, calculus (see Meran Curriculum 1905).

The results of my analysis show that on the one hand Klein closely adheres to
several principles, such as the principle ofmathematical interconnectedness, the prin-
ciple of intuition, the principle of application orientation, and the genetic method of

4A good overview of this historical context can be found in Schubring (2007).
5In the beginning of the 20th century some mathematicians aimed to give a definition of elementary
mathematics (e.g., Weber 1903;Meyer andMohrmann 1914), as discussed in Allmendinger (2014).
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teaching. Those principles contributed greatly to the development of Klein’s Higher
Standpoint. In addition, Klein conveys a multitude of perspectives—mathematical,
historical, and didactic—that widen this higher standpoint.

In the present chapter, I focus on presenting the different perspectives that char-
acterise Klein’s Higher Standpoint. I specify them generically by reference to the
chapter in Klein’s lecture notes on logarithmic and exponential functions (Klein
1908/2016, pp. 153–174) described byKilpatrick (this book). This chapter is paradig-
matic and outstanding at the same time, as all characteristics I found inKlein’s lecture
cumulate in this chapter. Therefore, it seems appropriate to outline Klein’s intentions
and his proceeding.

All three perspectives can clearly be noted in this chapter: Klein starts review-
ing and reflecting the current teaching practice and making suggestions on how to
improve the introduction of this theme in school. On the one hand, he regards the
subject virtually from a didactic perspective. On the other hand, he gives an overview
of its historical development and thus an insight in his historical perspective. Finally,
Klein enhances the knowledge on logarithmic functions by adopting the standpoint
of function theory.

14.2 Klein’s Didactic Perspective

I start by taking a closer look at the didactic perspective: the standpoint of mathemat-
ical pedagogy. Klein had always shown great interest in questions of mathematical
education [as noted, for example, in Schubring (2007) and Mattheis (2000)]. He
was one of the main protagonists in the Meran reform, supporting and accelerating
the integration of perception of space and the prominence to the notion of function,
which culminates in the introduction of calculus. In my analysis, I was able to show
that all the demands made in the Meran reform strongly influence Klein’s lecture:
Klein adheres closely to the “primacy of intuition” (“Primat der Anschauung”), and
nearly all aspects of the notion of function that Krüger (2000) carved out in her Ph.D.
thesis can be detected.

However, Klein’s Higher Standpoint can be understood in the first place from
the didactic perspective as a methodological one: Klein intends to prepare future
teachers for their upcoming tasks and to provide them with the necessary overview
and background. However, eventually he also criticises the common procedures in
school and presents alternatives.

As in many other chapters, Klein starts his chapter on logarithmic and exponential
functions by giving a short overview of the curriculum and teaching practice: “Let
me recall briefly the familiar curriculum of the school, and the continuation of it to
the point at which the so-called algebraic analysis begins” (Klein 1908/2016, p. 155).

By starting with powers of the form a � bc with c a positive integer, Klein
describes how one extends the notion for negative, fractional, and finally irrational
values. The logarithm is then defined as that value c, which gives a solution to the
named equation.
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What matters is that he critically reflects on this procedure: To uniquely extend
the values to fractional values, stipulations have to be made6 that—in Klein’s opin-
ion—“appear to be quite arbitrary…and can be made clear only with the profounder
resources of function theory” (Klein 1908/2016, p. 156).

If we now admit all real, including irrational, values of y, it is certainly not immediately
clear why the principal values which we have been marking on the right now constitute a
continuous curve and whether or not the set of negative values which we have marked on
the left do similarly permit such a completion. (Klein 1908/2016, p. 156)

As we will see in the latter sections, he analyses the mathematical content from
a historical and mathematical point of view in order to develop an alternative that
avoids the emphasised problems.

Today, Klein’s suggested approach of introducing the logarithmic function as
the integral of 1/x is often used as an example for a concept, which Freudenthal
(1973) called antididactical inversion, whichmeans that the smoothened end product
of a historical learning process becomes the point of departure in education (e.g.,
Kirsch 1977). Nevertheless, Klein presents mathematical reorganisations of school
mathematical contents in order to bypass obstacles that the students might face. He
presents a mathematical analysis with an interest its impact on school practice.

AlthoughKlein dedicates the implementation in the classroom to the “experienced
school man” (Klein 1908/2016, p. 168), he has concrete ideas towards teaching
methods, which he mentions in remarks throughout the whole lecture:

I am thinking, above all, of an impregnation with the genetic method of teaching, of a
stronger emphasis upon space perception, as such, and, particularly, of giving prominence
to the notion of function, under fusion of space perception and number perception! (Klein
1908/2016, p. 88)

14.3 Klein’s Historical Perspective

Klein has always shown a strong interest in historical development (e.g., Klein 1926).
He is said to be one of the first representatives of a historical genetic method of
teaching, as shown in Schubring (1978). Klein vindicates his approach with the
help of the biogenetic fundamental law “according to which the individual in his
development goes through, in an abridged series, all the stages in the development
of the species” (Klein 1908/2016, p. 292).7 The lectures in Elementary Mathematics
from a Higher Standpoint can be seen as an example of Klein’s understanding of this
historical genetic method itself.

6For example, there are two values of x that solve the equation x � b2. Generally, in the equation
for every y � m/n, completely reduced, with an even value for n there are n different solutions.
One decides to stipulate that that should be the so-called principal root.
7Nowadays this law is highly criticised, as it suggests that every individual has to go through the
same learning process (see Wittmann 1981, p. 133).
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Fig. 14.1 Generalisation of
Bürgi’s approach (Klein
1908/2016, p. 167)

In Klein’s opinion, following historical development is the “only scientific” way
of teaching mathematics. That is why he aims to provide the future teachers with the
necessary background to use this method in school. This requires profound knowl-
edge of historical development, which Klein allocates by steadily integrating historic
remarks and overviews:

An essential obstacle to the spreading of such a natural and truly scientific method of instruc-
tion is the lack of historical knowledge which so often makes itself felt. In order to combat
this, I have made a point of introducing historical remarks into my presentation. (Klein
1908/2016, p. 292)

Klein therefore constantly adds historical remarks and digression, which are both
rich in content and distinguished by a rather scarce depiction. They are sophisticated
sections that demand intensive post-processing from the students. In the chapter on
logarithmic and exponential functions, the reader will find one of the rarer parts of
the lecture, where Klein extensively shows his understanding of a historical genetic
approach: “In short, if we really wish to press forward to a full understanding of the
theory of logarithms, it will be the best to follow the historical development in its
broad outlines” (Klein 1908/2016, p. 157).

Klein shows a different approach to the definition of the logarithmic function by
describing the historical development of the theory: The main idea Bürgi had when
he was calculating his logarithmic tables, was to avoid the stipulation that was shown
above by choosing a basis b close to 1. In this way, the calculation with integer valued
y’s lead to a table, where the distance between neighbouring values of x was rather
small.

Before finishing his historic overview, Klein shows how to set up a differential
equation by generalising Bürgi’s approach (see Fig. 14.1). His analysis and calcula-
tions lead to the definition of the natural logarithm as

∫
1

x
dx

This leads Klein to conclude:

I should like to outline briefly once more my plan for introducing the logarithm into the
schools, in this simple and natural way. The first principle is that the proper source from
which to bring in new functions is the quadrature of known curves. (Klein 1908/2016, p. 167)
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In this way, the historic parts in Klein’s lecture notes have a special meaning
for mathematical education in general. They lead to new approaches to different
subjects. But the historic remarks have a benefit for mathematics teachers’ education
as well. Nickel (2013) gave a classification on how and why the integration of the
history of mathematics should be part of teachers’ education. One can place Klein’s
historical perspective clearly in this suggested classification: Klein uses the history of
mathematics as a tool of comfort and motivation by presenting fascinating anecdotes
and as a tool to improve insightful contact with mathematics by reliving its historical
development. It becomes obvious thatKlein does not teach the history ofmathematics
as an autonomous learning subject.8

14.4 Klein’s Mathematical Perspective

Last, Klein’s understanding of a higher standpoint on elementary mathematics
involves being capable of connecting school mathematics with the higher mathe-
matics taught at university. This especially involves having background knowledge.
Therefore higher mathematics becomes a tool to explain the contents of school math-
ematics.

In the chapter on logarithmic and exponential functions, the section on the stand-
point of function theory is a typical example. Function theory is not part of school
mathematics—neither in Klein’s day nor today—but in Klein’s opinion, the teacher
has to have a basic knowledge of that subject to adequately understand the definition
of the logarithm: “Let us, finally, see how the modern theory of functions disposes
of the logarithm. We shall find that all the difficulties which we met in our earlier
discussion will be fully cleared away” (Klein 1908/2016, p. 168).

Klein shows that the logarithm is defined by means of the integral

ω �
∫

dζ

ζ

“where the path of integration is any curve in the ζ -plane joining ζ � 1 to ζ � z”
(Klein 1908/2016, p. 168; see Fig. 14.2). He further states, that the integral has an
infinite number of values. A definite value can be determined, if we “slit the plane
along the negative real axis and agree that the path integration shall not cross this
cut” (Klein 1908/2016, p. 168). Giving an insight into the means of function theory,
Klein is able to show that “if n is even, the negative real values of bm/n will constitute
a set which is everywhere dense, but they belong to an entirely different one of our
infinitelymany functions, and cannot possibly combine to form a continuous analytic
curve” (Klein 1908/2016, p. 170).

By this, he provides an answer to question of why the principal roots where chosen
to build the logarithm function.

8The complete classification can be found in Nickel (2013).
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Fig. 14.2 Complexe
Logarithms (Klein
1908/2016, p. 170)

In this last part, one aspect of Klein’s understanding of the higher standpoint
becomes evident. Klein does not expect his students to teach this prospectively to
their pupils:

I hardly believe, however, that the average pupils, even in the Prima, can be carried so
far…. I am sure all the more desirous that the teacher shall be in full possession of all the
function-theoretic connections that come up here: For the teacher’s knowledge should be far
greater than that which he presents to his pupils. He must be familiar with the cliffs and the
whirlpools in order to guide his pupils safely past them. (Klein 1908/2016, p. 162)

Additionally, Klein uses higher mathematics and its vocabulary for a precise and
significant representation of school mathematics. He occasionally has to discuss up-
to-date research, as in his remarks on the Logical Foundations of Operations with
Integers (Klein 1908/2016, pp. 10–16). School mathematics is also shown to be the
origin of research: The search for algebraic solutions of equations is an interrogation
that is easily accessible to pupils and is covered in school. However to understand
that an equation of the fifth degree or higher is not algebraically soluble, one has to
have profound knowledge of Galois’ theory.

All these examples give evidence of a mathematical perspective on the contents
of math classes. Klein shows how university studies are connected to mathematical
school contents in order to oppose the double discontinuity: He connects elementary
mathematicswith “higher”mathematics—literally discussing elementarymathemat-
ics from a higher standpoint. It can be assumed, that this mathematical perspective
shows Klein’s higher standpoint in the narrow sense of the word.

Summarising, from a didactic perspective, Klein promotes a reflective attitude
on the school curriculum and provides possible alternatives to the current teaching
practice. Additionally, a historical perspective helps to place the object of investiga-
tion in an overall context and provide knowledge on the mathematical history of its
development. Finally, from amathematical perspective, the characteristics of Klein’s
higher standpoint on elementarymathematics are a high degree of abstraction, formal
technical language, and a foundation of school mathematics’ contents.
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14.5 Higher Mathematics from an Elementary Standpoint?

In the chapter “Concerning the modern development and the general structure of
mathematics” (Klein 1908/2016, pp. 81–88), described by Kilpatrick (this book),
Klein introduces two different processes of growth in the history of mathematical
development (calling them Plan A and Plan B), “which now change places, now
run side by side independent of one another, now finally mingle” (Klein 1908/2016,
p. 81). While in Plan A, each mathematical branch is developed separately using
its own methods, Plan B aims at a “fusion of the perception of number and space”
(Klein 1908/2016, p. 81)—mathematics is to be seen as a whole.

According to Klein, the education of mathematics in school and at university,
should clearly be guided by PlanB: “Everymovement for the reform ofmathematical
education must therefore for a stronger emphasis on the direction of B.… It is my
aim that this lecture course shall serve this tendency” (Klein 1908/2016, p. 88).

In this chapter, Klein expresses his attitude towardsmathematics education in gen-
eral, as shown in the Meran reform, and legitimates the procedure in his Elementary
Mathematics from a Higher Standpoint lectures (see Allmendinger and Spies 2013):
The main principles, which are characteristic for the favoured Plan B and which
Klein wants future teachers to implement in their school classes, are principles Klein
attempts to pursue himself: the principle of interconnectedness, the principle of intu-
ition, the principle of application orientation, and the genetic method of teaching.

By applying these principles, all “will all seem elementary and easily compre-
hensible” (Klein 1908/2016, p. 223). As a result, two different orientations can be
identified in the lectures: Klein regards both elementary mathematics from a higher
standpoint and higher mathematics from an elementary standpoint. This hypothesis
can be underlined by Kirsch’s aspects of simplification (see Kirsch 1977), as those
show a striking resemblance to Klein’s procedure in his lectures and his principles.

14.6 A Higher Standpoint: First Conclusions

As shown, Klein’s Elementary Mathematics from a Higher Standpoint can be char-
acterised by its underlying principles on the one hand and by a constant variation
of different perspectives on the other hand. Both the principles and the perspectives
aim for a connection between school and university mathematics, in order to over-
come the double discontinuity: The mathematical, the historical, and the didactic
perspectives help to restructure the higher standpoint on elementary mathematics.
In particular, the didactic perspective shows an orientation that distinguishes Klein’s
lectures from other contemporary lectures on elementary mathematics. Moreover,
the underlying principles show an additional orientation: Klein also demonstrates
higher mathematics from an elementary standpoint.

Toeplitz (1932), however, questioned whether the establishment of lectures on
elementary mathematics, which, for example, Klein had in mind, would be the right
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way to prepare students for their future tasks. He criticised the selected contents:
In Toeplitz’s opinion, a teacher does not necessarily need to know the proof for the
transcendence of e, to give just one example. He also had the opinion that Klein
chose topics that required too much background knowledge for a lecture attempting
to give an overview of the complete content of school mathematics’ (see Toeplitz
1932, pp. 2f.). Toeplitz argues that a desirable higher standpoint cannot be taught
in one single lecture, but has to be accomplished in every lecture of mathematical
studies.

Nevertheless, the skills that accompany a higher standpoint in Toeplitz’s under-
standing clearly resemble the ones Klein conveys in his Elementary Mathemat-
ics from a Higher Standpoint. Altogether, Klein’s lectures can be understood as
an archetype for current university studies, although adaptations have to be made
depending on the given circumstances.

“It’s not the task anymore to create new thoughts but to bring to light the right
thoughts in the right way regarding the given circumstances” (Klein 1905, translated
by the author).
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Chapter 15
A Double Discontinuity and a Triple
Approach: Felix Klein’s Perspective
on Mathematics Teacher Education

Jeremy Kilpatrick

Abstract Felix Klein was the first to identify a central problem in the preparation
of mathematics teachers: a double discontinuity encountered in going from school
to university and then back to school to teach. In his series of books for prospective
teachers, Klein attempted to showhowproblems in themain branches ofmathematics
are connected and how they are related to the problems of school mathematics. He
took three approaches: The first volume built on the unity of arithmetic, algebra, and
analysis; the second volume attempted a comprehensive overview of geometry; and
the third volume showed how mathematics arises from observation. Klein’s courses
for teachers were part of his efforts to improve secondary mathematics by improving
teacher preparation. Despite the many setbacks he encountered, no mathematician
has had amore profound influence onmathematics education as a field of scholarship
and practice.

Keywords Klein · Higher standpoint · Mathematical knowledge for teaching
Capstone · Genetic method

As an undergraduate mathematics major at the University of California, Berkeley, in
the 1950s, I took a course entitled “ElementaryMathematics for Advanced Students”
in which we used two books by Felix Klein with the title Elementary Mathematics
from an Advanced Standpoint. The subtitles were Arithmetic, Algebra, Analysis and
Geometry. We used Dover reprints (Fig. 15.1) of English translations that had first
been published in 1932 and 1939, respectively, by Macmillan.

The course was what would be termed today a “capstone” course, meaning that it
came near the end of our program and was designed to demonstrate our mastery of
mathematics. Topics in the course included continued fractions and Pythagorean
triples represented graphically, quaternions, plane algebraic (normal) curves,
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Fig. 15.1 Dover reprints of Klein (1924/1932, 1925/1939)

logarithm defined as area under a hyperbola, and geometric transformations. In the
introduction to the volume on geometry, Klein points out that in presenting geomet-
ric topics, he first offers a general survey of the field, providing a frame into which
students can insert items of mathematical knowledge that they have learned. Then
he says, “Only afterward shall I emphasize that interest in mathematical instruction
which was always my starting point [for the first volume]” (Klein 1925/1939, p. 1).
He goes on to say that, as in the volume on arithmetic, algebra, and analysis, he will
“draw attention . . . to the historical development of the science” (p. 2). He also notes
that despite the separation of mathematical topics into two volumes, he definitely
advocates

a tendency which I like best to designate by the phrase “fusion of arithmetic and geome-
try”—meaning by arithmetic, as is usual in the schools, the field which includes not merely
the theory of integers, but also the whole of algebra and analysis. (p. 2)

In print for over a century, the volumes of Klein’s textbook have been used in
countless courses for prospective and practicing teachers. The first two volumes
were translated into English in 1924 and 1925, respectively, and into Spanish in
1927. Other translations followed. Not until 2016, however, was the third volume
translated into English.

Klein’s three volumes provide excellent early examples of what today is termed
mathematical knowledge for teaching (Ball and Bass 2000; Bass 2005). The organi-
zation of the first volume, with pedagogical issues and difficulties facing the teacher
taken up after each topic rather than relegated to a final chapter, seems much superior
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to that of the second. The organization of the first volume allows Klein to make spe-
cific suggestions for instruction and references to textbooks and historical treatments
of topics, whereas the comments in the second volume tend to bemore general. In the
third volume, he makes no specific mention of pedagogy except briefly in the pref-
ace. Klein’s courses for teachers were part of his reform efforts to improve secondary
mathematics by improving the preparation of teachers. Despite the many setbacks he
encountered, no mathematician has had a more profound influence on mathematics
education as a field of scholarship and practice.

15.1 A Double Discontinuity

In the introduction to the first volume, Klein (1924/1932) noted the phenomenon
of recent interest by university faculty in mathematics and natural sciences in the
suitable training of prospective teachers. He noted that until recently, faculty had been
exclusively concerned with their science “without giving a thought to the needs of
the schools, without even caring to establish a connection with school mathematics”
(p. 1). Considering the result of this practice, he noted that young university students
found themselves, “at the outset, confronted with problems which did not suggest, in
any particular, the things with which [they] had been concerned at school. Naturally
[they] forgot these things quickly and thoroughly” (p. 1). Then when these students
became teachers, they found themselves expected to teach traditional elementary
mathematics “in the old pedantic way. . . . [They were] scarcely able, unaided, to
discern any connection” (p. 1) between that task and their university mathematics.
Therefore, beginning teachers “soon fell in with the time honored way of teaching
. . . [Their] university studies remained only a more or less pleasant memory” (p. 1)
that had no influence on their teaching.

He went on to say, “There is now amovement to abolish this double discontinuity,
helpful neither to the school nor to the university” (Klein 1924/1932, p. 1). In Klein’s
view, the discontinuity meant that school mathematics and university mathematics
typically seemed to have no connection. The courses enshrined in Klein’s books
assumed that prospective teachers were familiar with the main branches of mathe-
matics, and he attempted to show how problems in those branches are connected and
how they are related to the problems of school mathematics.

To eliminate the discontinuity, Klein (1924/1932) had two proposals: (a) update
the school mathematics curriculum, and (b) “take into account, in university instruc-
tion, the needs of the school teacher” (p. 1). His goal was to show

the mutual connection between problems in the various fields, a thing which is not brought
out sufficiently in the usual lecture course, and more especially to emphasize the relations
of these problems to those of school mathematics. In this way I hope to make it easier for
you to acquire that ability which I look upon as the real goal of your academic study: the
ability to draw (in ample measure) from the great body of knowledge there put before you
a living stimulus for your teaching. (pp. 1–2)
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In this quotation, onehears echoes ofKlein’s early viewsofmathematics education
expressed in his inaugural address (Antrittsrede) of 1872 when he became professor
at Erlangen at the age of 23. The problem of the secondary school curriculum was,
for Klein, neither insufficient time nor inadequate content:

What is required is more interest in mathematics, livelier instruction, and a more spirited
treatment of the material! . . .

At stake [for university teachers of mathematics] is the task . . . of raising the standards of
mathematical education for later teaching candidates to a level that has not been seen for
many years. If we educate better teachers, then mathematics instruction will improve by
itself, as the old consigned form will be filled with a new, revitalized content! . . .

[Therefore,] we, as university teachers, require not only that our students, on completion
of their studies, know what must be taught in the schools. We want the future [teachers] to
stand above [their] subject, that [they] have a conception of the present state of knowledge
in [their] field, and that [they] generally be capable of following its further development.
(Klein, in Rowe 1985, p. 139)

To address the school-to-university discontinuity, Klein proposed (a) taking the
function concept as the focus of school instruction, and (b) making calculus the target
of the secondary school curriculum. To address the university-to-school discontinu-
ity, he proposed (a) offering university courses that would show connections between
problems in various fields of mathematics (e.g., algebra and number theory), and (b)
developing university courses in elementary mathematics from a higher standpoint.
Finally, to address both discontinuities, Klein argued that instructors should make
instruction livelier andmore interesting,whichmeant that schoolmathematics should
be more intuitive, less abstract, and less formal, and university mathematics should
include more applied mathematics. Throughout his career, Klein saw school math-
ematics as demanding more dynamic teaching and consequently university mathe-
matics as needing to help prospective teachers “stand above” their subject.

15.2 A Triple Approach

In each of the three volumes of his books for teachers, Klein took a different approach.
In the first volume, to balance existing treatments of topics in school mathematics,
Kline attempted to show the prospective teacher specific examples of how three
seemingly unrelated branches of mathematics could be integrated. In the second
volume, given that there were no unified treatments of geometry in the literature, he
offered such a treatment, postponing attention to geometry teaching until the end of
the volume. In the third volume, he had yet a different agenda: to show the contrast
and emphasize the link between mathematics and its applications.
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15.2.1 Arithmetic, Algebra, Analysis

To conclude the introduction to the first volume, Klein cited several recent discus-
sions of mathematics instruction that supplemented the topics he would be treating.
He pointed out, however, that some treatments of elementary mathematics build it
up “systematically and logically in the mature language of the advanced student,
[whereas] the presentation in the schools . . . should be psychological and not sys-
tematic. . . . A more abstract presentation will be possible only in the upper classes”
(Klein 1924/1932, pp. 3–4). He also pointed out that he was adopting a “progressive”
stance:

We, who are called the reformers, would put the function concept at the very center of
instruction, because, of all the concepts of the mathematics of the past two centuries, this
one plays the leading role wherever mathematical thought is used.Wewould introduce it into
instruction as early as possible with constant use of the graphical method, the representation
of functional relations in the x y system, which is used today as a matter of course in every
practical application of mathematics. . . . Strong development of space perception, above all,
will always be a prime consideration. In its upper reaches, however, instruction should press
far enough into the elements of infinitesimal calculus for the natural scientist or insurance
specialist to get at school the tools which will be indispensable [for him or her]. (p. 4)

Klein was anticipating the emphasis that he would put in the subsequent text on
applications, geometric illustrations, space perception, and the historical develop-
ment of the field.

The book is divided into three parts—arithmetic, algebra, analysis—together with
supplementary sections on transcendental numbers and set theory. Themain topics in
the first part are the natural numbers; the extension to negative numbers, fractions, and
irrationals; number theory; and complex numbers. An example of Klein’s emphasis
on practical applications is his extended treatment of the mechanism for calculating
machines (see Fig. 15.2, which shows how multiplication is performed). Later in the
book, when discussing logarithmic tables, Klein (1924/1932) mentions that such a
machine “makes logarithmic tables superfluous. At present, however, this machine
is so expensive that only large offices can afford it. When it has become considerably
cheaper, a new phase of numerical calculation will be inaugurated” (p. 174)—truly
prophetic words.

Klein ends the discussion of arithmetic with a brief survey of the modern develop-
ment of mathematics. Reviewing the first edition, John Wesley Young (1910) said,
“It is a mere sketch, but it is a masterpiece” (p. 258). In the survey, Klein distin-
guishes two processes by which mathematics has grown, each of which leads to a
different plan for instruction. In Plan A, the plan more commonly followed in school
and in elementary textbooks, each branch of mathematics is developed separately
for its own sake and with its own methods. The major branches—algebraic analysis
and geometry—make occasional contact but are not unified. In Plan B, in contrast,
“the controlling thought is that of analytic geometry, which seeks a fusion of the
perception of number with that of space” (Klein 1924/1932, p. 77). Mathematics is
to be seen as a connected whole, with pure and applied mathematics unified. Not
surprisingly, Klein argues that Plan B is more likely than Plan A to engage those
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Fig. 15.2 Driving wheel and
cogwheel in a calculating
machine (Klein, 1933/2016a,
p. 22)

pupils “not endowed with a specific abstract mathematical gift” (p. 78). Both plans
have their place, and neither should be neglected. But secondary school instruction

has long been under the one-sided control of the Plan A. Any movement toward reform of
mathematical teaching must, therefore, press for more emphasis upon direction B. [Klein is]
thinking, above all, of an impregnation with the genetic method of teaching, of a stronger
emphasis upon space perception, as such, and, particularly, of giving prominence to the
notion of function, under fusion of space perception and number perception!”. (p. 85)

Klein then argues that his aim in this volume is to follow Plan B, thereby balancing
existing books on elementary mathematics that almost invariably follow Plan A.

The main topics of the second part of the book, on algebra, concern the use of
graphical and geometric methods in the theory of equations. Klein begins by citing
textbooks on algebra and pointing out that the “one-sided” approach he will take is
designed to emphasize material neglected elsewhere that can nevertheless illuminate
instruction. His approach to solving real equations uses the duality of point and line
coordinates, and he draws on the theory of functions of a complex variable to show
how to represent, using conformal mapping, the solution of equations with a complex
parameter.

The third part of the book, on analysis, concerns elementary transcendental func-
tions and the calculus. It begins with a discussion of the logarithm, which pro-
vides a good illustration of Klein’s approach. He first considers how the logarithm
is introduced in school—by performing the operation inverse to that of raising to
a power—and draws attention to various difficulties and possible confusions that
accompany such an approach, including the absence of any justification for using
the number e as the base for what are, for the pupil, inexplicably called the “natural”
logarithms. After discussing the historical development of the concept, emphasizing
the pioneering work of Napier and Bürgi, Klein proposes an introduction that would
define the logarithm of a as the area between the hyperbola xy �1, the x-axis, the
ordinate x �1, and the ordinate x �a, first approximating the area as a sum of rect-
angles and then taking the integral. The section on the logarithm ends by considering
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a complex-theoretic view of the function, which Klein argues that teachers should
know even though it would not be an appropriate topic in school. In Young’s (1910)
review of the book, he points at Klein’s treatment of the logarithm as the only one of
his proposed reforms that would not be practical in the United States (and perhaps
not even in Germany) since pupils need to use logarithms before they encounter
hyperbolas, not to mention integrals.

The trigonometric functions and hyperbolic functions are also treated from the
point of view of the theory of functions of a complex variable, and the part ends with
an introduction to the infinitesimal calculus that relies heavily on Taylor’s theorem
and that includes historical and pedagogical considerations. The supplement at the
end of the volume contains a proof of the transcendence of e and π and a brief, lucid
introduction to set theory. As noted in Schubring (2016), the two appendices from
Klein (1933/2016a) were inexplicably omitted from the first English translation.

15.2.2 Geometry

In the second volume, Klein (1909, 1925, 1925/1939) takes a different approach
than in the first. Arguing that there are no unified textbook treatments of geometry,
as there are for algebra and analysis, he proposes to give a comprehensive overview
of geometry, leaving all discussion of instruction in geometry for a final chapter
(unfortunately not included in the first English translation). Two supplements to the
third edition that were prepared by Klein’s colleague Fritz Seyfarth in consultation
with Klein “concern literature of a scientific and pedagogic character which was not
considered in the original text” (Klein 1925/1939, p. vi; the supplements were not
translated into English either, but they do appear in Klein 1926/2016b).

The second volume, like the first, has three parts. The first concerns the simplest
geometric forms; the second, geometric transformations; and the third, a systematic
discussion of geometry and its foundations. Not surprisingly, Klein’s innovative
characterization of geometries as the invariants of their symmetry groups, from his
famous Erlangen program (see, e.g., Bass 2005; Schubring n.d.), forms the basis
of his discussion of the organization of geometry. In the discussion of foundations,
Klein (1925/1939) emphasizes the importance of non-Euclidean geometry “as a
very convenient means for making clear visually relations that are arithmetically
complicated” (p. 184):

Every teacher certainly should know something of non-euclidean geometry. . . . On the other
hand, I should like to advise emphatically against bringing non-euclidean geometry into
regular school instruction (i.e., beyond occasional suggestions, upon inquiry by interested
pupils), as enthusiasts are always recommending. Let us be satisfied if the preceding advice
is followed and if the pupils learn really to understand euclidean geometry. After all, it is in
order for the teacher to know a little more than the average pupil. (p. 185)

The third part ends with a discussion of Euclid’s Elements in its historical context.
In the final chapter, Klein surveys efforts to reform the teaching of elementary

geometry in England, France, Italy, and Germany. The supplement contains some
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additional observations on questions of elementary geometry and updatedmaterial on
reform in the four countries, particularly reports prepared for the surveys of teaching
practices and curricula that had been initiated in 1908 during Klein’s presidency of
the Commission internationale de l’enseignement mathématique (CIEM, anglicized
as the International Commission on the Teaching of Mathematics).

15.2.3 Precision Mathematics and Approximation
Mathematics

The final volume in the series, Klein (1928/2016c), takes yet a third approach. As
Marta Menghini and Gert Schubring point out in their introduction to the 2016
English translation, Klein maintained the view throughout his career that instruc-
tion needs to link mathematics to its applications. Because mathematics arises from
observation and then transcends that observation to become abstract, learners need
to see how the process works. Klein wanted the process to be intuitive:

The third volume focuses on those properties that applied mathematicians take for granted
when studying certain phenomena from amathematical point of view. These properties must
be seen as supplementary conditions (and constraints) to be required for the ideal objects of
pure mathematics. However, in the meantime, these very proper ties prove to be the more
intuitive ones. Therefore the comparison moves towards another field: it is a comparison
between properties that can be considered only in the theoretical field of abstractmathematics
and properties that can be grasped by intuition. Here the problem proves to become pertinent
for mathematics teaching. (Menghini and Schubring 2016, pp. vii–viii)

The third volume had been originally published in 1902 but was revised and
put at the end of the series because, as Klein (1924/1932) noted in his introduction
to the third edition of the first volume, it had been “designed to bridge the gap
between the needs of applied mathematics and the more recent investigations of
pure mathematics” (p. v.), a somewhat different purpose than that of the first two
volumes, which were designed “to bring to the attention of secondary school teachers
of mathematics and science the significance for their professional work of their
academic studies, especially their studies in pure mathematics” (p. v). As Klein’s
colleague Seyfarth (1928/2016) pointed out in the introduction to the third edition:

The lecture notes, in their lithographic form, have for a long time been cited in mathematical
literature with the title “applications of differential and integral calculus to geometry (a
revision of the principles)”. The change of title is due to the personal request of Felix
Klein, with whom I had—in the last two months before his death—a series of conversations
about the work required for their publication. Klein believed that the new title [“precision
mathematics and approximation mathematics”] would better meet the goals of the notes than
the former. (p. xiii)

Klein’s third volume for prospective teachers, like the previous two, attempts
to help them get perspective on their forthcoming practice—to “stand above” its
content. Discussing the mathematics a teacher needs to know, Klein (1924/1932)
wrote: “The teacher’s knowledge should be far greater than that which he presents
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to his pupils. He must be familiar with the cliffs and the whirlpools in order to guide
his pupils safely past them” (p. 162). The metaphor here is that of guide, someone
who knows the mathematical terrain well and can conduct his or her pupils through it
without them getting lost or injured. Klein went on to discuss how the novice teacher
needs to be equipped to counteract common misperceptions of mathematical ideas:

If you lack orientation, if you are not well informed concerning the intuitive elements of
mathematics as well as the vital relations with neighboring fields, if, above all, you do not
know the historical development, your footing will be very insecure. You will then either
withdraw to the ground of the most modern pure mathematics, and fail to be understood in
the school, or you will succumb to the assault, give up what you learned at the university
and even in your teaching allow yourself to be buried in the traditional routine. (p. 236)

Klein’s goal in the third volume was to help the prospective teacher of mathe-
matics maintain the link between the different scientific fields and understand how
mathematics arises from observation.

15.3 Klein and Mathematics Teacher Education

Like many mathematicians, Felix Klein spent much of his time working on issues of
mathematics education once he was no longer doing research in mathematics. Unlike
most of them, however, he had pursued such issues throughout his career. As noted
above, Klein’s Erlangen inaugural address of 1872 dealt with mathematics education
(Rowe 1983, 1985). In it, he deplored the lack of mathematical knowledge among
educated people. He saw that lack as symptomatic of a growing division between
humanistic and scientific education, a division in which mathematics is uniquely
positioned: “Mathematics and those fields connected with it are hereby relegated to
the natural sciences and rightly so considering the indispensability of mathematics
for these. On the other hand, its conceptual content belongs to neither of the two
categories” (Rowe 1985, p. 135). Observing that like all sciences, mathematics is
undertaken for its own sake, Klein goes on to argue that “it also exists in order to
serve the other sciences as well as for the formal educational value that its study
provides” (p. 137).

In the inaugural address at Erlangen, Klein expressed a neohumanistic view of
howmathematics ought to appear in school and university instruction, a view he was
later to modify in light of his experience. After teaching at the technical institute in
Munich from 1875 to 1880, for example, he adopted a more expansive outlook on the
mutual roles of mathematics, science, and technology in modern education.When he
became professor of geometry at Leipzig in 1880, he began to promote the teaching of
applied mathematics in universities as well as in technical institutes. Klein’s ultimate
goal was to make mathematics a foundational discipline in tertiary education, and
to achieve that goal, he initiated a reform of secondary mathematics education so
that it would include the calculus. In Erlangen, however, he had said that livelier
teaching rather than new subject matter was what the secondary schools needed: In
autobiographical notes he made in 1913 (Rowe 1985, p. 125), he summarized what
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he had said in that address: “An den Gymnasien auszubauen: Interesse. Leben und
Geist. Kein neuer Stoff [To develop in the high schools: Interest. Life and spirit. No
new material].” He then added a marginal remark reflecting his revised opinion that
the secondary curriculum did need new material: “Da bin ich nun anderen Sinnes
geworden [I have changed my mind about that].” After 40 years of teaching, Klein
also reversed his view that prospective teachers should conduct an independent study
on any topic whatsoever. In private notes made available to his colleague Wilhelm
Lorey (quoted in Rowe 1985), he wrote:

I would now suggest that teaching candidates of average talent should confine themselves to
such studies as will be of fundamental importance in the later exercise of their profession,
while everything beyond this should be reserved for those with unusual talent or favorable
circumstances. (p. 128)

A final comment in Klein’s (quoted in Rowe 1985) autobiographical notes sug-
gests the toll his battles for reform had taken: “When one is young, one works
much more hastily and unsteadily, one also believes the ideals will soon be attained”
(p. 126).

Nonetheless, Klein was successful in reforming the secondary school curriculum
as well as in creating university courses for teachers. His goal had long been to
raise the level of mathematics instruction in both the technical institutes and the
universities, and he came to realize that the key to achieving that goal would be to
raise the level of secondary mathematics instruction to include the calculus, thereby
raising the level of tertiary instruction (Schubring 1989). To push for reform in
secondary and tertiary curricula, Klein forged an alliance among teachers, scientists,
and engineers, and he also helped the international commission (CIEM) become an
agent for curricular change. His courses for teachers were part of his reform efforts
to improve secondary mathematics by improving the preparation of teachers.
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