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Preface

Contact mechanics deals with phenomena of critical importance for countless phys-
ical, technical, and medical applications. In classical mechanical engineering alone
the scope of applications is immense, examples of which include ball bearings, gear
drives, friction clutches, or brakes. The field of contact mechanics was originally
driven by the desire to understand macroscopic problems such as rail-wheel contact
or the calculation of stresses in building foundations. In recent decades, however, it
has conquered qualitatively new areas of application at the forefront of global de-
velopment trends in technology and society. The fields of micro-technology, where
boundary properties play a central role, as well as biology and medicine have been
particularly important additions to the vast spectrum of applications. The force-
locking of screw connections, the adhesive strength of bonded joints, fretting wear
of turbine blades, friction damping of aerospace structures, extraction methods of
broken implants, and certain methods of materials testing shall also be named as
examples of the extended scope encompassed by contact mechanics.

This expansion in scope has multiple roots, which are technological, experimen-
tal, or numerical in nature. This is owed in large part, but not limited to, the rapid
development of numerical methods for the calculation of contacts. Thanks to the
development of the Fast Fourier Transform(FFT)-based boundary element method
in recent years, the field of contact mechanics has arguably taken on a leading role
in the development of numerical calculation methods. However, this development
certainly does not render analytical solutions obsolete. Due to the new numerical
methods, the existing analytical solutions gained remain of immense importance.
Today they are employed for the testing of numerical methods, to further the gen-
eral “analytical understanding”, or for empirically capturing numerical results in
multi-dimensional parameter spaces. The “exact solutions” enjoy particular impor-
tance for their indisputable reliability and take on a position of great significance in
contemporary science and technology.
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The authors have set two goals for this book:

e The first goal is to provide a “complete” systematic catalog of all “significant”
axially symmetric contact problems discovered in the last 137 years (since the
classic work by Hertz 1882).

e The second goal is to provide not just the solutions of all these contact problems
but also offer a detailed documentation of the solution process.

Of course these goals are not easily attained. The meanings of “complete” catalog
and “significant” solutions are highly debatable already. Luckily the scientific com-
munity has done a great amount of work in the past 100 years to identify a set of
characteristic problems of great practical relevance that required repeated research.
This includes “generic” profile shapes such as the parabolic body, which offers a
first-order approximation of nearly any curved surface. The general power law pro-
file has also been considered repeatedly for the past 77 years, as any differentiable
function can be described by a power series expansion. However, technical profiles
are not necessarily differentiable shapes. Various applications employ flat cylindri-
cal punches with a sharp edge or sharp-tipped conical indenters. In turn, absolutely
sharp edges and tips cannot be realized practically. This leads to a set of profiles
such as flattened spheres, flattened or rounded cones, and cylinders, etc., which of-
fer a solid approximation of reality and have been the repeated subject of research
for at least 77 years (since the work of Schubert 1942).

The second goal, which is to provide detailed documentation of the solution
process, might seem overambitious at first glance, especially considering that cer-
tain historical publications dealing with a single solution of a contact mechanical
problem amount to small volumes themselves. Jumping forward, this issue can be
considered resolved in the year 2019. Instead of the original solution, we describe
the simplest available one at present. For the normal contact problem without ad-
hesion, the simplest known solution was found by Schubert in 1942, and later by
Galin (1946) and Sneddon (1965). In this book, this solution will be used in the
interpretation of the method of dimensionality reduction (Popov and Hef3 2013).
This approach requires zero prerequisite knowledge of contact mechanics and no
great feats of mathematics except single variable calculus. Complicated contact
problems such as adhesive contact, tangential contact, or contacts with viscoelastic
media can be reduced to the normal contact problem. This allows a highly com-
pact representation, with every step of solution processes being fully retraceable.
The sole exceptions to this are the axially symmetric problems without a compact
contact area, which so far lack a simple solution. In this case, we will mostly limit
ourselves to the formal listing of the solutions.
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This book also deals with contact mechanics of functionally graded materials,
which are the subject of current research. Again, complete exact solutions will be
provided using the method of dimensionality reduction.

Berlin Valentin L. Popov
March 2019 Markus Hef3
Emanuel Willert
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Introduction

1.1 On the Goal of this Book

The works of Hertz (1882) and Boussinesq (1885) are generally considered the be-
ginning of classical contact mechanics. The solutions for the pressure distribution
under a cylindrical flat punch and a sphere that are featured in those works cer-
tainly enjoy a high level of prominence. Yet multiple exact solutions exist which
are of similar technical relevance to the Hertzian contact problems, but only a lim-
ited number of specialists know about these. Among other reasons, this is due to
the fact that many individual contact mechanical solutions were published in rele-
vant journals, however, a generalized representation in any complete monograph is
lacking. Exceptions to this can be found in the books by Galin (2008) and Gladwell
(1980), yet even these were written with scientific usage in mind rather than as a
handbook for technical applications. This book aims to provide a compendium of
exact solutions for rotationally symmetric contact problems which are suitable for
practical applications.

Mathematically the terms “rotationally symmetric” and “contact problem” are
quite straightforward to define. But what is an “exact solution”? The answer to this
question is dual-faceted and involves an aspect of modeling; consideration must
also be given to the final structure of what one accepts as a “solution”. The first
aspect is unproblematic: any model represents a certain degree of abstraction of
the world, and makes assumptions and simplifications. Any solution derived from
this model can, of course, only be as exact as the model itself. For example, all
solutions in this book operate under the assumption that the resulting deformations
and gradients of contacting surfaces within the contact area are small.

The second aspect is tougher to define. A “naive” approach would be that an
exact solution can be derived and evaluated without the aid of a computer. How-
ever, even the evaluation of trigonometric functions requires computation devices.
Does a solution in the form of a numerically evaluated integral or a generalized,
perhaps hypergeometric function count as “exact”? Or is it a solution in the form
of a differential or integral equation? In exaggerated terms, assuming the valid-

© The Authors 2019 1
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2 1 Introduction

ity of a respective existence and uniqueness theorem, simply stating the complete
mathematical description of a problem already represents the implicit formulation
of its solution. Recursive solutions are also exact but not in closed form. Therefore,
distinguishing between solutions to be included in this compendium and those not
“exact enough” remains, for better or worse, a question of personal estimation and
taste. This is one of the reasons why any encyclopedic work cannot ever—even at
the time of release—make a claim of comprehensiveness.

The selection of the problems to be included in this book were guided by two
main premises: the first one being the technical relevance of the particular prob-
lem, and secondly, their place in the logical structure of this book, which will be
explained in greater detail in the next section.

1.2 On Using this Book

Mechanical contact problems can be cataloged according to very different aspects.
For instance, the type of the foundational material law (elastic/viscoelastic, homo-
geneous/inhomogeneous, degree of isotropy, etc.), the geometry of the applied load
(normal contact, tangential contact, etc.), the contact configuration (complete/in-
complete, simply connected/ring-shaped, etc.), the friction and adhesion regime
(frictionless, no-slip, etc.), or the shape of contacting bodies are all possible cate-
gories for systematization. To implement such a multi-dimensional structure while
retaining legibility and avoiding excessive repetition is a tough task within the con-
straints of a book.

We decided to dedicate the first five chapters to the most commonly used material
model: the linear-elastic, homogeneous, isotropic half-space. Chapters 7 through
to 9 are devoted to other material models. Chapter 10 deals with ring-shaped contact
areas. The chapters are further broken down into sub-chapters and sections, and are
hierarchically structured according to load geometry, the friction regime, and the
indenter shape (in that order). While each section aims to be understandable on its
own for ease of reference, it is usually necessary to pay attention to the introductory
sentences of e.g. Chap. 4 and Sect. 4.6 prior to Sect. 4.6.5.

Furthermore, many contact problems are equivalent to each other, even though
it may not be obvious at first glance. For example, Ciavarella (1998) and Jiger
(1998) proved that the tangential contact problem for an axially symmetric body can
be reduced under the Hertz—Mindlin assumptions to the respective normal contact
problem. In order to avoid these duplicate cases cross-references are provided to
previously documented solutions in the book which can be looked up. Where they
occur, these references are presented and explained as clearly and unambiguously
as possible.



References 3

References

Boussinesq, J.: Application des Potentiels a L’etude de L’Equilibre et du Mouvement des Solides
Elastiques. Gauthier-Villars, Paris (1885)

Ciavarella, M.: Tangential loading of general three-dimensional contacts. J. Appl. Mech. 65(4),
998-1003 (1998)

Galin, L.A., Gladwell, G.M.L.: Contact problems—the legacy of L.A. Galin. Springer, the Nether-
lands (2008). ISBN 978-1-4020-9042-4

Gladwell, G.M.L.: Contact problems in the classical theory of elasticity. Sijthoff & Noordhoff
International Publishers B.V., Alphen aan den Rijn (1980). ISBN 90-286-0440-5

Hertz, H.: Uber die Beriihrung fester elastischer Korper. J. Rein. Angew. Math. 92, 156-171
(1882)

Jager, J.: A new principle in contact mechanics. J. Tribol. 120(4), 677-684 (1998)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Normal Contact Without Adhesion

2.1 Introduction

We begin our consideration of contact phenomena with the normal contact problem.
Consider two bodies pressed together by forces perpendicular to their surfaces.
A prominent example is the wheel of a train on a rail. The two most important
relationships that the theory of normal contact should deliver are:

1. The relationship between the normal force and the normal displacement of the
body, which determines the stiffness of the contact and, therefore, the dynamic
properties of the entire system.

2. The stresses occurring in the contact area, which (for example) are required for
component strength analysis.

Without physical contact, there are no other contact phenomena, no friction, and
no wear. Therefore, normal contact can be regarded as a basic prerequisite for all
other tribological phenomena. The solution to the adhesive contact problem, the
tangential contact problem, and contact between elastomers can also be reduced to
the non-adhesive normal contact problem. In this sense, the non-adhesive contact
problem forms a fundamental basis of contact mechanics. It should be noted that
even during normal contact, a relative tangential movement between contacting sur-
faces can occur due to different transverse contraction of contacting bodies. As a
result, friction forces between the surfaces can play a role, even for normal contact
problems, and it must be specified how these tangential stresses are to be treated.
The two most well-known and sudied limiting cases are, firstly, the frictionless nor-
mal contact problem and, secondly, the contact problem with complete stick. All
frictionless contact problems will be referred to as “Boussinesq problems” since
the famous Boussinesq solution for a cylindrical flat punch belongs to this cate-
gory. The other limiting case of complete stick will be referred to as “Mossakovskii
problems”.

© The Authors 2019 5
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2.2 Boussinesq Problems (Frictionless)

We consider the frictionless normal contact between two elastic bodies with the
elasticity moduli £ and E», and Poisson’s ratios v; and v,, as well as shear moduli
G, and G,. The axisymmetric difference between the profiles will be written as
Z = f(r), where r is the polar radius in the contact plane. This contact problem is
equivalent to the contact of a rigid indenter with the profile Z = f(r) and an elastic
half-space with the effective elasticity modulus £* (Hertz 1882):

1 1—vi 1—v;

E* E E,

Q2.1

The positive direction of Z is defined by the outward-surface normal of the elastic
half-space. The normal component of the displacement of the medium w, under the
influence of a concentrated normal force F. in the coordinate origin, is given by the
fundamental solution (Boussinesq 1885):

1 F

wir) = TE* r’

(2.2)

Applying the superposition principle to an arbitrary pressure distribution
p(x,y) = —o0..(x, y) yields the displacement field:

1 dx’'dy’
w(x,y) = [/ PO S Y o) ey srppr SO

T E* r

The positive direction of the normal force and normal displacement are defined by
the inward-surface normal of the elastic half-space. If we call the indentation depth
of the contact d and the contact radius a, the mixed boundary conditions for the
displacement w and the stresses o at the half-space surface (i.e., z = 0) are as
follows:
w(r)=d—f(r)., r=a,
0,,(r)=0, r>a,
0:r(r) =0. 2.4

Usually, a is not known a priori, but has to be determined in the solution process.
The solution of the contact problem is found by determining the pressure distribu-
tion, which satisfies (2.3) and the boundary conditions (2.4). It should be noted
that the application of both the superposition principle and the boundary conditions
in the form (2.4) require linearity of the material behavior as well as the half-space
approximation to be met; i.e., the surface gradient must be small in the relevant area
of the given contact problem in the non-deformed and deformed state. If we call
the gradient 0 then the condition is 8 <« 1. The relative error resulting from the
application of the half-space approximation is of the order of 2.

For ordinarily connected contacts the non-adhesive normal contact problem was
solved in its general form by Schubert (1942) (based on the paper by Foppl (1941)),
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Galin (1946), Shtaecrman (1949), and Sneddon (1965). In Sect. 2.3 we will de-
scribe these solutions using the interpretation given by the method of dimensionality
reduction (MDR) (Popov and Hef3 2013). Naturally, it is fully equivalent to the clas-
sical solutions.

2.3 Solution Algorithm Using MDR

The contact of any given axially symmetric bodies can be solved very easily and
elegantly with the so-called MDR. The MDR maps three-dimensional contacts to
contacts with a one-dimensional array of independent springs (Winkler foundation).
Despite its simplicity, all results are exact for axially symmetrical contacts. The
MDR allows the study of non-adhesive and adhesive contacts, tangential contacts
with friction, as well as contacts with viscoelastic media. In this section we will
describe the application of the MDR for non-adhesive normal contact problems.
Generalizations for other problems will be presented where appropriate in later
chapters. Complete derivations can be found in works by Popov and Hef3 (2013,
2015), as well as in Chap. 11 in this book (Appendix).

2.3.1 Preparatory Steps

Solving the contact problem by way of the MDR requires two preparatory steps.
1. First, the three-dimensional elastic (or viscoelastic) bodies are replaced by
a Winkler foundation. This is a linear arrangement of elements with independent
degrees of freedom, with a sufficiently small distance Ax between the elements.
In the case of elastic bodies, the foundation consists of linear-elastic springs with
a normal stiffness (Fig. 2.1):
Ak, = E*Ax, (2.5)

whereby E* is given by (2.1).
2. Next, the three-dimensional profile Z = f(r) (left in Fig. 2.2) is transformed
to a plane profile g(x) (right in Fig. 2.2) according to:

x|
glx) = |x|[ &dr. (2.6)

Fig. 2.1 One-dimensional Ax
elastic foundation

Y.
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Fig.2.2 Within the MDR the
three-dimensional profile is
transformed to a plane profile

g )
0 X
The inverse transform is:
g(x)
f(r) = ———dx. 2.7
/ /72 — 2

2.3.2 Calculation Procedure of the MDR

The plane profile g(x) of (2.6) is now pressed into the elastic foundation with the
normal force Fy (see Fig. 2.3).

The normal surface displacement at position x within the contact area is equal to
the difference of the indentation depth d and the profile shape g:

wip(x) =d —g(x). (2.8)

At the boundary of the non-adhesive contact, x = =a, the surface displacement
must be zero:
wip(£a) =0 = d=g(a). 2.9)

This equation determines the relationship between the indentation depth and the
contact radius a. Note that this relationship does not depend upon the elastic prop-
erties of the medium.

The force of a spring at position x is proportional to the displacement at this
position:

AFy(x) = Ak, wip(x) = E*wip(x)Ax. (2.10)
Fig. 2.3 MDR substitute Fy
model for the normal contact
problem Y

\ x a/g(X)
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The sum of all spring forces must balance out the external normal force. In the
limiting case of very small spring spacing, Ax — dx, the sum turns into an integral:

a a

Fy = E*[wlD(x)dx = 2E*[[d — g(x)]dx. (2.11)
0

—d

Equation (2.11) provides the normal force as a function of the contact radius and,
under consideration of (2.9), of the indentation depth. Let us now define the linear
force density g (x):

= AR

d—gx), |x|<a
Ax ’

q:(x) E*wip(x) = E” (2.12)

0, |x| > a

As shown in the appendix to this book, the stress distribution of the original three-
dimensional system can be determined from the one-dimensional linear force den-
sity via the integral transform:

1 .
Uzz(r) = _p(r) = ; \/%dx (2.13)

The normal surface displacement w(r) (inside as well as outside the contact area)
is given by the transform:

w(r) = 2 [ wip(x)

————dx. 2.14
) et (2.14)
0

For the sake of completeness, we will provide the inverse transform to (2.13):

rp(r)
q-(x) =2 | ———=—dr. (2.15)
/72 _ 2
X
With the MDR it is also possible to determine the displacements for a prescribed
stress distribution at the surface of the half-space. First, the displacement of the
Winkler foundation w;p must be calculated from the stresses according to:

o0

g:(x) _ 2 rp(r)
E* E*) Jrr—x2
X

wip(x) = dr. (2.16)

Substituting this result into (2.14) allows the calculation of the three-dimensional
displacements.

Equations (2.6), (2.9), (2.11), (2.13), and (2.14) completely solve the non-
adhesive frictionless normal contact problem, so we state them once again in a
more compact and slightly modified form:
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=] f s (’)d’

= g(a), if g continous atx = a,
Fy =2£° [1d - gola.

a
_ B | [ gwdx  d-g@
O'zz(r)—_7 N + T forr <a,

"4 —g(x)]dx

, forr <a,
2 )Jo Wr2—x?
w(r) = — (2.17)
7| [ 1d = g(x)ldx
——  forr >a.
0 r2—x

In the following we will present the relationships between the normal force Fly,
indentation depth d, and contact radius a, as well as the stresses and displacements
outside the contact area for various technically relevant profiles f(r).

2.4 Areas of Application

The most well-known normal contact problem is likely the Hertzian contact (see
Sects. 2.5.3 and 2.5.4). While Hertz (1882) examined the contact of two parabolic
bodies with different radii of curvature around the x-axis and y-axis in his work,
we will consider the more specific axisymmetric case of the contact of two elastic
spheres or, equivalently, of a rigid sphere and an elastic half-space. This problem
occurs ubiquitously in technical applications; for example, in roller bearings, joints,
or the contact between wheel and rail. Hertz also proposed using this contact for
measuring material hardness in Hertzian contact, however, the stress maximum lies
underneath the surface of the half-space. Therefore cones (see Sect. 2.5.2) are more
suitable for this task. For punching, flat indenters (see Sect. 2.5.1) or even flat rings
(see Sect. 2.5.7) are very commonly used because of the stress singularity at the
edge of the contact.

These three shapes—flat, cone-shaped, and spherical indenters—essentially
form the three ideal base shapes for most contacts in technical applications. Ad-
ditionally, it is also of great value to examine the effects of imperfections on these
base shapes, for example through manufacturing or wear. Such imperfect inden-
ters may be truncated cones or spheres (see Sects. 2.5.9 and 2.5.10), bodies with
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rounded tips (see Sects. 2.5.11 to 2.5.13) or rounded edges (see Sect. 2.5.14), as
well as ellipsoid profiles (see Sect. 2.5.5).

Furthermore, any infinitely often continuously differentiable profile can be ex-
panded in a Taylor series. By utilizing a profile defined by a power-law (see
Sect. 2.5.8), the solution for a more complex profile—assuming it satisfies the
aforementioned differentiability criterion—can be constructed to arbitrary preci-
sion with the Taylor series.

Furthermore, this chapter contains profiles relevant for applications where ad-
hesive normal contact comes into play. This includes a profile which generates a
constant pressure distribution (see Sect. 2.5.5), concave bodies (see Sects. 2.5.15
and 2.5.16), or bodies with a periodic roughness (see Sect. 2.5.17). Since the next
chapter dealing with adhesive normal contact reveals that the frictionless normal
contact problem with adhesion can, under certain circumstances, be reduced to
the non-adhesive one, we will provide the corresponding non-adhesive solutions
already in this chapter, even though the practical significance of the respective prob-
lems will only become apparent later.

The contact problem is fully defined by the profile f(r) and one of the global
contact quantities Fy, d or a. Generally, we will assume that, of these three, the
contact radius is given, consequentially yielding the solution as a function of this
contact radius. Should, instead of the contact radius, the normal force or the inden-
tation depth be given, the given equations must be substituted as necessary.

2.5 Explicit Solutions for Axially Symmetric Profiles
2.5.1 The Cylindrical Flat Punch

The solution of the normal contact problem for the flat cylindrical punch of radius
a, which can be described by the profile:

£ = ;0’ r=a
00,

r>a,

(2.18)

goes back to Boussinesq (1885). The utilized notation is illustrated in Fig. 2.4. The
original solution by Boussinesq is based on the methods of potential theory. The
solution using the MDR is significantly simpler. The equivalent flat profile for the
purposes of the MDR, g(x), is given by:

0, |[|x|=<a,

g(x) = ; (2.19)

0o, |x|>a.

The contact radius corresponds to the radius of the indenter. The only remain-
ing global contact quantities to be determined are the indentation depth d and the
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Fig.2.4 Normal indentation E,
by a cylindrical flat punch

1 0]
-~
U

;r
-« a o
normal force Fy . For the latter we obtain:
Fy(d) =2E*da. (2.20)
Hence, the contact stiffness equals:
dFy
k, = —— =2E%a. 2.21
2 id a (2.21)

The stress distribution in the contact area and the displacements of the half-space
outside the contact are, due to (2.17):

(rid) E*d _
[CEFAUN = - s r=a,
nva*—r?
2d . qa
w(r;d) = — arcsin (—) , r>a. (2.22)
F14 r
The average pressure in the contact is:
Fy 2E*d
po= N 24 (223)
ma ma

The stress distribution and displacements within and outside the contact area are
shown in Figs. 2.5 and 2.6.

Finally, it should be noted that, although the notation E* is used for the cylin-
drical indenter, implying a possible elasticity of both contact bodies, the aforemen-
tioned solution described previously is solely valid for rigid cylindrical indenters.
While the deformation of the half-space can satisfy the conditions of the half-space
approximation, this is generally not the case for the cylindrical indenter. The dis-
crepancies which occur for elastic indenters are discussed in Sect. 2.5.19.



2.5 Explicit Solutions for Axially Symmetric Profiles 13

Fig. 2.5 Normal pressure 3
p = —0;, normalized to the
average pressure in the con- o5} g
tact po, for the indentation by
a flat cylindrical punch ol |
Q_‘Q
1.5 1
B
1r §
0.5 1
0 L L L L
0 0.2 0.4 0.6 0.8 1
r/a
Fig. 2.6 Displacement of 0

the half-space, normalized
to the indentation depth d,

for the indentation by a flat
cylindrical punch

w/d

r/a

2.5.2 TheCone
The case of the conical indenter (see Fig. 2.7),
f(r) =rtané, (2.24)

with a small inclination angle 6, was first solved by Love (1939). He also made use
of potential theory and used several tricky series expansions to obtain the solution.
Again, we describe the easier way of using the MDR. The equivalent profile is given
by:

g(x) =|x|tan 0 = % |x|tan 6. (2.25)

|x|
/ dr
J /x2 _ 2

For the relationships between contact radius a, indentation depth d, normal force
Fy, average pressure py, and for the stresses o.. and displacements w, according
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Fig.2.7 Normal indentation
by a conical indenter

A
d
\ }
<—a>
to (2.17) we obtain:
d(a) = —atan@
2
Fy(a) =mwE*tan6 | (a —x) dx = %E*tan@,
= 1E*t 0
Po = ) ant,
(ria) E*tan@/ X h(cz) _
0;:(r;a) = — = —poarcosh(—), r =<a,
- NeEr r
(a — x)dx
w(r;a) = tan@/
Jr2 — x2
/72 _ g2 _
=atanf |:arcsin <g> + #} , r>a. (2.26)
r a

Here arcosh(-) denotes the area hyperbolic cosine function, which can also be rep-
resented explicitly by the natural logarithm:

2 — 2
arcosh (%) —In (M) . (2.27)

r

The stress distribution, normalized to the average pressure in the contact, is shown
in Fig. 2.8. One recognizes the logarithmic singularity at the apex of the cone. In
Fig. 2.9, the displacement of the half-space normalized to the indentation depth d is
shown.

Finally, it should be noted—in analogy to the previous section—that although
the notation E£* is used for the conical punch as well (implying that both contact-
ing bodies are allowed to be elastic), the previously described solution is correct
without restrictions only for rigid conical indenters. While for the half-space the
requirements of the half-space approximation can still be fulfilled, for the conical
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Fig. 2.8 Course of normal 3
pressure p = —0, normal-
ized to the average pressure, 25!
for indentation by a cone
2 L
Q_‘Q
1.5
B
1 L
0.5
O i i i i
0 0.2 0.4 0.6 0.8 1
r/a
Fig. 2.9 Displacement of 0

the half-space, normalized to
the indentation depth d, for
indentation by a cone

w/d

0 0.5 1 1.5 2 2.5 3
r/a

punch this is the case only for small angles 8. The deviations that occur in the case
of elastic indenters are addressed in Sect. 2.5.19.

2.5.3 The Paraboloid

The solution to the problem illustrated in Fig. 2.10 goes back to the classical work
of Hertz (1882), although he studied the generalized problem of an elliptic contact
area. Hertz made use of potential theory too. For a small contact radius a compared
to the radius of the sphere R, the profile shape in the contact is characterized by the
parabola:

72

f0) = % (2.28)
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Fig.2.10 Normal indentation
by a parabolic indenter

The solution of the contact problem as per (2.17) is given by:

[x| rdr x?
gy =00 [ L%
R) Jii—2 R
0
2
a
dia) =<,
@="5
2E* | 4 E*g3
F@) == [(az—xz) dx =3 Ra. (2.29)
0
And by:
o) 2E* [ xdx 2B s
0..(r;a) = — =— al—r?, r<a,
7TR 4/_x2_r2 ]TR
r
a
2 a? — x%) dx
w(r;a) = —/—( )
2 _ 2

TR
0

a> 5 r? ) (a) N r2 — a2 - 2.30)
= — — — Jarcsin ( — —_— |, I >a. .
TR a? r a

The average pressure in the contact is equal to:
4E*a
3nR
The stress curve normalized to this pressure and the displacement curve normalized
to the indentation depth d are shown in Figs. 2.11 and 2.12, respectively. In this

normalized representation, the curves of the contact quantities are independent of
the curvature radius R.

po = (2.31)

Stresses within the Half-Space
As Huber (1904) demonstrated, the stresses inside the half-space can also be cal-
culated for this contact problem. After a lengthy calculation, he provided the
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Fig. 2.11 Normal pressure 1.6
curve p = —0., normalized
to the average pressure in the 1.47 il
contact, for the indentation 1o} |
by a paraboloid ’
1 + 4
Q_‘Q
0.8f ]
X
0.6 i
0.4+ ]
0.2f ]
0
0
r/a
Fig. 2.12 Displacement 0

of the half-space, normal-
ized to the indentation depth
d, for the indentation by a
paraboloid

w/d

r/a

following solution:

a,,(r,z;a)_3 1—2va? ! 2\’ n 2\’ a’u
Do 2 3 r2 Ju Ju) u?+a*z?

z (I—U)M \/E a
ﬁ[m“”"ﬁmn(ﬁ)‘z}}’
Opy(r,z;a) 3 1-2va’ 2\
el R ()

(1—v) Vu
+ % [21) + T -:uu —(1+ v)Tu arctan (%)“ ,
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0..(r,z;a) 3( z )3 a’u

Do 2\ Vu) u?+a2z?
23 3 P&
0,.(r,z:a) _ 3 _rz a \/ﬁ’ (232)
Do 2u? 4+ a2z2 u + a?
with the Poisson’s ratio v and the expression:
1
u(r,z;a) = 3 (r2 +22—a®+ V(2 + 22 —a?)? + 4a222) . (2.33)

The stresses 0., and 0, vanish due to rotational symmetry. Figure 2.13 displays the
von-Mises equivalent stress—normalized to the average pressure in the contact—
resulting from this stress tensor. It is apparent that the equivalent stress reaches
its greatest value in the middle of contact, yet underneath the half-space surface.
Therefore, the parabolic indenter is not suitable for measuring hardness as Hertz
(1882) had originally assumed. Figure 2.14 displays the greatest resulting principle
stresses in the half-space.

An alternative, yet naturally fully equivalent formulation of the stresses in the
half-space given by (2.32), can be referenced within work by Hamilton and Good-
man (1966).

The Hertzian Impact Problem

Hertz (1882) studied the impact problem for this contact also. Consider the
parabolic indenter of mass m normally impacting the initially non-deformed half-
space with the initial speed vy. Let the impact be quasi-static, i.e., vp < ¢, where
¢ represents the characteristic propagation speed of elastic waves in the half-space.
The energy radiation in the form of elastic waves in the half-space can then be
neglected, as demonstrated by Hunter (1957). In (2.29) the relationship between

Fig. 2.13 Von-Mises equiva-

lent stress curve, normalized 0.2

to the average pressure in the 04rf

half-space for the indentation

by a paraboloid assuming 0.6¢

v=20.3 0.8t
S !

1.2¢
1.47
1.6}
1.81
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Fig.2.14 Greatest principle
stress curve, normalized to
the average pressure in the
half-space for the indentation
by a paraboloid assuming
v=203

r/a

normal force F and indentation depth d is implicitly given:
4
Fy(d) = §E*«/Rd3. (2.34)

Therefore, the potential energy stored in the elastic deformation of the elastic half-
space, U, is given by:

d

U(d) = [F (ci) dd = %E*«/Rd? (2.35)
0

The indentation depth during the impact is a function of time, d = d(¢), and for
the quasi-static case the energy conservation during impact takes on the following
simple form:

v2 d> 8

m=2=m— 4+ —E*VRd>. (2.36)

2 2 15
This equation yields the maximum indentation depth dy,.«, the function t = ¢(d),
i.e., the inverse of the time dependence of the indentation depth d = d(t), and the
impact duration #g:

b (m)/
max 16E*\/E )

2 dmax 21

= B =l I

5 Vo (S 5 2) S
4dmax

21 dmax
ts = B(1;2, - )~ 2.947m 2.37
575 vy ( 5 2) 2.37)

N
|

Il
~—
[
g U
N
<2
LS}
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Here, B(:; -, -) is the incomplete beta function

B(z;a,b) := [z“*l (1—0)b""dr. (2.38)
0

2.5.4 The Sphere

The problem of the spherical indenter is very closely related to the problem of the
parabolic indenter described in the previous section. The profile of a sphere of
radius R is:

f(r)=R—~R2—r2, (2.39)
For the case of r < R this can be approximated as:

2
f(r)~ 7R (2.40)

which obviously coincides with (2.28) from Sect. 2.5.3. It may now be necessary
to use the exact spherical shape instead of the parabolic approximation. However,
the assumption of small deformations that underlies the whole theory used in this
book requires the validity of the half-space hypothesis, which in our case can be
written as a < R. If the latter is fulfilled, one can still work with the parabolic
approximation. Nevertheless, we want to present the solution of the contact problem
with a spherical indenter, which was first published by Segedin (1957). Applying
(2.17) to (2.39) yields:

|x]
rdr | x|
g(x)|x|/ = |x| artanh (—) ,
J VR2 —r2/x2 — 2 R

d(a) = a artanh (%) ,

Fy(a) = 2E*[ [a artanh (%) — x artanh (%)] dx

0
2
— E*R? [(1 n %) artanh (%) - %} . (2.41)

Here artanh(-) refers to the area hyperbolic tangent function, which can also be
represented explicitly by the natural logarithm:

a 1 R+a
artanh (E) =5 ln(R _a) . (2.42)
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The average pressure in the contact is:

E*R? a? a a
Po="—3 [(1 + F) artanh <E) - E} . (2.43)

The stresses and displacements were not determined by Segedin (1957), and can
only be partially expressed by elementary functions. With the help of (2.17) we
obtain the relationships:

. FE 7 xR anh ( dx -
i) == [ | gtk (3) | o= 7=

<

E* R o a?—r?
= ——| ———=artanh | ———
e R2_ 2 /R — 12

+[a rt h(x) dx
artanh ( = ) — |,
R/ J/x2_ 2

a artanh (%) arcsin (%) — / X artanh (%) % ,
r>—x

0

w(ria) =

QI

r>a,

= %{ artanh (%) [a arcsin (%) + Vr2— az] — R arcsin (%)

SR a~vR? —r2
+ v R? — r#arctan (—Rm . (2.44)

These functions are shown in normalized form in Figs. 2.15 and 2.16 for different
values of R/a. It can be seen that, even for small values of this ratio such as 1.5
(which already strongly violates the half-space approximation), the stresses are only
slightly different and the displacements almost indistinguishable from the parabolic
approximation in Sect. 2.5.3.

25,5 The Ellipsoid

The solution for an indenter in the form of an ellipsoid of rotation also originated
from Segedin (1957). The profile is given by:

fr) =R (1= V1=k27), (2.45)



22 2 Normal Contact Without Adhesion

Fig. 2.15 Normal pressure
p = —o0;, normalized to
the average pressure in the
contact, py, for indentation
by a sphere for different ra-
tios R /a. The thin solid line
indicates the parabolic ap-
proximation from (2.30)

pp,

0.4

—R/a=1.1
02H = =Ra=15
-=--Rla=4
O I L L L
0 0.2 0.4 0.6 0.8 1
r/a
Fig. 2.16 Displacement of 0

the half-space, normalized to
the indentation depth d for
indentation by a sphere for
different ratios R /a. Since
the curves are approximately
on top of each other, the line
of the parabolic approxima-
tion, according to (2.30), has
been omitted

w/d

r/a

with the two parameters, R and k. kR = 1, resulting in the spherical indenter of the
previous section. In general cases, the equivalent profile is as follows:

x|
k*rdr
g(x) = IxIR/ = |x|kR artanh(k|x|)
; N1 =k2r2Vx2 =2
1
= kRgsphere X;R = E . (2.46)
Here, gsphere (x; R) denotes the solution:
Py x|
Zsphere (X5 R) 1= |x| artanh R (2.47)

derived in the previous section for a sphere with the radius R. Because of the
superposition principle, all expressions for the stresses and displacements—and,
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correspondingly of course, also for the macroscopic quantities—are linear in g.
Therefore, it is clear without calculation that the solution of the contact problem is
given by:

1
d(a) = desphere (Cl; R = _) )

k
1
FN(a) = kRFN,sphere (a; R = E) s
1
o-zz(r;a) = kROzz,sphere (r;a; R = E) s r<a,
1
w(r;a) = kRWgphere (r;a; R = E) , r>a. (2.48)

The index “sphere” denotes the respective solution from Sect. 2.5.4.

2.5.6 The Profile Which Generates Constant Pressure

It is possible to design an indenter in such a way that the generated pressure in the
contact is constant. This contact problem was initially solved by Lamb (1902) in
the form of hypergeometric functions and by utilizing the potentials of Boussinesq.
We will present a slightly simplified solution based on elliptical integrals, which
goes back to Foppl (1941).

Applying a constant pressure p to a circular region with the radius a yields the
following vertical displacements w; p (x) in a one-dimensional MDR model accord-
ing to (2.16):

2 | Do 2po
wip(x) = — / —dr = va? — x2. (2.49)
E* 2 _ 2 E*
SVt —x

The displacement in the real three-dimensional space is given by:

r r
2 wip(x) 4po a? — x?

w(r) =— dx = dx
T /12 — x2 T E* /r2 — x2 (2 50)
0 0 .
4
= pan<£)’ r<a.
nE* a

Here, E(-) denotes the complete elliptical integral of the second kind:

/2

E(k) := / V1 —k2sin @ dg. (2.51)
0
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The indentation depth d is therefore:

2
d =w(0) = L2 (2.52)
E*
and the shape of the profile is given by:
2 2
f(r)=d —w(r) = po“ [1 g (5)} (2.53)
T \a

It is apparent that this is not a classical indenter with a constant shape: varying py
causes the profile to be scaled. In other words, different pairings {a, po} require dif-
ferent indenter profiles f(r). Concrete applications, usually in biological systems,
are discovered upon considering the adhesive normal contact. We will examine
them at a later point. For completeness, we will calculate the displacement outside
the contact area:

w(r;a, po) = , Tr>a,

4p0/v — x2dx
T E* N/ )

2

=t [E(j‘) (-%)x()] e

with the complete elliptical integral of the first kind:

/2
d
K(k) := / . S (2.55)
V1 —k2sin’ ¢

0

The displacement w of the half-space is shown in Fig. 2.17.

Fig. 2.17 Displacements 0
within and outside the contact
area, normalized to the inden-

tation depth, for an indenter 0.2
generating constant pressure
0.41
RS
N
= 06t
0.8}

r/a
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Fig. 2.18 Thin circular ring.
Visualized derivation of the
integral (2.58)

\/

2.5.7 Displacement from Indentation by a Thin Circular Ring

We now examine the indentation of the elastic half-space by a thin circular ring of
radius a. Let the ring be sufficiently thin so that the pressure distribution can be
regarded as a Dirac distribution:

F
0,.(r;a) = —ﬁ(?(r —a), (2.56)

where Fy denotes the normal force loading the ring. The resulting displacement of
the half-space can be determined from the superposition of fundamental solutions
of elasticity theory. The half-space normal displacement resulting from the point
force acting on the origin in the z-direction is, according to (2.2), given by:

F,
nE*s’

w(s) = (2.57)
with the distance s to the acting point of the force.

The displacements (see notations used in the diagram in Fig. 2.18) produced by
this pressure distribution (2.56) are given by:

2

1 F d
w(r;a):—[ N L4

nE* / 27 /a2 + r? —2arcos¢

Fy 4 K 24/ra
2E* n2(r +a) r+a)’

(2.58)

These displacements are represented in Fig. 2.19. A superposition of the dis-
placements enables the direct calculation of the displacements from any given axi-
ally symmetric pressure distribution.

2.5.8 The Profile in the Form of a Power-Law

For a general indenter with the profile in the form of a power-law (see Fig. 2.20),

f(ry=cr", neRT, (2.59)
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Fig.2.19 Normalized surface 0
displacement from indenta-
tion by a thin circular ring

F

2E a-w/

0 0.5 1 1.5 2 2.5 3
r/a

Fig. 2.20 Normal indenta- Fy
tion by a mnemonic indenter
zZ
| a

3 -

the solution of the contact problem can also be given in explicit form. Here, c is
a constant and » is a positive real number. For example, forn = 1 andn = 2
arise the already considered cases of a conical or parabolic indenter. The general
solution was first found by Galin (1946). Shtaerman (1939) gave a solution in
faculty expressions for even integers n.

The equivalent plane profile g(x) is, in this case, also a power function with the

exponent n:
x|

@ = Ixlne [ =2~ el (2.60)
g(x) =|x|nc | —— = k(n)c|x|", .
/ /32 _ 72
with the scaling factor
F'n/2+1
k(n) = Jm (n/2+ 1) (2.61)

Cl(n+1)/2]

Here, I'(-) denotes the gamma function

o0

I'(z):= / 17~ Vexp(—t) dt. (2.62)

0
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Fig. 2.21 Dependence of the 4.5
stretch factor « in (2.61) on
the exponent n of the power 4r
profile
3.5
~
—~ 3
s
< 25t
2 L
1.5¢

n

Table 2.1 Scaling factor «(n) for selected exponents of the shape function

n 0.5 1 2 3 4 5 6 7 8 9 10
k(n) | 1311 1571 2 2.356 | 2.667 2.945 3.2 3.436 1 3.657 3.866 4.063

The dependence of the scaling factor on the exponent 7 is shown in Fig. 2.21 and in
Table 2.1. For the relationships between the normal force Fy, indentation depth d,
and contact radius a we get:

d(a) = k(n)ca",

2
Fy(a) = E*~ J:’ —cn)ea™. (2.63)
The mean pressure in contact is:
E*
po = e 1/c(n)ca”_l. (2.64)

For the stress and displacement distributions, the expressions given in (2.17) will
result in:

a
B dx
/xn 17’ <
/x2 _ 72
"

0.;(r;a) = ——nk(n)c r<a,
T
E* et 1—n 1 r2 1—n 1
= ——nk(n)cr B 1; — =11,
2 2 2 2 2
(ria) = ~x(n) / >
w(r;a) = —k(n)c | a" arcsm x" , r>a,
m x/ﬁ
0
2 1 1 3 a®
= —k(n)ca" [arcsin (f) ( ntln + az)
7 r r

(2.65)
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Here, B(:; -, -) denotes the incomplete beta function
B(z:a,b) := Z—ZFI (a,1—b;a+1;z2) (2.66)
a

and ,F (-, -;-; -) the hypergeometric function

2 T(a+nT®H+n)(c) "

zFl(“’b;C;Z):n; @B +n) n

(2.67)

However, the evaluation of these functions is somewhat cumbersome, which is
why we give two recursion formulas with which all stresses and displacements for
natural values of n can be recursively determined from the known solutions for a
cylindrical flat punch and a cone:

a
x"ldx @' PNa?—-r?  ,n—=2 [ x"dx
= +r , r=a,

/x2 — 2 n—1 n—1 /x2 — 2
r r
a a

x"dx a2 — a2 ,n—1 X" 2dx

—r r>a. (2.68)

N /72 _ 2 - n n /72 _ 2
0 0

In the case of the cone (n = 1), the normal stress has a logarithmic singularity
at the apex of the cone. For all n > 1 the pressure distribution is not singular;
the pressure maximum remains at the center of the contact until » = 2 and then
begins to shift to the edge of the contact at higher n. In the limiting case n — oo
corresponding to a cylindrical flat punch, the pressure distribution is singular at the
contact edge.

The Impact Problem for the Indenter with Power-Law Profile
Since the relationships between normal force, contact radius, and indentation depth
are known to be power functions, the normal impact problem can also be solved
easily for this indenter profile. Consider a rotationally symmetric rigid body of
mass m with the power-law profile just described, which impacts on the elastic
half-space with the initial velocity vy. The collision should be quasi-static, i.e., this
impact velocity would be much smaller than the propagation speed of elastic waves.
The potential energy as a function of the current indentation depth can be derived
from (2.63) and is given by:

d

U(d) =/F(J)dci =

0

E* 21’!2 dM
[eke(m)]/" 2n + 1)(n + 1) '

(2.69)
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Due to energy conservation, the following expressions for the maximum indentation
depth dy.x, the function 1 = #(d), and the impact duration ¢y are valid:

Aoy = { [k (m)]Y" 2n + 1) (n + 1)mv3§2;«"ﬁ |

4n2E*
2n+1
;= n dmaxB ?;:; n ,l 7%_: d n ’
2n+1 v 2n+1 2 Amax
2n 1
tg = —— Gmxpy. M) (2.70)
2n+1 vy 2n+1 2

which, for n = 2, coincides with the solution of the Hertzian impact problem de-
scribed in Sect. 2.5.3.

2.5.9 The Truncated Cone

For certain technical applications it can be of interest to consider an indenter with

a flattened tip, perhaps worn down by wear. The solution for the indentation by a

truncated cone was first published by Ejike (1969). This solution—as well as the

general solution by Sneddon (1965)—is based on appropriate integral transforms.

A simple solution in the framework of MDR has been provided in this section.
The axisymmetric profile (see Fig. 2.22) can be written as:

0 r<b
=" - 2.71
S (r—>b)tanf, r > b. ( )

Here, 6 denotes the slope angle of the cone and b the radius of the blunt end. As
in previous cases, the problem can be dealt with elementarily by utilizing (2.17),

Fig.2.22 Normal indentation F,,
by a truncated cone

v afl
/0 v

‘:"
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which provide the solution:

0, x| < b,

= b
8(x) |x| tan 6 arccos (ﬁ) . |x| > b,
X

b
d(a) = atan 6 arccos (—) = @pa tan 6,
a

b b b?
Fy(a) = E* tan 6a” [arccos (—) + —/1- —2]
a a a

= E* tan fa’® (¢o + cos g sin ¢q) , (2.72)

where we introduced the angle

@ .= arccos (é) . (2.73)
a

The average pressure in the contact is:
*

E
po = — tan (po + cos gp sin gy). (2.74)
T

Setting b = 0, i.e., ¢o = 7/2, yields the solution of the ideal conical indenter from
Sect. 2.5.2. For the stresses in the contact area we obtain:

0.:(r;a) =
| =t (O = =
— +4arccos | — |y ————, r < b,
E*tan O b xz _ bz X x2 _ r2 (2 75)
b4 dx '

“ b b
s — ——, b <a.
[ { T2 arccos ( )} T2 <r a

The stresses are shown in Fig. 2.23. The singularity at the sharp edge of the blunt
end, r = b, is clearly visible. For small values of b/a, the curves approach the
solution for the complete cone, and for b/a — 1 the limiting case of the flat cylin-
drical punch. Both limiting cases are represented as thin solid lines in Figs. 2.23
and 2.24. The displacements outside of the contact area are:

2_ 32

2tan 6 . sa b dx
w(r;a) = @pa arcsin (—) — | xarccos | — | — ¢,
bia r X r
b

r>a. (2.76)
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Fig. 2.23 Stress distribution,
normalized to the average
pressure in the contact, for
the indentation by a truncated
cone with different values
b/a. The thin solid lines
represent the solutions for the
complete cone and the flat
cylindrical punch

Fig. 2.24 Displacements of
the half-space, normalized

to the indentation depth, for
the indentation by a truncated
cone with different values
b/a. The thin solid lines
represent the solutions for the
complete cone and the flat
cylindrical punch
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Theoretically, this integral can be solved analytically using tabulated functions,
but due to its complexity, a numerical solution seems more feasible. These dis-

placements are displayed in Fig. 2.24.

2.5.10 The Truncated Paraboloid

The indentation problem for a truncated paraboloid (see Fig. 2.25) was also first
solved by Ejike (1981). The profile is described by:

0, r<b,
r2 _ bz
2R

fr) = 2.77)

r>b,
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Fig.2.25 Normal indentation
by a truncated paraboloid

with the radius of the blunt end, b, and the radius of curvature of the paraboloid R.
The solution within the MDR (see (2.17)) gives:

0, |x| < b,
g(-x) = % xz — bz, |x| - b’
d(a) = % a2 — b2,
2E*
Fy(a) = W(zaz + b*)Va? — b2 (2.78)

For the stresses within the contact area, we obtain:

/“ (2x? — b?)dx b
b r — b
E* | Jp ~x2—Db2/x2—r?

R @ (2x2—=b)dx
r NxZ—b2/x2 =2

These can theoretically be expressed in closed form via elliptic integrals. However,
the resulting expressions are very extensive and cumbersome to evaluate, which is
why a numerical evaluation will be preferable. The stresses are shown in Fig. 2.26.
One recognizes the singularities at the sharp edge of the blunt end at r = b, which are
increasingly localized for small values of b, and the limiting cases of the paraboloid
and the cylindrical flat punch (indicated by thin solid lines). The displacements
outside the contact area are as follows:

2
w(r;a) = —aMarcsin (ﬁ)
TR r

0..(r;a) = — 2.79)

b<r<a.

/a2 — b2
L |:(r2 — b?) arcsin (7a b ) —va*—b*Vr? —a2i| .
7R Jr2 = p2

r>a. (2.80)

These are shown in Fig. 2.27. For » = 0 we obtain the Hertzian solutions for the
parabolic indenter given in Sect. 2.5.3.
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Fig. 2.26 Stress distribu- 3.5
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tion, normalized to the mean —b/a=0.1 H N
pressure in contact, for in- 3H'==ba=0.5 ' ¥
dentation by a flattened -=--b/a=09 ! M
paraboloid at different val- 2.5¢ : n
ues b/a. The thin solid lines : o
indicate the solutions for the - 27 " " v
complete paraboloid and the \E L _",\ P
flat punch 1.5 S !
™ ~, A\
\r" Y ‘ 1}
o1 SRS - :, . \
_-" \
e ememmm === '
0.5F=== !
0 i i i i
0 0.2 0.4 0.6 0.8 1
r/a
Fig. 2.27 Displacements of 0

the half-space, normalized

to the indentation depth, for
indentation by a flattened
paraboloid at different values
b/a. The thin solid lines 0.4r
indicate the solutions for the
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25.11 The Cylindrical Flat Punch with Parabolic Cap

For mechanical microscopy and other metrological applications, indenters with a
parabolic cap are important. In the following, we examine such indenters, assum-
ing that the indentation depth is large enough to ensure that the face comes into
complete contact (otherwise we would deal with the simple parabolic contact stud-
ied in Sect. 2.5.3).

The solution for a flat cylindrical punch (as a base body) stems from Abramian
et al. (1964). In their solution the authors used series expansions to fulfill the field
equations. We again show the easier solution within the framework of MDR. The
indenter has the profile (see Fig. 2.28)

72

S <
fry =120 "=% 2.81)
oo, r>a,
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Fig. 2.28 Normal indenta- Fy
tion by a cylindrical punch
with parabolic cap

Ny
.

\

with the radius of curvature of the cap R, and the radius of the base punch a; the
solution of the contact problem is, according to (2.17), given by:

2
—, x| <a
s =& =9
o0, |x|>a
a3
FN(d):2E*(da——), dR > a?,

3R
E*a?—2r2+dR
0, (r;d) = ——$, r<a, dR > d°,
TR a2 -2
1
w(r;d) = — [(ZdR — r2) arcsin (g) +avr? —az],
7R r
r>a, dR > a>. (2.82)

For dR = a? (of course), we obtain the Hertzian solution from Sect. 2.5.3, and
for R — oo that for the cylindrical flat punch from Sect. 2.5.1. The stresses and

Fig. 2.29 Stress distribu- ‘ 7 ‘ i
tion, normalized to the mean dR/a" =12 "
pressure in contact, for in- 2t Bl dR/a2 =2 : ::'

. . 1-
dentation by a flat punch with - -dRIP =4 )

parabolic cap at different val-
ues dR /a’. The thin solid
lines indicate the solutions
for the paraboloid and the flat
punch

r/a
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Fig. 2.30 Displacements 0
normalized to the indentation
depth, for indentation by a
flat punch with parabolic cap
at different values dR /a.
The thin solid lines indi- 0.4
cate the solutions for the
paraboloid and the flat punch

0.2

w/d

0.6}

0.8f —dR/a" =12
= AR/ =2
! -~ -dR/a* =4
0o 05 1 15 2 25 3

displacements for various values of dR /a” are shown in Figs. 2.29 and 2.30. One
recognizes the limiting cases of the paraboloid and the flat punch marked by solid
lines. The intersection of all normalized pressure curves is at r/a = /2/3 and

p/po= \/3/2-

2.5.12 The Cone with Parabolic Cap

The solution for a cone with a rounded tip, despite its metrological significance, was
found first by Ciavarella (1999). However, Maugis and Barquins (1983) already
knew the relations between the global contact quantities—normal force, contact
radius, and indentation depth—by solving the respective problem with adhesion.
Ciavarella’s solution is based on the general solution by Shtaerman (1949).

The profile (see Fig. 2.31) is described by:

r2tan @
_— r<b,
fry=4q 26, (2.83)
rtand — —tan6, r > b,
Fig.2.31 Normal indentation F,

by a cone with a rounded tip

Y
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with the radius b at the base of the parabolic cap and the slope angle 6 of the cone.
Note that the radius of curvature of the cap is given by R := b/ tan 6 to guarantee
continuous differentiability. For the solution to the contact problem, according to
(2.17) one obtains:

2tan 6
. X t;m ’ |x] < b,
X) =
& |x|tan 8 b
; |x| — v/ x2 — b2 + b arccos |— . |x[>b,
X

b
d(a) = %tan@ (a — ~a? — b? + barccos (—))
a
I —si
:atang(ﬂ+¢o)’
oS @

* 2 ) )
Fy(a) = Ea—tanﬁ |:b arccos (é) + g (a — «/a2_b2) 4 lu}

b a 3 a?
41 —si 1
= E*a*tan 6 (¢ + o on% + = singgcos ¢y |,
3 cosg 3
(2.84)
where we introduced the angle:
b
@ := arccos | — | . (2.85)
a

In the limit » — 0 we obtain the expressions for the conical indenter from

Sect. 2.5.2, because

. 1 — sin ¢q
lim ——

—0. (2.86)
@o—7n/2 COS ®o

For b — a,i.e., ¢y = 0, we obtain solutions of the Hertzian contact problem from
Sect. 2.5.3. For the stresses in the contact area the following expressions result:

E*tan 0
b

0::(r;a) = —

L0
—2tang)tangd
Wal g [T 2@ne)angde

) V1 —k%cos?g B

arcosh(a/r) b
Va2 —r2 4+ b / [arccos( o ) —Z\Ikzcoshz(p—1:| de,
rcosh g
0

b<r<a,

(2.87)
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with the parameter k := r/b. For the displacement outside the contact area we get:

w(ria) = 24
tan0 | , . ra
— ﬂ—b r-arcsin (;)

r>a.

. a
arcsin | —
r

(44
_a4/r2_a2+2b2 (‘/’_tan@)tan(pd(p

cos@/k?cos?g—1

(2.88)

In Figs. 2.32 and 2.33, the normalized stresses and displacements are shown for
some values of the ratio b/a. It is easy to see the limiting cases of the conical and
parabolic indenters marked by the thin lines. The stress distribution is not singular
in the origin due to the rounded tip; this is in contrast to the indentation by an ideal

cone.
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From the equivalent plane profile g(x) in (2.84) it can be seen that this contact
problem is actually a superposition of three previously solved problems, and the
solution can therefore be obtained from the sum of the corresponding solutions
given in this section. It is indeed

b b
gx)=gp|(x;R=—— | +grs(x)—gps(X;R=—+]. (2.89)
tan 0 tan 6

Here, gp denotes the equivalent profile of a paraboloid of radius R (see Sect. 2.5.3),
gk s (x) the equivalent profile of a truncated cone with the inclination angle 6 and
the radius b of the flat “tip” (see Sect. 2.5.8), and g ps the equivalent profile of a trun-
cated paraboloid with the radius R and the radius b of the flat “tip” (see Sect. 2.5.10).

2.5.13 The Paraboloid with Parabolic Cap

The contact problem of a paraboloid with parabolic cap indenting an elastic half-
space was first solved by Maugis and Barquins (1983) for the adhesive contact.
However, the case without adhesion is of course included in this solution. As will
be seen, the problem can be considered as a superposition of the indentations by a
paraboloid (see Sect. 2.5.3) and a truncated paraboloid (see Sect. 2.5.10), where the
weighting factors depend on the two radii of the cap and the paraboloid R| and R;.
The profile has the shape (see Fig. 2.34)

72

T
f(r) = 2 ihz (2.90)
, r>bh.
2R,

The radius of curvature of the cap, R;, must be greater than that of the base
paraboloid, R;, to ensure a compact contact area. The continuity of the profile also

requires
R
h? = p? (1 - —2) , (2.91)

Fig. 2.34 Normal inden-
tation by a sphere with
spherical cap

e

A
\
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for the length 4. The equivalent profile within the MDR, seen in (2.17), is given by:

iy x| < b,
Rl

gx) = (2.92)
RT + o sl ey o NS

with the effective radius of curvature

RiR,

R = —— 2.93
R Ry (2.93)

It is easy to see that (2.92) can be thought of as a sum:
g(x) =gp(x:R = Ry) + gps(x: R = RY). (2.94)

Here, gp and gps denote the equivalent profiles of the paraboloid (see (2.29)) and
the truncated paraboloid (see (2.78)). The solution of the contact problem is, there-
fore, given by:

2

d(a) = “— + o Na =B,
2E* 2
Fy(a) = = ;Ri+—(2a +b2)«/a2—b2},

1

2vVa? —r? N / (2x? — b?)dx b
o (r'a)——E—* Ry b RNX2 D222 T
zz\I'» g 2Ja? —r2 +/~a (2x2—b2)dx by <

s r=a,
R, r R*/x2—b%2/x2 —r2

w(r;a) = wp(r;a; R = Ry) + wps(r;a; R =R*), r>a. (2.95)

Here, wp and wpgs denote the displacements in the indentation by a complete and
cut-off paraboloid:

a? r2 . /a r2—a?
wp(r;a; Ry)) = R 2— — ) arcsin (7) + — |
1

a _sa
va? — b? arcsin (—)
,

R*
1 5 , a?—b?
— —_p? = -
— [ (r ) arcsin ( == b2)

—va?—-b2Vr?2 — a2:|. (2.96)

wps(r;a; R*) =
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Fig. 2.35 Stress distribu-
tion, normalized to the mean
pressure in contact, for inden-
tation by a paraboloid with
round cap forb/a = 0.5 at
different values R;/R*. The
thin solid lines indicate the
solutions for the complete
paraboloid and the truncated
paraboloid

Fig. 2.36 Displacements

of the half-space, normal-
ized to the indentation

depth, for indentation by a
paraboloid with a round cap
for b/a = 0.5 at different
values R;/R*. The thin solid
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For Ry = R;, respectively R* — oo, we obtain the Hertzian solution from

Sect. 2.5.3, and for Ry — oo the solution of the truncated paraboloid from

Sect. 2.5.10.

Since the solution is determined by two parameters, b/a and R;/R*, it would
be very ponderous to try to show all solutions for the stresses and displacements in
a single diagram. Moreover, the superposition (2.94) already clarifies the structure
of the solution. Therefore, the dependencies are shown only for b/a = 0.5 in
Figs. 2.35 and 2.36. One recognizes the limiting cases given by the thin solid lines
and the stress singularity at the sharp edge at r = b, which is more localized when
approaching the parabolic solution.



2.5 Explicit Solutions for Axially Symmetric Profiles 4

2.5.14 The Cylindrical Flat Punch with a Rounded Edge

A real flat cylindrical punch will never have a perfectly sharp edge but will always
be rounded. The influence of this curvature on the normal contact problem was
investigated for both plain and axisymmetric contacts by Schubert (1942) (see also
later papers by Ciavarella et al. (1998) and Ciavarella (1999), who presented a
solution to the rotationally symmetric problem based on Shtaerman’s (1949) general
solution). The indenter has the profile (see Fig. 2.37):

0, r<b,
= _p2 2.97
f(r) (r b), r b, (2.97)
2R

with the radius of curvature of the rounded corner, R, and the radius of the blunt
end, b. The contact problem is solved according to (2.17) by the relations:

0, lx| < b,
g0 = lxl [V barccos( b ):|, |x| > b,

|x]

d(a) = a4 [Va2 — b2? — b arccos ( )i| = — (sin @y — @y cOS @) ,
Fy(a) = |:\/ — b2(4a* — b*) — 3ba® arccos (z)i|

* 3
= 3R [sin ©o(4 — cos’ ©o) — 3¢y cos (po] , (2.98)
with the angle:
b
@) 1= arccos (—) . (2.99)
a

For b = 0, the Hertzian solution from Sect. 2.5.3 is recovered, and for R = 0
and b = a, i.e., ¢y = 0, the solution for the cylindrical flat punch from Sect. 2.5.1.

Fig.2.37 Normal indentation
by a flat cylindrical punch
with a rounded edge
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Fig. 2.38 Stress distribu-
tion, normalized to the mean
pressure in contact, for in-
dentation by a flat punch with
rounded corners at different
values b/a. The thin solid
lines indicate the solutions
for the paraboloid and the flat
punch
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It can be seen from the form of the function g(x) that this contact problem ac-
tually represents a sum of two already solved problems and, therefore, the solution
can be obtained via an appropriate superposition. It is:

g(x) = gps(x) — gks (x;tané = %) .

(2.100)

Here gps(x) denotes the equivalent profile of a truncated paraboloid (see (2.78))
and ggg that of a truncated cone (see (2.72)) whose conical angle of inclination 0
is determined by the relationship tan & = b/R. For the stresses and displacements

we get:
a b dx
/ 2vx2—b2—barccos| — | | —, r <b,
E* b X x2 _rz
Uzz(r;a) = R a b d
T
/ (2Vx2—b2—barccos(—)) 7)6, b<r<a,
, X x2 —r2
2d
w(r;a) = i)arcsin f)
T r
2| 7 b d
- = /ﬁ (sz—bz—barccos(—)) & , r>a.
T R X 2 _ 2
b
2.101)

These are shown in Figs. 2.38 and 2.39. Due to the rounded edge, the stress at the
edge of the contact—in contrast to the indentation by a flat cylindrical punch—is

not singular.
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Fig. 2.39 Displacements, 0
normalized to the indentation
depth, for the indentation by

a flat punch with rounded 0.2 : - -l
corners at different values
b/a. The thin solid lines 0.41
indicate the solutions for the ~
paraboloid and the flat punch § 06l
0.8}
—b/a=02
. = =bla=0.5
L ---b/a=09 ||
0 0.5 1 1.5 2 2.5 3

2,5.15 The Concave Paraboloid (Complete Contact)

For concave indenters of certain profile geometries, the contact problem can be
solved analytically and in closed form using the previously applied methods, as-
suming the contact area remains compact. Sharp concave corners or edges—such as
the cases of a cylinder with a central recess or a concave cone—render this impossi-
ble. For these cases of annular contact areas, there sometimes exist semi-analytical
solutions in the form of series expansions, which will be detailed in Chap. 10 of this
book. The interested reader can also refer to the respective publications of Collins
(1963) and Barber (1976, 1983). Complete contact of the concave paraboloid can
be ensured if the normal force is large enough. The solution to this problem was
discovered by Schubert (1942) (see also Barber 1976). The profile can be charac-
terized by:

hr?
G r E a,
f(r) = a2 (2.102)
00, r>a
For the notation, see Fig. 2.40.
Fig. 2.40 Normal indenta- F,
tion by a parabolic concave
indenter
Z A A
A
d, d
/ Y
7 A
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Fig. 2.41 Stress distribution, 2.5
normalized to the average
pressure, for the indentation
by concave paraboloid with
different values //dy. The
thin solid line represents the 15
solution for the flat cylindri- ’
cal punch
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The contact problem is solved according to (2.17) by the relationships:

|x]
2h|x| rdr 2hx?
- =- o xl=a,
c="@ | oo @
0
w’ |x| > a’
" 2h
Fy(do) = 2E"a do+? ,
E*|dya® — 2h(a® — 2r?
0::(r;do) = — [ o (@ ! )], r <a,
wa’va? —r?
a
2 2hx? dx
1dy) = — do+ ) —
w(r;dp) n/(0+ az) =
0
2d 2h
= "Larcsin (C—Z) +— (rz arcsin (f) —avr?— az) , r>a.
" o ’ (2.103)

Setting i = 0 yields the solution for the flat cylindrical punch. For complete
contact, condition o..(r = 0) < 0 must be satisfied, which leads to the condi-
tions dy > 2h, or equivalently, Fy > 16E*ah/3. The normalized stresses and

displacements are shown in Figs. 2.41 and 2.42.

2.5.16 The Concave Profile in the Form of a Power-Law (Complete
Contact)

We will briefly focus on the indentation through a concave power profile in the form

of:
hr _
-\ r<a
f@r) = an’ T~ neRT. (2.104)

00, r>a
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Fig. 2.42 Displacements of 0
the half-space, normalized
to the indentation depth, for
the indentation by a concave
paraboloid with different

values i/d,. The thin solid 0.5
line represents the solution ~
for the flat cylindrical punch §
! . i —Wd =01
NS, n 0
\\:’\"_: - h/d0:03
A | —
i -- -h/a/0 =0.5
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r/a

The notations can again be taken from Fig. 2.40. If the normal force is large enough
to ensure complete contact, the solution to the contact problem is, following (2.17),
given by:

h|x|"
™ <a,

g(x) = a"
o0, x| >a

Fy(dy) = 2E*a (do n K(")h) ,

n—+1
0ur(ridy) =~ / L
b4 a" Vx2 =2 Va2 —r2?
) 2 h k(n)hx" dx
w(r;dy) = ;/ (d0+ pr ) N r>a, (2.105)
0

with the indentation depth in the middle of the contact, dj, and the scaling factor

. 'm/24+1)
k(n) = ﬁif’ /2 (2.106)
with the gamma function I'(+)
I'(z):= / 17~ Vexp(—t) dt. (2.107)
0

For details relating to integrals occurring in the stresses and displacements, see
Sect. 2.5.8.
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One can ask how large the indentation depth must be in order to ensure complete
contact. For n < 2, the minimum of the contact pressure will be in the center of the
contact (and the center point will be the last one to make contact during indentation).
In this case the condition of complete contact can be determined easily and without
evaluating the aforementioned integrals. One obtains that o, (r = 0) < 0 if

k(n)

dy>h ,
0 n—1

1 <n<2. (2.108)

From this it can be seen that, for a concave cone (and hence n = 1), and in general
for all concave profiles with n < 1, no complete contact can be realized. This was
already known to Barber (1976). Therefore, for the relations occurring in (2.105),
it must be n > 1. For exponents n > 2 the minimum contact pressure in complete
contact lies away from the contact midpoint. During indentation, first the contact
annulus propagates inside. After a first critical point, contact is established in the
contact center and an additional circular contact area grows from the inside. Com-
plete contact is established if the inner contact circle and the outer contact annulus
overlap. The determination of the criterion of complete contact for n > 2 is a non-
trivial task (and usually only possible numerically by finding the minimum of the
contact pressure and setting the minimal pressure to zero), which was solved by
Popov et al. (2018). For a simple example which is possible to analyze in closed
form, we can examine the results for the case n = 4. The pressure distribution for
complete contact is given by:

E*| 3d +5h 32h r2 2r2
=—0..rid)=—| ——— - J1—-—=[1+=)|. 2.109
p(r) =—0:(r;d) = — [3 % az( +a2)i| (2.109)

Conditions p’(r.) = 0, and simultaneously p(r.) = 0, lead to 3d = 7h, i.e., full
contact is established for:

4
dy > 3h. (2.110)

2.5.177 The Paraboloid with Small Periodic Roughness (Complete
Contact)

Finally, a simple analytical model of a parabolic indenter with periodic surface
roughness is presented. The influence of roughness gains great importance in the
treatment of the adhesive normal contact (see Sect. 3.5.14 in Chap. 3). Nonetheless,
it can also be of interest for the non-adhesive contact. The contact problem was
first solved by Guduru (2007). His solution uses a superposition method, which
amounts to the same algorithm as the MDR, i.e., determining the auxiliary function
g(x), which basically solves the contact problem.
Let the examined three-dimensional profile have the shape:

2
f(r)ZZr—R—l—h(l—cos(zan)), (2.111)
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with the amplitude /& and the wavelength A of the roughness, as well as the usual ra-
dius of the paraboloid R. Once more we assume a compact contact area. The chapter
on adhesive normal contact imposes even stricter limitations requiring f'(r) > 0
(see Sect. 3.5.14). For the equivalent profile we obtain:

x2 7l 27
= —+ —I[x[Ho | — x| ). (2.112)

Here, H,(-) denotes the n-th order Struve function, which can be expanded as a
power series:

o0 (=DF U 2k+n+1
H, (u) := — , (2.113)
gr(k+%)l“(k+n+%) (2>
with the Gamma function I'(+):
I'(z):= / 17 Vexp(—t) dt. (2.114)

0

From (2.113) the following differentiation property of the Struve function can be
proven:

b, 01 = a0 1, 0. 2.115)
u u

The relationships between the global contact quantities F, d and a using (2.17)
are given by equations:

2 2h 2
d(a)z%—i—n aHO( 11 )7

) o

4E*a’ . 2 2 2
Fy(a) = 3R + E*mah TaHO Ta —H; Ta . (2.116)

For the stresses in the contact area we obtain:

0:-(r;a) =

E* 2\/a2—r2+n2h[a a () 2 (2 dx
T R A 0 A A - 22|

J
r<a
(2.117)
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Fig. 2.43 Pressure distri- 2.5k ‘ ]
bution, normalized to the . ‘. —a=0.1
average pressure in the NN ==Ma=0.5
contact, for the indenta- 2y \\ N ===)/a=0.9 ||

tion by a paraboloid with
small periodic roughness at
hR/A* = 0.1 and different
values A /a. The thin solid
line represents the solution
for the smooth paraboloid
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and the displacements outside the contact area are given by:

w(r;a) = 2d]§a) arcsin (%) — # (r2 arcsin (%) —avr?— az)

2w r 2w dx
— —h/xHo (—x) —, r >aq. (2.118)
r
0

The stresses normalized to the average pressure in the contact are displayed in
Fig. 2.43. The influence of the periodic roughness on the pressure distribution is
quite apparent. Figure 2.44 shows the three-dimensional profile and also the equiv-
alent one-dimensional profile.
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2.5.18 Displacement in the Center of an Arbitrary Axially
Symmetric Pressure Distribution

The displacement w; p (x) of the one-dimensional MDR-model is given by (2.16):

() _ 2 [ () dr. (2.119)

Ex E*)] Jr2_x2
X

wip(x) =

Setting x = 0 yields the indentation depth dy, which in the context of the MDR is
defined as the vertical displacement of the coordinate origin:

dy=wip(x=0)=wr =0) = % / p(r)dr. (2.120)
0

2.5.19 Contacts with Sharp-Edged Elastic Indenters

Flat cylindrical indenters, as well as all other indenters which generate singulari-
ties in the stress distribution (conical indenter and truncated cone, etc.), violate the
necessary conditions of the half-space approximation at least for one of the contact-
ing bodies. While the given solutions are accurate for rigid profiles, they must be
modified for elastic profiles. The relationship of the elastic moduli of the indenter
and the half-space, as well as the angle at the sharp edge of the indenter, determine
whether the stress concentration at the sharp edge result in different singularities or
even no singularity at all.

This problem was systematically examined by Rao (1971). Rao considered the
stress and displacement fields in the vicinity of the sharp edge for widely varying
classes of problems. Here, we will limit our consideration to the frictionless normal
contact between an axisymmetric elastic indenter and an elastic half-space. The
used notation is displayed in Fig. 2.45.

The stress state in the region of the sharp edge is approximately two-dimensional,
and the normal stress at distance s from the sharp edge is given by:

0. ~ M7, 2.121)
Fig. 2.45 Edge of an elastic
indenter (diagram visualizing E
the notations used) 2
i s E
—>»>
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where A indicates the smallest eigenvalue of the respective boundary value problem.
The eigenvalue equation of the considered problem can be written as:

tan(mwA) [A sin(2e) + sin(2Aa)]
+ e [1 —cos(2ha) — A%(1 — cos(2w))] = 0. (2.122)

Here, « is the angle at the sharp edge (measurement taken within the indenting
body) and e = E,/E is the relationship of the elasticity moduli of the indenter
(index “27) and the half-space (index “17). Interestingly, the respective Poisson’s
ratios have no effect on this characteristic equation.

A singularity in the stress distribution occurs at the sharp edge if the smallest
non-trivial solution (2.122) is smaller than one. The limiting case, A = 1, arises
precisely when the relationship of the moduli is set to:

T COoOSU
(2.123)

Cerit = — -
sino — cos
Greater values of e will result in singularities. However, (2.123) only has a posi-
tive solution for e if « < 7/2. Therefore, in principle, greater angles always result
in singularities, whose concrete shape is determined by the solution of the eigen-
value equation (2.122). As an example, for the rigid flat cylindrical punch with
o = /2 and e — oo, the result is the familiar singularity of the Boussinesq
solution, A = 1/2.

How can the stresses be expressed in the entire contact area? For this, Jordan and
Urban (1999) proposed the following expression for rectangular indenters in a plane
(which can be directly applied to rotationally symmetric problems with cylindrical
flat punches):

0.-(ria,A) = —Fy - M(A,a)(a*> —r?)*". (2.124)

The case of the rigid cylindrical punch coincides with the known Boussinesq so-
lution, and the stresses exhibit the required singularity property (2.121) since for
s=a—r<Ka:

a’*—r*=(a—r)a+r)=s(a+r)~2as. (2.125)

The function M (A, a) is derived from the normalization:

a

Fy = —ZN[UZZ(F)V dr, (2.126)
0

and therefore:
M(A,a) =

5 (2.127)
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2.6 Mossakovskii Problems (No-Slip)

In the preceding sections, we considered frictionless normal contact problems. As-
suming different elastic materials, the material points of the contacting surfaces will
experience differing radial displacements. If we set aside the unrealistic assumption
of ideally frictionless surfaces (i = 0), this slip will always cause radial tangential
stresses. Consequently, the frictionless normal contact can only be considered the
theoretical limiting case. The contact area generally consists of an inner stick zone
and an outer slip zone. This normal contact problem with friction was examined
by Spence (1975). It is supremely complicated, and thus only permits numerical
solutions. Instead, we will just consider the other theoretical limiting case which
describes complete stick within the contact area (u — 00). Figure 2.46 illustrates
the indentation of an elastic half-space by a rigid curved indenter with complete
stick. Also displayed are the displacement paths of individual surface points. Sur-
face points that contact the indenter during the indentation process stick completely,
eliminating the possibility of any further radial displacement. This condition is ex-
pressed through the boundary condition:

ou,(r,a)

0, r<a, (2.128)
da

and it is used instead of the boundary condition for the frictionless normal contact
according to (2.4) which assumes a frictionless contact. Here, it should be noted that
for the contact of rwo elastic bodies, the radial displacement from (2.128) simply
represents the relative radial displacement of the surface points.

The solution of the normal contact problem with complete stick for arbitrary
axially symmetric normal contacts goes back to Mossakovskii (1963). In 1954,
he had already developed the solution for the contact of the flat cylindrical punch.
Therefore, normal contacts with complete stick are also referred to as Mossakovskii
problems. Their solutions are significantly more complex than frictionless contacts,
and the simplest approach to solving them is with the MDR. This requires redefining
the spring stiffness compared to (2.5) and deriving the equivalent one-dimensional

Motion path of a
surface particle

Fig. 2.46 Illustrating the boundary condition of full stick for the indentation of an elastic half-
space by a rigid indenter (modeled after Spence 1968)
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profile from an equation significantly more complicated than (2.6). The calculation
of the global relationships between normal force, indentation depth, and contact
radius follows the exact same template as described in Sect. 2.3.2. To describe the
normal contact between two completely sticking elastic bodies, the spring stiffness

is set to: £ |
Ak, = ln( + ﬂD) Ax. (2.129)
2Bp 1-Bp
Here, E* denotes the effective elasticity modulus defined in (2.1):
1 1—v? 1—2
B %2 (2.130)
E* E, E,
and Bp Dundur’s second constant:
1—=2v1)G, — (1 —2v,)G
B = ( v1)Gy — ( 12)Gy 2.131)

T 2(1—v)Gy +2(1 — )Gy
Many contact problems with complete stick featured in the literature make the sim-
plifying assumption of one body being rigid. In this case, the spring stiffness from
(2.129) is simplified to:
2GIn(3—-4
_2GmG=d)
1 —-2v

The relationship between the three-dimensional profile f(r) and the equivalent one-
dimensional profile g(x) is given by equation:

Ak, (2.132)

20 1 [, x—t
f(r):;/ﬁ/g(t)cos (ﬁln(x—_i_t))dtdx
0 0

. 1 1+ Bp
with & := = In (1 —ﬂD) . (2.133)

For Bp = 0, it coincides with the inverse transform of the profile for a frictionless
contact according to (2.7). While explicitly solving for g(x) is possible in princi-
ple, it leads to either a very unwieldy, extremely complicated calculation which can
be referenced in Fabrikant’s (1986) work, or a notation using the Mellin inverse
transform (Spence 1968). We will forgo providing an explicit expression since
an analytical calculation of the equivalent one-dimensional profile g(x) for a given
axially symmetric profile f(r) is generally only possible using numerical methods
anyway. The sole exception seems to be the power-law profile, which we will ex-
amine in greater detail in Sect. 2.6.2. To calculate the respective one-dimensional
equivalent profile, the implicit formulation in (2.133) will prove sufficient.

The elasticity parameter ¢ in (2.133) illustrates a major difference to the fric-
tionless contact: the equivalent one-dimensional profile is no longer exclusively
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dependent on the geometry of the axially symmetric contact; it is also affected by
the elastic properties of the contacting bodies.

As previously mentioned, the calculation of the relationships between inden-
tation depth, contact radius, and normal force follows the same template as the
frictionless normal contact. Only the modified spring stiffness from (2.129) and the
equivalent profile determined by (2.133) must be accounted for. We will summarize
the essential equations. First, the surface displacement of the Winkler foundation is
determined to be:

wip(x) =d — g(x). (2.134)

At the edge of all non-adhesive contacts, the displacement must be zero, thus for-
mulating a condition for calculating the indentation depth:

wip(£a) =0 = d = g(a). (2.135)

Additionally, the sum of all spring forces must balance out the applied normal force.
Consideration of the modified stiffness in accordance with (2.129) yields:

a

E* 1+ Bp
Fy = ﬂDl (1 _ﬁD)O/wlp(x)dx. (2.136)

Naturally, the local quantities obey different calculation formulas compared to the
frictionless contact. Apart from the normal surface displacement and the pressure
distribution, the tangential stresses within the contact area are also of importance.
Said quantities can be determined solely from the known normal displacement of
the Winkler foundation. Here, we will state them for the special case of a rigid
indenter pressed into an elastic half-space:

_ 8G(1-v)In(3 - 4v) cos [ In (££)]
PO =G DR el )/ N
8G(1 —v)In(3 — 4v) sin [9 In ()]«
., (r,a) = 231 —21))\/3—4 ld( )/ \/T[z(xz_ﬂ)dldx
x+t
0(r.a) = 4$ﬁ W x )/cos [ 1n ( ]dtd

(2.137)
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2.6.1 The Cylindrical Flat Punch

The normal contact of a rigid flat cylindrical punch with an elastic half-space with
complete stick was initially solved by Mossakovskii (1954). Within the framework
of the MDR, the equivalent plane profile is derived from the cross-section of the flat
indenter in the x—z-plane—no change in the geometry is required. The displacement
of the Winkler foundation is then given by:

wip(x) =d[H(x +a) —H(x —a)], (2.138)

where H(-) represents the Heaviside step function. Substituting this into (2.136)
under consideration of the rigidity of the indenter yields the normal force:

4GIn(3 —4
Fy = YGIG-4) ,
1—2v

The contact stiffness then takes on the form:
dFy 4G In(3 — 4v)

M.__
= = (2.140)

(2.139)

The validity of this contact stiffness for arbitrary axially symmetric contacts fol-
lows immediately from Mossakovskii’s (1963) work. Accordingly, the incremental
difference of two-contact configurations with the contact radii @ and a +da is equiv-
alent to the infinitesimal indentation of an elastic half-space by a cylindrical flat
punch with radius a. This applies regardless of whether a normal contact with com-
plete stick or a frictionless contact is being considered. Nevertheless, the works of
Borodich and Keer (2004) and also Pharr et al. (1992) are still frequently cited,
which prove the universal validity of the normal contact stiffness using a different,
more complex approach. For the frictionless normal contact, the contact stiffness
is given by (2.21). A comparison of the two values of contact stiffness reveals that
the contact stiffness for complete stick is generally greater than for frictionless con-
tact. This is a direct result of the suppressed relative displacement of the contacting
surfaces. The contact stiffness only coincides for incompressible materials since,
in this case, no tangential forces arise in the contact area due to the radial displace-
ment of the material being restricted. For the ratio between the contact stiffness for
complete stick and frictionless contact, it follows that:

@ _ (1—v)In(3—4v)
k, 1—2v '

(2.141)

For common materials with Poisson’s ratios in the range of 0 < v < 0.5, the con-
tact stiffness for complete stick is at most 10% greater than for frictionless normal
contacts. This maximum is reached at v = 0. For synthetic materials characterized
by negative Poisson’s ratios, the relative discrepancy can reach values of up to 30%,
which is documented in Fig. 2.47. Viewed over the entire physical domain, the rela-
tive discrepancy decreases monotonically with a rising Poisson’s ratio. The relative
discrepancy reaches its maximum for the limiting case v — —1. It should be noted
that both values of contact stiffness approach infinity for v — —1. At this point, the
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Fig.2.47 Relationship between the normal contact stiffness for complete stick and normal contact
stiffness for frictionless contacts as a function of the Poisson’s ratio v

contact compliance [T, which represents the inverse of the stiffness, is zero. Arga-
tov et al. (2012) examined the impact of negative Poisson’s ratios on on the stress
distribution, thereby discovering that the location of the greatest shear stress moves
towards the surface for smaller Poisson’s ratios. This is because of the increasing
tangential stresses in the contact area for decreasing Poisson’s ratios. Figure 2.48
puts in contrast the differing contact compliances for Boussinesq and Mossakovskii
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Fig.2.48 Comparison of the normalized normal contact compliances as functions of the Poisson’s
ratio v for Boussinesq and Mossakovkii problems
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Fig.2.49 Pressure distribution for the indentation by a flat cylindrical indenter for different Pois-
son’s ratios v, normalized to the average pressure p

problems. It is apparent that the compliance maximum of Mossakovskii problems
are not located at v = 0 but instead at v &~ 0.11, as stated by Argatov et al. (2012).

The derivative of the profile (2.138) with respect to the coordinate x is required
for calculating the local quantities according to (2.137), and is:

wip(x) =d[8(x +a)—8(x—a), (2.142)

with the Delta function §(-). Taking into account its filtering properties, it follows
from (2.137) that the solutions for the local quantities are:

8Gad(1—v)In(3 —4v) [ cos[0In(LL)]

a—t

ST T s /P

8Gad(1—v)In(3—4v) 1 [ sin[91n (4]

a—t

) = e s 7 ] =@ ) :
- a+t
wir.a) = F4UZV) [ eos [0 G, (2.143)

71«/3—41)0 Vr2—1¢2

They correspond exactly to the quantities calculated by Mossakovskii (1963) and
Spence (1968). Regrettably, the remaining integrals are only solvable using nu-
merical methods. The pressure distribution normalized to the average pressure p
within the contact area is visualized for different Poisson’s ratios in Fig. 2.49. For
incompressible materials, i.e., v = 1/2, the curve exactly matches the one for the
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Fig. 2.50 Tangential stresses for the indentation by a flat cylindrical indenter for different Pois-
son’s ratios v, normalized to the average pressure p

frictionless contact (compare this to Fig. 2.5). For regular positive Poisson’s ratios,
there is no distinguishable difference between the graphs. Only once the Poisson’s
ratios drop to negative values the pressure in the center notably increases. There
is characteristic behavior of the stresses solely at the edge of the contact, which is
already visible in solution (2.143). Here, stress oscillations occur, even leading to
tensile stresses. On the one hand, these fluctuations can be viewed as indicators that
the assumption of complete stick is self-contradictory for normal contact, indicating
that slip at the contact edge is unavoidable (Zhupanska 2009). On the other hand,
the oscillations are localized so close to the contact edge that this zone need not be
ascribed significant importance.!

The tangential stresses in Fig. 2.50 are zero at the center of the contact and
feature a singularity at the edge that is comparable to the one caused by the normal
stresses. For the incompressible case, no tangential stresses occur in the contact area
since the material resists radial displacements. Expanding the examination to the
contact between two elastic materials, the tangential stresses in the contact area are
zero when Dundur’s second constant, defined in (2.131), vanishes. This condition
is, indeed, satisfied for the contact between a rigid and an incompressible medium.

The curve of the normal surface displacement normalized to the respective inden-
tation depth is shown in Fig. 2.51. The curves for v = 1/2 and v = 0.3 are nearly
indistinguishable, so that their shape can be approximated by the displacements for
a frictionless normal contact described by (2.22). A more detailed analysis of the
displacements can be referenced in the publication of Fabrikant (1986).

!'In the plane case, the normal stresses initially changes signs at x = 0.9997a.
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Fig. 2.51 Normal surface displacement of the half-space for indentation by a flat cylindrical in-
denter for different Poisson’s ratios v, normalized to the indentation depth d

2.6.2 The Profile in the Form of a Power-Law

The normal contact of a profile in the shape of a power-law was examined for the
case of complete stick by both Mossakovskii (1963) and Spence (1968). As shown
for the frictionless contact, a power-law profile is mapped to a power-law profile:

f(r)=co" = gx)=«m,v)f(x]) forneRT. (2.144)

The scaling factor k(n,v) can be determined by simply substituting (2.144) in
(2.133). A complicated integration is unnecessary; a trivial normalization of the
integral variables is sufficient. This leads to:

_oJEr(+5)
K(n,\))—m with

1
1—1¢
[ "!cos (19 In (—)) dr, (2.145)
1+1¢
0

with the definition of ¢ from (2.133). A comparison of the scaling factors to
the ones for the frictionless contact is easily performed by setting Bp = 0, i.e.,
by assuming similar elastic materials and yielding % = 0, and consequently,
nl*(n) = 1. From (2.145), we obtain the scaling factors for the frictionless con-
tact defined in (2.61). In the following, we will operate under the assumption of
one rigid body. In this case, the other body must be incompressible to prevent
tangential stresses from occurring in the contact surface. The limiting curve for

I*(n):
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Fig. 2.52 Scaling factors « as a function of the exponent n of the power-law profile for different
Poisson’s ratios v; the area shaded in gray represents common materials (0 < v < 0.5)

v = 1/2 in Fig. 2.52 must exactly coincide with the curve from Fig. 2.21, which
displays the scaling factor as a function of the exponents of the profile function for
the frictionless contact.

In contrast, complete stick in the normal contact between a rigid power-law in-
denter and a compressible, elastic half-space results in tangential stresses in the
contact surface. The full description of such a contact requires greater scaling fac-
tors, also given in Fig. 2.52. The smaller the Poisson’s ratio, the greater the scaling
factor. The area shaded in gray represents the range of values of the scaling factors
for common materials.

Since the integral /*(n) in formula (2.145) of the scaling factor is generally
only solvable numerically, the corresponding value for selected Poisson’s ratios and
exponents is provided in Table 2.2. These are of particular importance for axially
symmetric profiles that are either defined by a polynomial or a Taylor expansion.

The equivalent plane profile was already determined in (2.144). Applying for-
mulas (2.135) and (2.136) yields the indentation depth and the normal force as a
function of the contact radius:

d(a) = k(n,v)c,a",

4GIn(3—4v) n "
1(—2\) n+1/<(n,v)c,,a +1

Fy(a) = (2.146)

The calculation and graphical representation of surface stresses and displacements
will be omitted at this point. However, we will analyze the particular cases of the
conical (n = 1) and parabolic (n = 2) contact.
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Table 2.2 Stretch factor k as a function of the exponent of the power-law and Poisson’s ratio

Poisson’s ratio v

—1 —05 0 03 0.5
Exponent | 0.5 1.429 1.389 1.348 1322 1311
of the 1 1.831 1.746 1.651 1.594 1.571
power-law 2617 2.402 2177 2.049 2
profile 3 3308 3.014 2.638 2.433 2356
4 4.189 3.602 3.056 2771 2.667
5 5.000 4175 3.444 3.077 2.945
6 5.840 4739 3.811 3.360 32
7 6.714 5.208 4159 3.623 3.436
8 7.626 5.855 4.494 3.872 3.657
9 8.582 6.412 4816 4107 3.866
10 9.588 6.971 5.123 4332 4.063

2.6.3 TheCone

We will now consider the normal contact of a rigid cone and a planar elastic half-
space under the condition of complete stick. The shape of the profile function is
given by:

f(r) =rtan6 (2.147)

(see Fig. 2.7). The equivalent plane profile follows as a special case of (2.144),
where the scaling factor (2.145) must be determined. An analytical expression for
the integral 7*, and consequently the stretch factor (solely in this case), is published
in literature (see Spence 1968):

1—2v (1l —2v)

bid bid
k(l,v) = == = . (2.148)
(1.) 2I1%(1) 2793 —4v  In(3—4v)V/3—4v
The equivalent profile is then:
1-2
=29 lane. (2.149)

8() = In(3 —4v)/3 —4v

Substituting this last result into formulas (2.135) and (2.136), followed by a basic
calculation, leads to the indentation depth and normal force

(1 —2v)
d(a) = atanb,
@ In(3—4v)+/3 —4v
2Grm
Fy(a) = ———a*tan¥. (2.150)
V3—4v

We omit explicitly providing the stresses and normal surface displacements since,
once again, the integrals in expression (2.137) can only be solved numerically.
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Fig. 2.53 Pressure distri-
bution in the conical contact
for different Poisson’s ratios
v, normalized to the average
pressure p

The results for the normal and tangential stresses via numerical integration are vi-
sualized in Figs. 2.53 and 2.54. Note again that the differences in the pressure
distribution compared to the frictionless contact are minimal. The magnitude of the
tangential stresses increases towards the center. As expected, they increase with a
decreasing Poisson’s ratio.
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Fig. 2.54 Tangential stresses in the conical contact for different Poisson’s ratios v, normalized to
the average pressure p
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2.6.4 The Paraboloid

Finally, we will cover the important parabolic contact with complete stick, which
can be considered an approximate solution for various curved surfaces, and was
solved by Mossakovskii (1963) as well as by Spence (1968). The axially symmetric

profile is given by:
2

r
f(r) = 3R’ (2.151)

where R denotes the curvature radius of the paraboloid. The equivalent one-
dimensional profile follows from (2.144):

2
g(x) = (2, U);_R' (2.152)

In contrast to the conical contact, the stretch factor can only be calculated numeri-
cally. Selected values can be found in Table 2.2. Spence (1968) did provide a good
approximation for the scaling factor:

2
2,1) & ith
KRV~ 060319 1 022540yt

F(v) = % In(3 — 4v). (2.153)

The indentation depth can be determined from (2.135), from which we can then
derive the condition of the vanishing displacement of the Winkler foundation at the
contact edge. Additionally, the normal force can be calculated from the balance
of forces in the z-direction in accordance with (2.136). The indentation depth and
normal force then follows as:

a2
d(a) = k(2, v)ﬁ

4G In(3 — 4v)

3
3R 1—2 k(2,v)a’. (2.154)

Fy(a) =
However, analytical solutions of the surface stresses and normal displacements
do not appear possible. Although Zhupanska (2009) claimed to have analytically
calculated these quantities, her formulas contain series and integral expressions.
Taking into account the surface displacement of the Winkler foundation in for-
mulas (2.137), a numerical calculation leads to the solutions for the normal and
tangential stresses shown in Figs. 2.55 and 2.56. From the pressure distribution in
Fig. 2.55, it is apparent that the pressure maximum in the center of the contact area
increases with a decreasing Poisson’s ratio. The contact radius decreases simulta-
neously which, due to the normalization with respect to the contact radius, is not
represented in the figure. The tangential stresses are zero in the center and at the
edge. As expected, they increase with a decreasing Poisson’s ratio. The curve for
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Fig. 2.55 Pressure distribution in the contact with a paraboloid for different Poisson’s ratios v,
normalized to the average pressure
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Fig.2.56 Normalized tangential stresses in the contact with a paraboloid for different Poisson’s

ratios v

v = 0.3 coincides exactly with Zhupanska’s (2009), who utilized torus coordinates

for the solution.

For the sake of completeness, the normal surface displacement for several Pois-

son’s ratios is given in a graphical representation in Fig. 2.57. The figure offers a
clear illustration of the fact that achieving the same contact area requires a greater

indentation depth than for the frictionless contact.
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—w(r)
a*/R

Fig. 2.57 Normalized normal surface displacement of the half-space for indentation by a
paraboloid for different Poisson’s ratios v

References

Abramian, B.L., Arutiunian, N.K., Babloian, A.A.: On two-contact problems for an elastic sphere.
PMM J. Appl. Math. Mech. 28(4), 769-777 (1964)

Argatov, LI, Guinovart-Diaz, R., Sabina, FJ.: On local indentation and impact compliance of
isotropic auxetic materials from the continuum mechanics viewpoint. Int. J. Eng. Sci. 54,
42-57 (2012)

Barber, J.R.: Indentation of the semi-infinite elastic solid by a concave rigid punch. J. Elast. 6(2),
149-159 (1976)

Barber, J.R.: A four-part boundary value problem in elasticity: indentation by a discontinuously
concave punch. Appl. Sci. Res. 40(2), 159-167 (1983)

Borodich, EM., Keer, L.M.: Evaluation of elastic modulus of materials by adhesive (no-slip)
nano-indentation. Proc. R. Soc. London Ser. A 460, 507-514 (2004)

Boussinesq, J.: Application des Potentiels a L’etude de L’Equilibre et du Mouvement des Solides
Elastiques. Gauthier-Villars, Paris (1885)

Ciavarella, M.: Indentation by nominally flat or conical indenters with rounded corners. Int. J.
Solids Struct. 36(27), 4149-4181 (1999)

Ciavarella, M., Hills, D.A., Monno, G.: The influence of rounded edges on indentation by a flat
punch. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 212(4), 319-327 (1998)

Collins, W.D.: On the solution of some Axi-symmetric boundary value problems by means of
integral equations. VIII. Potential problems for a circular annulus. Proc. Edinb. Math. Soc.
Ser. 2 13(3), 235-246 (1963)

Ejike, U.B.C.O.: Contact problem for an elastic half-space and a rigid conical frustum. Proceed-
ings of the First National Colloquium on Mathematics and Physics. (1969)

Ejike, U.B.C.O.: The stress on an elastic half-space due to sectionally smooth-ended punch. J.
Elast. 11(4), 395-402 (1981)

Fabrikant, V.I.: Four types of exact solution to the problem of an axi-symmetric punch bonded to
a transversely isotropic half-space. Int. J. Eng. Sci. 24(5), 785-801 (1986)



References 65

Foppl, L.: Elastische Beanspruchung des Erdbodens unter Fundamenten. Forsch. Gebiet Inge-
nieurwes. A 12(1), 31-39 (1941)

Galin, L.A.: Three-dimensional contact problems of the theory of elasticity for punches with a
circular planform. Prikladnaya Matem. Mekhanika 10, 425-448 (1946)

Guduru, PR.: Detachment of a rigid solid from an elastic wavy surface: theory. J. Mech. Phys.
Solids 55(3), 445-472 (2007)

Hamilton, G.M., Goodman, L.E.: The stress field created by a circular sliding contact. J. Appl.
Mech. 33(2), 371-376 (1966)

Hertz, H.: Uber die Beriihrung fester elastischer Korper. J. Reine Angew. Math. 92, 156-171
(1882)

Huber, M.T.: Zur Theorie der Beriihrung fester elastischer Korper. Ann. Phys. 14, 153-163
(1904)

Hunter, S.C.: Energy absorbed by elastic waves during impact. J. Mech. Phys. Solids 5(3),
162-171 (1957)

Jordan, E.H., Urban, M.R.: An approximate analytical expression for elastic stresses in flat punch
problem. Wear 236, 134—143 (1999)

Lamb, H.: On Boussinesq’s problem. Proc. London Math. Soc. 34, 276-284 (1902)

Love, A.E.H.: Boussinesq’s problem for a rigid cone. Q. J. Math. 10(1), 161-175 (1939)

Maugis, D., Barquins, M.: Adhesive contact of sectionally smooth-ended punches on elastic half-
spaces: theory and experiment. J. Phys. D Appl. Phys. 16(10), 1843-1874 (1983)

Mossakovskii, V.I.: The fundamental mixed problem of the theory of elasticity for a half-space
with a circular line separating the boundary conditions. Prikladnaya Matem. Mekhanika 18(2),
187-196 (1954)

Mossakovskii, V.I.: Compression of elastic bodies under conditions of adhesion (axi-symmetric
case). PMM J. Appl. Math. Mech. 27(3), 630-643 (1963)

Pharr, G.M., Oliver, W.C., Brotzen, FR.: On the generality of the relationship among contact
stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7(3), 613-617
(1992)

Popov, V.L., Hell, M.: Methode der Dimensionsreduktion in Kontaktmechanik und Reibung.
Springer, Heidelberg (2013). ISBN 978-3-642-32672-1

Popov, V.L., HeB, M.: Method of dimensionality reduction in contact mechanics and friction.
Springer, Heidelberg (2015). ISBN 978-3-642-53875-9

Popov, V.L., He, M., Willert, E., Li, Q.: Indentation of concave power-law profiles with arbitrary
exponents (2018). https://arXiv.org/abs/1806.05872. cond-mat.soft

Rao, A.K.: Stress concentrations and singularities at interface corners. Z. Angew. Math. Mech.
31, 395406 (1971)

Schubert, G.: Zur Frage der Druckverteilung unter elastisch gelagerten Tragwerken. Ing. Arch.
13(3), 132-147 (1942)

Segedin, C.M.: The relation between load and penetration for a spherical punch. Mathematika
4(2), 156-161 (1957)

Shtaerman, 1.Y.: On the Hertz theory of local deformations resulting from the pressure of elastic
bodies. Dokl. Akad. Nauk. SSSR 25, 359-361 (1939)

Shtaerman, 1.Y.: Contact problem of the theory of elasticity. Gostekhizdat, Moscow (1949)

Sneddon, I.N.: The relation between load and penetration in the axi-symmetric Boussinesq prob-
lem for a punch of arbitrary profile. Int. J. Eng. Sci. 3(1), 47-57 (1965)

Spence, D.A.: Self-similar solutions to adhesive contact problems with incremental loading. Proc.
R. Soc. London A Math. Phys. Eng. Sci. 305, 55-80 (1968)

Spence, D.A.: The Hertz contact problem with finite friction. J. Elast 5(3—4), 297-319 (1975)

Zhupanska, O.1.: Axi-symmetric contact with friction of a rigid sphere with an elastic half-space.
Proc. R. Soc. London Ser. A 465, 2565-2588 (2009)


https://arXiv.org/abs/1806.05872

66 2 Normal Contact Without Adhesion

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Normal Contact with Adhesion

3.1 Introduction

Between any two electrically neutral bodies there exist relatively weak interaction
forces which rapidly decline with increasing distance between the bodies. These
forces are known as adhesive forces and, in most cases, cause a mutual attraction.
Adhesive forces play an essential role in many technical applications. It is the
adhesive forces that are responsible for the behavior of glue, for instance. Adhesive
tape, self-adhesive envelopes, etc., are further examples of adhesive forces. They
are of particular importance for applications where one of the following conditions
is met:

e The surfaces of the bodies are very smooth (e.g., the magnetic disc of a hard
drive).

e One of the contact partners is made of a soft material (rubber or biological struc-
tures).

e We are dealing with a microscopic system, in which adhesive forces generally
have a larger influence than body forces, because the body and surface forces are
scaled differently (micro-mechanical devices, atomic force microscope, biologi-
cal structures, etc.).

At a microscopic scale, the adhesive forces are determined by the type of the in-
teraction potential. It is possible to define a characteristic “range” of adhesive
forces based on the specific type of the potential. However, as Griffith already
demonstrated in his famous work on the theory of cracks (Griffith 1921), the most
important parameter is not solely the magnitude of the interactions or their range,
but instead the product of both; i.e., the work required separation of the surfaces.
This work per unit surface area is referred to as the work of adhesion or effective
relative surface energy, Ay, of the contacting bodies.
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Griffith’s theory is based on the energy balance between the elastic energy re-
leased due to an advancement of the crack boundary and the required work of
adhesion. It is assumed that there are no interaction forces beyond the contact area,
which corresponds to the assumption of a vanishingly low range of the adhesive
forces. This assumption is valid for real adhesive interactions if the range of the
adhesive forces is much smaller than any characteristic length of the contact. The
theory of adhesive contact published in 1971 by Johnson, Kendall, and Roberts is
valid under the same conditions as Griffith’s theory: for the vanishingly low range
of the interactions. In this chapter, when we refer to the theory of adhesive contacts
in the “JKR approximation”, it is understood to mean the vanishingly low range of
the adhesive forces. In JKR theory, the work of adhesion is also the sole parame-
ter of the adhesive interaction. Among other results, the adhesive force between a
sphere of radius R and an elastic half-space is given by the equation:

Fy= %AynR, 3.1
In micro-systems, situations can arise where the range of the adhesive forces is of
the same length as the smallest characteristic length of the contact (usually the in-
dentation depth), or even greater than the characteristic contact length. The simplest
of such cases is the contact of hard spheres with weak interaction forces, where the
elastic deformation is negligible. This case was examined and published by Bradley
(1932). Bradley calculated the adhesive force between a rigid plane and a rigid
sphere of radius R. He assumed the existence of van der Waals forces acting between
the molecules of both bodies, decreasing proportionally to 1/77 with increasing dis-
tance between the molecules (which corresponds to the attractive component of the
Lennard-Jones potential). For the contact of a rigid plane and a rigid sphere, the
adhesive force equals:

Fqy =2AynR. (3.2)

This equation also only features the separation energy and does not account for
the coordinate dependency of the interaction. It can be easily shown that the re-
sult from Bradley’s approximation is invariant with regards to the exact coordinate
dependency of the interaction potential, as long as the half-space approximation is
valid.

The logical extension of Bradley’s model lies in the consideration of the elastic
deformations caused by long-range adhesive interactions. An approximate solution
for this problem was only discovered about 40 years after Bradley’s publication by
Derjaguin, Muller, and Toporov (1975) (DMT theory). While the approximation
does take into account the adhesive forces, the elastic deformation of the surfaces
is, nonetheless, calculated with the solution by Hertz (1882) for non-adhesive con-
tacts. Under these assumptions, Derjaguin, Muller, and Toporov arrived at the same
equation for the adhesive force as Bradley, stating:
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The van der Waals’ forces are capable of increasing the area of elastic contact of the ball
with the plane, yet it has been shown that the force, as required for overcoming the van der
Waals’ forces and breaking up the contact, does not increase thereby and may be calculated,
if one considers the point contact of a non-deformed ball with a plane.

To judge whether the adhesive interactions are short or long-ranged (thus deter-
mining whether the adhesive contact is of the “JKR type” or “DMT type”), the
characteristic displacement of the bodies until the separation of the adhesive contact
(the characteristic value for the height of the adhesive “neck”) (R(Ay)?/(E*)?)'/3
(see (3.45)) should be compared to the characteristic range of the adhesive interac-
tions, zy. This leads to the parameter:

2
U= m, 3.3)
(E *)220
which was initially introduced by Tabor (1977) and is known as the “Tabor param-
eter”. For neck heights much greater than the range of the interactions (large Tabor
parameter), the range can be considered vanishingly low. This limiting case leads
to the JKR theory. The other limiting case is the DMT theory.

Maugis’s (1992) theory of a contact with Dugdale’s (1960) simple model for the
interaction potential was of great methodological interest for the theory of adhesive
contacts. Maugis assumed that the adhesive stress between surfaces remains con-
stant up to a certain distance & and then drops abruptly. For this case the specific
work of adhesion equals:

Ay = oph. 3.4

While the coordinate dependency of the Dugdale potential is not realistic, this bears
little importance for most adhesive problems since both limiting cases—JKR and
DMT—are independent of the exact type of the interaction potential. Under these
conditions, even the simplest model of interaction is valid and informative. The
great advantage of the Dugdale potential lies in the fact that it allows a mostly ana-
Iytical solution of the problem. Maugis’s theory not only provided a representation
of the two limiting cases but also an explanation of the transition between the JKR
and DMT theories.

Since the exact form of the interaction potentials is insignificant for the adhesion
(as long as the work of adhesion is defined and remains constant), Greenwood and
Johnson (1998) developed a theory which represented the stress distribution in the
adhesive contact as the superposition of two Hertzian stress distributions of differ-
ent radii. Compared to Maugis’s theory, this represented a vast “trivialization” of
the involved contact mechanics. It should be noted that the “double Hertz” solu-
tion corresponds to a rather strange interaction potential. But since the exact form
of the interaction potential is insignificant, the theory of Greenwood and Johnson
represents an interesting alternative to Maugis’s theory. It too features the JKR and
DMT models as its limiting cases.
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The two most well-known theories of adhesion by JKR and DMT both lead to
an adhesive force which is independent of the elastic properties of the contacting
media. To avoid any misunderstanding, it should be expressly noted that this simple
property only applies to parabolic contacts. In no way can this lack of dependency
on the elastic moduli be generalized to arbitrary adhesive contacts.

The consideration of the tangential stresses in the adhesive contact requires an-
other general remark. Both JKR and DMT theory are based on the Hertzian theory
of frictionless contact. It is surely a valid and self-consistent model assumption.
From the physical point of view, on the contrary, this assumption is rather ques-
tionable. Physically, the JKR limiting case implies an infinitely strong yet infinitely
short-ranged interaction. This means that the surfaces of the adhesive JKR contact
are pressed together under infinitely low ranged but infinitely strong stress, which
undermines the notion of a “frictionless” contact. However, for practical applica-
tions, the difference between frictional or frictionless adhesive contact is relatively
limited and can be considered negligible in most cases.

The following two sections will present two alternative approaches to the solu-
tion of the adhesive normal contact problem. The first approach is the reduction
of the adhesive normal contact problem to the non-adhesive one, and the second
approach is the direct solution utilizing the MDR.

3.2 Solution of the Adhesive Normal Contact Problem
by Reducing to the Non-Adhesive Normal Contact Problem

The basic idea of the theory of adhesive contact by Johnson, Kendall, and Roberts
(1971) is the same as the one of Griffith’s theory of cracks. In their frequently cited
paper they write:

... the approach followed in this analysis, is similar to that used by Griffith in his criterion
for the propagation of a brittle crack.

The idea is based on the consideration of energy balance between the elastic energy
and the surface energy during the propagation of the crack or the boundary of the
adhesive contact. Since the surface energy of an axisymmetric contact is trivially
determined from the contact area, the only remaining non-trivial problem lies in
calculating the elastic energy of the adhesive contact. This can always be done if
the solution of the respective non-adhesive normal contact problem is known. The
JKR method to calculate the energy is the second important point of the classic
paper. It is also ingeniously simple and based on the assertion that the adhesive
contact can be represented as a superposition of a non-adhesive contact and a rigid
body translation. Perhaps the easiest way to imagine this is to consider the contact
between a rigid indenter with the profile Z = f(r) and an elastic half-space. We
obtain the configuration of the adhesive contact by initially indenting the elastic
half-space (without regard for adhesion), causing it to form a contact area of radius
a, and raising the entire contact area after that, without change in contact radius.
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Furthermore, we will assume the solution of the non-adhesive contact problem,
particularly the relationships between the indentation depth, the contact radius, and
the normal force. Any quantity of the triple { Fyy, @, d } uniquely defines the others.
It will prove advantageous to describe the normal force and the indentation depth
as functions of the contact radius:

FN = FN,n.a.(a)v d = dn.a.(a)- (35)

The indices “n.a.” indicate that these are the solutions of the non-adhesive con-
tact problem. These equations also imply that the dependency of the force on the
indentation depth is known. We obtain the incremental contact stiffness k,, by
differentiating the force with respect to d and the elastic energy U, , by integrating
with respect to d. These quantities can also be rewritten as functions of the contact
radius:

kna = kna. (a), Una. = Upa, (a) (3.6)

In the following all functions for (3.5) and (3.6) are considered to be known.

Let us now indent the profile to a contact radius a. The elastic energy of this state
is Uy.a.(@), the indentation depth d,, , (@), and the force Fy ., (a). In the second step,
we lift the profile by Al without changing the contact radius. The stiffness (only
dependent on the radius) remains constant for this process and equals k,, (@). The
force is then given by:

Fy (Cl) = FN,n.a.(a) - kn.a.(a)Alv (3.7

and the potential energy is:

Al?
U(a) = Un.a.(a) - FN,n.a.(a)Al + kn.a.(a)T- (3.8)
The new indentation depth at the end of the process equals:
d =dy,(a)— Al 3.9)

Obtaining A/ from (3.9) and by substituting it into (3.8), we obtain the potential
energy:

N2
V@) = Upa (@) ~ Fras @(das @ —d) + k@ @D =D° 510

The total energy (under consideration of the surface energy) now equals:

Utol(a) = Un.a.(a) - FN,n.a.(a)(dn.a.(a) - d)

(dn.a.(a) - d)2 _

5 wa’Ay. (3.11)

+ kna(a)
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The equilibrium value of the contact radius follows from the total energy minimum
condition (for constant indentation depth d):

aUtol(a) _ aUn.a.(a) aFN,n.a.(a) adn.a.(a)
da da da Al = Fynala) da
2

s @ AL @)
da 2 a

_ (aun.a.(m

- F n.a.
%a N (@)

aFN,n.a.(a)
Bl ( da

Okna(a) AI?
— —2maA
da 2 Tasy

=0. (3.12)

dy.a.(a)
da )

NI RYN L) )
da

The terms in parentheses disappear and the equation takes the form:

Dkna (a) AL

2maly. .1
% 5 Taly (3.13)

It follows that:

dralAy . .
Al = | @ (for the general axially symmetric case). (3.14)
da

Substituting this quantity into (3.9) and (3.7) yields an equation for determining the
relationship between the indentation depth, the contact radius, and the normal force:

dralA
d =dy,(a)— ;zai(a)y (for an arbitrary medium), (3.15)
draA
Fy(a) = Fyna(a) —kuya(a) ;a—(a)y (for an arbitrary medium).  (3.16)

It becomes apparent that the three functions which directly (and in its entirety) de-
termine the solution of the adhesive contact problem are the three dependencies of
the non-adhesive contact: indentation depth as a function of the contact radius, nor-
mal force as a function of the contact radius, and therefore the incremental stiffness
as a function of the contact radius. The latter quantity equals the stiffness for the
indentation by a circular cylindrical indenter of radius a. It should be noted that
these are general equations and not subject to the homogeneity of the medium (nei-
ther in-depth nor in the radial direction). As such, they also apply to layered or
functionally graded media. The sole condition for the validity of (3.15) and (3.16)
is the conservation of rotational symmetry during indentation.
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For a homogeneous medium, the equations can be simplified even further. Here,
the stiffness is given by k,, = 2E*a, and we obtain:

2ralAy
E*

Al(a) = (for a homogeneous medium). (3.17)
g

The determining equations (3.15) and (3.16) take on the form:

d = dnAa.(a) -

(for a homogeneous medium),

Fy(a) = Fyna(a) — V8TE*Aya3  (for a homogeneous medium). (3.18)

Naturally, the pressure distribution in an adhesive contact and the displacement field
outside the contact area are also composed of the two solutions of the non-adhesive
contact problem: the solutions for the non-adhesive indentation by d,, , (a) and the
subsequent rigid retraction by Al. Let us denote the stress distribution and the dis-
placement field for the non-adhesive contact problem by o (r;a),, and w(r;a)y.,.,
respectively. With the stress and the displacement field for a rigid translation given
by (2.22), the stress distribution and the displacement for the adhesive contact prob-
lem are then represented by the following equations:

L . E*Al
o(r;a) =o(r;a)a + ﬁ’ r<a,
2Al
w(r;a) = w(r;a)y, — — arcsin (ﬁ) , Ir>a, 3.19)
b3 r
or after inserting (3.17):
2E*aAy 1
O'(r’a) - O'(raa)n.a‘ + T my

r < a (for a homogeneous medium),

8maA . /a
w(r;a) = w(r;a)y. — nE*y arcsin (;) ,

r > a (for a homogeneous medium). (3.20)

Equations (3.18) and (3.20) completely solve the adhesive normal contact problem.
The magnitude of the force of adhesion is of particular interest. We will de-
fine it as the maximum pull-off force required to separate bodies. In mathematical
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terms, this means the maximum pull-off force for which there still exists a stable
equilibrium solution of the normal contact problem.

Another important quantity to consider is the force in the last possible state of
stable equilibrium, after which the contact dissolves entirely. This force depends
on the character of the loading conditions. We commonly distinguish between the
limiting cases of force-controlled and displacement-controlled trials. The stability
condition for force-control is given by:

dFy
—_— =0, (3.21)
da a=a
and for displacement-control case by:
dd
— =0. (3.22)
da a=a,

The conditions (3.21) and (3.22) can be consolidated into the condition

T A 3, force-control,
=g /= &= . (3.23)
a=a, 2E*a, 1, displacement-control,

from which we can determine the critical contact radius, where the contact detaches
(see Sect. 3.3 for a full derivation). The respective critical values of the indentation
depth and normal force are obtained by substituting this critical radius into (3.18).

ddn.a‘ (a)
da

3.3 Direct Solution of the Adhesive Normal Contact Problem
in the Framework of the MDR

An alternative to the reduction to the non-adhesive contact problem described in the
previous section is provided by the MDR (see Popov and Hef} 2015, for example),
which presents an immediate solution to the adhesive normal contact problem. This
alternative approach can, for example, be of interest for complex dynamic loading
conditions requiring a numerical implementation.

The calculation method via the MDR consists of the following steps:

e In the first step the given three-dimensional profile Z = f(r) is transformed to
an equivalent plane profile g(x) via (2.6):

x|

f/(r)
g(JC) IJVIZ — P r ( )
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d Al(a)

Fig.3.1 Qualitative representation of the indentation and lifting process of a spherical 1D-indenter
with an elastic foundation, which exactly models the properties of the adhesive contact between a
rigid spherical indenter and an elastic half-space

e The profile g(x) is now pushed into the one-dimensional elastic foundation de-
fined, according to (2.5):
Ak, = E*Ax, (3.25)

until a contact radius « is reached. Until this point, the adhesion will not be
considered. This process is depicted in Fig. 3.1.

e In the third step, the indenter is lifted up. It is assumed that all springs involved in
the contact adhere to the indenter—the contact radius thus remains constant. In
this process, the springs at the edge experience the maximum increase in tension.
Upon reaching the maximum possible elongation (3.17) of the outer springs

2waly

Al(a) = o

(3.26)
they detach. This criterion (3.17) was discovered by HeB3 (2010), and is known

as the rule of Hef3. A derivation of this criterion can be found in the appendix
(see (11.31)).

The corresponding equilibrium described by the three quantities {Fy,d,a} coin-
cides exactly with the one of the three-dimensional adhesive contact.

The only difference to the algorithm for the non-adhesive contact (described in
Chap. 2) lies in the modification of the indentation depth formula. The displacement
of the outer springs is no longer zero but instead negative, with the absolute value
equal to the critical value: wyp(a) = —Al(a). It follows that:

d =g(a)— Al(a). (3.27)

The normal force is once again given by the equation:

a

Fy = 2E* [[d — g(x)]dx. (3.28)
0

The only difference to the non-adhesive problem lies in the differing contact radius.
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Equation (3.27) determines the equilibrium configuration. The stability of this
equilibrium is governed by the sign of the derivative d(Al(a) + d — g(a))/da:

d

i (Al(a) +d — g(a)) > 0, stable equilibrium,
a

d

i (Al(a) +d — g(a)) <0, unstable equilibrium,

a

d

i (Al(a) +d — g(a)) =0, critical state. (3.29)
a

In general, the stability depends on the type of boundary condition employed for the
indenter. The two limiting cases are force-controlled trials (which correspond to an
infinitely soft test system) and displacement-controlled trials (which correspond to
arigid test system).

Stability Condition for Displacement-Controlled Trials
In this case, the indentation depth is constant and (3.29) for the critical state is:

_ | TAY (3.30)
gma. \ 2E*a.’ '

Stability Condition for Force-Controlled Trials

When the force is kept constant we must consider the varying indentation depth.
The relationship between the indentation depth and the normal force is given by
(3.28). Differentiating (3.28) under the condition Fy = const yields:

dg(a)
da

_ dAl(a)
" da

a=a,

a a a d a
d[[d —g(x)]dx = da - P [[d —g(x)]dx 4+ dd - i [[d —g(x)]dx
0 0 0

=da-[d(a)—ga)]+dd -a

= —da-Al(a)+dd -a = 0. 3.31)

It follows that: id Al
haid _ Al@) (3.32)

da Fy =const a

The condition for the critical state (3.29) takes on the form of:

dAl(a) n % B dg(a)  dAl(a) n Al(a) B dg(a)
da da da ~ da a da

0, (3.33)

or

dg(a)
da

(3.34)

_[Ala) n dAl(a) _3 TAy
vea. L a da |,_, "\ 2E*a.
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The stability conditions can now be combined into a single equation:

T A 3, force-control,
=g o =T (3.35)
a=a, 2E*a,. 1, displacement-control.

The transformation rules of the MDR for the pressure distribution and the displace-
ments—see (2.13) and (2.14)—remain valid for the adhesive contact.

dg(a)
da

3.4 Areas of Application

Adhesion can be desirable (such as in bonded connections, in adhesive medical ban-
dages, as well as in many biological systems) or equally undesirable. The systems
in the first group, where adhesion is desirable, are often inspired by biological sys-
tems and especially concern contacts with concave profiles (see Sect. 3.5.6). The
study of the tiny hairs optimized for their adhesive functions on the limbs of (for
example) geckos or insects has inspired technical solutions for achieving extreme
adhesive effects.

Adhesion is also a major consideration in the design of micro-systems. One
example is the contact between a measuring tip and the sample surface in atomic
force microscopy. The indenting measuring tip often has a conical (see Sect. 3.5.2)
or spherical (see Sects. 3.5.3 and 3.5.4) shape, or imperfect variations of these (see
Sects. 3.5.5,3.5.8,3.5.9, 3.5.11, or 3.5.12). For assembly of nano- or microscopic
systems the smallest flat indenters are utilized, which we will explore in their perfect
(see Sect. 3.5.1) or imperfect form (see Sects. 3.5.10 and 3.5.13).

Any given sufficiently differentiable indenter profile can be represented as a Tay-
lor series. Thus, we will provide the solution of the contact problem involving the
power-law profile as a basic building block of the solution for such an arbitrary
profile (see Sect. 3.5.7).

In addition, real surfaces are unavoidably rough. In Sect. 3.5.14 we will present a
simple model of periodic roughness, which quite clearly illustrates the effect rough-
ness has on the adhesive interaction.

3.5 Explicit Solutions for Axially Symmetric Profiles in JKR
Approximation

3.5.1 The Cylindrical Flat Punch

The solution for the adhesive normal contact with a cylindrical flat punch was dicov-
ered by Kendall (1971). In the JKR theory, adhesion is interpreted as an indentation
by a flat cylindrical punch with a contact radius a, with the superposition of two in-
denter solutions of identical radius yielding a new indenter solution. Therefore, the
solutions of the contact problem concerning the flat cylindrical punch are identical
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with and without adhesion. The results for the normal force Fy, the normal stresses
0., and the displacements of the half-space surface w, are then given by:

Fy(d) =2E*da,

0:.(r;d) = Ed r<a
zZZ ’ T az_rzv — )
2d
w(r;d) = — arcsin (C—l) , r>a. (3.36)
T r

The only difference compared to the non-adhesive contact is that the adhesive case
also permits negative indentation depths. The critical radius is predetermined by
the indenter radius a. The critical indentation depth d, and critical normal force F,,
where stability of the contact is lost, are calculated from (3.18), independently of
whether a force-controlled or displacement-controlled trial is being considered:

2ralAy
_ TR

d, =
F, = —/8na*E*Ay. (3.37)

3.5.2 The Cone

The solution to the contact problem depicted in Fig. 3.2 was first found by Maugis
and Barquins (1981). They used the general solution of the non-adhesive problem
and the concept of energy release rate from linear fracture mechanics. The contact
problem is completely solved by specifying the indentation depth d, the normal
force Fy, the stress distribution o, and the displacements w; each as functions of
the contact radius a. With the results from the previous Chapter (Sect. 2.5.2) and
(3.18) and (3.20) we get:

2mal
d(a) = T dtan — Ta )/’
2 E*
2
Fy(a) = %E* tan 6 — /8waE*Ay,
(ria) E*tan 6 h(cz) n 2E*Ay a _
0..(r;a) = — arcosh ( — , r<a,
- r Ta g2 — 2
8aA
w(r;a):tan@(«/rz—az—r)—i- (atan@— a y)arcsin (ﬁ)’
T E* r
r>a. (3.38)

Here, 6 denotes the slope angle of the cone. The relationship between contact radius
and indentation depth in the case without adhesion is given by:

dna(a) = %a tan 6. (3.39)
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Fig. 3.2 Adhesive normal
contact between a rigid con-
ical indenter and an elastic
half-space

Therefore, for the critical contact radius, (3.23) results in:

282Ny
= —1 3.40
 mwE*tan’0 (340)
The critical values for the indentation depth and normal force are then:
2wa. Ay (E*—28) Ay
d. = dya(ac) — E* = E*tan 0
2Ap?% (E* — 483
F, = M 3.41)
7w E* tan® 0

Here it must be specified whether the experiment is carried out under force-
controlled or displacement-controlled conditions. For force-controlled experiments
it is £ = 3, and in the case of displacement-control, & = 1. The relationships
between the global contact quantities can also be formulated in a normalized form.
For this purpose all quantities are normalized to their critical values:

N a A d S FN
Gi=—, d:=—1, F:=-2, (3.42)
de |d.| | Fel

If we choose the critical values under force-controlled conditions, the normalized
relationships are:

d(a) =34 —2va,

F(a) = 34> — avad. (3.43)

These functions, d = d (a) and F=F (a) are shown in Fig. 3.3. The resulting,
implicitly defined, dependency F=F (d ) is given in Fig. 3.4.

3.5.3 The Paraboloid

The adhesive contact problem for a parabolic body Z = r2/(2R) (see Fig. 3.5) was
solved in the aforementioned classic JKR paper (Johnson et al. 1971). With the
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Fig. 3.3 The normalized
normal force and indenta-
tion depth as functions of the
normalized contact radius
for adhesive indentation by a
cone. All values are normal-
ized to the critical state in the
case of force-control

Fig. 3.4 Relationship be-
tween the normalized normal
force and the normalized
indentation depth for the
adhesive indentation by a
cone. All normalizations re-
fer to the critical state in the
case of force-control. The
dashed part describes the
states that are stable only for
displacement-control

N WA OO N

—F/F,
---d/d,

0.5¢

results from Chap. 2 (Sect. 2.5.3) and (3.18) and (3.20), we obtain:

a?
R
4 E*a’

3 R

d(a) =

Fy(a) =

0..(r;a) =

a2

w(r;a) = R

r>a.

2E* >
_ﬁ a-—r-+

2ralAy
Ex
— V/8madlE*Ay,

2E*Ay

a

2

P i
— E arcsin (

ma «/az_rz’
a Vr2—a?
_)+

r a
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Fig. 3.5 Adhesive normal F
contact between a parabolic

indenter and an elastic half-

space R

The critical contact radius and the corresponding values for the indentation depth
and the normal force are given by (3.23):

(nészAy)m
a. = ——7F— )

SE*
P EACYIN v (§ _ 1)

¢ (E*)z 4 >
F. = n€AYR (% - 1) , (3.45)

where £ = 3 for force-controlled trials and § = 1 for displacement-controlled trials.
In their explicit forms:

9T R*Ay 1/3
ac == T ’
8E*
1 (3n2(Ay)2R)1/3

dc =77 (E*)Z

1 , under force-control,

3
Fo=—SnAyR (3.46)

and

2 1/3
4 = TR Ay ’
BE*

3
d. ==

7% (Ay)’ R
4

1/3
, under displacement-control.
(E*)? ) b

F. = —gnAyR. (3.47)

In this case, the critical force does not depend on E*; i.e., it does not depend on
the elastic properties of the half-space. In Sect. 3.5.7 it is demonstrated that the
paraboloid is the only mnemonic indenter for which this is valid. After normalizing
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Fig. 3.6 The normalized 20 :
normal force and indentation —F/F, S
depth as functions of the con-
tact radius for the adhesive
indentation by a paraboloid.
All values are normalized

to the critical state under
force-controlled boundary
conditions

a/a,
Fig. 3.7 Relationship be-
tween the normalized normal
force and the normalized -0.4 |
indentation depth for the _05 ]
adhesive indentation by a ’
paraboloid. All normaliza- 06 . ]
tions are done with respect to &“ ’ '
the critical state under force- ~ o7 \ i
control. The dotted section \
represents the states that are _o0.8l “ 4
only stable for displacement- \
controlled trials —0.9} ‘\ |
\\ .
- > i
-2 -1 0 1 2
d/d,

the quantities to the critical values of the force-controlled trial
. a 5 d A F
a d . . N

ac’ o |dc|’ o |FC|7

the relationships (3.44,), and (3.44,), can be rewritten in a universal, dimensionless
form:

(3.48)

F=a—2vas. (3.49)

These relationships, d = c?(&) and F = F(a), are illustrated in Fig. 3.6. The
implicitly defined function F = F(d) is given in Fig. 3.7.

The Adhesive Impact Problem for the Parabolic Indenter

The adhesive normal impact of a parabolic body has been heavily investigated due
to its various technical applications. Thornton and Ning (1998) were able to analyt-
ically determine the coefficient of restitution for the JKR adhesive normal impact.
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Let the body have the mass m and the initial velocity v,. For the rebound velocity
v, and the corresponding coefficient of restitution e, we obtain the expression:

e=2—J/1=B, p<I1, (3.50)

Vo

with

1 TR@ap 1 s
= 1+ Y/ 864]. 3.51

p 5muv3 [ E*2 :| [ (3-51)
For B > 1 the coefficient of restitution is zero, i.e., low initial velocities will cause
the body to stick to the elastic half-space without rebounding.

3.5.4 The Sphere

It has already been discussed in Chap. 2 that this contact problem is very similar
to the one described in the previous section. With the non-adhesive solution (see
Sect. 2.5.4), and (3.18) and (3.20), we obtain the following solution to the adhesive
contact problem:

2wa A
d(a) = a artanh (ﬁ - ma )/’
R E*
2
B ) a a a \/7
Fy(a) = E*R |:(1 + —2) artanh <E) — E] — /8malE*Ay,
E* R a?—r2 ( x dx
0,,(r;a) = —— | ——=artanh | ——=| + | artanh (—) —_—
b4 RZ —r2 RZ — 2 R x2—r2
2E*Ay a
9 r S a7
wa g2 _ 2
[8aA
w(r;a) = wya(r;a) — ny*y arcsin (%), r>a,
(3.52)

with the sphere radius R. Here, w, ,. denotes the displacements without adhesion:

Wna (r;a) = % ; artanh (%) [a arcsin (%) + M] — Rarcsin (%)

2
+ ' R? — r2 arctan (L_rz> §
Rr? —a?
(3.53)
The critical contact radius a., at which the contact loses its stability and detaches,
is given by the numerical solution of the transcendental equation

Py (3.54)

o
1—a? Ja

artanha +
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Fig. 3.8 Plots of the normalized critical contact radius a./R, the corresponding normalized in-
dentation depth d.. /R, and normal force F,/ (E * Rz) as functions of the normalized surface energy
B (see (3.55)), according to (3.54) and (3.56); (a) force-control, (b) displacement-control

with @ :=a./R and

TAy
2E*R’
The last parameter describes a normalized surface energy and depends on the type of
boundary condition (¢ = 3 for force-control, ¢ = 1 for displacement-control). For
the relationships between the critical indentation depth, the critical contact radius,
and the critical normal force, one then obtains the equations:

o-ml (1))

F.(@) = E*R? [% (1 ta? %“2) - %} . (3.56)

These results for the critical values of contact radius, indentation depth, and normal
force—in normalized form—are shown in Fig. 3.8. The lengths are normalized to
the sphere radius and the “adhesion force” to £* R?. Since the half-space hypothesis
is too severely violated for @ > 0.3R, it can be seen from the diagram that these
results are valid only for 8 < 0.35. For example, it means that the effective surface
energy in the case of force-control must not exceed Ay = 9-10*J/m? for a sphere
with R = 1072 m and E* = 10°Pa. That is an extremely great value though. In
the case of displacement-control, this limit is even greater by a factor of 9.

Bi=¢ (3.55)

3.5.5 The Ellipsoid

It has been demonstrated in Chap. 2 (Sect. 2.5.5) that there is only a slight difference
between the contact problems of an indenting sphere and an ellipsoid of rotation.
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The solution to the contact problem is, considering (3.18) and (3.20), given by:

[2maA
d(a) = a artanh (ka) — Ng* y’

R
Fy(a) = E*? [(l + k?a®) artanh(ka) — ka] —8malE*Ay,

E*kR 1 k~a?—r? r artanh(kx)
0..(r;a) =— artanh | ——= |+ | ———dx
T V1 —k?r? N1 —k?r? Vx2—r?
r
2E*Ay a
9 r E a’
ma g2 — 2
1 8aA
w(r;a) =kRwg,. |r;a;R=—|— azy arcsin (ﬁ) , r>a
' k nE* r
(3.57)
Here, k and R denote the geometric parameters of the indenter profile which can be
written as:
f(r) =R (1 ~JV1- k2r2) . (3.58)

Wk na (r;a; R) is the displacement without adhesion for a spherical indenter of
radius R, given in (3.53) of the previous section. The determining equation for
the critical contact radius is again given by (3.54), wherein o := ka, and B :=

& %. The expressions (3.56) for the critical values of indentation depth and
normal force remain the same, except that the factor in front of the parenthesis in the
normal force must be replaced by E* R/ k. It is therefore also possible to directly

apply the curves in Fig. 3.8 since normalized curves are shown there.

3.5.6 TheIndenter Which Generates a Constant Adhesive Tensile
Stress

During their research on biological systems, in which adhesion played a central
role (e.g., with a focus on geckos and certain insects), Gao and Yao (2004) came
across the problem of the optimal (from a contact mechanical point of view) profile
at the hair tips found on, for example, the gecko’s feet, which is responsible for
the strong adhesive forces in these systems. In this context, optimal means achiev-
ing the greatest possible pull-off force with the smallest possible contact area. To
determine this optimal profile shape, Gao and Yao set out with a few preliminary
considerations. Firstly, the critical state should correspond to a contact of the entire
available contact domain. Secondly, the stress at the edges of the adhesive contact
usually appears as a singularity since, at least according to the JKR theory, the ad-
hesion itself can be interpreted as an indentation by a cylindrical flat punch. And
since, ultimately, the maximum adhesive tension between two surfaces is solely de-
termined by the potential of the van der Waals interaction between said surfaces,
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i.e., their material properties, the authors concluded that the optimal profile is the
one which generates a constant adhesive tensile stress oy in the contact area. The
theoretical maximum pull-off force for a given contact area is then attributed to the
profile where this stress oy corresponds to the maximum adhesive stress oy,.

The problem of the elastic half-space displacement resulting from the constant
circular pressure or tension distribution of radius a was previously considered in
Chap. 2 (see Sect. 2.5.6). For a stress distribution

0;.(r;a) =09, 1r<a, (3.59)

the resulting displacement of the half-space is:

4
w(r;a,op) = —ﬂOEOf:E (2) , ra. (3.60)

This means that the optimal profile takes on the form:

) _0oa 4 r
f(ria,op) = Z [;E (;) —2:|, r<a. 3.61)

Here, E(-) denotes the complete elliptical integral of the second kind:

/2

E(k) := / V1 —k2sin? @ dg. (3.62)
0

The pull-off force F, necessary to separate such an indenter profile from complete
contact is trivially
F, = noya’. (3.63)

The displacements of the half-space beyond the contact area were also previously
calculated and equal

v =2 [ (@) -e(@)] e oo

with the complete elliptical integral of the first kind:

/2

K= [ 3¢ (3.65)
3
; 1 —k2sin” ¢

The maximum pull-off force of this profile can be compared to the flat punch of
identical radius a:

FKendall — \/SﬂGSE*A]/ — \/SnGSE*UOh' (366)

max
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For the optimal profile, the maximum force is:

FO = mopa’. (3.67)
Analogous to the theory of Maugis described in Sect. 3.8, the surface energy Ay
is calculated from the adhesive stresses o, and the maximum range of the van der
Waals interaction:

Ay = aoh. (3.68)
The force ratio then equals:
FKendall 8 Exh
= ———. 3.69
Fo T 0y a (3.69)

3.5.7 The Profile in the Form of a Power-Law

We now consider a general indenter with the profile:
f(ry=cr", neRT, (3.70)

with an arbitrary constant ¢ and a positive real exponent n. In contrast to the results
for non-adhesive contact detailed in the previous chapter, for the adhesive contact,
we obtain qualitatively different behavior for n > 0.5 and n < 0.5. We first turn
our attention to the case of n > 0.5. The contact problem was first investigated by
Borodich and Galanov (2004), Spolenak et al. (2005), and Yao and Gao (2006).
The solution of the contact problem shown in Fig. 3.9 is, as before, given by the
solution of the non-adhesive contact (see Sect. 2.5.8) and (3.18) and (3.20):

2ral
d(a) = k(n)ca" — zaay
E*
Fy(a) = /c(n)ca’“rl — V/8matE*Ay,
2E*A
0.;(r;a) = ——nic(n)c dx + v ¢ r<a,

9 f—
/ _ r2 Ta a2 _ r2

(ria) = 2 ) / 8aAy . (a)
w(r;a —k(n)c | a" arcsm — arcsin ( — ),
T V2 — x2 nE* r

r>a.
(3.71)
Similarly to Chap. 2, we introduce the scaling factor:

C(n/2+1)

K(n) = ﬁm, (372)
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Fig. 3.9 Adhesive normal F
contact between a rigid in-
denter with a profile in the
form of a power-law and an
elastic half-space
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with the gamma function I"(-):
I'(z):= / 17 Vexp(—t) dt. (3.73)
0

With regard to the different possibilities of the resolution of the integrals occurring
in the stresses and displacements see Sect. 2.5.8, which details the consideration of
power profiles. For the critical contact radius, we obtain this with (3.23):

2 T
a, = (&) . (3.74)

2E*n2c2k2(n)

The critical indentation depth is:

_(TA\TT (& \TE
() ) ) e

It is positive in the force-controlled case (§ = 3) if n < 1.5. Under displacement-
control it is £ = 1. The “adhesion force” is given by:

e (TAYNFT g AT 26
Fe = (E9 ( 2 ) (ncx(n)) |:n+1 4i|' (3.76)

It can be seen that the Hertzian contact for n = 2 is the only case in which this force
does not depend on E*. By introducing the quantities

A d A F
i q oot

= — = —, (3.77)
ac |d.| | Fe|

normalized to the critical values, the relations between the macroscopic quantities
can be written as:
. 2n -
§ an — Va,
|§ —2n| |§ —2n

242
§ g 2+2 3 (3.78)
[E—2n—2] [E—2n—2]

S
|

P
|
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Fig.3.10 Normalized inden- 20 w 7
tation depth as a function of —n=0.6 /
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Fig. 3.11 Normalized normal 5 :
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It is interesting to note that the relations (3.78), except for the type of boundary
condition (force- or displacement-control), only depend on the exponent n. The
relationships (3.78) are shown for the force-controlled experiment in Figs. 3.10
and 3.11 for three different values of 7.

All of the aforementioned results also apply to indenters with n < 1/2 (Popov
2017). What changes is just the interpretation of the corresponding quantities. In
the case of n > 1/2 the critical quantities separate the state of stable adhesive
contact with a finite contact radius from the process of unstable shrinkage of the
contact area and complete detachment. A stable condition exists with larger forces
and an unstable condition with smaller forces. On the other hand, in the case of
n < 1/2 the critical quantities separate the stable state from the unstable, unlimited
propagation of the contact area. The stable state exists for smaller forces and the
instability occurs when increasing the force (or indentation). A detailed analysis
was given by Popov (2017).
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A special case is n = 0.5. We want to discuss this case under the condition of a
displacement-controlled loading. It is, in this case:

1 7[3/2«/5
— 1/2 - [ ~
gla) =«(1/2)ca’’=, with «(1/2) = ITG/4)? ~ 1.311,
2nAy\ "2
Al(a) = ( ’;”) al’?, (3.79)
At the moment of the first contact, d = 0, it applies to all a:
P\ 12
L. g(a) > Al(a), ifc > 1.9120 (F) ,
Ay 1/2
II. g(a) < Al(a), ifc <1.9120 (F) . (3.80)

In the first case, the radius of the contact will decrease until it disappears. In the
second case, it will enlarge until complete contact is established. Furthermore, in
the second case, complete contact is formed immediately, as soon as the indenter
tip touches the half-space.

The Adhesive Impact Problem for the Indenter with Power-Law Profile

The normal adhesive impact problem, as in the case of the parabolic body, can be
solved in general form. The body has the mass m and the initial velocity v,. For the
rebound speed v,, and thus the coefficient of restitution e, we obtain:

e=2—J1=B, p<I1, 3.81)

Vo

1 ]TA)/ 2n+1 1 2 ﬁ
pi= m_vg |:( 2 ) (E*nzczicz(n)) :|

8n —4
2n% +3n +1
For B > 1itis e = 0; that is, the body will stick to the elastic half-space and not

rebound for impact velocities below a critical value. For n = 2, the known solution
from Sect. 3.5.3 is recovered.

with

[n Fm+1) (zn)%] . (3.82)

3.5.8 The Truncated Cone

The adhesive normal contact problem for a truncated cone (see Fig. 3.12) was first
solved by Maugis and Barquins (1983). With the help of the solutions from Chap. 2
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Fig. 3.12 Adhesive normal
contact between a rigid trun-
cated cone and an elastic
half-space

N\ ;b= 1(1

(see Sect. 2.5.9) and (3.18) and (3.20), the solution of the adhesive normal contact
problem can be determined without difficulty:

b [2raA
d(a) = atan 6 arccos (—) — rd J/’
a E*
. ) b b b?
Fy(a) = E*tanfa” | arccos | — | + —/1 — — | — /8na’E*Ay,
a a a

2E*A a
Ozz(r;a) = Ozz,n.a.(r;a) + Y r <a,

wa «/az_rz’

[8aA
w(r;a) = wp,(r;a) — an/ arcsin (ﬁ) , r>a. (3.83)
bia r

Here, b denotes the radius at the blunt end and 6 the conical slope angle. The solu-
tions of the stresses and displacements in the case of non-adhesive contact indicated
by the index “n.a.” can be looked up in Sect. 2.5.9:

Ozzna(ria) =

[ (N
———— +tarccos | — |} ——, r <b,
E*tan0 | Jp x2—p2 X x2—r2

g /a b + arccos b dx b<r<a
r (Vx2—h2 x X2 —r2 -
2tan 6 . qa h b dx
Wha(r;a) = @pa arcsin (—) — | xarccos | — | ———,
bia r X r
b

2_ 2
r>a. (3.84)

The relationship between indentation depth and contact radius in the case without
adhesion is described by:

dya(a) = poatan 6, (3.85)
with:

b
@) := arccos (E) . (3.86)
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Fig. 3.13 Stability bifur- 1.6
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This results in the critical contact radius as a solution to the transcendental equation:

Po.c + cot Po.c — IBV COS @Yo = 0, (387)
with:
£ [mAy
= . 3.88
tan6 V 2E*b ( )

For the critical values of the indentation depth and the normal force, one obtains:

2 2
d. =a.tan6 |:§00,c (1 - g) — gcot 900,c} ,

* 2 4 2.2 4
F. = E"tanfa; | @o. |1 — g + cotyp, | sin” ¢o, — g . (3.89)
In (3.88) and (3.89), the type of boundary condition must yet be determined.
Displacement-controlled trials are characterized by & = 1, and force-controlled

ones by & = 3. One can easily convince oneself that for b = 0, and thus ¢y = /2,
the solutions of the complete cone from Sect. 3.5.2 are recovered.

However, a closer look at (3.87) reveals a bifurcation of the solution. This is
shown in Fig. 3.13. The equation only has solutions for § > 2.125. For smaller
values of B the critical radius a. is given by the radius b and the critical values of
the indentation depth and normal force correspond to those of the flat punch:

[2nbAy
E*

dc -
F, = —\/Sth3E*Ay. (3.90)
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Fig. 3.14 Solution for the 2F
normalized critical val- ~
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For 8 > 2.125 there are always two roots of the equation and one can show that
all configurations between these two roots (that is, all values @1 < Qo < @o.c2)
are unstable. For example, for b = 1072m, § = 0.1, E* = 10°Pa, B > 2.125
means that the effective surface energy must (in the force-controlled case) be Ay >
3.10*J/m?. This is a very big value. In this case, the two solutions for the angle
@o are shown in Fig. 3.13. Figure 3.14 shows the curves of the contact radius,
the indentation depth, and the normal force in normalized form for the first critical
solution under force-control as a function of the normalized surface energy S.

3.5.9 The Truncated Paraboloid

With the results of Sect. 2.5.10 and (3.18) and (3.20), we come to the following
solution first found by Maugis and Barquins (1983) regarding the adhesive normal
contact problem for the truncated paraboloid (see Fig. 3.15):

2mah
d(a) = %vaz—bz— %

2E*
Fy(a) = 3—R(2a2 + b*) Va2 — b2 — \/8ra3E* Ay,

(r:a) (ria) + | 22202 <
0::(r;a) = 0,44 (r;a , r=<a,
- e wa a2 —r2
A
w(r;a) = Wy, (r;a) — a2y arcsin (ﬁ) , r>a. (3.91)
nE* r

Here, b denotes the radius at the flat tip. The base paraboloid has the radius of
curvature R. The solutions for the stresses and displacements in the non-adhesive
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Fig. 3.15 Adhesive nor-
mal contact between a rigid
truncated paraboloid and an
elastic half-space

R 3 A
~ \J

case, characterized by the index “n.a.”, are:
/“ (2x* — b?)dx b
bl r — ,
- (r'a)——E* b Nx2—b2/x?—r?
zzna \/ — ]TR a 2 2 b2 d
(2 )dx b<r<a,

v 2 —b2Sx2 — 2
2

Wna(r;a) = 24 Ja> b arcsin (£
TR

r

1 o)
— — | (r* = b*) arcsin NETO ) V-V -2,
7R JrZ = p2?

r>a. 3.92)

Between indentation depth and contact radius in the case of non-adhesive contact,
the following relationship applies:

2
dpa(a) = %\/az — b2 = % sin ¢, (3.93)
with
b
@ := arccos (—) . (3.94)
a

Equation (3.23) then provides the transcendental equation that determines the criti-
cal contact radius:
1 + sin® ©@o.c

sin @g . COS Qo ¢

a E_R Ay
B = 5 V SE (3.96)

— B J/cosgpy. =0, (3.95)

with
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c 3R QOO,C (/JO,C %_ sin2 (po,(; ) .

which can be reduced to the results in Sect. 3.5.3 without great difficulty for b = 0.
In (3.95) and (3.97) , the type of boundary condition has to be defined (§ = 1 for
displacement-control, § = 3 for force-control).

Examining (3.95), one encounters a similar bifurcation as in the previous sec-
tion. The equation only has solutions for § > 3.095. For smaller values of 8 the
critical contact radius is given by b and the associated values of indentation depth
and normal force are the same as those of the flat punch. For a sufficiently large
surface energy and, correspondingly, 8 > 3.095, there are always two solutions to
(3.95), and one finds that all states between these two solutions are unstable. These
solutions as a function of 8 are shown in Fig. 3.16. For 5 = 10> m, R = 102 m,
E* = 10°Pa, B > 3.095 means (as an example) that the effective surface energy
in the force-controlled case must be Ay > 7-10%J/m?. Figure 3.17 shows the
curves of the contact radius, the indentation depth, and the normal force in nor-
malized form for the first critical solution under force-control as a function of the
normalized surface energy f.

3.5.10 The Cylindrical Flat Punch with Parabolic Cap

Consider now the adhesive normal contact between an elastic half-space and a flat
punch with a parabolic cap. The punch has the radius b and the cap has the radius
of curvature R.
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Fig. 3.17 Dependencies of OF
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There may be two outcomes based on these examples. If the contact radius a is
smaller than b, the contact assembles simply the one with a parabolic indenter, for
which the solution can be looked up in Sect. 3.5.3. With a sufficiently large inden-
tation depth, or normal force, the contact radius is @ = b. In this case, however,
analogous to the problem of the flat punch, there is no difference between the equa-
tions of the non-adhesive and the adhesive solution. In Chap. 2 (Sect. 2.5.11), this
distinction was not considered further because it had no appreciable consequences.
In adhesive contact, however, this results in peculiarities regarding the stability of
the contact. We therefore once again repeat the two aforementioned solutions. If
a < b is the solution of the contact problem, according to (3.18) and (3.20), it is as
follows:

a? 2waly
=gV
4 E*a?
Fy(a) = IR — V8malE*Ay,
2E* 2E*A
O'ZZ(V;CZ)Z— r=a,
a’ —az
w(r;a) = = arcsm( )

— ,/ — 5+ arcsin (%), r>a. (3.98)
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In contrast, if @ = b the solution is described by:

b3
Fy(d) =2E* (db — —) ,

3R
E* b*—2r2 + dR
0.:(r;d) = IR T r<b,
1 b
w(r;d) = = {(ZdR — r?) arcsin (—) + bNr? —bz}, r>b. (399
7 r

Depending on the value of the surface energy, different variants of the critical state
are possible. If we denote the critical contact radius under force-controlled con-
ditions with a, and those with displacement-control with a. 4, these cases can be
structured as follows:

o Ay <Ayiia. =a*® a4 =a*}

o Ay <Ay <Ayyra.=b,a.4 =aX}
o Ay >Aya,=acq=0>

Here, the superscripts “JKR” denote the respective results for the parabolic indenter.
Ay, and Ay, indicate the values of the surface energy at which the critical radii of
the parabolic solution just coincide with the radius of the punch:

alR(Ay = Ay) = b,
a’ R (Ay = Ayy) = b. (3.100)

From (3.100) one obtains (with (3.45)):

SE*b3
Ay, = 9Ay| = . 3.101
Y2 = ( )
By introducing the normalized quantities
5. d aAL a B L b AL FN
with the known results for the parabolic indenter (see Sect. 3.5.3),
1/3 P 1/3
SR _ 9T R>Ay JIKR _ _l 3n2 (Ay)* R
c SE* ’ c 4 (E*)z ’
3
F*® = —SxAyR, (3.103)

the relationships between the global contact quantities can be written as follows:

(3.104)

-
—~ w
Q> |
S

| [\
S
=3
ISP S
A

S S
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Fig. 3.18 Normalized relationship between normal force and indentation depth for a flat punch
with parabolic cap at different normalized punch radii. The thin solid line corresponds to the
parabolic JKR-solution

Thus the defined relationship F=F (c? ) is shown in Fig. 3.18 for three different
values of b. Here, h =1 corresponds to a surface energy of Ay = Ay, and
b = 0.48 of a surface energy of Ay = Ay,. It is easy to see the corresponding
detachment points from the JKR solution for the paraboloid.

3.5.11 The Cone with Parabolic Cap

In Chap. 2 (see Sect. 2.5.12), the solution to the contact problem of a non-adhesive,
frictionless, normal contact between an elastic half-space and a rigid cone with a
rounded tip was shown. Thus, the solution of the adhesive, frictionless normal
contact (see Fig. 3.19) is already known. The solution was first published by Maugis
and Barquins (1983). With (3.18) and (3.20), one obtains:

’

1—si 2ral
d(a):atané(ﬂ—l-qao)— sy

COoS ¢ E*
v 2 41 —singy 1 .
Fy(a) = E*a“tanf [ @9 + ————— + —singycosgp | — v/8wa’E*Ay,
3 cosgp 3
2E*Ay a
0z:(r;a) = Uzz,n.a.(rya)+ a m, r=<a,

[8a /A
w(r;a) = wy,(r;a) — an/ arcsin (g) , r>a,
T r

(3.105)
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Fig. 3.19 Adhesive normal F,
contact between a rigid cone

with parabolic cap and an
Z ‘
0.\,

elastic half-space
7

with 5
@ := arccos (—) , (3.106)
a

where b denotes the radius at which the parabolic tip, which is continuously dif-
ferentiable, passes into the conical body. 6 describes the slope angle of the conical
body. The stresses and displacements in the non-adhesive case, denoted by the
index “n.a.”, are given by:

Ozz,n.a.(r; Cl) =
0 (p —2t t d
aispipy [T ZEOIS
0 V1 —k%cos?g
2/a? — 12
E*tan 6 a-r

arcosh(‘r—') b
b + b[ |:arccos ( )
0 r cosh ¢
—24/k? cosh® ¢ — 1i|d<p, b<r<a,

2dl’121 .
Wya(r;a) = & arcsin (C—Z)
T r

cos@+/k%cos2p — 1

%o
_a\/rz—a2+2b2/ (p — tang) tan pdy ], r>a,

(3.107)
with

s
dyo(a) = atan 6 (ﬂ + (po) . (3.108)
oS @y

The relationships (3.105) to (3.108) are all valid only for a > b. If a < b, the
contact resembles the one with a paraboloid, for which results can be looked up in



100 3 Normal Contact with Adhesion

Sect. 3.5.3. In the previous chapter, this distinction was ignored because of its trivi-
ality. For the adhesive contact, however, it does not have quite trivial consequences
for the stability of the contact. The non-adhesive indentation depth is completely
described by:

a*tan 0

, a <b,

dal)=14 b . (3.109)
mn@(ﬂm), a>b
COS Qo

According to (3.23), the contact radius at which the contact loses its stability results
as a solution of the equation:

1 —si
zﬂ + o, — ﬂ\/ COS Qo = 07 (31 10)
COS Qo ¢
with
§ [mAy
= —, 3.111
p tan6 V 2E*b ( )
if that equation has solutions. The corresponding indentation depth is given by:
1 —si 4 2
d. =atane[ﬂ (1——) + Qo (1—-)] (3.112)
€OS @o.c § §

and the corresponding normal force by:

F,:E*aztane ©o.c l_f +ﬂ i_§
‘ N £ cosgg,c \3 &

1
+ 3 sin ¢y . cos ¢0,C:| . (3.113)

As expected, the solutions of the cone and the paraboloid from Sects. 3.5.2 and 3.5.3
are obtained by setting b = 0 or b = a correspondingly (in this case it is
R := b/tanf). & is a parameter which determines the type of boundary con-
dition (force or displacement-control; see (3.23)).

It turns out that, when solving (3.110), there are three different regimes: For
B < 1.795 there is no solution and the critical contact radius is smaller than b.
This means that the relationships for the critical state match those of the parabolic
indenter that can be looked up in Sect. 3.5.3. If 1.795 < B < 2, there are two
solutions for the equation which are both shown in Fig. 3.20 and, correspondingly,
two critical states. For values f > 2 only the larger of the two solutions remains.
The smaller one becomes negative and thus unphysical. In this case, the curves of
the normalized critical values of contact radius, indentation depth, and normal force
in the case of force-control are given in Fig. 3.21. For formatting reasons, a sign
change was made during the normalization of the “adhesion force” F,.
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Fig. 3.20 Stability bifur- 1.5
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a function of the normal-
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3.5.12 The Paraboloid with Parabolic Cap

Also, for the paraboloid with a spherical cap whose radius is greater than the radius
of curvature of the parabolic base body, Chap. 2 presented the complete solution
of the non-adhesive, frictionless, normal contact problem (see Sect. 2.5.13). Thus,
from (3.18) and (3.20), the following solution which was first found by Maugis and
Barquins (1983) results in the adhesive, frictionless, normal contact:

2 2wal
d(a@) = o+ a5 - [T
Ry R* E*

2E* [24° 1
Fy(a) = = [Ril + 2 (2a* + b*) Va2 — bz} — V8malE* Ay,
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2E*Ay a
0::(r;a) = 0200 (r;a) + , r<a,
wa az_rz

[8a A
w(r;a) = wy,(r;a) — aE*)/ arcsin (g), r>a. (3.114)
T r

Here, b denotes the radius at which the cap goes over into the base body; R* is an
effective radius that can be determined from R; and R, (see Fig. 3.22):

RiR
R* = Rll ;2 (3.115)

The stresses and displacements indicated by the index “n.a.” correspond to the
solutions of the non-adhesive problem (see Sect. 2.5.13):

ZVaZ—rZ [ (2x* — b?) dx -
r b
o (r'a)——E—* R*«/x2 p2/x2—r2 T
zzna\l', = = 2\/612— [ _bz)d_x , 3
<r<a,
R*mm

wn.a.(r;a) = wn.a.,P(ryay R =R+ wn.a.,PS(ra a;R = R* ), r>a, (3.116)

with the corresponding solutions for the paraboloid and the truncated paraboloid:

a2 2 a 2 _ g2
Wha.p(ria; Ry): R 2— e arcsin (7) + — |
1

2
Wna. ps(ria; RY) = n;* va? — b2 arcsin (;)

1 2_p2
— (r2 - bz) arcsin yae—
T R* 72— p2

—«/az—bZ\/rz—azi|. (3.117)

Fig. 3.22 Adhesive nor-

mal contact between a rigid
paraboloid with parabolic cap
and an elastic half-space
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All relations in (3.114) to (3.117) are valid only fora > b. If a < b contact is
made only with a parabolic indenter of radius R;. The indentation depth in the case
without adhesion is thus completely given by:

2 2
a_s a S bs a_a a 5 ba
_)R _ IR
dn.a.(a) - az a - az |
— + —~a? - b2 — 1+ —si , > b,
R1+R* a b%, a > b, R1(+R*Sm(p0) a
(3.118)
where we introduced the angle:
b
@o = arccos [ — | . (3.119)
a

The critical configuration in which the adhesive normal contact loses its stability
results from the solution to the transcendental equation:

1 Ry 1+ sin®
24+ _l : Po.c
COS Qo.¢ R*  singo,

._@ TAy
B = 5 ”ZE*b' (3.121)

The corresponding values of the indentation depth and the normal force are deter-
mined by:

a? 4 R, 2 2
do==11-2+ “Lsingp (1-2——=—)]1.
R, [ T ( £ Esin’ <P0,¢,~):|
AE*a3 | 6 R
F. = 1- <+
3R, £ 2R

) — B/cosgp. =0, (3.120)

with

o

sin ¢o [3 — sin? Vo.c

—9(14- ! ) (3.122)
E Sinz Po.c ’ .

and one easily convinces oneself that the following limiting cases emerge from these
solutions:

e For R; — 00, the truncated paraboloid from Sect. 3.5.9
e For R* — oo, the paraboloid with curvature radius R; from Sect. 3.5.3
e For b = 0 the paraboloid with radius of curvature R,

In (3.120) and (3.122), & (i.e., the boundary condition) has to be defined: displace-
ment-controlled trials corresponds to the value £ = 1, and force-controlled ones to

£=3.
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Fig. 3.23 First solution for
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In (3.120), two dimensionless parameters occur; R;/R* and B. The equation
has, with one exception, either no solution or two solutions. These two solutions
are shown in Figs. 3.23 and 3.24. It can be seen that there are only solutions below
the line:

R R
B> Bo (R—‘) ~ 22+ 3.2R—i. (3.123)

For smaller values of the surface energy, and thus smaller values of §, the critical
contact radius is smaller than b and the critical state corresponds to that of the
complete paraboloid with the radius of curvature R, for which the results can be
found in Sect. 3.5.3. From Sect. 3.5.9 it can be deduced that:

B R, e (3.124)
O\ R R*
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This agrees relatively well with the estimate (3.123). For R;/R* = 0, the first
solution ¢y, becomes an unphysical artifact, leaving the one critical state for the
indentation by a purely parabolic indenter.

3.5.13 The Cylindrical Flat Punch with a Rounded Edge

For the flat cylindrical punch with a round edge, the solution of the non-adhesive
Boussinesq problem was derived in Chap. 2 (Sect. 2.5.14). From (3.18) and (3.20),
we obtain the following solution for the adhesive problem (see Fig. 3.25):

d(a) = 4 [Va2 — b2 — b arccos (é):| —/ 27raAy’
R a E*

*

Fy(a) = f—R [V a? — b2 (4a2 — bz) — 3ba? arccos (g)i|

— V8malE*Ay,

(ria) (ria) + 2E*Ay a -
0.,(r;a) = 0,0 (rsa , r<a,
. e wa g2 —r2
8aA
w(r;a) = wy,(r;a) — an/ arcsin (g) , r>a. (3.125)

Here, b denotes the radius of the flat base of the punch and R the radius of curvature
of the rounded corners. The stresses and displacements are indicated by the index

Fig. 3.25 Adhesive normal contact between a rigid cylindrical punch with round corners and an
elastic half-space
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“n.a.” for the problem without adhesion are (see Sect. 2.5.14):

Ozzna(ria) =
* /a 2+ x2 — b2 — b arccos é d—x r<b
_ET ], X VX2 =2 -
7R / 2V x? — b2 — b arccos é) d—x b<r<a,
r X x2—r2
W (r;a) =
24, , 2| 7 b d
&arcsm(g)—— /i(«/xz—bz—barccos(—))ix ,
b1 r b1 R X 2 — x2
b
r>a, (3.126)

with the non-adhesive relationship between indentation depth and contact radius
being:
2

b
dpa(a) = {\/az — b2 — b arccos (5)} = % (sin @y — @ cos ¢p) ,  (3.127)

x| =

with the angle:

a

Qo = arccos (é) . (3.128)

In contrast to Sects. 3.5.11 and 3.5.12, here a can never be smaller than . The
critical contact radius is given as a solution of:

2tan @y — @o. — BA/COS@o, =0, (3.129)
with:
ER | mAy
=2 ) 3.130
B= Vg% (3.130)

The corresponding values of the indentation depth and the normal force are deter-

mined by:
a(z, . 4 2
dc = E S1 Qo ¢ 1- g — ®0.c COS Q¢ 1- g s

4E*a3 . 6 1 ’
F, = IR singo. | 1 — g — —COS” Qo

4

3 4
— 2P0, COS Pu.c (1 - g) i| (3.131)

For b = 0 the solution for the parabolic indenter from Sect. 3.5.3 is reproduced.
& is a parameter that, depending on the nature of the boundary condition, can take
the values one (displacement-control) and three (force-control).
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Interestingly, (3.129) has only one solution for each positive 8. This and the as-
sociated normalized values of a., d., and F, are shown in Fig. 3.26. For § — 0 the
critical values of the indentation depth and the “adhesion force” disappear, whereas
the critical contact radius does not disappear but strives towards its smallest possi-
ble value, b. This is due to the fact that the rounded corners, which are continuously
differentiable (in contrast to the truncated paraboloid), pass into the flat base parallel
to the half-space.

3.5.14 The Paraboloid with Small Periodic Roughness (Complete
Contact)

It is established that the adhesive properties of a surface are greatly affected by the
surface roughness. In general, increasing roughness sees a reduction in the effective
surface energy and, therefore, the adhesive forces. However, there exists much
proof in existing literature, such as that by Briggs and Briscoe (1977) demonstrating
that the opposite can also be the case. A theoretical yet experimentally validated
approach explaining this phenomenon stems from Guduru (2007). With the aid
of both the classical approach of minimizing the potential energy by Johnson et al.
(1971) as well as the idea of elastic energy release rates borrowed from linear-elastic
fracture mechanics, he examined the adhesive normal indentation of a parabolic
indenter with periodic roughness. It can be represented by the profile:

2
fr) = Zr—R—l—h(l—cos (z%r)) (3.132)

with the amplitude & and wavelength A of the roughness, and the radius R of the
paraboloid. For his solution, Guduru assumed a simply connected contact area
requiring a monotonically increasing indenter profile. This poses a limitation for
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the roughness parameters:

1 A2 sin(x

f'(r)>0= = :=— >4x’sup [—L] ~ 8.576. (3.133)
h hR X

Here, sup [-] denotes the global maximum of a function. However, a sufficiently

great normal force can overcome this to generate a connected contact area, even

for profiles that violate this condition. Taking into account the solution of the non-

adhesive contact problem from Chap. 2 (Sect. 2.5.17) and (3.18) and (3.20), the
solution for the adhesive problem is then as follows:

2 n’ha 2 2waly
d — Ho| —a | — ,
@=7%" E 0( by “) E*
4E*a 27 27
F h| —aH —H; | —
v = 555+ nan | St (o) = ()
8nalE*Ay,
2E*A
0::(r;a) = 02z pa(r,a) + r 2 r<za
wa a—r2
aly . sa
w(r;a) = Wy, (r,a) — arcsin (—) , r>a. (3.134)
T E* r

Here, H,(-) denotes the n-th order Struve function. For a short explanation of its
properties, the reader can be referred to the solution of the non-adhesive problem
detailed in Sect. 2.5.17. The stresses and displacements for the non-adhesive case
can also be referenced in Sect. 2.5.17 and are repeated below:

Uzz,n.a.(r;a) =

a

E* |2vVa?2—r2  n2h 27 2 2 dx
-+ Ho(=—x |+ —xH_ | —x || — ¢,
b/ R A X

J A A A 2_ 2
r<a,
Wna(r;a) = @ arcsin (g) - # [ 2 arcsin (%) — a2 = az]

a

27 A H 27 dx
TR\ T ) e T
(3.135)

2 Zh 2
dna(a) = % + 2%, (—”a) . (3.136)

with
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Fig. 3.27 Relationship be-
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By introducing the dimensionless quantities

2Fy o 27AyR

>

=, : , = =—— Ay :=
P ) P 37RAy

E*)\3 7
(3.137)
the relationships (3.134,), and (3.134,), can be rewritten as:

d = a* + n*haH, (2ma) — \/ Aya,

. 16 ., 4mha . . . 8 &
F=—a+—=— [ZJTCZH() (27'[61) - Hl (27'[61)] — T4 = (3138)
9Ay 3 Ay 3V Ay

The implicitly defined relationship F=F (c?) is partially graphically represented
in Fig. 3.27.

The wavelength is kept constant for the three depicted cases: the JKR case
without roughness 7 = 0, one curve with medium roughness, and one with very
pronounced roughness. We discover that the force oscillates with increasing mag-
nitude. On the one hand, we see significantly greater extremes for the adhesive
forces (during force-control) and indentation depth (during displacement-control)
being achieved than without roughness (lowest point of the curve with h = 0.5 lies
at F = —1.3, roughly 30% lower than the minimum of the JKR curve). On the
other hand, constantly switching between the stable and unstable regime causes the
indenter to bounce, which is a process that dissipates energy.
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3.6 Adhesion According to Bradley

Let us consider a rigid paraboloid Z = r2/(2R) in contact with a rigid plane. Fur-
ther, we assume that the adhesive stress only depends on the distance between the
surface: 0 = o (s). The separation energy is then:

o]

Ay = /cr(s)ds. (3.139)
0

For the adhesive force between the spheres we obtain:

o0 o0 5
Fy = /ano[s(r)]dr - [ana (r—) dr. (3.140)
0

0

By substituting s = r2/(2R), rdr = Rds the equation is transformed into the

following form:
o0

Fy = ZNR/a(s)ds = 2w RAy. (3.141)
0

This result was derived by Bradley (1932), specifically for the van der Waals inter-
action, while in reality it is independent of the type of interaction potential.

3.7 Adhesion According to Derjaguin, Muller, and Toporov

Derjaguin, Muller, and Toporov (1975) examined the adhesive normal contact
between a paraboloid of radius R and an elastic half-space. They assumed that
the stresses within the contact area and the deformation outside the contact area
matched those found in the non-adhesive Hertzian solution. Of course, this implied
that the body forms an ideal sphere in the last moment of the contact. As a result,
the pull-off force in this state is identical to the force calculated by Bradley:

F; = 27RAy. (3.142)

3.8 Adhesion According to Maugis

As explained in the introduction to this chapter, the adhesive forces between two
electrically neutral bodies decrease rapidly with increasing distance. Therefore,
integrating with respect to distance (i.e., the work of adhesion) returns a definite
value. Adhesive forces that are of much shorter range than any other character-
istic length of the problem have a negligible impact and are assumed to be zero.
In this case—corresponding to the JKR approximation—the work of adhesion is
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the sole determinant of the adhesive behavior. The adhesive forces attain distinct
significance once the range of the adhesive forces is of the order of the smallest char-
acteristic length of the contact problem. The adhesive behavior is now determined
not only by the work of adhesion but also independently by both the intensity and
range of the adhesive forces. In examining these influences in a qualitative fashion,
it is sensible to begin with the easiest model of finitely ranged adhesive forces: by
assuming that the adhesive stresses (adhesive force divided by area) are constant up
to a certain distance and zero past that point. This approximation was introduced by
Dugdale (1960) to analyze crack problems and has since seen heavy usage due to
its simplicity. The theory of adhesion based on the aforementioned adhesive force
was developed by Maugis (1992). In the following section, the theory of Maugis
will be derived via the MDR.

3.8.1 General Solution for the Adhesive Contact of Axisymmetric
Bodies in Dugdale Approximation

We will consider the adhesive contact between a rigid rotationally symmetric profile
with the shape f(r) and an elastic half-space. The solution is found via MDR
and (except for the interpretation of the MDR model) it is identical to the original
solution by Maugis. Executing the MDR algorithm, we define an effective profile

g(x) (see (2.6)): N
g(x) = |x|/ f(r) L dr. (3.143)

This will play a central role in the following solution steps. This profile is brought
into contact with a one-dimensional Winkler foundation, defined by (2.5). In con-
trast to the non-adhesive contact, there now exists effective adhesive forces acting
between the indenter and the Winkler foundation.

While pressure is the relevant quantity of load in three-dimensional space, the
one-dimensional MDR representation only allows the definition of the linear force
density (distributed load):

AFy(x)

= E*wp(x). (3.144)
Ax

q:(x) =

Between these two quantities, the following transformations are valid:

BREASE
p(r) = _r2
q:(x) =2 rp(r) dr. (3.145)

/72 — 2
X
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These are described in detail in Chap. 2 (Sect. 2.3) and in the appendix (Chap. 11).
The displacements of the surface points in the original three-dimensional problem
w(r) and in the one-dimensional MDR representation wyp(x) are linked via the
usual MDR transformation:

2 wip(X)
0

Following Maugis’s (1992) lead, we will examine the case of a constant adhesive
stress with finite range, i.e., we assume that the adhesive pressure in the original
three-dimensional system remains constant and equal to the magnitude of oy up to
the distance /, and vanishing thereafter:

() = {—00, for f(r)—d + w(r) <h, (3.147)
0, for f(r)—d + w(r) > h.

Using the transformations (3.145) we can determine the corresponding “adhesive
distributed load” in the one-dimensional MDR model:

b
roy
—2/ ————dr = —209vbh2 —x2, for|x| <b,
Gadn = (x) = x Ar2—x2 (3.148)

0, for |x| > b,

where b denotes the outer radius of the area upon which the adhesive pressure acts
(i.e., where the distance between the surfaces does not exceed /). The radius b
depends on the deformation of the surfaces and is calculated as part of the solution
of the contact problem. The geometry of the contact and the notation is graphically
represented in Fig. 3.28.

Within the contact area, the displacement w; p (x) of the 1D model is determined
by the shape of the indenter and outside the contact area (but still within the adhesive
zone) by the adhesive forces:

d - g(-x)v X =<a,
2
wip(x) = —%«/lﬂ —3. a<x<b (3.149)
0, x > b.

The radius of the adhesive zone derives from the condition that the gap
w(b) —d + f(b) between the indenter and the elastic body must correspond
to the range h of the adhesive stresses:

w(b)—d + f(b) = h. (3.150)
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Fig. 3.28 Adhesive contact according to the Dugdale-Maugis model: subfigure (a) represents
the real contact with the three-dimensional half-space, and subfigure (b) the contact with the
one-dimensional Winkler foundation. In three dimensions the constant attractive stress oy acts
wherever the distance between the surfaces is less than 4. At greater distances the interactions
cease. The radius of the adhesive zone exceeds the contact radius a. In the MDR representation
the “adhesive distributed load” ¢,qn(x) (3.148) takes the place of the adhesive stress

Accounting for the transformation (3.146) and (2.149), we get the displacement
w(b) (3.149):

b
2 lD(x)
by = =
w(b) = 2 0/ e
[d g(x)] 4oy
—d— f(b)— v b —a), (3.151)

a

Inserting this into (3.150) then yields the equation for the radius b:

[g(x) — 4oy _
/ —xz x— (b —a)=h. (3.152)

The force A F oy (x) pressing the spring at coordinate x onto the effective profile
g(x) consists of the elastic spring force and the adhesive force:
AFeontz (X) = Ax [q:(X) — Gadn.z ()]
= Ax{E"[d — g(x)] = Gaan- (X)} - (3.153)

The contact radius a is obtained from the condition that this contact force disap-
pears:

E*[d — g(a)] + 200vb? — a2 = 0. (3.154)
Furthermore, the total normal force is calculated as the integral over all springs:
b
Fy =2E* / wyp (x)dx. (3.155)

0
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Substituting (3.149) gives:

a b
Fy =2E* wlD(x)dx:2E*[[d—g(x)]dx—400[vb2—x2dx
0 a

=2E* | [d — g(x)]dx — 09 [—Zavbz — a2 + 2b? arccos (%)] . (3.156)

/
/

Equations (3.152), (3.154), and (3.156) completely solve the normal contact prob-
lem. Here, we will summarize them once more:

b
2 —
L2 [lsw-dl
b4 b2 — x2 nE*

40'0

(b _a)1
0= E*[d — g(a)] + 200V b? — a?,
Fy =2E* [ [d — g(x)]dx
/

— 0y [—2avb2 — a? + 2b?* arccos (;—1)] . (3.157)

3.8.2 The JKRLimiting Case for Arbitrary Axisymmetric Indenter
Shapes

In this case 09 — oo and h — 0, where oph = Ay remains finite. The radii a and
b are nearly identical: ¢ = b —a < a,b. By writing b = a + &, then substituting

g(x) ~ gla) + g'(a) (x —a), (3.158)

and with subsequent integration and expansion to terms of the order !/ and e,
(3.157) can be represented in the following way:

460

2 2¢e
h~—[gla)—d]\— — —¢
T a nE

@) 200a [2¢&
~ gla) — ‘/—,
§ E* a

a

Fy ~ 2E* /[d — g(x)]dx. (3.159)
0
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From the first two equations, we obtain the indenter shape independent relationship:

4ope
T E*

= h. (3.160)

Substituting (3.160) into (3.159) gives the previously established general equations
of the JKR approximation for arbitrary rotationally symmetric profiles (compare to
(3.27) and (3.28)):

2raly
~ gla) — T Er
Fy ~2E* /[d — g(x)]dx. (3.161)
0

3.8.3 The DMT Limiting Case for an Arbitrary Rotationally
Symmetric Body

Setting @ = 0 in (3.157) yields:

b
2 g(x) 4o
h==| —=——dx—d — b,
) b2 —x2 o nE*
0
0= E*d + 200b,
Fy = —nb’0y. (3.162)

Applying the familiar MDR inverse transformation (see (2.7))

b
2 g(x)
b)=— | ———d 3.163
A v/ (163
0
to the first two equations provides the relationship:
200b 2
fb) + 22 (1 - —) — h. (3.164)
E* b4
The classic “DMT limiting case” stands for:
200b 2
fb) > =2 (1 - —) . (3.165)
E b4

It is assumed but not proven that the state @ = 0 corresponds to a loss of stability.
In the following we will provide solutions for specific indenter shapes.
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3.8.4 The Paraboloid

In this case, the shape of the indenter is defined by the equation
2
f(r) = 2R’ (3.166)
with the paraboloid radius R. The MDR transformed profile is:
2

g(x) = %, (3.167)

and (3.157) determining the radii @ and b, the normal force Fy, and the indentation
depth d, with range 7 and magnitude of the adhesive stress oy, take on the following
form:

T b? a a 200
“h==— — —_ 2 _ g2 -~ —
2h (2R d)arccos(b)+2va a o b—-a),
Q=L P
R E*

3
Fy =2E* (ad — :_R) — 0y [—2aVb2 — a? + 2b* arccos (%)] . (3.168)

We introduce the following dimensionless variables:

- a 3. d ~ FN

JKR’ : JKR |’ : JKR’
a(? |d(7 | FA

K= (3.169)

KR @JKR | F ¥R can be referenced in Sect. 3.5.3:

where the quantities a;,
IKR 9T R*Ay 1/3 IKR 3n2RAY? 1/3
ac = —_— s dc = —_ —_— .
8E* 64E*2
3
Fi*R = EnRAy. (3.170)
Equations (3.168) then take on the following form:
21 2 1 1 1
3N a’ [% arccos (;) — arccos (;) + EVKZ - li|
4 1
+ §c~zA |:1 — k 4+ VK2 — 1 arccos (—)i| ,
K
d =3a%—4ah/i?> -1,

- 1
Fy =a®—a*A (K2 arccos (—) + VK2 — 1) , (3.171)
K
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Fig. 3.29 Normalized nor- 1.5
mal force as a function of the
normalized contact radius for I
the Maugis-adhesive contact !
of elastic spheres for different
values of the Tabor parameter 05}
A. Thin solid lines denote the F,
JKR and DMT limits N o
-0.5
71 L
with s
3Ro ()2
A= (nhE*z : (3.172)

In Figs. 3.29 and 3.30 the dimensionless normal force as a function of the dimen-
sionless contact radius or indentation depth (both relations are implicitly defined
by (3.171)) is shown for different values of the Tabor parameter. It is apparent
that the curves for small and large values of the Tabor parameter tend to be the
respective DMT or JKR limit, denoted in the figures by thin solid lines. Inter-
estingly the convergence towards the JKR limit seems to be more prone in the
force-indentation depth-diagram, whereas the convergence towards the DMT limit
appears to be “faster” (i.e., achieved for less extreme values of the Tabor parame-
ter) in the force-contact radius-diagram. Also note that, whereas in the compressive
branch of the force-indentation-curve there is no significant difference to the JKR
limit already for A = 1; the respective tensile branch still exhibits significant de-
viations from the JKR limit. Hence the adhesion range plays an important role for
the stability (and, therefore, the hysteresis) of the contact even for large values of
the Tabor parameter (for which most of the force-indentation-curve is practically
the same as in the JKR limit), as was pointed out by Wu (2010) and Ciavarella et al.
(2017).

For the limiting case of disappearing adhesion, (3.168) resolves to the Hertzian
solution:

d =

. a’ 4 *a3
Fy =2E*|lad — — | = -E*—. (3.173)
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Fig. 3.30 Normalized nor- 05k
mal force as a function of the
normalized indentation depth
for the Maugis-adhesive con-
tact of elastic spheres for or
different values of the Tabor

parameter A. Thin solid lines F

denote the JKR and DMT N
limits 0.5
b
-2 -1 0 5 1 2 3
The JKR Limiting Case

With the aforementioned transition for o0y — oo and & — 0, where ogh = Ay,

(3.168) yield:
2 (a? (26 4doge
h~—|——-d —— ,
b4 (R ) a nwE*
d~ a’> 200a [2¢
"R E*Va’

Fonter ey 2 2 (3.174)
- — — a40pd —. .
N3 OR ¥V

With (3.160), and taking into account Ay = oyh, we obtain from (3.174) the JKR
solution previously detailed in Sect. 3.5.3:

2 [2ma A
gL [Pma y’
E*

%

IN]

|

4 3
Fy ~ SE*% — /8TE*@3Ay. (3.175)

The DMT Limiting Case
For the case a = 0, (3.168) yield:

h— b_2 _ _ 40()

2R TE*"
d — _20’0b
E*’

Fy = —nb’0y. (3.176)
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The first two equations provide the relationship:

b2 20'0b 2
— l1——|)—h=0, 3.177
2R E ( 71) (.177)

which can be solved for b:

2R 2 2R 2\ 1%
p = 2290 (1 — —) n \/[ % (1 — —)} 4 2Rh. (3.178)
E* T E* T

If the condition

4R} 2\’
WRh > =20 (1= (3.179)
E*? b1

is valid then b ~ +/2Rh. Substituting into the third of the set of (3.176) then
delivers the DMT result:

Fipmr = —Fy = 2nRhoy = 2nRAy. (3.180)

It is easy to see that the condition (3.179)

2RAY? 2\?
s |72 ) <1 (3.181)

is identical to Tabor’s criterion (3.3).

Asymptotic Corrections for the JKR Solution
We introduce the notation
g1 =k—1 (3.182)

and expand (3.171) to powers of ¢;:
2
3A
~ 1
d = 3&2—&/\\/5(4811/24-813/2—§815/2+...) R

4 4
= 5aAsl + 5\/552813/2 +...,

5 23 457
Fy =a° — V2a*A (2511/2 + ?813/2 + %815/2 + ) ) (3.183)

Utilizing second-order perturbation theory, solving the first equation for ¢; yields:

o _( 1 1
eV ~ (2&1\2 251/2A4+...) (3.184)
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Substituting into the second and third equations of (3.183) then gives:

1 5
d =3a%—4a"*+ — (2& - —5—1/2) i

A2 6
s 1 23
Fy =a®>—2a"*— X (—512 + Edl/z) . (3.185)

Replacing 23 by 24 achieves a precision of approximately 5% for the perturbation
term, providing the supremely simple approximation:

) 1
Fy ~ (a* —2a7) (1 + ~A2) A1 (3.186)

In proximity to the critical radius @ = 1, we can write @ = 1 + Aa and expand to
powers of Aa:

~ 7 29
@ x4 gt (44 s ) A

6A2 12A2
) 1 25 9 119
Fy~—-l———+——Aa+ (- AG*. 3.187
N a2 Toapa et (4 + 96A2) “ (3.187)

The force reaches a minimum for

50
216A% + 119

d(Aa)  8AZ +

2 " 16A2

dFy 9 (9 39

) Aad=0 & Aa =— (3.188)

Substituting this result into the second equation in (3.187), and subsequently ex-
panding to 1/A yields:
11

Fi=—Fy~1+ AT (3.189)
or (alternatively) in dimensional variables:
£ =3 roup s ML (3TOESRR 13
= —7w RO e
AT T g o0
3 11 (375E*RhO\"

3.8.5 The Profile in the Form of a Power-Law

For an indenting, rotationally symmetric body with the general profile

fr)y=cr*, neR", (3.191)
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and positive numbers n and a constant ¢, (3.157) take on the form:

2c(n)  saynt! 1 n+1 n+3 a?
h=cb"|1— —————(— Filz.——— ——1
¢ [ Jt(n+1)<b) 21(2 2 2 bz)}

2d 4
- arccos (%) - ngo* b —a),

0=E*[d —cx(n)a"] + 200V b2 — a?,

Fy = 2E* [da - L(")a"“}
n—+1

— 0o [—Za«/bz — a2 + 2b% arccos (%)] ) (3.192)

Consistent with the notation of this subsection, we denote the radius of the contact
area by a and the zone radius of the adhesive interaction by b > a, the indentation
depth by d, the normal force with Fy, the range by A, and the value of the adhesive
stress by 0. We introduce:

. 'n/2+1)
k(n) = ﬁir CESYE (3.193)

and utilize the hypergeometric function:

oo

2Fi(a,b;c;z) = Z

n=0

'@+ n)'(h+n)l(c)z"
T(@)T(B)T(c+n) nl

(3.194)

Naturally, setting n = 2 returns (3.168) of the preceding section.

The JKR limiting case of the above (3.192) was already discussed in detail in
Sect. 3.5.7. As a final note, the adhesive force for this indenter shape in the DMT
limiting case (h = f(b), a = 0) is given by:

TAy

DMT __
FA - c2/n

h, (3.195)

with an effective surface energy of Ay = oyh. Itis apparent that the parabolic body
with n = 2 represents the sole case where this force is not explicitly dependent on
the range of the adhesion.

3.9 Adhesion According to Greenwood and Johnson

We now consider the adhesive contact between a parabolic indenter Z = r?/(2R)
and an elastic half-space. The surface displacement must correspond exactly to
the indenter shape within the contact area, regardless of the type of adhesive inter-
action. Therefore, it is a quadratic function of radius r. Greenwood and Johnson
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(1998) rightly noted that this kinematic condition is met when the Hertzian pressure
distribution is accompanied by an additional stress distribution. This additional dis-
tribution is, in turn, the difference of two Hertzian stress distributions with two
varying indentation depths, and thus with the actual contact radius @ and another
arbitrary fictional contact radius ¢ > a, so that:

N2 —r2— Va2 —r2, r<a,

Ve —r2, a<r<c, (3.196)

0, r>c.

2E*
7R

) =

A similar stress distribution was used far earlier already in the solution of the non-
adhesive tangential contact of spheres to generate a constant displacement of a
spherical domain (there will be more on this in the next chapter). Within the contact
area, i.e., for r < a, this stress distribution (3.196) causes the constant displacement

w(r) = %(a2 — ). (3.197)

The additional stress (3.196) and the corresponding displacement (3.197) can be
modified with an arbitrary factor k for control of the indentation depth without
changing the shape of the indenter. The entire stress distribution consisting of the
original Hertzian distribution of radius a and also the distribution (3.196) multiplied
by the factor & is given by:

V r2+k—\/c2—r2 r<a. (3.198)

0::(r) =

Hertzian theory provides the distance Aw between the two surfaces within the ring
a<r<c:

Aw(r) = (1+ k)% |:(;—z — 2) arccos (%) + #] ,
a<r<c. (3.199)
The stresses within the ringa < r < ¢
0.:(r) = k%m, a<r<c (3.200)

then describe the adhesive interactions between the surfaces. Combined with
(3.199), they define the separation energy

Ay = /ad(Aw) = /azz(r)d(dAw)dr
B 2E* e
=kk+1) ke (c —a)“(c + 2a). (3.201)

Minimizing the total energy provides equilibrium configuration.
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While the purely contact mechanical aspect of Greenwood’s and Johnson’s the-
ory is far simpler than that of Maugis’s theory, their model is based on certain
assumptions with effects that are not immediately obvious. As an example, the im-
plicitly introduced interaction not only depends on the distance between the surfaces
but also on the entire configuration of the contact.
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Tangential Contact

4.1 Introduction

In this chapter, we will consider contacts which are loaded both in the normal direc-
tion z (as previously, z points into the half-space and Z to out of the half-space) and
in the tangential direction x. Although the load now lacks rotational symmetry due
to the bias for the x-direction, each of the non-vanishing components of stress ten-
sor or displacement in the contact plane still have an approximately axisymmetric
distribution. In this sense, this case can also be considered a rotationally symmetric
contact problem.

Initially, we examine the deformation of an elastic half-space under the effect
of a concentrated force at a point on the surface, which we define as the origin
(Fig. 4.1).

Let the force F have a sole component in the x-direction. The components of
the displacement vector u = (1, v, W)y y - at the surface (z = 0) are given by the
following (Cerruti 1882; Landau and Lifshitz 1991):

1 vx2) 1
=F 2(1— -,
" Y47 G (1=v)+ r2 \r
F 1 2v
v - —XY,
“4nG Y
1 (1—2v)
=F—— ——"x, 4.1
v “4nG r2 x @1

where G stands for the shear modulus. For a stress distribution with a sole stress
component o, (x, y) acting in the surface, the displacements are determined using

Fig. 4.1 Single tangential
force acting on the surface of
a half-space
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the principle of superposition:

1 20(x—x)?| 1
M(X,y) = 2(1 - V) + ’ (x 2 X) _o-xz(-x/s y/)d'x/dy/s

4 G r r

2v 1 / / / / / /
oY) = o rj(x—X)(y—y)axz(x,y)dxdy,

(1_2U) 1 ’ o / /
w(x,y)=w ﬁ(x—x)UxZ(X,Y)dXdy’

r=yx—x)2+0-y)> (4.2)

These equations lay the basis of all analytical and also numerical contact mechan-
ical solutions and enable certain general deductions. For two contacting bodies
under tangential load, the normal displacements of their surfaces are only then equal
and opposite if the coefficients preceding the integral in the third equation of the set

(4.2) are equal:
1-— 21)1 _ 1— 2\)2

G, G
The vertical displacements of both bodies are, in this case, “congruent”, causing no
additional interaction in the normal direction. We refer to these cases as decoupled
normal and tangential contact problems. Bodies that meet condition (4.3) are called
“elastically similar”. This condition is met in two cases (among many others) of
practical importance: (a) contact of bodies with the same elastic properties (e.g.,
wheel-rail contact), or (b) contact of a rigid body (G| — oo) with an incompressible
one (v, = 0.5) (e.g., road-tire contact). If (4.3) is not fulfilled, the normal stresses
then lead to relative tangential displacements of the contact partners and vice-versa.
The mathematical treatment and the complete analytical solutions of the contact
problems in particular are rendered far more difficult in this case. However, the
solution differs only slightly from the case of elastically similar materials in many
cases.
If the single stress component o, (x, y) is solely dependent on the polar radius
r according to the law

(4.3)

0 (x,y) = T(x, ) = w(l —r*/a®)”'2, (44)
substituting into (4.2) with subsequent integration yields the result (Johnson 1985):

9
u= %ma = const. 4.5)

The tangential force is calculated to:

a

2 rtodr 2
Fx = ﬁ =2ma 70. (46)
S a=ra)
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The physical implementation of the stress distribution (4.4) is more complicated
than is the case for the analogous normal stress distribution. One might assume
it could be achieved by tangentially displacing (4.5) a rigid punch of the radius a.
However, this is only true if the resulting normal displacements also vanish. In the
case of a rigid indenter, this condition is only fulfilled if the elastic half-space is
incompressible. A constant displacement of the contact area is also achieved when
two elastically similar half-spaces, stuck together in a circular area of radius a, are
displaced relative to one another. The relative displacement of the bodies is then
given by the superposition of the displacements of the form (4.5) for both bodies:

2—\) 2—\)
2) ) — 1 2 4.7
u u —7T‘L’0a(4 ) + 2 2). 4.7)

From this, accounting (4.6) we obtain the relationship:
Fe =2G*a® —u®), (4.8)

with
1 - 2—v 1 2— 1%}
G* 4G, 4G,
The coefficient connecting the force and the relative displacement (4.8) is the tan-
gential contact stiffness:

4.9)

k. =2G*a. 4.10)

Generally, when two bodies with curved surfaces are brought into normal contact
and subsequently displaced in a tangential direction relative to one another, the
bodies remain stuck to each other in one part of the contact area while in other
areas slipping relative to one another. This is already indicated by the fact that
the normal pressure vanishes at the boundary, while the tangential stress (4.4) at
the boundary of a no-slip contact is singular. Therefore, the no-slip condition for
a finite coefficient of friction can generally not be fulfilled in the vicinity of the
contact boundary. Cattaneo (1938) and Mindlin (1949) independently solved the
associated contact problem with some simplifying assumptions. These assumptions
are:

e The existence of a single tangential stress component o, (r) in the slip plane,
which only depends on the polar radius r.
e A unilateral displacement field with a displacement component only in the x-
direction.
e Satisfaction of the following boundary conditions:
— Equal displacements of both bodies in the stick zone, i.e., under the condition
that the tangential stress is lower than u times the normal stress:

u(l)(r) = u(z)(r), if o, (r)| < up(r) (stick). “4.11)
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— Local compliance with Coulomb’s law of friction in the slip zone.
0x:(r) = —pup(r)sgn(ii; —u,), otherwhise (slip). (4.12)

Axially symmetric contacts only approximately satisfy these conditions. A stress
component oy (r) depending on r causes displacements in both x-direction and y-
direction. The displacements and the friction forces are therefore not anti-parallel,
thus violating the isotropic nature of Coulomb’s law of friction. Johnson (1955) was
the first to point out this error in the Cattaneo—Mindlin solution. He demonstrated
that the maximum deviation of the directions of the displacement and friction force
is on the order of v/(4 — v), and therefore lies between 0.09 for v = 1/3 and 0.14
for v = 1/2. Based on this finding, Johnson concluded that the Cattaneo—Mindlin
solution provides a good approximation. Indeed, in macroscopic relationships (e.g.,
dependency of the tangential force on the tangential displacement) it results in an
error in the order of 1%. However, local deviations (potentially important for wear,
for example) may be significantly higher.

In this book we will examine tangential contacts in Cattaneo—Mindlin approxi-
mation, referring to these as “Cattaneo—Mindlin problems” .

4.2 Cattaneo-Mindlin Problems

In the Cattaneo—Mindlin approximation, the tangential contact problem between
two elastic bodies can be reduced to the contact problem of a rigid punch and an
elastic half-space. Formulation of the equivalent problem of a rigid indenter and an
elastic half-space requires using the previously introduced effective moduli E* (see
(2.1)) and G* (see (4.9)), which we will list once more in this chapter as follows:

L: 1—1)1 T 1—1)2’

E* 2G, 2G,

1 2— Vi 2— 1%

—_— = . 4.13
G* 4G, + 4G, (4.13)

These effective moduli uniquely define the contact properties of arbitrarily shaped
bodies. For flat cylindrical punches of radius a, they directly define the normal
and tangential stiffness of the contact (under the assumption of complete stick), as
demonstrated in (2.21) and (4.10):

k. =2E*a,
k. =2G*a. 4.14)

We will assume that the simplest, local form of Coulomb’s law of friction is valid
in the contact area, which is given by (4.11) and (4.12). As mentioned in the intro-
duction, small displacements in the y-direction also exist. These will be neglected
here; the interested reader can be referred to the works of Vermeulen and Johnson
(1964).
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In contrast to the normal contact problem, tangential contacts exhibit hysteresis
and memory properties. These properties mean that there is no universal relation-
ship between the tangential force and the tangential displacement. Generally, at
least part of the contact area in tangentially loaded contacts is a zone of local slip.
The resulting energy dissipation causes hysteresis loops between the global contact
quantities: force and displacement. Moreover, the tangentially loaded contact saves
a part of its loading history in the form of tangential stresses; in this sense the con-
tact can be said to possess a memory. However, this means that the state expressed
by the stresses and displacements, depends on the entire previous loading history, at
least for the tangential stresses and displacements. This dependency distinguishes
the problems examined in this chapter from the previously discussed purely normal
contacts, where the entire current contact configuration is defined by the current
value of a single relevant contact quantity, e.g., the indentation depth. Therefore,
the consideration of the tangential contact problem theoretically includes not only
the specification of the indenter geometry and material properties, but also the com-
plete loading or displacement history. For the sake of brevity in this chapter, we
will restrict our consideration to the simplest and most technically relevant loading
history, which consists of a constant normal force F and a subsequent application
of an increasing tangential force F,. For the consideration of more general loading
histories, the reader can be referred to the pioneering publication by Mindlin and
Deresiewicz (1953) and to work by Jidger (1993).

Let us consider the indentation of a rigid profile in an elastic half-space with the
effective elastic properties given by the effective moduli (4.13). We will use the
notation Fy for the normal force and F, for the tangential force, a for the contact
radius, and d and u(©) for the displacement of the rigid indenter in the normal and
tangential direction, respectively. As explained earlier in this chapter, the contact
area is generally composed of an inner stick zone of radius ¢ < a and an outer slip
zone at the boundary of the contact area. The mixed boundary conditions at the
surface of the elastic half-space at z = 0 are then as follows:

w(r)=d—f(@r), r=a,
u(r) =u®, r<c,
0y:(r) = po::(r), c¢<r=a,
0..(r) =0, r>a,
o (r) =0, r>a. (4.15)

Here w and u represent the displacement of the half-space in the z and x-direction.
The radii of the contact area and stick zone are unknown a priori and must be
determined as part of the solution process.
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4.3 Solution of the Tangential Contact Problem by Reducing
to the Normal Contact Problem

Using a principle discovered independently by Ciavarella (1998) and Jager (1998),
the solution for the contact problem described in (4.15) can be determined if the
solution of the corresponding frictionless normal contact problem is known. There-
fore, we can make use of the solutions of various Boussinesq problems from the
first chapters during our consideration of the Cattaneo—Mindlin problem in relation
to those same profile shapes.

Let 0., (r;a) be the stress distribution in a normal contact of contact radius a.
And let w(r; a) be the normal displacement resulting from this stress distribution.
Ciavarella (1998) and Jager (1998) were able to prove that the distribution of tan-
gential stresses in the form of

0.:(r;a) — O'ZZ(I’;C), r=<c,

0x:(r) = p (4.16)
o:z(r:a), c<r<a
with the radius of the stick zone from the equation
G*|u| = pE*[d(a) — d(c)] (4.17)

satisfy the boundary conditions (4.15), and therefore represent the solution of the
corresponding tangential contact problem. The relationship between the forces and
the contact radii is obtained from integration of the tangential stresses:

Fy = p[Fy(a) — Fy(c)]. (4.18)

From the superposition of the tangential stresses (4.16), it immediately follows that
the principle of superposition equally applies to the tangential displacements in the
direction of the tangential force. The unknown tangential displacements outside the
stick zone are given by:

/L_E* da)— f(r)—w(r:c), c<r =<a,

G* |w(r;a) —w(r;c), r>a.

u(r) = (4.19)

Equations (4.16), (4.17), (4.18), and (4.19) provide a complete solution of the tan-
gential contact problem via reduction to the normal contact problem.

4.4 Solution of the Tangential Contact Problem Using the MDR

As an alternative to the solution via reduction to the normal contact problem (de-
tailed earlier in this chapter), the tangential contact problem can be solved “directly”
(i.e., without knowledge of the solution of the normal contact problem) using the
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Fig. 4.2 Substitute model of Fy,
the tangential contact
Fx_ﬂr
a a

MDR (see Popov and Hef3 2015). While ultimately the solutions do not differ for
simple loading histories, this second approach can prove quite valuable for complex
loading histories or numerical simulations.

Let us consider the axially symmetric indenter with the profile Z = f(r), which
is initially pushed into the elastic half-space with the normal force Fj, and sub-
sequently loaded with a tangential force F, in x-direction. We will assume that
the friction in the contact obeys Coulomb’s law of friction in its simplest form,
described by (4.11) and (4.12).

The application of a tangential force creates a ring-shaped slip zone, which ex-
pands inwards for an increasing force until complete slip sets in. We call the inner
radius of the slip zone (also the radius of the stick zone) c.

In the MDR, this contact problem is solved as follows in this chapter (we will
describe only the solution procedure. The complete derivation can be found in
Chap. 11).

As in the case of the normal contact problem, we first determine the modified
profile g(x) using the transformation

g(x) = |x| / f(r)dr (4.20)

Additionally, we define a Winkler foundation consisting of springs of normal and
tangential stiffness
Ak, = E*Ax,

Ak, = G*Ax, “4.21)

where Ax is the distance between each spring and £* and G* are defined by (4.13).
The calculation method involves indenting the Winkler foundation with the profile
g(x) under the normal force Fy, and subsequently tangentially displacing the pro-
file by u® (see Fig. 4.2). The relationships between the indentation depth, the
contact radius, and the normal force from the MDR model correspond exactly to
the solution of the original problem, as explained in detail in Chap. 1 (while dis-
cussing the normal contact problem).

Each spring sticks to the indenting body and is displaced along with the body
as long as the tangential force AF, = Ak,u® of the particular spring is lower
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than wA F. Upon reaching the maximum static friction force, the spring begins to
slip, with the force remaining constant and equal to A F.. This rule can also be
expressed in an incremental form for arbitrary loading histories: for small displace-
ments Au(?) of the indenter, the tangential displacements of the springs u;p (x) in
the MDR model are given by:

Auip(x) = Au®,  if |Akyuip(x)| < pAF-,
UAF(x)

uip(x) = % N

in a state of slip. (4.22)

The sign in the last equation depends on the direction of the tangential spring dis-
placement, if the spring were sticking. By tracking the incremental difference of
the indenter position we can uniquely determine the displacements of all springs in
the contact area, thus yielding the values of all tangential forces:

AF, = Akuip(x) = G*Ax -uip(x), (4.23)
and the linear force density (distributed load):
AF
4:(¥) = 5= = G uip(x). (4.24)
X

The distribution of the tangential stress t(r) and the displacements u(r) in the orig-
inal three-dimensional contact are defined by rules which are completely analogous
to (2.13) and (2.14) of the normal contact problem:

o L[ 20
Oy = T(r) = —— ,
e T )
;
2 A uyp(x)dx

=2 | 22 425

un = = [ U (4.25)
0

Equations (4.22) to (4.25) are valid for arbitrary loading histories of the contact (and
also for an arbitrary superposition of time-variant normal and tangential forces).
In general, these equations must be implemented in a numerical program; this is
extremely easy due to the independence of each spring in the Winkler foundation.

For simple loading conditions, the general solution can also be written in an
explicit form. Let us illustrate the MDR procedure using the case of an indenter
which is first pressed with an initial normal force Fy to generate a contact radius a,
which is determined from the equation

a a

Fy =2E* | wip(x)dx =2E* | [d — g(x)]dx
/ /

=2E* /[g(a) — g(x)]dx. (4.26)
0
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Subsequently, the indenter is displaced in the tangential direction. The radius of the
stick zone c is determined from the condition that the absolute tangential force is
equal to the coefficient of friction u multiplied with the normal force Ak, w;p(c):

G*u| = pE*[d — g(c)]. (4.27)

From (4.27) we can draw an interesting and very general conclusion. The max-
imum tangential displacement for which the stick zone just barely vanishes, i.e.,
the minimum displacement to see complete slip, is determined by setting ¢ = 0 in
(4.27) (and therefore also g(c) = 0):
E*
ul® = /,LEd. (4.28)

Thus the displacement that is achieved before complete slip sets in is solely depen-
dent on the indentation depth (and not on the shape of the indenter).

The tangential displacement in the MDR model at a given coordinate x then
equals:

u®, for x < c,
E*
uip(x) = ua[d —g(x)], forc<x<a, (4.29)
0, forx > a,

and can also be written in the following simple universal form:
*

E
uip(x) = Mg[ww(x;a) —wip(x;c)], (4.30)

which corresponds to the principle of superposition by Ciavarella (1998) and Jiger
(1998). The distributed load is obtained by multiplying with G*:

G*u®, for x < c,
gx(x) = { pE*[d — g(x)], forc <x <a, (4.31)
0, for x > a,
or
qx(x) =Mn [qz(-X; a) - q:(-X; C)] s (432)

where ¢ (x;a) and ¢.(x; c) represent the respective distributed load of the normal
contact problem with the radius a and c. The tangential force is given by:

a

Fo=>2 [ ¢x ()dx = pFy(a) — Fy (@], 433)
0
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where Fy(a) and Fy (c) mean the normal force with respect to the contact radii a
or c. The stress distribution is obtained by substituting (4.31) into (4.25):

a
WE* g'(x)dx
t(r) =
bid N

= ulp(ria) — p(r;c)l. (4.34)

The displacements are calculated by inserting (4.29) into (4.25), resulting in:

u(r) = “Ci* [w(ria) — w(r:c)), (4.35)
or explicitly:
u®, forr < c,
u(r) = : [M(O) arcsm(r) * ME* ii/gf();) } fore<r=a (4.36)

I
2 E* d
;[(O)arcsm(r)—!—'u \/gf(i) :|, forr > a.

Equations (4.26)—(4.36) clearly show that this contact problem is completely de-
fined when the shape of the indenter and one macroscopic quantity from each trio
{d,a, Fy} and {M(O), ¢, F\} are known. If the solution of the normal contact prob-
lem is known, all macroscopic quantities can be determined from (4.27) and (4.33).
For the sake of simplicity and in analogy to Chap. 2, it is assumed that @ and ¢
are known quantities. Of course, this is not necessarily true. All other cases re-
quire rewriting the equations to solve for the unknown quantities. For instance, the
relationship between the tangential force and the radius c of the stick zone is ob-
tained by dividing (4.33) by Fy. Using partial integration, it can be rewritten in the
compact form of:

Fo _ Jixg'(x)dx _ Fy(a) — Fy(c)
wEy [y xg!(x)dx Fy(a)

(4.37)

In summary, there are two approaches to solving the tangential contact problem for
the simplest standard loading case (first normal and, subsequently, tangential):

I. The tangential contact problem is reduced to the normal contact problem using
(4.33), (4.34), and (4.35) with the radius c of the stick zone being determined either
by (4.27) (if the displacement is known) or (4.37) (if the force is known). For the
sake of convenience, we will list all relevant equations once more:
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II. The tangential contact problem can also be solved directly, without knowledge
of the corresponding solution of the normal contact problem, using (4.26), (4.27),
(4.34), and (4.36), which we will also summarize once more:
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If the stresses and displacements are known, the dissipated friction energy can also
be calculated with

Wg =/Au0XZdA. (4.40)

Here, Au represents the relative displacement between the indenter and the half-
space. It vanishes in the stick zone. With the stresses outside of the contact also
being zero, only the zone of local slip contributes to this integral. The integral can
thus be reformulated to:

a
Wg(c,a) = anL/(u(O) —u)o,,rdr

27TM /[f(r) 4+ w(r;c) —d(c)]o.;(r;a)rdr. 4.41)

However, it is easier to calculate the dissipated energy directly using the MDR
model of the contact. Then we get:

WR(C,CZ) = —ZG*/ulDAulDdx
c

*

« (HE
= -2G
(5

2 a
) /[d(a) — 8(0)]lg(x) —d(c)]dx. (4.42)

Here, d(a) = g(a) and d(c) = g(c) are the indentation depths corresponding to
the radii a and c.

Once again it should be noted that the detailed MDR algorithm is not restricted
to the specifically examined loading case (application of a normal force with sub-
sequent tangential loading). In the context of tangential problems, it is valid for all
loading cases, including arbitrarily varying normal and tangential forces. Thus, we
can utilize it for simulations of arbitrary loading histories, e.g., in stick-slip drives.

4.5 Areas of Application

The technical applications of mechanical contact problems with friction are virtu-
ally uncountable. Even by neglecting rolling contacts (not featured in this book
due to their asymmetry) occurring in bearings or other types of transport elements,
tangential contact problems are found in a wide range of applications, e.g., friction-
based connections, friction-induced damping (such as in leaf springs), surface treat-
ment via a sliding indenter (burnishing), or mechanical stick-slip linear drives which
can be miniaturized to an extreme degree. In the latter two applications, the inden-
ters usually appear in the classical shapes of the flat punch, cone, and sphere. Once
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again we will consider these three bodies in their “pure form” (see Sects. 4.6.1,
4.6.2, and 4.6.3) as well as modifications thereof, owing to imperfections due to
manufacturing or wear (see Sects. 4.6.5 to 4.6.10). As always, we will consider the
profile in shape of a power-law (see Sect. 4.6.4), which is a basic building block of
the solution in the form of a Taylor series of any sufficiently differentiable profile.

4.6 Explicit Solutions for Axially Symmetric Tangential Contact
Problems

For the sake of simplicity, we will assume in the following that u® > 0. This
condition does not represent a restriction to the general validity of the presented
results.

4.6.1 The Cylindrical Flat Punch

The solution of the normal contact problem for the indentation by a flat cylindrical
punch of radius a according to Chap. 2 (see Sect. 2.5.1) is given by:

Fy(d) =2E*da,

0:.(r;d) = Ed r<a
zZZ ’ T az_rzv — )
2d
w(r;d) = — arcsin (C—l) , r>a. (4.43)
T r

Here, F)y represents the normal force, d the indentation depth, o, the normal stress,
and w the normal displacement of the half-space. Under tangential load, the con-
tact is either sticking or slipping completely; there is no limited zone of local slip.
The contact starts to slip once the tangential displacement of the punch reaches the
critical value (4.28):

nE*

G*

The shear stress distribution in the contact equals

ul® = d. (4.44)

G* u®,  foru® < u(o),
0p:(r;u®,d) = — 10 o EO) (4.45)
ava?—r2 (u’, foru® > u;
and the tangential displacements outside the contact area r > a are:
2 . sa u®  foru® < u(o),
u(r;u®,d) = = arcsin (—) 3 0 EO) (4.46)
T r uy”, foru®©® > uy”.
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The total tangential force is:
u®,  foru® < ugo),

(©) - *o .
E\'(u ) d) - 2G a u(o) (0)
c c -

4.47)
foru® > u

4.6.2 The Cone

The consideration of the indentation by a cone with a slope angle 6 in Chap. 2
(Sect. 2.5.2) in the context of frictionless normal contact yielded the following rela-
tionships for the indentation depth d, the contact radius a, the normal force Fy, the
normal stresses 0., and the normal displacements w:

d(a) = %a tan 6,
2
Fy(a) = %E*tan@,

E*tan 6 a
0;;(r;a) = ————— arcosh (

_)a rfaa
r

w(r;a) :tané’(\/rz—az—r—l—aarcsin g)), r>a. (4.48)
r

The mean pressure in the contact area is:

E*tan6
Po=—" (4.49)
The solution of the tangential contact problem depicted in Fig. 4.3 (which is the re-
lationships between the tangential displacement u?), the radius of the stick zone c,
and the tangential force F) (first published by Truman et al. 1995) is then expressed

Fig. 4.3 Tangential contact
of a rigid conical indenter
and elastic half-space
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by (4.38) as follows:
TuE*
u@a,c) = 2MG* (@ —c)tan 9,
TrE*
ug,o)(a) = 2MG* atan@,
2
uwE*tan0  , c
Fy(a,c) = f(a —c’) =puFy)|1- el (4.50)
For the missing tangential stresses and displacements one gets:
a c
E* tan 0 arcosh (—) — arcosh (—) , r<ec,
an r r
axz(r;a,c) = _’u—
2 a
arcosh (—) , c<r<a,
r
. (C Ta
—carcsm(—) + 5~ r2—c¢%, c<r<a,
r
_ WE* tan 0 4 451
u(r,a,c)—T aarcsin(—)+m 4.51)
r
—carcsin (£) — V2 —c?, rF>a.

These are shown in normalized form in Figs. 4.4 and 4.5. The finite value of the
tangential stress in the middle of the contact is:

}i_l)l(l) ('Z;Zl) = }1_1)1}) [arcosh (%) — arcosh (;)] =1In (g) . (4.52)
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Fig. 4.5 Normalized tan- 1 w
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The loss of mechanical energy is calculated according to (4.42):

(wuE* tan 0)?

TeE (a—c)’. (4.53)

Wr(a,c) =

In normalized variables, this can be represented as:

LI 2%

4.6.3 The Paraboloid

As usual, the paraboloid was the first shape for which a broad class of contact
problems was solved. In the case of the tangential contact, the classical solution
goes back to Cattaneo (1938) and Mindlin (1949). The pure normal contact problem
solution is represented by the following relationships linking indentation depth d,
contact radius a, normal force Fy, normal stress o.,, and normal displacement w
(see Sect. 2.5.3)

2
a
d(a) = E’
4 E*a?
Fy(a) = IR
2E*
0,,(r;a) = — R a’—r?, r<a,

a2 2  a 2 _ g2
w(r;a) = R |:(2— ;) arcsin (7) + T] , r>a. (4.55)
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Fig. 4.6 Tangential contact
of a rigid parabolic indenter
and an elastic half-space

Here, R denotes the curvature radius of the paraboloid in the vicinity of the contact.
The average pressure in the contact is:

4FE*a
3nR "’

po = (4.56)

Taking into account (4.38), the solution of the tangential problem (see Fig. 4.6) is
given by the relationships

E*
w0, c) = 222 = ¢?),

G*R
HE*
u(a) = =%a’,
4UE* 3
Fua.o) = @ =) = uFy@ (1- %), “.57)
3R a

with the tangential displacement of the rigid paraboloid 1 (?), the radius ¢ of the stick
zone, and the tangential force F. The tangential stresses and displacements of the
elastic half-space then amount to:

2uLE*
TR

Va?—r2—ve2—r2, r<e,

a’—r2?, c<r<a,

oyz(ria,c) =—

u(r;a,c) =

RE* | a2 ) 2 . <a)+ 2 _ g2
— — — jarcsin { — _—
G*R T a r a
2 r c

(4.58)
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These are visualized in normalized form in Figs. 4.7 and 4.8. Using (4.42), the loss
of mechanical energy can be written as:

2(nE")?

Wg(c,a) = — G R

/(a2 — x?)(x? = c?)dx. (4.59)

When expressed in normalized quantities, it can be rewritten as:

| Wk 1 c\3 c
;_(()):_(1——) 1+35 4+ 5. (4.60)
wEyu, 5 a a a
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The Stresses in the Interior of the Half-Space
In the case of global slip, Hamilton and Goodman (1966) were able to determine
the stresses in the interior of the half-space by introducing the complex functions

1 1
F = 5(2 —ia)R, + 5r21n(R2 + 2,),

1o, 1 1., 1_,
G := _§R2 + Ezzsz - gza + Ezr In(R, + z3),
4 1 1 1 1
H:= §ia3§ - ngg + EiaRg — Zérsz — Zr‘*ln(R2 + 2,), (4.61)

with the imaginary unit i and the complex coordinates:
Z:=Z+1ia,

Ry :=/z3 +r2 (4.62)

To avoid any misunderstandings, we will stress once more that Z represents the
normal axis pointing out of the half-space while the z-axis points inwards. The
stress configuration in the half-space is then defined by the imaginary parts of the
expressions:

. 3 upo X x? 1_0H oH
NN e U Y VRS I SR il i
O 2 a r4|:( r2 )( Y 228 )+y8y

0H 1 _0°H )
—|—(1—v)x—+— — —2vr°F |,

2 8x82
. 3 upo x y? 1_0H oH
U B (YRR Y O il it
oy 2 a r4|:( r? YTz I dy
41 ;2 2vr’F
—yZ —2vr ,
250z
. . 3ppoxzdF
T2 a4 r? 9z
b 3 upo xyz 3’H
ET o 2rt E2
. 3upo 1 10H Zx2
Xz “&m T — — 2G ~ = -— F 2—F S
o 2ar2[ +28 +Z (x) r?

R 3 upo y x? 1_0H 1 0H
o= PO Y ) (He - - S,
Oxy 2 a r4|:( r? Y 228 +2y8y

2
+ x(l — 2v) o 1x§ oH :| (4.63)

0x0zZ



144 4 Tangential Contact
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To illustrate these expressions, consider Figs. 4.9 and 4.10. Depicted are the stress
curves in the x—z-plane (i.e., the plane of the greatest stresses) of the equivalent
stress, according to the von Mises criterion, and the greatest principal stress for a
globally sliding contact with v = 0.3 and p = 0.5, both normalized to the average
pressure in the contact. It is apparent that the leading edge of the contact experiences
pressure while the trailing edge is under tension.

It can also be seen that the maximum of the equivalent stress has moved to the
surface of the medium. This means that, in this case, the plastic deformation will
begin at the surface of the elastic half-space. Since the maximum of the equiva-
lent stress in the case of Hertzian (frictionless) contact lies underneath the surface
(detailed in Sect. 2.5.3), there must exist a critical coefficient of friction for which
this maximum reaches the surface. This value is of great technical significance for
burnishing, a surface treatment which relies on the plastic deformation generated by
the global sliding of the indenter. To achieve the desired property change using this
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process, it is imperative that the equivalent stress maximum is located at the surface
level. In the case of the contact of a parabolic indenter with a half-space, Johnson
(1985) provided the limit of this coefficient of friction at ;. = 0.3.

4.6.4 The Profilein the Form of a Power-Law

In Chap. 2 (Sect. 2.5.8) the solution of the normal contact problem for an indenter
with a general profile in the form of a power-law:

f(r)=br", neRT, (4.64)

with a positive real number n, has been derived. In order to not confuse the second
constant in this function with the radius of the stick zone ¢, we call it b (in contrast
to what it was called in previous chapters). When considering the normal contact,
we found the following expressions ((2.63)—(2.65)):

d(a) = k(n)ba",

Fy(a) = E* k(n)ba"*!,

n
n+1
r=a,

E* f dx
. (r; — _ b nfli’
0..(r;a) - nk(n) [x 0

2
w(r;a) = —kn)b | a" arcsin( r>a, (4.65)
7

a
a) . dx
—_ —_— x —_— .
r /r2_x2
0

for the indentation depth d, the contact radius a, the normal force Fy and the normal
stresses 0, and the normal displacements w of the half-space. Here, the stretch
factor «(n) is defined as:

. Fn/2+1)
<) = VTG ) (00
with the gamma function I"(-):
I'(z):= / 17 exp(—t)dr. (4.67)

0

The solution of the tangential contact problem shown in Fig. 4.11 can be obtained
using (4.38); that yields to the following relationships between global contact vari-
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Fig. 4.11 Tangential contact
between a rigid indenter
with a profile in the form of
a power-law and an elastic
half-space

ables (displacement 1 and tangential force Fy):

E*
u®a,c) = MG* k(n)b(a" —c"),
E*
u®(a) = ’“‘G* k(n)ba",
* 2n n+1 n+1 Cn+1
Fi(a,c) = pE . 1lc(n)b(a —c""Y)y=uFy@ | 1— sl (4.68)

The tangential stresses and displacements can also be obtained by (4.38) using
(4.65). The explicit representation is extensive, and should therefore be omitted
here. For the treatment of integrals occurring in o,, and w—and thus also in o,
and u—see Sect. 2.5.8 which deals with power profiles. The loss of mechanical
energy is, according to (4.42),

* 2 °
Wr(c,a) = —Z[MEG& /(a" —x")(x" = c"M)dx

_ Z[ME*bK(I’l)]Z n |:a2n+1 — o+l

- —d""a—c)|. (469
G+ n+l1| 2n+1 a'c’(a C)} (4.69)

This can be shown in normalized variables as

o O (g e

with the maximum

1
2n+1°

Since n must be a positive number, this only assumes values between zero and
one, which of course is physically necessary. In Fig. 4.12 the expression 7/ Nyax is
represented as a function of ¢/a for different exponents n. It can be seen that the
curves for larger exponents decrease with increasing radius of the stick zone later
and are steeper against zero.

Nmax = 77(C = O) = (471)
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4.6.5 The Truncated Cone

Now consider profiles that have a flat tip, for example, due to wear.

0, r <b,
= 472
A (r—>b)tan0, r >b. ( )

Here, 6 denotes the slope angle of the cone and b the radius at the blunt end. In
Chap. 2 (Sect. 2.5.9) the following relationships between the global contact vari-
ables (indentation depth d, the contact radius a, and the normal force Fy) were
derived for the solution of the normal contact problem:

d(a) = atan 0 arccos (é) ,

a

b b b2
Fy(a) = E*tan fa? | arccos (—) 4+ —y/1=-=. 4.73)

Fig. 4.13 Tangential contact
between a rigid truncated
cone and an elastic half-space
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The mean pressure in contact is thus

E*tan 6 b b b2
Po = an [arccos (—) + 1= —2] . (4.74)
P a a a

The equations for the normal stresses o, and the displacements w of the half-space
outside the contact region are described by the expressions:

K (%) —F (arcsin (g) , %)

/“ (b) dx
+ arccos | — | ——, r<ba,
E*tan6 b X 2 — 2

0..(r;a) = —

b/ b b ./rN\ b
—|K{ -] —F{arcsin (—) ,—
r r a’/ r
/“ (b) dx
+ arccos | — | ——, b<r<a.
r X) Nx2—r?
4.75)
and
2tan 6 . q/a [ b dx
w(r;a) = @pa arcsin (—) — | xarccos | — | — |,
T r X r2 — x2
b
r>a. (4.76)

Here, K(-) und F(-, ) denote the complete and incomplete elliptic integrals of the
first kind:

/2
de

K(k) = / S —
, 1 — k2 sin® ¢
[ d

Fla, k) := / ___® 4.77)
1 —k2sin® ¢

0

By applying (4.38), the tangential contact problem (see Fig. 4.13) can now be
solved. For the tangential displacement 1) and the tangential force Fy, one ob-

tains:
E* b b
u(o)(a, c) = s tan 6 |:a arccos (—) — ¢ arccos (—)i| ,
G* a c

b b
Fi(a,c) = ,uE*tanG%a2 |:arccos (—) + —/1=—=
a

a

2
—c? [arccos (é) + é 1— b—z] } 4.78)
c c c
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Fig. 414 Normalized tan-
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The radius of the stick zone ¢ cannot decrease below the value of b; the contact starts

to slide completely, if b = c¢. The corresponding maximum tangential displacement
is described by:

E* b
u((,o) (a) = K= 4 tan 6 arccos (—) . 4.79)
' G* a

It is easy to see that b = 0 reproduces results of the complete cone. In Fig. 4.14 the
normalized tangential displacement u® / u§°’ is shown as a function of the normal-
ized radius of the stick zone ¢ /a for different values of b/a. It can be seen that the
curves for very small values of b approach the solution of the complete cone

u® c

Iim — =1-——. 4.80
bod ugo) a (4.80)

Figure 4.15 shows the dependency on c¢/a for the normalized tangential force
Fr/ (uFy). Again, the limiting curve corresponding to the whole cone is easily
recognizable:

F R Cc

li =1-—. 4.81
bli% /,LFN a? ( )

The tangential stresses and displacements can be obtained by substituting the
results obtained so far in this section into (4.38). Figures 4.16 and 4.17 show the
normalized curves of the tangential stress in contact for different values of the nor-
malized radius of the stick zone at » = 0.09a and b = 0.49a. For b = 0.09a,
the result hardly differs from the curves of the complete cone in Fig. 4.4. It can be
seen that ¢ > b. Thus, before the complete sliding begins, the tangential stresses
(in contrast to the pressure distribution) has no singularities. For b = ¢, i.e., at the
beginning of complete sliding, is |0y.| = w|o;.|, which means that the tangential
stresses at 7 = b have the same singular behavior as the normal stresses.
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4.6.6 The Truncated Paraboloid

A truncated paraboloid with the radius of curvature R and the radius at the flat tip b
can be described by the profile

flr)= (3;4)2 r=b (4.82)
ke > b.
In Chap. 2 in Sect. 2.5.10, the solution
d(a) = %m,
Fy(a) = 23%*(2612 +b)Var— b2 (4.83)

for the normal contact problem was determined. Here, as always, d denotes the
depth of indentation, a the contact radius, and F the normal force. The stresses
were given in integral form as:

/“ (2x% — b*)dx <b
oo (ria) = — 2 1 SRR (4.84)
T mR | e (202 — hY)dx '

r NXZ B2 =

and for the normal off-contact displacements:

b<r<a.

2
w(r;a) = 24 Ja? ~ b arcsin (2
TR r

2
TR [r2 — p2
r>a. (4.85)

L |:(r2 — b*) arcsin (—a2 =0 ) — MM] ,

was found.

Thus, for the tangential contact problem (see Fig. 4.18), the following relation-
ships between the global contact variables (tangential displacement of the indenter
u©_ radius of the stick zone ¢, and tangential force F) can be determined using
(4.38) (the contact starts to slide completely at b = ¢):

Z*EIZ (a«/az—bz—c«/cz —bz),

E*
ugo)(a) = —Z*Ra«/az — b2,

Fi(a,c) = 2’3‘—5* [(2a2 + WV =07 — 2% + bV = bZ] . (4.86)

u9a,c) =
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Fig. 4.18 Tangential contact
between a rigid truncated
paraboloid and an elastic
half-space

AA
y

These are shown in a normalized manner in Figs. 4.19 and 4.20. As in the case of

the truncated cone, for small values of b, it is easy to reproduce the known limiting
cases of the complete paraboloid; namely:

im [P =1- € (4.87)
im|—|=1-— .
and s
F
lim[ X } -5 (4.88)
b—0 /,LFN a3’

The tangential stresses and displacements should, again, not be written out for
reasons of space but can be obtained by inserting them into the general equa-
tions (4.38). Some dependencies of the tangential stresses are shown in Figs. 4.21
and 4.22. These have the same singular behavior as in the case of the truncated

cone; that is, the tangential stresses are only singular if r = b = ¢, i.e., in case of
full sliding.

Fig. 419 Normalized tan-
gential displacement as a 1 ST T T T T '
function of the normalized N !
radius of the stick zone for 0.8 AN "
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indented by a truncated s . 1
paraboloid R 06 M 1
AN s |
) N
N . '
04t > '
\\ '
\ 1
ook —b/a=0.1 N
---b/a=05 N Y
==b/a=0.9 !
0 : : : :
0 0.2 0.4 0.6 0.8 1

c/a
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4.6.7 The Cylindrical Flat Punch with Parabolic Cap

For the consideration of the indenter with parabolic cap (see Fig. 4.23) we assume,
as always, that the indentation depth d is large enough to actually bring the main
body into contact. Otherwise it would be the pure contact with a paraboloid, for
which the results can be looked up in Sect. 4.6.3. The flat cylindrical punch with a
parabolic cap can be described by the profile:

2

.
RN <

fr =120 "=% (4.89)
0o, r>a.

Here, a is the radius of the punch and R is the radius of curvature of the cap. In
cases where d is indeed sufficiently large, the solution of the friction-free normal
contact problem (with the normal force Fy, the stress distribution o, within, and
the normal displacements of the half-space w outside the contact) was derived in
Chap. 2 in Sect. 2.5.11, to which we want to refer again.

3

a
Fy(d) =2E* (da — ﬁ) , dR>d?

* 2 2
Eﬂ ria’dRzaz’

R o
w(r;d) = LR [(ZdR — r2) arcsin (%) +avr?— az] ,

T
r>a, dR > d°. (4.90)

Uzz(r;d) = -

The mean pressure in contact is:

Fy 2E*
= = 3dR — a?). 491
Po=_: 371'Ra( a-) 4.91)

Since the normal stress at the edge of the contact at » = a is singular, the contact
can stick completely even after applying a tangential force, as in the case of the flat

Fig. 4.23 Tangential contact
between a rigid cylindrical
punch with parabolic cap and
an elastic half-space

Y
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punch. The exact MDR shape of the problem makes it easy to understand how long
this condition can last. The springs on the edge of the contact will begin to slide, if

E* 2
u® > —MG* (d — %) =" (4.92)

Thereafter, the area of partial sliding begins to spread from the edge until finally the
whole contact slides, if

E*
u® > “G—*d =, (4.93)

In contrast to all previous sections of this chapter, there are three different regimes:

o u® < u§0): complete sticking

° uﬁo’ <u® <4 partial sliding

o u©® >0, complete sliding

The corresponding solutions of the tangential contact problem, i.e., the relationships
between the radius of the stick zone c, the tangential displacement of the indenter
u©, the tangential force Fy, and the tangential stresses o,. and displacements u of
the half-space are given by the general relations (3.38) as follows.

Case 1: Complete Sticking
Fou?) =26%au©,

G*u®

., 0y —
Ox:(ru”’) =————=—=——=, r=<a
) nva? —r?
2u© a
u(r; u(o)) = —— arcsin (—) . or>a. (4.94)
b1 r

Case 2: Partial Sliding with Radius of the Stick Zone ¢

E* c?
Oy =P (4—
utld. o) = ( R)’

2uE*
Fu(d,c) = ‘;—R (3adR — a® — 2¢%) |
dR —a?
2_ 2 _ 2_ 2
o) — WE* 2va r 24/¢ r +m, r<ec,
xz\I', d, = - dR — a2
TR a2 g 4 c<r<a,

[0 — 2’
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}"2 1 2 2 . C
dR———;[(Zc —-r )arcsm(;)

2
+c«/r2—cz], ¢c<r=a,
RE* )1
u(r;d,c) = G"R ;[(ZdR—rz) arcsin (%)
+av'r? —a? — (2¢* — r?) arcsin (E)
,
—CVVZ—CZ], r>a.

(4.95)

The normalized tangential stresses and displacements are shown for the case
dR = 1.2a? in Figs. 4.24 and 4.25. When using the Ciavarella-Jiger principle in
the form

Oxz (r) =M [Ozz (r; Cl) — 0z; (r; C)] ’ (496)
care should be taken. o (7; c) denotes the stress distribution which arises when the
same indenter (i.e., with the punch radius a), is pressed into the half-space up to a
contact radius c¢. But this means only the parabolic cap is in contact, so the stress
distribution is the stress distribution of the simple paraboloid going back to Hertz
(1882):

2E* ——
Uzz(r; C) = _ﬁ c2—r? 7é Ozz(r;a)la:(r . (497)

This blurring of the notation is hard to avoid. The same applies to w (r; ¢), which
is required for the calculation of the tangential displacement distribution according
to (4.38).

Case 3: Complete Sliding
In the case of complete sliding, the solution results by substituting ¢ = 0 into (4.95).

For R — o0, the case of the flat cylindrical punch results. Then the possibility of
(0) (0)
1

partially sliding is eliminated because of u; = = u, " .

Fig. 4.24 Normalized 2 w w
tangential stresses during —c/a=0.1
indentation by a flat stamp ===c/a=0.5
with paraboloidal cap for 15t ==c/a=0.9
dR = 1.2a4? and different ’

values of the normalized ra-
dius of the stick zone. The

dotted line corresponds to the
(0)
1

o _|/up,

case u® =y
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Fig. 4.25 Normalized tan- 1 w

gential displacements when —c/a=0.1
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(0)
1

u/u®

case u©® =y

4.6.8 The Cone with Parabolic Cap

The tangential contact between a cone with a rounded tip and an elastic half-space,
shown schematically in Fig. 4.26, was first investigated and solved by Ciavarella
(1999). The profile of the indenter with the conical slope angle 8 and the value of
b of the radial coordinate at which the conical main body differentiably passes into
the parabolic cap is described by the rule

rZtan 6
A~ r E bv

fry=4 20 (4.98)
rtan@—itané’, r > b.

In Chap. 2 (see Sect. 2.5.12) the following solution for the normal contact problem
was derived:

1 —si
d(a) =atan9(ﬂ+¢o),

COS ¢
41 —sin 1 .
Fy(a) = E*a*tan 6 ( ¢y + -2 % + —singycos¢y |, 4.99)
3 cosgp 3
Fig. 4.26 Tangential contact
between a rigid cone with
a rounded tip and an elastic
half-space
-
d
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with

b
Qo := arccos (—) , (4.100)
a

The contact is radius a, the indentation depth d, and normal force Fy. The normal
stresses in the contact are described by:

2va? —r?
+b[¢0 (p —2tan @) tan ¢ do
0

J1—kZcos2g B

E*tan0 |24a2 —r2

b arosh(£) b
+ b/ arccos ( )
0 r cosh ¢
—24/k2cosh? ¢ — 1i|d(p, b<r<a

0:.(r;a) =—

(4.101)
and the normal displacements out of contact through the distribution:
2d(a) . (a
——= arcsin —)
s r
9 %o ;
t ¢ ¢
e rzarcsin<g)—am+2b2 (¢ — tan @) tan pde ’
wh r J cosg k2cos?g — 1
T (4.102)

It is assumed that the contact radius does not fall below the valuea = b. If a < b,
it is the contact with a paraboloid with the radius of curvature,

R = b

= , 4.103
tan 0 ( )

for which the results can be looked up in Sect. 4.6.3. If the normal stress at the edge
of the contact disappears, the contact cannot fully stick at a tangential load. There
are three different cases for the sliding regime:

e partial sliding with ¢ > b
e partial sliding with ¢ < b
e complete sliding

Equations (4.38) can be used to obtain the following solutions to the tangential
contact problem (radius of the stick zone c, tangential indenter displacement u(©),
tangential force Fg, tangential stresses o, and half-space displacements u):
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Case 1: Partial Sliding with ¢ > b
E* 1 —si 1 —si
u9@a,c) = Kk tan@[a (ﬂ-Ffﬂo)—C(ﬂ'Fl/fo)]
G* COS ¢ cos Yo

41—si
Fi(a,c) = uE* tan9|:a2 (<Po S

1.
3 cosgn + 3 s1n ¢g COs (po)

el K +41_Sim//0+1s'nglf cos Y
_ 17NV, 1y ,
03 cos Y 3 0 0

) 0.:(r;a) —o.-(r;c), r=<c,
OXZ(raaac) = I'L

0..(r;a), c<r<a,
E* _ _ .
u(ra.c) = HEL @ = f) —w(re), c<r=a, (4.104)
G* |w(r;a) —w(r;c), r>a,
with 5
Yo 1= arccos (—) . (4.105)
c

In this case (in contrast to the previous section), o..(r;c) actually means
0::(r;a)|qs=c. This also applies analogously for all other expressions. There-
fore, all functions that are still open in (4.104) can be looked up in (4.98) to (4.102).
For b = 0 and, therefore, ¢y = 9 = 7/2; the solutions for the complete cone
from Sect. 4.6.2 are recovered.

Case 2: Partial Sliding withc < b

The principle of Ciavarella and Jager demands at this point that the solution of the
tangential contact problem is given by the difference of solutions of the following
two normal contact problems: firstly, the normal indentation by the indenter defined
in (4.98) up to a contact radius a, and secondly, the normal indentation of the same
indenter up to a contact radius ¢ < b. The latter corresponds to a normal contact
with a paraboloid, since only the parabolic tip of the indenter is in contact. So the
tangential solution we are looking for is:

E* 1 —sin c?
= o2 ) 5]

COS @ b
41 —si 1 4¢3
Fe(a,c) = nE*tan @ | a? (po+—ﬂ+—sin(pocos<po _< ,
3 cosg 3 3b
2FE*
0..(r;a) + tanOvVcZ —r2, r <c,
CTXZ(V;CZ,C)ZIU, b
0..(r;a), c<r<a,
E* \d(a) — - ), <a,
u(r;a,c) = ,u_* (@)= J(r) —wy(ric), ¢ <r=a (4.106)
G w(r;a) —wy(r;c), r>a,




160 4 Tangential Contact

Fig. 4.27 Normalized tan-
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with the displacement:
c? r? e r2—¢2
wy(ric) = v tanf | |2 — 2 arcsin (;) + — | (4.107)

Case 3: Complete Sliding
The solution here is a result of inserting ¢ = 0 into solutions (4.106).

Figure 4.27 and 4.28 show the normalized values of the global contact sizes u(®
and Fj as a function of the normalized radius of the stick zone. For small values of
b, one recognizes very well the limiting case of the ideal cone.

The curves of the normalized tangential stresses for individual normalized values
of the two radii b and c are shown in Figs. 4.29 and 4.30. It is immediately apparent
that for small values of b the curves of the ideal cone can be found. However, one
also sees that the dependency for ¢ > b only weakly depends on b. For example,
the curve of ¢ = 0.9a and b = 0.5a is almost exactly that of the ideal cone at
¢ = 0.9a, despite the rather large value of b.
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4.6.9 The Paraboloid with Parabolic Cap

The method in this problem is completely analogous to that of the previous sections.
The indenter profile can be described by the function:

r2
TR
fr) = rzihz (4.108)
T rsb
2R,

Here, R is the radius of curvature of the parabolic cap, and R, is the radius of the
parabolic base body (see Fig. 4.31). The continuity of f implies

h? = b? (1 - &) (4.109)
R,
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Fig. 4.31 Tangential contact
between a rigid paraboloid
with parabolic cap and an
elastic half-space
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for the length . The normal contact problem with a contact radius a > b, the
indentation depth d, the normal force Fy, and the normal stresses and displacements
of the half-space o, and w is described by the relations:

2

da) =2 + L Va2 =12,

R, R
2E* [2a° 1
Fy(a) = i—I——(Zczz—l-bz)\/az—b2 ,
3 R, R*
2va? —r2 +/a (2x2 —b?) dx -
e — , =0,
E* R, / R*Vx2 — b2/x2 — 2
o::(ria) = ——
T | 2vVa?—r? +/a (2x* = b?) dx ) -
e — , <r<a,
R, R*/x2 — b2/x2 — 2
w(r;a) = wp(r;a; R = Ry) + wps(r;a; R = R*), r>a, (4.110)

derived in Sect. 2.5.13. Here, wp and wpg denote the displacements in the indenta-
tion by a complete or truncated paraboloid:

a? r’ . (a r2 —a?
U)}’(”;Cl;Rl):]T—R1 2—; arcsm(;)—kT ,

2
wps(ria; R*) = —a«/az—bzarcsin a
TR* r

— 1 |:(r2—b2)arcsin (L_bz) _4/a2_b2m .

TR* Nrt—b
4.111)
R* is an effective radius, which is described by the relation:
“ RiR,
R = ———. 4.112)
R, — R,

Fora < b, we have a contact with a pure paraboloid with the radius of curvature R,
for which the results can be looked up in Sect. 4.6.3. The solution of the tangential
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contact problem in the three cases already introduced in the previous section is
as follows (all open functions in (4.113) and (4.114) can be taken from (4.108)
to (4.112). u'® denotes the tangential displacement of the rigid indenter, ¢ the
radius of the stick zone, Fy the tangential force, o, the tangential stresses, and u
the tangential displacements on the surface of the half-space).

Case 1: Partial Sliding with ¢ > b

2 2
©) _ MET (a a c c
W@ =75 (EJFF CE R TRV

QWE* | 243 1
Fy(a.c) = “3 [RilJrﬁ(Zaerbz)VaZ—bz

2031
e Ve sy R
R R

0z:(r;a) —ox:(r;c), r=c,
ox:(r;a,c) =p 22 (r;a) 22 (r;c)

0..(r;a), c<r<a,
E* Yd(a)— — i), <a,
u(r,a,e) = LE YN = SO mwle), e <r=a (@.113)
G* |w(r;a) —w(r;c), r>a.
Case 2: Partial Sliding with ¢ < b
2 2
) _ MET (a a c
u(a,c) = G (R_1+F az—bZ—R—1 ,
2uWE* [2a? 1 203
Fi(a,c) = ) V-,
o = R[04 et ) Va -
2E*
o0::(r;a) + c2—r?, r<c,
oy (r;a,c) =p 7R,
0..(r;a), c<r<a,
E* Yd(a) — - ;e Ry), <a,
u(ria,) = LE @O =S mwpne Ry, e sr=a g gy
G* (w(r;a) —w,(r;c; Ry), r>a.

Case 3: Complete Sliding
The solution arises here by inserting ¢ = 0 into (4.114).

One obtains the usual limiting cases for this indenter profile: for Ry = Ry,
respectively R* — oo, the solution of Cattaneo and Mindlin from Sect. 4.6.3 can
be used, for R; — oo the solution of the truncated paraboloid from Sect. 4.6.6 and
for b = 0 the solution of Cattaneo and Mindlin with radius R,.

Now let us visualize some of the results obtained from this. For the sake of
simplicity, let us choose Ry = R*. However, all of the effects characteristic of the
indenter profile described in this section occur with this limitation.
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In Figs. 4.32 and 4.33 the normalized global tangential displacement u(*) and the
normalized tangential force F, are shown as a function of the normalized radius of
the stick zone for different values of b. As always, one recognizes the characteristic
limiting cases. In addition, one observes a kink at ¢ = b, which has not yet appeared
in the previous sections. This kink is due to the fact that the profile at r = b is not
continuously differentiable and yet radii of the stick zone ¢ < b are possible. This
combination has not yet occurred in this chapter, or the kink corresponding to the
transition to complete sliding of the contact.

Some normalized curves of the tangential stresses are shown in Figs. 4.34
and 4.35. As in the case of the cone with a rounded tip, the curves for ¢ > b
barely differ from the dependencies for the ideal body; in this case the paraboloid
from Sect. 4.6.3. In particular, the tangential stresses for ¢ > b—in contrast to the
normal stresses—are not singular at r = b.
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4.6.10 The Cylindrical Flat Punch with a Rounded Edge

The tangential contact problem of a flat cylindrical punch with rounded corners
and an elastic half-space (see Fig. 4.36) was first solved by Ciavarella (1999). The
indenter profile has the shape

0, r <b,
fr) =19 (@ -b)?
2R

(4.115)
r>b,

with the radius of curvature R of the rounded corner and the radius b of the flat
punch surface. The solution of the normal contact problem can be found in Chap. 2
(Sect. 2.5.14). As usual, a denotes the contact radius, d the indentation depth, and
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Fig. 4.36 Tangential contact
between a rigid flat cylin-
drical punch with rounded
corners and an elastic half-
space

z
4
\

D e
-1 >
Fy the normal force. It is:
a’ .
d(a) = i(sm Po — 0 COS @p),
E* 3
Fy(a) = [sin o (4 — cos® gg) — 3¢ cos @y , (4.116)
with the angle:
b
Qo = arccos (—) . “4.117)
a

The stresses and displacements in the normal direction are:
a b dx
/ |:2\/x2—b2—barccos (—)i| ————, 1 =<bh,
E* | Jb X x2—r2

AR | e b d
g / (2«/x2—b2—barccos (—)) 7)6, b<r<a,
. X

x2 2

Ozz(r;a) =

w(r;a) = Zd;a) arcsin (%)

2 b d
- — [i[x/xz—bz—barccos(—)}ix ,
T R X rz_xz

b

r>a. (4.118)

With a tangential loading of the contact, the radius of the stick zone cannot fall
below the value of ¢ = b, since the contact will begin to slide completely at this
value. However, this makes it very easy to specify the solution of the tangential
contact problem (u® denotes the tangential displacement of the rigid indenter, ¢
the radius of the stick zone, F the tangential force, o, the tangential stresses, and
u the tangential displacements at the surface of the half-space). With help from the
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general relations (4.38), one obtains:

E*
u®(a,c) = Z*R [@*(sin g — @o cos @) — ¢ (sin Yo — Yo cos ¥o)] .
E* )
Fi(a,c) = ﬁ{cﬁ [sm @0(4 — cos? @) — 3¢ cos goo]

- [sin Vo(4 — cos” ¥y) — 31 cos wo] },
O-zz(r; a) - Gzz(r; C),

0::(r:a),

r=c,
o (r;a,c)=pn
c<r=<a,
KE* Yd(a) — f(r) —w(r;c), c¢<r=a,
G* |w(r;a) —w(r;c),

u(ria,c) =

(4.119)
r>a,
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Cc

The solution for complete sliding is achieved by inserting ¢ = b into (4.119).

In Figs. 4.37 and 4.38 the tangential displacement and force are shown in nor-
malized variables as functions of the normalized radius of the stick zone. Some
curves of the tangential stresses are shown as an example in Figs. 4.39 and 4.40.
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4.7 Adhesive Tangential Contact

In JKR theory, the equilibrium configuration of an adhesive contact is determined
by minimizing the total energy of the system, which consists of the energy of the
elastic deformation of the contact partners, the surface energy, and the work from
external forces. Since this total energy does not depend on the tangential displace-
ment, the JKR contact does not formally possess any “tangential strength”. Strictly
speaking, the absence of friction is one of the assumptions of the JKR solution,
since it uses the solutions of the frictionless normal contact problem as its building
blocks. Yet the lack of tangential strength of adhesive contacts is obviously con-
tradicted by experimental results. The physical cause of this contradiction lies in
the heterogeneous structure found at the microscopic scale (or at the atomic scale,
at the very least) of any real interface. This heterogeneity leads to a finite contact
strength (or static friction) in the tangential direction.

In this subsection, we will restrict ourselves to the simplest model of an adhesive
tangential contact problem, with a conveniently defined “adhesion” in the normal
direction and “friction” in the horizontal direction. This problem can be considered
a generalization of the theory of Cattaneo and Mindlin to include adhesive con-
tacts. We assume that the adhesive forces have sufficient range to be considered
“macroscopic” with regards to the friction forces in the contact. In other words, we
operate under the assumption that the adhesive forces create additional macroscopic
pressure in the contact which, according to Coulomb’s law of friction, leads to in-
creased friction forces. Since both the normal and the tangential contact problem of
two elastic bodies can be reduced to the contact between a rigid body and an elastic
half-space (with modified material properties), we will consider—without loss of
generality—the case of a rigid indenter in contact with an elastic half-space.

For the adhesive forces, we use the model of Dugdale where the adhesive pres-
sure remains constant up to a certain distance & between the surfaces and abruptly
drops to zero after that distance (3.147). The theory of adhesive contacts for this
particular interaction was created by Maugis and is featured in Sect. 3.8 of this
book. Therefore, the following theory can also be viewed as a generalization of the
theory by Maugis relating to adhesive tangential contacts.

Let us consider a rigid indenter with a three-dimensional axially symmetric pro-
file f(r) and the corresponding MDR transformed profile g(x). The profile g(x) is
initially pressed into the Winkler foundation, which are defined by the MDR rules,
by d and subsequently displaced by 1(?) in the tangential direction. The correspond-
ing adhesive normal contact problem was solved in Sect. 3.8, from which the entire
notation is inherited. For a sufficiently small rigid body displacement, the springs
near the edge of the contact (contact radius a) slip while the springs in the interior
zone (with the radius ¢) remain sticking. The radius ¢ of the stick zone is given by
the equation:

G'u® = (200V5F — + E*[d  g(0)]) (4.121)
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which sets the tangential force at the position ¢ equal to the product of the normal
force and the coefficient of friction. The total tangential force is calculated by
integrating over all springs in the contact:

c a

F. = Z/G*u(o)dx —|—2,u[qz(x)dx
0 c

=2G"u%c + Z,M/ (200vb2 —x2+ E*[d — g(x)]) dx

c

=2G"u%¢ + 20 [xx/b2 — x2 4 b*arcsin %]

a

c
a

+2uE*d(a —c) —2uE* [ g(x)dx. (4.122)

c

The first term to the right-hand side is the contribution of the inner stick zone
(rigid translation u(?’). The second term is a contribution from springs in the slip
zone (distributed load in the normal direction consisting of the elastic component
E*[d — g(x)] and adhesive component 209+ b2 — x2 given by (3.148), and multi-
plied with the coefficient of friction). Radius b of the interaction zone is determined
from the equations of the normal contact problem which are listed in Sect. 3.8.

A complete theory of the tangential contact problem under those assumptions
can be found in (Popov and Dimaki 2016). Here our consideration only deals with
the limiting case of very short-range adhesive interactions (i.e., the parameter % is
much smaller than all other characteristic system measures). This limiting case
corresponds to the JKR approximation for the adhesive normal contact. The differ-
ence between the contact radius a and the radius of the adhesive interaction b > a
should, therefore, remain small:

e=b—a<a,b. (4.123)
In this approximation (see (3.160)),

ThE*
e = . (4.124)
40'()

For the normal contact problem, expanding by the small parameter ¢ yields (see
(3.161)):
2ralAy

E*

d =~ g(a)—

’

FN,JKR(a) ~2E* /[d - g(-x)]dx’ (4125)
0
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with
Ay = ooh, (4.126)

which represent the exact JKR solution for an arbitrary axially symmetric profile.
Substituting b = a + & with ¢ from (4.124) into (4.121), and expanding to the
lowest order of ¢ gives:

= \/403(612 — )+ 2raE*Ay — \/2maE*Ay

+ E*[g(a) — g(c)]. (4.127)

G*u®
w

This equation determines the relationship between the radius of the stick zone ¢ and
the tangential body displacement 1(?). It shows that even arbitrarily small tangential
displacements induce partial slip in a narrow peripheral zone. This is in complete
analogy to the case of the non-adhesive contact. The critical tangential displacement
for the transition from partial to complete slip is calculated by setting ¢ = 0:

w
u® = yers (\/403612 +2maE*Ay + E*g(a) — \/27taE*Ay)

— (é\/wgaz +27aE*Ay + g—:d) ~ (?Oa + g—:d) . (4.128)
The approximation yields the tangential force:
% = c\/4a§ (a2 —c?) + 2maE*Ay —a\2maE*Ay
+2E"[ag(a) — cg(c)]
+ 700> (1 — % arcsin 2) _2E* / g(x)dx. (4.129)

c

At the onset of complete slip (¢ = 0) it is:

a
F
— = nopa® + 2E*ag(a) —a/2na E*Ay — 2E* / g(x)dx
n
0

a

= oomwa® + 2E* / [d — g(x)]dx = wa’oy + Fykr(a), (4.130)
0

where Fyjkr(a) represents the solution of the adhesive normal contact problem in
JKR approximation.

The final (4.130) could be written directly without the preceding calculations
since the expression in parentheses (wa’oy + Fykr(a)) is simply the total com-
pressive force in the contact (sum of the elastic force and the additional adhesive
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compressive force). According to Coulomb’s law of friction, the tangential force
for complete slip is equal to the total compressive force of the contacting surfaces
multiplied with the coefficient of friction (independent of the particular pressure
distribution in the contact).

471 The Paraboloid

A parabolic profile Z = f(r) = r?/(2R) implies g(x) = x?/R, and (4.127)
and (4.129) take on the following form:

G*u®
= \J403(a®> — 2) + 2naE*Ay — 2naE* Ay
U

E* 2
+ g @ =)

F
== c\/4a§(a2 — )+ 2maE*Ay —a+/2naE*Ay
"
2 c 4 E*
2 - 303

1= Zaresin &) + 22 (@P = ). 4.131

+ woya ( narcsma) + 3R (a®=¢?) ( )
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Torsional Contact

This chapter is dedicated to contacts between a rigid, rotationally symmetric in-
denter and an elastic half-space, which are subjected to a twisting moment along
the z-axis in the normal direction of the half-space. The fundamental equations of
elastostatics exhibit an interesting property; that purely torsional problems are gen-
erally elastically decoupled in cases of rotational symmetry. This means that the
tangential displacements u,, in no way affects the radial and normal displacements.
(Note regarding the notation in this chapter: contrary to the previous chapter, the
word “tangential” refers to “circumferential direction” in this chapter. With this
in mind, all tangential displacements will be denoted by u with the corresponding
index of the tangential direction, i.e., uy, Uy, Uy, etc. Normal displacements will
retain the notation w.) However, in spite of the elastic decoupling, there exists the
coupling caused by friction. We initially consider contacts without slip, which ac-
cordingly are decoupled from the normal contact problem, and we subsequently
examine finite coefficients of friction.

5.1 No-Slip Contacts

5.1.1 The Cylindrical Flat Punch

Twisting a rigid flat punch of radius « that is in no-slip contact with an elastic half-
space (see Fig. 5.1) results in the tangential displacements caused by the rigid body

rotation of the punch by the torsion angle ¢:

uy,(ry=reo, r=a. (5.1)
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Fig. 5.1 Torsional contact M
between a rigid flat punch F )
and an elastic half-space N
z
d
Stick
| r
i_a

The torsional stresses o,; in the contact area and the outer displacements u,, are
given by:

4G r
Op:(r) = ————F——, r=a,
T az_rz

2 2
uy(r) = ;(p r arcsin (%)—awl—i—z , r>a, 5.2)

where G is the shear modulus. The stresses and displacements are represented in a
normalized form in Figs. 5.2 and 5.3. The total torsional moment is:

16

M. = ?Ga3<p. (5.3)
Fig. 5.2 Normalized tor- 1
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of the radial coordinate for
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Fig. 5.3 Normalized tan- 1
gential displacements as
a function of the radial co-
ordinate for torsion by a flat 0.8}
cylindrical punch
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5.1.2 Displacement from Torsion by a Thin Circular Ring

We will now consider the torsion of the elastic half-space induced by a moment M.
that is distributed over a thin circular ring of radius a. Let the ring be sufficiently
thin for the stress distribution to be described by a Dirac function:

M.
2mwa?

Opz(r) = — 8(r —a). 5.4
The resulting displacement of the half-space can be gained from the superposition
of the fundamental solutions of elasticity theory. A point force F, acting in the x-

direction on the origin causes the tangential displacements at the half-space surface
(Johnson 1985) of:

F. |1 x2
x — -(1- = |
T 0nG [s( 1))—i_vs3:|
vF, xy
TG (5:5)

with s being the distance from the point of the force application. A force in the
y-direction results in correspondingly identical expressions for the opposite coor-
dinates. A slightly involved yet elementary calculation yields the displacements
caused by the stress distribution (5.4):

2
(i a) = 1 /MZ cos pdg
e ZJTGO 2ra (/a2 4 r2 —2ar cos ¢

M. |:r2+a2K(2M)_(r—l—a)zE(Z\/ﬁ)]’ 5.6)

T 212Ga? rZ+ar r+a r2+ar r+a
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Fig.5.4 Tangential displace- 2
ment of the surface from
torsion by a thin circular ring
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with the complete elliptical integrals of the first and second kind:
/2
d
K(k) = / B —
; 1 —k2sin® ¢

/2

E(k) := / V1 —k2sin? pdg. (5.7)
0

These displacements are displayed in Fig. 5.4 and allow the direct calculation of the
displacements from a given rotationally symmetric torsional stress distribution.

5.2 Contacts with Slip

We now consider contacts which are simultaneously loaded in the z-direction by
a normal force Fy and a twisting moment M.. Once again, the problem can be
reduced to the contact between a rigid indenter and an elastic half-space by intro-
ducing the effective modulus of elasticity:

1 11— 11—, 1—v
— = , 5.8
E* 2G, + 2G, 2G (5-8)

with the shear moduli G; and Poisson’s-ratios v;. The index “1”” denotes the inden-
ter and “2” the half-space. Many statements from Chap. 4 concerning tangential
contacts with slip also hold true for torsional contacts with slip: the contacts exhibit
hysteresis and memory, i.e., the solution of the contact problem is dependent on the
loading history. Once again, we restrict ourselves to contacts with a constant nor-
mal force and a subsequently applied, increasing twisting moment. This induces a
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slip zone of radius a, which gradually expands inwards from the boundary of the
contact. The inner stick zone is characterized by the radius c.

Contrary to tangential contacts, there exists no theorem for torsional contacts
permitting the reduction to the solution of the frictionless normal contact. Neverthe-
less, Jager (1995) published a general solution for arbitrary rotationally symmetric
indenters with a profile shape Z := f(r). The boundary conditions for the normal
and tangential stresses 0. and o, as well as the normal and tangential displace-
ments w and u,, at the surface of the half-space are:

w(r)y=d—=f@r)., r=a

uy(r) =ro, r<c,

0p:(r) = po=z(r), ¢ <r=a,

0:.(r)=0, r>a,

0,:(r) =0, r>a, 5.9)

with the indentation depth d, the torsion angle ¢, and the coefficient of friction u.
We assume that the pure normal contact problem has been solved and the corre-
sponding normal stresses o, are known (refer to Chap. 2 for details). The solution
of the torsion problem then requires just a single function ¢, which can be deter-
mined from the condition:

a

v _ B dr
mLm—ZG/%wiﬁfi (5.10)

X

The relationship between the torsion angle and the two characteristic contact radii
c and a is then given by:

¢ =¢(cia). .11
Moreover, the twisting moment can be calculated from the equation:

a
3

M;(c,a) = 16G (p% + /xzqz(x,a)dx

a
3

= 16qu% - 4/1/ [cv r2 —c2 + r*arccos (E)] 0..(r)dr, (5.12)
r

c

and the torsional stresses in the stick zone are determined by the relationship:

00 (r) = _4ir / dp(x,a) dx

dx 2 —r2

, r<c. (5.13)

c
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The tangential displacements in the slip zone are given by the relationship:

uy(r) =r 90_%[)62[@_43()6;41)] c<r<a. (514

dx
/72— 2 |’

Equations (5.10) to (5.14) completely solve the described torsion problem. The
problem is fully defined by providing the indenter profile and one quantity of each
trio {d,a, Fy} and {¢, c, M.}. We assume in both cases that the two radii are the
given quantities. Regrettably, these relationships very rarely permit an analytical
solution. Therefore, we will limit the scope of detail provided in this book to the
indentation by a flat cylindrical punch and by a paraboloid. The following contact
problems occur, for example, in stick-slip (purely mechanical) rotary drive systems.
There, the most commonly used indenter shape is the sphere (see Sect. 5.2.2).

5.2.1 The Cylindrical Flat Punch

In Chap. 2 (see Sect. 2.5.1) we considered the normal indentation of an elastic half-
space to the depth d by a rigid, flat cylindrical indenter of radius a. The following
stress distribution was found:
E*d
0:(r;d) = —————=, r=<a. (5.15)
nva?—r?

Using (5.10) we obtain:

_ E*d d E*d 2
$(xia) =L r_ 4 K( 1—x—), (5.16)
a

[
2nG /«/az—rzx/rz—xz_ZWGa
X

with the complete elliptical integral of the first kind:

/2
d
K(k) := [ . S (5.17)
, 1 —k2sin’ ¢

The torsion problem is solved through the following relationships between the
global torsion angle ¢, the radius of the stick zone ¢, and the torsion moment M. as
well as the tangential stresses o, :

wE*d c?
= K(J1-5].
¢ 27Ga ( a2>
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4Gr /a dp(x,a) dx n é(a,a)

o-(pZ(r):_ T d_x \/xz_rz \/aZ_rZ k] EC
C
_ 2pE*dr
- n2a
/a‘ K . x2 azE . x2 dx
x _— _— _—
/ a? X a? ) | (a2 —x2) V/x2 =2
+—= 1 (5.18)
2va? —r?

with the complete elliptical integral of the second kind:

/2

E(k) := / V1 = k2sin® pde. (5.19)
0

For the sake of brevity, the tangential displacements in their general form will not be
repeated here as they have already been demonstrated in (5.14). Complete stick in
the contact is possible even for a non-vanishing torsion angle and a corresponding
torque. The respective limiting values are:

nE*d ud
4Ga ~ 2(1—v)a’
3

4 2
M.(c=a)=M, = 16G(pc% = SUE*da’ = SpFya. (520

plc=a)=g¢. =

The torsional moment and torsion angle, both normalized to these critical values,
are displayed in Figs. 5.5 and 5.6 as functions of the normalized radius of the stick

Fig. 5.5 Torsion angle, nor- 3
malized to the critical value
for complete stick, as a func-
tion of the normalized radius 25l
of the stick zone for the tor- ’
sional contact with a flat
punch S°
~ 2
S-
1.5F
1 i
0 0.2 0.4 0.6 0.8 1

c/a
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Fig. 5.6 Torsional moment,
normalized to the critical
value for complete stick, as
a function of the normalized
radius of the stick zone for
the torsional contact with a
flat punch

Fig. 5.7 Torsional stresses
normalized to the average
pressure po multiplied with
the coefficient of friction

1 for the torsional contact
with a flat cylindrical punch.
The thin solid line represents
the stress distribution for
complete slip

Fig. 5.8 Normalized tan-
gential displacements for the
torsional contact with a flat
cylindrical punch. The thin
solid line represents the dis-
placement caused by the rigid
body rotation
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zone. The variation of the torsion moment during the transition from complete
stick to complete slip is less than 18%. The normalized distribution of the torsional
stresses is given in Fig. 5.7 and tangential displacements is provided in Fig. 5.8.

5.2.2 The Paraboloid

In Chap. 2 (see Sect. 2.5.3), for a paraboloid with the curvature radius R and the

corresponding profile shape
2

f(r) = zr—R, (5.21)

the following solution of the normal contact problem was derived:

a
d(a) = —,
(a) R
4 E*a?
Fy(a) = IR
2E*
0.:(r;a) = ——Rvaz —-r2, r<a. (5.22)
T

As usual, a denotes the contact radius, d the indentation depth, F) the normal force,
and o, the normal stress distribution in the contact.
Taking (5.10) into account gives us (for ¢):

- . uE*a x2 x2
dxia) = [K( 1—¥>—E< 1—?”, (5.23)

Fig. 5.9 Torsional contact M
between a rigid paraboloid ‘
and an elastic half-space F

Y




184 5 Torsional Contact

with the complete elliptical integrals of the first and second kind:

/2
d
K (k) ;:[—‘p,
V1—k2sin’ ¢

/2

E(k) := / V1 — k2 sin’ pdg. (5.24)
0

The solution for the torsion problem (see Fig. 5.9), initially found by Lubkin (1951),
is then given by:

o [ (-5) = (h-5)]

qp:
c3
M. =166
+16“E*“/a21< T Y PR )
— | x - = |- - = X,
R a? a?
c
4uE*ar r x2 dx
Uwz(r) ——W/E( l_ﬁ) ﬁ, r <c. (525)

c

Here, ¢ represents the global torsion angle of the rigid paraboloid, M. the torsional
moment, and o, the torsional stresses. The torsion angle and the torsional moment
as functions of the radius of the stick zone are represented in a normalized form
in Figs. 5.10 and 5.11. Furthermore, Figs. 5.12 and 5.13 display the normalized
tangential stresses and displacements as functions of the radial coordinate.

Fig.5.10 Normalized torsion 4
angle as a function of the
normalized radius of the stick
zone for the torsional contact
with a parabolic indenter
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Fig. 5.1 Normalized tor-
sional moment as a function
of the normalized radius

of the stick zone for the
torsional contact with a
parabolic indenter

Fig.5.12 Torsional stresses
normalized to the average
pressure py multiplied by
the coefficient of friction

1 for the torsional contact
with a flat cylindrical punch.
The thin solid line represents
the stress distribution for
complete slip

Fig. 5.13 Normalized tan-
gential displacements for

the torsional contact with a
parabolic indenter. The thin
solid line represents the dis-
placement caused by the rigid
body rotation
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Wear

Wear is the mechanical or chemical degradation of surfaces. Along with the closely
related phenomenon of fatigue, wear is a central aspect in estimating the service
life of any technical system. As is the case with friction, the microscopic and
mesoscopic mechanisms causing the macroscopically observable phenomenon of
wear are extremely varied and range from abrasive or adhesive debris formation,
to the reintegration of previously removed material, to oxidation, and to chemical
or mechanical intermixing of the involved surfaces. Accordingly, the formulation
of a general wear law is quite difficult. Analogous to the Amontons—Coulomb law
of dry friction, a common approach involves an elementary, linear relationship in-
troduced by Reye (1860), Archard and Hirst (1956), as well as Khrushchov and
Babichev (1960). When using this law, one must bear in mind that it is a very rough
approximation.

In this chapter, we consider rotationally symmetric profiles that wear while re-
taining rotational symmetry. Trivially, wear is axially-symmetric for an axially
symmetric load (such as a torsional load around the center line of the profile, which
was studied by Galin and Goryacheva (1977)). However, the retention of axial
symmetry of the profile does not necessarily require axial symmetry of the load
condition.

Wear can even be rotationally-symmetric during movements in directions which
violate the symmetry of the system. This is the case, for example, when a rotation-
ally symmetric profile is in a state of gross slip at a constant speed relative to an
elastic base, where only the profile yet not the elastic base is the subject of wear.
Since (in this case) the pressure is axially-symmetric and the relative slip speed of
both surfaces is constant in all points of contact, the wear intensity is also axially-
symmetric. At least, this is valid for all local wear laws where the wear intensity
is only dependent on the pressure and relative slip rate. If the counterpart exhibits
wear, the system loses its axial symmetry.

Approximate axial symmetry is also retained in the practically relevant case of
wear due to low-amplitude oscillations (fretting). In this case, the stress tensor is not
isotropic. For a unidirectional oscillation in the Cattaneo—Mindlin approximation,
the stress tensor only has a tangential component which, however, is solely depen-
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dent on the polar radius. In the same Cattaneo—Mindlin approximation, the relative
displacements of the surfaces also only depend on the radius. Wear determined
by the local pressure and the relative displacements is thus axially-symmetric, re-
gardless of the particular form of the law of wear. This leads to the common
phenomenon of ring-shaped wear patterns.

Many of the results in this chapter do not depend on the exact form of the law of
wear. The only assumption held is that the wear occurs continually to prevent the
generation of wear particles of the same characteristic length as the contact problem.
We further assume that the law of wear is local, i.e., the wear intensity at a location
depends only on the pressure and the velocity occurring at this location. In the rare
cases demanding a concrete law of wear, we will assume the simplest law by Reye—
Archard—Khrushchov, which says that the local wear intensity is proportional to the
local pressure and the local relative velocity. With the profile shape of the wearing
body at the point in time ¢ denoted by f(r, ?), the law can be written as:

f(rt) ~ p(r,t) |vea(r.1)] . (6.1)

Here, v, is the relative velocity between the contacting surfaces and p(r, t) is the
local pressure. The dot above the quantity signifies the differentiation with respect
to time.

In this chapter, we initially examine wear for gross slip of the contacting surfaces
and then wear due to fretting.

6.1 Wear Caused by Gross Slip

We consider an axially symmetric punch with the profile shape f(r,7) and char-
acterize its normal load by the (generally time-dependent) indentation depth d(?).
The profile shape and the indentation depth uniquely define the entire solution of
the normal contact problem, including the contact radius a, the pressure distribution
p(r,t), and the normal force:

a

Fy(t) = Zn/p(r,t)rdr. (6.2)
0

The two common load types we consider in the following sections are the force-
controlled loading (i.e., Fy is given) and displacement-controlled loading (i.e., the
“height” d is given).

In the context of wear problems, the “indentation depth” in a contact mechanical
sense is measured from the lowest point of the current (i.e., worn) profile. There-
fore, its definition changes with progressing wear.
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6.1.1 Wear at Constant Height

The simplest case of wear is realized when an indenter with the original profile
Jfo(r) is initially pressed to the indentation depth dj, and subsequently displaced
tangentially at this height. While the calculation of the process of wear, in this case,
remains a relatively complicated contact mechanical task (see the work of Dimaki
etal. (2016)) with the process also depending on the explicit type of the law of wear,
the final state is simply defined by the condition that the profile just barely remains
in contact at all points with the base. This state is reached when the original profile
is “cut off” at the height dj,. This conclusion is not bound to the axial symmetry, nor
to the type of movement (as long as a constant height is maintained): any profile
displaced arbitrarily at a constant height (ensuring a relative displacement in all
contact points) tends to assume the shape of the original profile cut off at the height
dy.

6.1.2 Wear at Constant Normal Force

During force-controlled processes, the normal force remains constant and the wear
process never ceases. The case of cylindrical indenting bodies, where the contact
area remains constant despite wear, is particularly simple. Pressing a cylindrical
punch into the base with subsequent tangential displacement at a constant speed
leads into a state of steady wear after a transient period, in which all points of the
punch wear at the same linear rate. Under the assumption of any local law of wear
in which the wear intensity is proportional to the product of the pressure and the
sliding velocity, it follows that in the state of steady wear, the pressure is constant
in the entire contact area and equal to py = Fy/A, where A is the (constant)
contact area. The profile shape that generates a constant pressure was previously
determined in Sect. 2.5.6:

4poa r
w(r:a, po) = nIE*E(;), r<a. (6.3)

Here, E(-) refers to the complete elliptical integral of the second kind:

/2

E(k) := / V1 —k2sin® pde. (6.4)
0

The expression (6.3) is shown in Fig. 6.1 in normalized variables.

For general cylindrical punches (with any arbitrary, not necessarily circular face),
this analysis can be generalized to heterogeneous punches with wear coefficients
k = k(x, y) that depend on the position in the contact area (characterized by the
coordinates x and y), but not on the z-coordinate. One such example is a fiber-
composite pin, whose fibers run parallel to the longitudinal axis. Once the system
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settles into a steady state, the wear intensity is constant at all points of the contact
area:

f=k(x.y)-vo-px,y)=C. (6.5)

It follows that c
X, y) = ————. 6.6
p(x.y) K)o (6.6)

The constant C is obtained from the condition:
Fy = / p(x, y)dxdy. (6.7)

The pressure distribution is then determined from (6.5) to be:

Fy
k(x.y) [k(x,y)~tdxdy’

Thus, the pressure distribution for a given normal force is explicitly determined
by the heterogeneity of the wear coefficient. The shape of the wear surface in the
steady state is given by the shape of the elastic continuum under the effect of the
pressure distribution given in (6.8).

The steady state does not exist for non-cylindrical indenters. Yet qualitatively,
the situation is unchanged. In this case, the stress distribution in the worn contact
area approaches a constant value as well, determined by the normal force and the
current contact area (Dimaki et al. 2016). However, the state of constant pressure
is only reached in approximation.

A special case of gross slip wear is the wear of a rotationally symmetric pro-
file under the effect of axial twisting (torsion). A cylindrical indenter of radius a
twisting with the angular velocity €2 has a local slip speed given by vy (r, 1) = Qr.
Accordingly, the linear wear rate is:

p(x,y) = (6.8)

f=kQr-pr)=20C, (6.9)
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and it is constant in all points of the contact area in the steady state. The constant C
is obtained from the condition:

a

Fy = Zn[p(r)rdr. (6.10)
0

The pressure distribution is determined from (6.9) and (6.10):

Fy
2nra’

p(r) = (6.11)
The profile corresponding to this stress distribution can be determined using the
MDR. In the first step, the distributed load in the MDR space is calculated with the
following transformation:

gty =2 [ 2O /
: —x2 «/fx2
- 7’:21 (“— ;’_xz) (6.12)

This gives the result for the vertical displacement in the one-dimensional MDR

model:
i F /a2 — 2
() _ Fv g (“ tVaT X ) (6.13)

wip(x) =

E*  mwaE* X

and subsequently the displacements in the original three-dimensional space
(Fig. 6.2):

p
2 u,(x)
= — H—d
w(r) - e X
0
p
Fy 2/1 a+ va?—x? dx
= — | In
ﬂaE*T[ X rz_xz

0

(6.14)

where

N

For small radii, this function exhibits a logarithmic singularity in the form

¢
V() = %[m(“’ Y 12_52) @& (6.15)
0

W(C) ~ 3.420544234 —In(¢), for small ¢. (6.16)
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Fig. 6.2 Shape of the profile
generated by wear due to
rotation around the vertical
axis at a constant angular
velocity (see (6.14))

r/a

Galin and Goryacheva (1977) also investigated non-cylindrical, rotationally sym-
metric profiles in their study of torsional wear. Soldatenkov (2010) examined
various rotationally symmetric wear problems of technical relevance (including
stochastic ones), such as ball bearings or the wheel-rail contact.

6.2 Fretting Wear

Many technical or biological systems are part of a periodically working mechanism
or are subjected to vibrations. The tribological contacts in such systems are loaded
in an oscillating manner due to the periodicity. In general, the displacement ampli-
tudes of these oscillations are sufficiently small to avoid gross slip of the contact.
However, the edge of the contact area unavoidably sees the formation of a slip zone,
where the contacting surfaces wear and fatigue as a result of the relative displace-
ment. This effect is called fretting and is of marked importance for the operational
lifespan of tribological systems.

Just like all wear phenomena, fretting wear has very diverse mechanical and
chemical mechanisms. We also distinguish between different fretting modes and
fretting regimes. The fretting modes are distinguished by the type of the underlying
contact problem: an oscillation normal to the contact plane is called radial fretting.
The classical case of oscillations in the contact plane is called tangential fretting
and the case of an oscillating rotation around the normal axis of the contact plane
is called torsional fretting. An oscillating rolling contact leads to rotational fretting.
However, the different modes barely differ in their qualitative behavior (Zhou and
Zhu 2011).

Different fretting regimes are distinguished based on the behavior of the contact
during an oscillation, e.g., near complete stick, partial slip, near complete gross slip,
or significant gross slip. These were first systematically examined by Vingsbo and
S@derberg (1988) using fretting maps. The authors determined that depending on
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the regime, either wear or fatigue was the dominant form of material degradation
caused by fretting.

Even under the assumption of the simplest laws of friction and wear, the ana-
lytical calculation of the particular wear dynamics is always extremely complicated
and usually impossible. As shown by Ciavarella and Hills (1999), certain cases
have a final “shakedown” state where no further wear occurs. Contrary to the wear
process, the worn profile in the shakedown state does not depend on the particular
law of wear nor on the fretting mode and can often be determined analytically. A
qualitative explanation for the existence of such a limiting profile is easily given:
if within one oscillation period a part of the contact area fulfills the no-slip condi-
tion while other areas experience at least transient slip, the stick zone will not wear
while the slip zone will experience progressing wear. Intuitively, this leads to a
lower pressure in the slip zone, with the stick zone taking on the additional load.
Over the course of further oscillations, the stick zone continues sticking while the
pressure in the slip zone decreases continually until vanishing completely, at which
point the surfaces are in incipient contact with no load. Based on this fact, Popov
(2014) was able to determine the general solution for this limiting profile in the case
of a rotationally symmetric indenter. These results were experimentally confirmed
by Dmitriev et al. (2016). The existence of such a limiting profile is a universal
conclusion and is not bound to the assumption of axial symmetry.

The following section is dedicated to the calculation of the limiting profiles for
various initial indenter shapes, as shown by Popov (2014). Let f(r) be the rota-
tionally symmetric profile of a rigid indenter which is pressed by d into an elastic
half-space with an effective elastic modulus of E*. Moreover, let the contact area
have the radius a and the pressure distribution in the contact be p(r). The (oscil-
lating) tangential or torsional load causes the formation of a periodically changing
slip zone in the contact. The radius of the area of permanent stick is referred to as
c. The aforementioned limiting state is determined by the conditions:

Joor) = fo(r), r=c
Poo(r) =0, r>c. (6.17)

The index “oo” designates the shakedown state and the index “0” the unworn initial
state. As previously explained in this chapter, the radius c results from the no-slip
condition for the oscillation of the unworn profile and remains unchanged during
the progression of wear. The calculation of the limiting profile consists of three
steps.

1. Determination of the radius ¢ for the area of permanent stick for the original

profiles fo(r).
2. Determination of the limiting profile using the equations derived by Popov

(2014), as follows:

fo(r), r<c,r>a,

(=12 c d 6.18

Joolr) —[ M—I—darccos(g)] c<r=a, (©19
T 0 /r2_x2 r
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where

|x]
/(r)d
go(x) = || j%

0

(6.19)

3. Determination of the contact radius @ in the limiting state from the condition:

Joolaso) = folaoo). (6.20)

The solution structure clearly shows that the radius ¢ of the permanent stick zone
is the only load-dependent and material-dependent parameter to contribute to the
solution of the limiting profile. The stick radius is calculated for the unworn profile
and is valid for the entire wear process. Solution (6.18) does not yet define the outer
radius of the worn area a,. In the final step, a, is determined using (6.20).

In the following sections, we first explain how to determine the radius of the
permanently sticking contact area. Subsequently, we give the form of the punch
in its final shakedown state for an assumed known radius ¢ of the permanent stick
zone. We will focus on a selection of indenter profiles from Chap. 2, which is
justified by their technical relevance.

6.2.1 Determining the Radius of the Permanent Stick Zone

6.2.1.1 Horizontal Oscillations at Constant Indentation Depth

The easiest way to calculate the radius ¢ of the permanent stick zone is by using the
MDR. Following the steps of the MDR (4.21) (see Sect. 4.4 of this book), we define
an elastic foundation and an MDR modified profile go(x) according to (6.19) on
which further contact mechanical calculations are performed instead of the original
three-dimensional system.

When the profile is displaced in the tangential direction by u?, the springs are
loaded normally and tangentially. The radius of the stick zone is given by the fol-
lowing equation, which sets the maximum tangential force equal to p multiplied
with the normal force:

G'u® = pE*[d — g(c)). (6.21)

For oscillations in the tangential direction in accordance with the law u© (1) =
Au® cos(wt), the smallest stick radius (and thus the radius of the permanent stick
zone) is reached at the maximum horizontal displacement:

G*Au® = pE*[d — g(c)]. (6.22)

The form of the function g(c) was determined for a great number of profiles in
Chap. 2. We will forego repeating them here.
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6.2.1.2 Bimodal Oscillations
Let us now consider cases in which the punch experiences simultaneous oscillations
in horizontal and vertical directions:

u@ @) = Au® cos(wy1),
d(t) = dy + Ad cos(wat — @). (6.23)
The first thing to note is that, in this case, the limiting profile is still given by (6.18).

However, for d we must now insert the maximum indentation depth over the course
of one oscillation period:

Jo(r), r<c,r>a,
Soor) =3 2T [ go(x)dx c (6.24)
= |: ; «/ﬁ + dmax arccos (;)] , ¢c<r<a,
with
dmax = do + Ad. (6.25)

Let us now calculate c. In the MDR representation, the normal and tangential forces
at the coordinate ¢ are given by:

AF, = G*Ax -u@(t) = G* Ax - Au'? cos(wyt),
AF, = E*Ax-d(t) = E*Ax - [dy + Ad cos(wyt — ¢)] . (6.26)

The radius of the permanent stick zone is determined from the condition that the
absolute value of the tangential force at the location ¢ must never exceed the product
of the normal force and the coefficient of friction:

|G*Au(0) cos(a)lt)} < nE*[dy + Ad cos(wat — @) — g(c)]. (6.27)

If the frequencies w; and w, are incommensurable, or alternatively, if the phase ¢
is not locked (i.e., it is slowly changing), this condition is satisfied only when the
maximum value of the left-hand side of the inequality is smaller than the minimal
value of the right-hand side. The critical value is reached when these two values are
equal:

G*Au® = pwE*[dy — Ad — g(¢)]. (6.28)

The only difference in this equation compared to (6.22) is that it features the mini-
mal indentation depth dy, = dy — Ad instead of simply d.

For commensurable or equal frequencies and locked phase shift, the solution is
generally very complicated and it can be referenced in Mao et al. (2016).
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6.2.2 The Cone
The unworn profile of a conical indenter can be written as:
fo(r) = rtané. (6.29)
Here 6 is the slope of the cone. The shakedown profile is then given by:
rtan@, r<c,r>des,
(6.30)

colV) = 2 2d
Joolr) rtan@(1—‘/1—6—2)+—arccos(£), c<r<ds,
r b4 r

with an indentation depth d and the radius of the permanent stick zone c.
The post-shakedown contact radius a, is obtained as the solution of the equa-

tion:

2d (
— arccos
bid

c

o0

) = tan 0 v a2 — c2.

(6.31)

The profile resulting from (6.30) is shown in Fig. 6.3.

6.2.3 The Paraboloid

For the paraboloid with the radius of curvature R and corresponding unworn profile

Jo(r) =

2

—, 6.32
7R (6.32)
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the limiting profile is described as a function of the indentation depth d and the
radius c of the permanent stick area is given by:

2
ﬁ’ r<c¢,r>dy,
foolr) = 2|1 arcsin(c) ¢ V2 c? (6.33)
> 7| 2R r/ 2R ‘
+darccos(£)], c<r <dg.
r

This dependency is shown in Fig. 6.4. The contact radius in the worn state results
from the solution of the equation:

2 2 2
Goo _ 2| %o yrein () = i,/ago — ¢2 + d arccos <. (6.34)
2R w | 2R oo 2R a

[e¢]

6.2.4 The Profile in the Form of a Lower Law

We now consider indenter profiles of the general power-law form:
fo(r) =br", neRY, (6.35)

with a (dimensional) constant » and a positive real number n. In Chap. 2 (see
Sect. 2.5.8) it has already been shown, that the equivalent profile in the MDR is
given by a stretched power function with the same exponent n:

go(x) = k(n)blx|". (6.36)
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The stretch factor was given as:

. 'm/2+4+1)
k(n) = ﬁif’ TCESYEL (6.37)
with the gamma function
I'(z):= / 17 exp(—t)dr. (6.38)

0

Equation (5.18) then gives the following shakedown profile at the end of the wear
process:

br", r<c,r>a,
r) = 2 c nq
Joolr) — | k(n)b l—!—darccos(S)], c<r<a,
T 0 Vr?2—x2 r
br", r<c,r>a,
2[ "t 1l n+1 n+3 ¢?
O (2 2 2 r2) (6.39)
+darccos(£):|, c<r<a,
r
with the indentation depth d and the permanent stick radius c. The notation
2F1 (-, +;+;+) is used for the hypergeometric function
T I'(b I'(c) z"
2Fi(a,b;c;z) := Z @+ e +mlie) (6.40)

— T(@T®)T(c+n) n!’

For n = 1 the case of the cone is from Sect. 6.2.2 and is reproduced, and forn = 2

it is the solution for the paraboloid (Sect. 6.2.3).

6.2.5 The Truncated Cone

In the previous chapters, the truncated cone and paraboloid have already been dis-
cussed several times. For the truncated cone with the profile function

0
={" - 6.41
Jotr) (r—>b)tanf, r > b, ( %
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Fig. 6.5 Shakedown profile 1
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with the radius b at the blunt end and the slope angle 6, the following equivalent
plane profile was determined in Chap. 2 (Sect. 2.5.9):

0, |x| < b,

= 6.42
go(x) |x| tan 6 arccos (|b—|) , x| >b. (642
X

It has been shown in Chap. 4 (Sect. 4.6.5) that the radius of the stick zone ¢ cannot
fall below the value of b. Therefore, the worn boundary profile, with (6.18) and the
indentation depth d, is described by

Jo(r), rEce, > deg,
2 /" b dx
—| tan 6 xarccos [ — | ——
Joo(r) = m b X r2 —x2 (6.43)
+darccos(£):|, c<r <dy.
r

The contact radius at the end of the wear process is, as always, defined by the rela-
tionship (6.20). The profile of (6.43) is shown in normalized form in Fig. 6.5. For
b = 0, of course, the solution of the complete cone from Sect. 6.2.2 is recovered.
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6.2.6 The Truncated Paraboloid

Let us now consider the truncated parabolic, whose unworn profile is described by
the rule:
0 r<b,

Jr)y=r2—p? ) (6.44)
9 r > b
2R

Here R denotes the radius of curvature of the parabolic base body and b the radius
at the flattened tip. In Chap. 2 (Sect. 2.5.10), the equivalent profile has already been
found:

0 |x| < b,

g =1 s (6.45)
%sz — b2, |x|>b.

As in the case of the truncated cone of the radius of the stick zone, ¢ cannot fall

below the value of b Equation (6.18). (d denotes the indentation depth, as always)

allows the shakedown profile to be described as:

fo("), r<c¢,r>dx,
r)=32|1 (¢ d
Joo(r) _|:_/ x«/x2_b2—x+darccos(£):|, ¢ <7 =,
7| R b r2 —x2 r
folr), rEer> e,

1 [ A2 —=b2
— | (#* = b?) arcsin [ ——
= nR N /r2 _ b2

— V2 —b2Vr?2 — 2 + 2dR arccos (E):| c <1 <d.
r

(6.46)
This is shown in a normalized manner in Fig. 6.6. For b = 0 we obtain, of course,
the solution of the complete paraboloid from Sect. 6.2.3.

6.2.7 Further Profiles

In Chap. 2, it was shown that the equivalent profile functions g(x) of various tech-
nically relevant indenters considered in the literature can be considered as the su-
perposition of the elementary bodies paraboloid, truncated cone, and truncated
paraboloid. Since the integral expression in (6.18) is linear in go(x), for the super-
position the solutions of the integrals for the elementary bodies mentioned, given in
the previous sections, can simply be summed up. We will, therefore, only specify
the superposition rules for the functions gy and graph the profiles at the end of the
fretting process. We will refrain from providing the complete solution in order to
avoid redundancies.
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6.2.7.1 The Cone with Parabolic Cap
For a cone with the slope angle 8, which at point r = b differentiably passes
into a parabolic cap with the radius of curvature R := b/tan @, the rotationally
symmetric profile can be written as follows:
2
r-tan 6
, r<b,
fry=49 26 (6.47)

rtan@—itane, r>b,

For the equivalent profile in MDR, the following superposition has been shown in
Chap. 2 (see Sect. 2.5.12):

b
go(x;0,0) = gop (X; R= —) + goxs(x:b,0)
tan 6

b
— 80,PS (X; b, R = ) . (648)

Here, g¢ p denotes the unworn, equivalent profile of a paraboloid (see Sect. 6.2.3),
goks that of a truncated cone (see Sect. 6.2.5), and gops that of a truncated
paraboloid (see Sect. 6.2.6). The no-slip radius can fall below the value of b, but
then the limiting profile is the same as in the case of the simple paraboloid. For this
reason, some variants of the shakedown profile with ¢ > b are shown in Fig. 6.7.

6.2.7.2 The Paraboloid with Paraboloid Cap
The rotationally symmetric profile of this body is described by the function

-—, <
fory =2 (6.49)
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The radius of the cap is Ry, and that of the main body is R;. The continuity of f at
the position of r = b requires

R
W =b? (1 - —2) , (6.50)
Ry
and one can introduce an effective radius of curvature:
RiR,
R = ———. 6.51
R_& (6.51)

From a contact mechanical point of view, this body can be described as a superpo-
sition:

go(x:b, Ry, Ry) = go.p(x; R = Ry) + gops(x;b, R = R"), (6.52)

as can be looked up in Chap. 2 (Sect. 2.5.13). The permanent stick radius can,
again, drop below the value of b, but the limiting profile is the same as in the case
of the simple paraboloid. In Fig. 6.8 some variants of the shakedown profile are
shown by way of example.

6.2.7.3 The Cylindrical Flat Punch with a Rounded Edge
The indenter has the axisymmetric profile

0 r<ba,

=10 6.53
Jr)=9@-b) e (6.53)
2R

with the radius b, for which the flat base of the punch passes into the rounded edge
with the radius of curvature R. The transformed profile g can be thought of as the
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sum (see Sect. 2.5.14) go(x;b, R) = gops(x;b, R) — goks(x;b,tand = b/R).
The indices “KS” and “PS” refer to the respective results of the truncated cone and
paraboloid. Figure 6.9 has been used to illustrate some profiles after the fretting
process.
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Transversely Isotropic Problems

7.1 Introduction

A transversely isotropic medium is a medium which has a favored direction and
is isotropic in the plane perpendicular to this direction. Among crystalline media,
all materials with a hexagonal crystal system belong to this class: they are elasti-
cally isotropic in the plane perpendicular to the hexagonal axis. Fiber composites
with the fibers arranged in parallel in one direction also represent a transversely
isotropic medium, which is isotropic in the plane perpendicular to the fiber direc-
tion (see Fig. 7.1). Many functional materials exhibiting a preferred direction can
also be classified as such, e.g., some piezo-electric materials. We can find many
more examples in biological media.

A linear transversely isotropic medium is fully defined by five elastic constants.
For the definition of these constants using the elastic moduli and coefficients of
transverse contraction, see Fig. 7.1. If we call the axis of symmetry of the medium
“z”, the axes “x” and “y” are “equivalent” and they can be defined arbitrarily in the
plane spanned by these two axes.

Fig. 7.1 Demonstration of z
the symmetry and definition A
of elastic constants of a trans- Z/0
versely isotropic medium ,
E v
v
.............. o — E

= __E ~
St Ty
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Turner (1980) described the relationship between the deformation tensor and the
stress tensor using the matrix of compliance coefficients:

Exx 1 —vg  —Vp 0 0 0 Oy
Eyy —vy 1 —Vy 0 0 0 Oyy
E;z _ l —Vy —Vy A 0 0 0 Oz
2¢. | E| O 0 0 2(1+v) 0 0 o |’
2. 0 0 0 0 2(1+v) 0 Oy:
| 264y | L 0 0 0 0 0 2(1 4+ vg) | [ov ]
(7.1)
where
e — 1 814,- + 3uj (7 2)
v 2 ax]' 8x,~ ’

is the linear symmetric deformation tensor and u; is the displacement vector. Here,
E is the elasticity modulus of the medium in the plane perpendicular to the axis of
symmetry, E/A is the elasticity modulus in the direction of the axis of symmetry,
vy is the Poisson’s ratio in the plane perpendicular to the axis of symmetry, and
vy is the Poisson’s ratio when stress is applied along the symmetry axis. Gy =
E /(2 4 2v) is the shear modulus for shear parallel to the axis of symmetry; note
that v has no immediate physical meaning. Additionally, it should be noted that
the shear modulus in the plane of symmetry is given by the usual equation Gy =
E/2+ 2vy).

Inverting the system of equations leads to the presentation via the matrix of stiff-
ness coefficients:

Oxx [Ciy Cn C3 0 0 0 Exx
Oyy Co, Cyp Cz 0 0 0 Eyy
o=z | _ Csz Ci3 Gy 0 0 0 Bzz | (7.3)
Oys 0 0 0 Cu4 O 0 28y
0y 0 0 0 0 Cyu 0 2852
loww] LO 0 0 0 0 3(Cii—Cp)] |26

The elastic constants can be written in Voigt notation, as follows:

EA—v})

Cin = 5 )

A —Avyg —2vy)(1 +vy)
E(Avy + v3)

Cin= 5 )

A —Avg —2v;)(1 + vg)
E
Cis o

T =g —22)



7.2 Normal Contact Without Adhesion 207

Caz = (1—1)H)E
B (A —Avyg —2v2)’
E

Cag=—

T2+ )
1 E
(Ch—Cp) = — 7.4
2( 11 12) 30+ o) (7.4)

using the moduli and Poisson’s ratios.

7.2 Normal Contact Without Adhesion

For the complete formulation of the contact mechanical problem in its integral form,
it is sufficient to know the fundamental solution, independent of the class of sym-
metry of the medium. The fundamental solution for transversely isotropic media
was found by Michell (1900). He demonstrated that the normal displacement w of
the surface of a transversely isotropic elastic half-space under the effect of a force
F acting on the origin is given by the equation:

1 F,
= i 3 7-5
w(r) 5 (7.5)

where r is the distance in-plane to the acting point of the force. The equation has
the same form as the corresponding fundamental solution for the case of isotropic
media, as shown in (2.2). It simply requires the following definition of the effective
elasticity modulus:

27/ Cys(C11C3 — Cy)

E* = .
VCri \/(v C11C33 — C13) (Ci3 4+ 2C44 + V/C11 C33)

(7.6)

As such, Michell (1900) concluded that:

It appears, therefore, that the law of depression is the same as for an isotropic solid; conse-
quently, the applications of this law, which were made by Boussinesq and Hertz to problems
concerning isotropic bodies in contact, may be at once extended to the acolotropic solids
here considered, with the limitation that the normal to the plane of contact must be an axis
of elastic symmetry.

Of course, the effective elasticity modulus can also be expressed by the components
of the compliance matrix:

E 2

) (A—v%,)l/z n I bv—vy (I4vg)
1—v2
H

E* (1.7)

2
1-vg
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In the case of an isotropic continuum (A = 1, vy = vy = v), this expression is
reduced to the known equation E* = E/(1 — v?).

The integral formulation of (2.3) for the frictionless contact mechanical problem
is based exclusively on the fundamental solution. Therefore, all solutions from
Chap. 2 are equally valid for transversely isotropic media.

When two transversely isotropic bodies are in contact, the effective modulus is
used instead of (7.6):

1 1 1

. v 7.8
B E T E (7.8)

where £} and EJ represent the effective elastic moduli of the two media.

Likewise, due to the identical fundamental solutions, applying the MDR to a
transversely isotropic medium simply requires substituting the effective elasticity
modulus by the expressions presented in (7.6) and (7.8). All other transformation
rules of the MDR remain unchanged.

Therefore, the non-adhesive normal contact problem for a transversely isotropic
medium is identical to the corresponding contact problem of an isotropic contin-
uum. This applies to the displacement field of the surface of the body and the
pressure distribution in the immediate surface, but not to the deformation and stress
distribution in the interior of the half-space. Consequently, there is no need for
special consideration to be given to all normal contact problems for transversely
isotropic media. We will simply refer to the results from Chap. 2, which are equally
valid for transversely isotropic media.

Further information, particularly concerning the calculation of the stresses in the
interior of the transversely isotropic half-space (which, again, do not coincide with
those of the isotropic case), can be found in a paper by Yu (2001).

For a historical perspective, the paper by Conway (1956) is worth mentioning.
Notably, it describes how, due to the form of the fundamental solution (7.5) by
Michell (1900), the calculation method for any (isotropic) axially symmetric nor-
mal contact problem by Schubert (1942) can also be applied to the corresponding
contact problem of transversely isotropic media.

7.3 Normal Contact with Adhesion

As explained in the previous section, the non-adhesive, frictionless normal contact
problem for a transversely isotropic medium is identical to the corresponding con-
tact problem for an isotropic continuum. It merely requires redefining the effective
elasticity modulus according to (7.6) or (7.7). Additionally, in Chap. 3 of this book,
it was shown that the adhesive, frictionless normal contact problem can be reduced
to the corresponding non-adhesive contact. Therefore, the adhesive normal con-
tact problems of isotropic and transversely isotropic media are also equivalent to
the respective isotropic problems, regarding both their relationships of the global
contact quantities (normal force, indentation depth, and contact radius), as well as
the stresses in the contact surface, and the displacements of the medium’s surface.



7.4 Tangential Contact 209

Consequently, there is no need for special consideration to be given to adhesive
normal contact problems of transversely isotropic media. Here we will simply refer
to the results in Chap. 3 of this book. Taking into account the aforementioned cor-
responding definition of the effective elasticity modulus, the results directly apply
to transversely isotropic contacts.

An overview of the history of work done in the field of adhesive contacts of
transversely isotropic media can be found in an article by Borodich et al. (2014).

7.4 Tangential Contact

Turner (1980) provided a general expression for the surface displacement of a trans-
versely isotropic elastic half-space under the effect of an arbitrarily directed force
acting on the surface of the half-space at the origin. He used the matrix of compli-
ance coefficients, as seen in (7.1).

According to Turner, the simultaneous effect of a normal force Fy and a tangen-
tial force F in the x-direction generates the surface displacements

u(x.y) o [YG/)Fy + (148(x/r)?) Fy
v, y) | = 5 | v/ 1)y + 80y /1) F L ort=xt4yh (19)
w(x, y) oaFy —y(x/1))Fy

with

1/2

_ (I +v)—vy(l +vp)
- (1—v})

(2 NP (e
L Py 2 20— )
s_ (2 N\t
S \a+p 1+ vy 1—vy ’
12 4
¢ = (O‘Jrﬂ) 1w (7.10)

2 Gy

For an isotropic medium, A = l,a = 8 =1,y = (1-2v)/(2—2v),§ = v/(1—V),
and e = (1 —v)/G; (7.9) can then be reduced to the form provided by Landau and
Lifshitz (1944, 1959):

)

1 1 2vx2
”(X’J’)Z +v_ _(1—2V)£FN+ 2(1—]))+ VX Fx ,
2nE r r r2
v(x y)=1+vl{—(1—2v)XFN+2vﬂF} P2 =2 4 2
' 2nE r r PR ,
I+vl x
W, y) = 5= {20 =W Fy + (1 =20)2F . (7.11)
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The normal and tangential contact problems are independent of one another for a
vanishing y in (7.9), i.e., when

l—vH)L—v‘z,

=1. 7.12

1 + Vg UV2 ( )
The criterion for the decoupling of the normal and tangential contact problem in the
case of an isotropic continuum is reduced to the requirement of incompressibility
(v = 1/2) of the deformable contact partner. In the case that both media are linear-
elastic and transversely isotropic, the quantity y; — ¥, must vanish:

() (5-a)
o] + ,31 2 2(1 - VH,l)

( 2 )1/2(“2 V2 )— 0 (7.13)

o + B 2 2(1—vu2) ' .

7.4.1 “Cattaneo-Mindlin” Approximation for the Transversely
Isotropic Contact

Assuming a decoupling of the normal and tangential contact problem (y = 0), and
neglecting the surface displacement in the direction perpendicular to the direction
of force action (as assumed by the solution by Cattaneo and Mindlin in Chap. 4),
(7.9) and (7.11) can be simplified to:

2
[u(r)}zi[(lw(x/r))m] -
w(r) 2nr aFy
for a transversely isotropic medium and to:
u(r) | _1+v1 (2(1 — V) +2v (x/r)z) El aus)
w(r) 2nE r 2(1 —v) Fy

for an isotropic medium. It is easy to see that the expression for the tangential
displacements in a transversely isotropic medium exactly matches the one for an
isotropic medium for the values ¢ = 2(1 —v?)/E and § = v/(1 —v).

Solving for E and v gives v = l‘sﬁ and £ = 2(1%”2) = % For the effective
shear modulus, we obtain:
4G 2FE 4

G* =

= = . 7.16
2—v  (14+v)2—-v) 249 (7.16)
Similarly, achieving identical normal displacements for both transversely isotropic
and isotropic media requires the effective moduli to follow the expressions

2

E* ==, (7.17)
e
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Inserting the definitions of §, &, and ¢ from (7.10) yields the following result:

2F

1—p2\ 1/2 B 12\’
(14 vy) ((1 —vy) (% (17‘}%) + %H—v lwv(lzi-&-VH)) + (11:;\;) )
(7.18)

which, for the isotropic continuum (A = 1, vy = vy = v), takes on the usual form
of:

G* =

B 2F
T+ v2-v)

Inserting the definitions of @ and ¢ from (7.10) into (7.17) leads to the expression
previously formulated in (7.7).

Taking this into consideration, this proves the equivalence of the fundamental
solutions for the normal contact problem and the tangential contact problem in the
Cattaneo—Mindlin approximation for isotropic and transversely isotropic continua.
Therefore, using definitions (7.16), (7.17), (7.18), and (7.7) of the effective moduli,
all results from Chaps. 2, 3, and 4 regarding the relationships of the macroscopical
displacements, forces, contact radii, and stress distributions carry over. Only the
stresses in the interior of the medium require special consideration.

The ratio of normal to tangential stiffness of a no-slip contact is given by:

G* (7.19)

E* 246 (7.20)
G* 2a’ ‘
which (in the isotropic case) is reduced to the Mindlin ratio:
E* 2—v
- = . (7.21)
G* 2-—2v

7.5 Summary of the Calculation of Transversely Isotropic
Contacts

Once again, we will provide a summary of the approach to solving contact problems
of transversely isotropic media.
The quantities defined at the surface of the medium are listed below:

Normal force

Contact radius

Indentation depth

Distribution of normal stresses and normal displacements at the surface

The quantities previously listed for the adhesive contact in the JKR approxima-
tion

e Tangential force in contact with friction in the “Cattaneo—Mindlin approxima-
tion”
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e Macroscopical tangential displacement in contact with friction in the “Cattaneo—
Mindlin approximation”

e Distribution of tangential stresses and tangential displacements at the surface in
the “Cattaneo—Mindlin approximation”

Transversely isotropic media exhibit exactly the same behavior as isotropic media.
The only required change involves inserting the effective elasticity modulus (de-
fined in (7.6) and equivalently in (7.7)) or the effective shear modulus defined in
(7.18), respectively. The MDR method is also valid without restriction, unchanged
from the case of isotropic media.
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Viscoelastic Materials

Rubber and other elastomers are highly deformable and thus conform well to sur-
faces, exhibit high coefficients of friction in many material pairings (rubber-rubber,
rubber-asphalt, etc.), and are water and heat resistant. As a result, elastomers see
widespread use in tires, belts, cables, adhesive layers, and many other areas of ap-
plication.

The most important properties of elastomers are: (1) an extremely low elasticity
modulus (about 1 to 10 MPa, i.e., four to five orders of magnitude lower than that
of “normal” solids), (2) an extreme degree of deformability, and (3) internal energy
dissipation (viscosity) during deformation. The root of these fundamental proper-
ties of elastomers lies in their structure. Elastomers consist of relatively weakly
interacting polymer molecules. In the thermodynamic state of equilibrium, they are
in a statistically favored coiled state. Upon application of a mechanical stress on
the elastomer, the polymer molecules begin to uncoil. Removing the load from the
elastomer causes the polymer molecules to relax once again into their coiled state.
This structure explains both the high deformability and the internal friction, along
with the associated time-dependent behavior, of elastomers.

Due to the high degree of deformations, elastomers very often exhibit non-linear
mechanical behavior. However, for reasons of simplification, we will treat them
here as linear viscoelastic materials. The treatment of non-linearities would extend
beyond the scope of this book.

Chapter 8 is dedicated to contact problems between a rigid, rotationally sym-
metric indenter and a homogeneous, isotropic, linear viscoelastic half-space. Sec-
tion 8.1 will provide some initial general information and definitions regarding
the description and characterization of linear viscoelastic materials. Sections 8.2
and 8.3 are dedicated to the explicit solution of axially symmetric contact prob-
lems using the MDR and the functional equation method by Lee and Radok (1960).
These solutions apply to incompressible elastomers. Compressible normal contacts
are discussed in Sect. 8.4. Finally, Sect. 8.5 deals with fretting wear of elastomers.
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8.1 General Information and Definitions on Viscoelastic Media
8.1.1 Time-Dependent Shear Modulus and Creep Function

In a first-order approximation, elastomers can be viewed as incompressible me-
dia (Poisson’s ratio v & 0.5). Therefore, the following consideration exclusively
deals with the characterization of mechanical properties of elastomers for shear
loads. Let us consider an elastomer block that is being acted upon by shear forces
(Fig. 8.1). If it is rapidly deformed by the shear angle &', the stress initially rises to
a high level 0(0) and subsequently relaxes to a much lower value o (co) (Fig. 8.2).
In elastomers, o (co) can be three to four orders of magnitudes smaller than o (0).
The ratio

G(t) = @ (8.1)

€0

is called the time-dependent shear modulus. This function completely describes
the mechanical properties of a material, assuming that the material exhibits a linear
behavior.

Let us assume that the block is deformed according to an arbitrary function &(¢).
Any time-dependency &(¢) can be represented as the sum of time-shifted step func-
tions, as shown schematically in Fig. 8.3. In this diagram, an “elementary step
function” at time ¢’ has the amplitude de(z’) = &(¢')dt’. Accordingly, its contribu-
tion to the stress is equal to do = G(t —t")é(¢')dt’ and the total stress at every point

Fig. 8.1 Shear deformation o
of a rubber block s J—
/ /
/ e !
/ -~
/ /
a b

&

> >
> | >
t

t

Fig. 8.2 If a rubber block is rapidly deformed by &, at time ¢t = 0, then the stresses rise to an
initial high level and subsequently relax slowly to a much lower value

! We emphasize that the shear angle ¢ is equal to twice the shear component of the deformation
tensor.
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Fig. 8.3 Representation of e A &(0)
a time-dependent function as
the superposition of several
shifted step functions

in time is, therefore, calculated as:

t

o(t) = /G(z—t/)é(z/)dz/. (8.2)

—00

Alternatively, the block can be effected by a sudden tangential force. After an
instantaneous reaction, the shear angle will change with time. The time-dependent
shear angle related to the stress is called the creep function, ®(t):

O(t) = % (8.3)

Using the creep function, we can write the relationship between the stress and strain
similarly to (8.2):

t

e(t) = / Dt — 1) (¢')dr’. (8.4)
It can be shown that representations (8.1) and (8.4) are equivalent, i.e., for any
time-dependent shear modulus a corresponding creep function can be determined
and vice-versa.
From the definitions of the time-dependent shear modulus and the creep func-
tions, the following identities can be deducted:

1

/ G(t —t)®(r)dt' =1 (8.5)
and

t

/ Ot —1)G()dt' = 1. (8.6)

Technically, every elastomer also has a material law for the trace (hydrostatic)
components of the stress and deformation tensor corresponding to a second creep
function for the deformation response to hydrostatic pressure. However, as previ-
ously mentioned, elastomers can usually be considered incompressible. Therefore,
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this secondary creep function is usually neglected. Taking both creep functions into
account also makes the analytical treatment of viscoelastic contact problems far
more difficult, as demonstrated by Vandamme and Ulm (2006). With these facts in
mind, in this chapter we will generally limit ourselves to solutions for an incom-
pressible half-space. The consideration of the compressible case is touched upon in
Sect. 8.4.

8.1.2 Complex, Dynamic Shear Modulus
If e(¢) changes according to the harmonic function

e(t) = écos (wt), (8.7)
then after the transient time, there will also be a periodic change in stress at the
same frequency w. The relationship between the change in deformation and the

stress can be represented quite simply when the real function cos(w?) is presented
as the sum of two complex exponential functions:

1 . .
cos(wt) = E(e”‘” +e'oh), (8.8)

Due to the principle of superposition, one can initially calculate the stresses result-
ing from the complex oscillations

e(t) = &' and e(r) = ge ' (8.9)

and sum them up. If we insert &(¢) = &¢'®’ into (8.2), then we obtain

t (o]
o(t) = / Gt —1iwée' ' dt’ = iwée' / G(£)e'“dE (8.10)
—00 0

for the stress, where we substituted & = ¢ — t’. This relation can also be written in
the form: . ' .
o(t) = G(w)ée' = G(w)e(t). 8.11)

The coefficient of proportionality

[e¢]

Gw)=iw [ G(£)e 't dg (8.12)

0

is called the complex shear modulus. Its real part G/(Aa)) = Re G(w) is called the
storage modulus, and its imaginary part G”(w) = Im G (w) is referred to as the loss
modulus.
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8.1.3 Rheological Models

The properties of viscoelastic media are frequently presented in the form of rheo-
logical models. The two fundamental elements of these models are:

(a) A linear-elastic body. For an ideally elastic body, the shear deformation follows
Hooke’s law: 0 = Ge. In this case, the complex modulus only has a real part
which is equal to G:

G =6. (8.13)
(b) A linear viscous fluid. For which the following is valid: (see Fig. 8.4):
d
o =n=, (8.14)
dz
For a periodic displacement 7i(l, 1) = uge'®’ we get:
d 0(t 4
6(t) = r)—v = n& = nia)@e"‘” = iwné(t). (8.15)
dz |, / [
In this case the complex modulus
Gw)=ioy (8.16)

only has an imaginary part: Re G =0,ImG = w1n.

These two elements enable the “construction” of different media. Although we
will refer to the rheological models as “springs” and “dampers”, in actuality we
mean the corresponding quantities per unit volume of the medium. In this case,
it should be noted that the tangential stiffness equals the shear modulus and the
damping coefficient equals the dynamic viscosity. From now on we will use these
continuum mechanical terms of moduli and viscosities rather than those of values
of stiffness and damping coefficients.

8.1.3.1 Kelvin Medium

One of the most frequently used rheological models is the Kelvin model, consisting
of a spring (shear modulus G), connected in parallel with a damper (viscosity 7).
The complex shear modulus of this medium is equal to

A

G =G +iown. (8.17)
Fig. 8.4 Uniform shear flow 24
of a linear viscous fluid u(l,f)
e
| ——
== e
L
/- T -
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If at time ¢+ = 0 a constant stress oy is applied to the Kelvin element, the following
is valid:
Ge + ne = oy. (8.18)

The shear angle is time-dependent according to
%0 —t/t
= (11— , 8.19
e= = (1—e7) (8.19)

with 7 = 1/ G. The creep function of this medium is, therefore, equal to:

o(r) = %Z) = éa — ey, (8.20)

8.1.3.2 Maxwell Medium
An important component of many rheological models is the Maxwell element, con-
sisting of a spring connected in series with a linear viscous damper.

The complex moduli of the spring and damper are G and i nw. Due to the serial
arrangement, we obtain:

G-ino  G-inw (G—inw) G (inwG+ (o)’

G = = = 8.21
Ml = G L inw — (G +inw) (G —inw) G* + (nw)? 821
for the total modulus.
The storage and loss moduli are:
G(nw)? nwG?
Me =—"— Gy = —_— 8.22
Maxwell G2 + (nw)z Maxwell G2 + (nw)z ( )
By introducing the quantity
T =1/G, (8.23)
(8.22) can also be presented in the form:
/ _ (w_’:)Z " =G wT (8 24)
Maxwell — 1+ (CU‘L')Z’ Maxwell — 1+ (CU‘L')Z' .

The quantity t has the dimension time and is called the relaxation time.

Let us examine the stress relaxation in a medium which is described by a
Maxwell element. We use the terms introduced in Fig. 8.5. The stress act-
ing on the connection point between the spring and the damper is equal to
—G(e — €1) + né;. Because the connection point is massless, the stress must
cancel out: —G(g — ¢1) + né; = 0. By dividing this equation by G and inserting
(8.23), we can write the equation as:

Té + ¢ =& (8.25)
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Fig. 8.5 Maxwell element

If at time ¢+ = 0 the material is suddenly deformed by &, then for every point in
time ¢t > 0 we get
‘L'él + &1 = &, (826)

with the initial condition £;(0) = 0. The solution to this equation with the stated
initial condition is:
g1 = (1 — e7'/7). (8.27)

The stress is:
0 =G(gg—&1) = Gege /7. (8.28)

The stress decays exponentially with the characteristic time r. Therefore, the time-
dependent shear modulus in this case equals:

G(1) = Ge™/7. (8.29)

8.1.3.3 The Standard Solid Model of Rubber
The following model (Fig. 8.6) is the simplest spring-damper model to give a qual-
itatively correct representation of the most important dynamic properties of rubber
during periodic loading.

Since we are dealing with a parallel arrangement of a linear-elastic spring and a
Maxwell element, we can immediately write:

2
(w7) p T

G =G +G———, =Gr—,
1+ 2l—i-(a)t)2 2l—l-(wt)2

(8.30)

with T = n/G,. The frequency-dependency of the moduli is presented double
logarithmically for the case G,/ G, = 1000 in Fig. 8.7.

At low frequencies @ < Gp/n (quasi-static loading) the modulus approaches
G. At very high frequencies w > G, /7 it approaches G| + G, > G. This means
that for very slow loading, rubber is soft, while for rapid loading it is stiff. In the

Fig. 8.6 A simple rheologi-
cal model of rubber (standard
solid model)
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Fig. 8.7 Real and imagi- 3
nary parts of the dynamic
modulus for the rheological 2,51
model shown in Fig. 8.6 with log (G")
G,/G; = 1000 2]
1,51 log G)
1 4
0,51
g 1 2 3 4

log (w7)

intermediate range, the imaginary part is dominant: G”(w) & nw, meaning that the
medium behaves like a viscous fluid during periodic loading.

Once again, since we are dealing with a parallel arrangement of a linear-elastic
spring and a Maxwell element, we can immediately write:

o(t) = €o(Gy + Gre™ /7). (8.31)

The normalized stress, which we have called the fime-dependent modulus, can be
obtained by dividing this equation by &:

G(t) = 0/eo = (G1 + Gre™'/7). (8.32)

It relaxes exponentially from the value Gy = G| + G, for t = 0 to the value
Gy = Gy fort — oo.

8.1.3.4 Summary: Creep Function, Relaxation Function, and Complex
Shear Modulus for the Four Most Common Viscous/Viscoelastic
Material Models
The creep functions, relaxation functions, and complex shear moduli of the three
most frequently used simple viscoelastic material models (standard solid, Maxwell
solid, Kelvin solid) are presented in normalized form in Table 8.1. The linear vis-
cous half-space results as the limiting case of the Maxwell element for t — 0 and
as the limiting case of the Kelvin—Voigt element for t — oo. Figure 8.8 shows
phase diagrams of the complex shear modulus of the standard element.
Generalized Maxwell or Kelvin solids are frequently used to model more com-
plex material behavior. These models can be given in the form of Prony series with
varying relaxation times. However, since an exact analytical treatment of such ma-
terial behavior is usually impossible, we will restrict our consideration to the simple
models presented previously in this chapter.



221

General Information and Definitions on Viscoelastic Media

8.1

HS~+~ = @
’ (@5
(Dg2+1
Awlv dxo—1 = (00 < 9o
1 Do

[opou UTA[oY]

101

(92

2

1
SNOJSTA

0 +1 . (0) 1
i [(20)
1
Allv dxo
7
2 +
; !

[oPOW [[OMXEIA

(2®) + 1

«+@|:ﬁ

I
I

I+ NAHSV+~H_

1m [(2m)

2
1
2

1

(=)
v&63|HYng

[Spoul p1jos pIrepuel§

(00 « QVQ

(@F)

=99

(o

0=9d
(O

JUSWIATD UTA[OY QY3 JO 9SBD ) UI UoneZI[ewIou [e10ads ) 9JoN ‘siojouwrered [errojewr a1e (Wl UoneXe[dl dONsLIvOeIRYD) 1 pue 0 /*°H = y S[opowl [eLIjewt
OI)SB[Q0ISIA/SNOISIA PIsn A[Juanbaij jsouwr moj ay) 10 uonejudsaidor pazifeuriou ur sninpout Jeays xo[dwod pue ‘uonounj uonexeyar ‘uonouny dedr) |'g ajqer



222 8 Viscoelastic Materials

Fig. 8.8 Phase diagram

of the complex shear mod-
ulus of a standard solid
model for different values

of k = G /Gp with the
parameter wt. The thin solid
lines represent the limiting
cases of the Maxwell and
Kelvin models (vertical). The
maximum of the normalized
loss modulus lies at wt = 1

—k=0.01
06H---k=0.1

Im[G]/G,

0 0.‘2 0.‘4 036 0.‘8 1
Re[G)/G,

8.1.4 Application of the MDR to Viscoelastic Media

If the indentation velocity of an elastomer during a dynamic loading is below the
lowest speed of wave propagation (which is defined by the lowest relevant modulus)
then the contact can be regarded as quasi-static. If this condition is met and an area
of an elastomer is excited with the angular frequency w, there is a linear relationship
between stress and deformation and, consequently, between force and displacement.
The medium can be viewed as an elastic body with the effective shear modulus
G(w). All principles that are valid for a purely elastic body must also be valid for
the harmonically excited viscoelastic medium. Therefore, elastomers can also be
described using the MDR as presented in Chaps. 2 and 4. The only difference to the
elastic contact is that the effective elasticity modulus is now a function of frequency.
For incompressible media (v = 1/2), the following equation is valid for springs of
the effective Winkler foundation:

Ak.(w) = E*(0)Ax = f(‘“)

2
Ax = 259 Ay~ aG@)Ar.  833)
v

2 1—

The stiffness of an individual “spring” of the Winkler foundation is four times the
shear modulus multiplied by the discretization step size. For a harmonic excitation
of the one-dimensional equivalent system, we obtain the spring force:

AFN()C,CL)) =

ZG_(C()) Ax - wip(x,w) ~ 4G(w)Ax - wp(x, w). (8.34)

Vv
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The inverse transformation into the time domain gives the force as an explicit func-
tion of time:

t

2
AFN(X,I) = EAX / G(Z —l/)li)lD(X,l/)dl/
—00
t

%4Ax/G(t—t/)u')lD(x,t/)dt/. (8.35)
—00

For tangential contacts, the tangential stiffness of the springs of the equivalent one-
dimensional MDR foundation must be defined in accordance with (4.21):

4G(w) A

Ak, = G*(w)Ax =
2—v

X & gG(a))Ax. (8.36)

The corresponding force in the time domain is:

t

AF,.(t) = 7 4 vAx / G(t —t)up"dr

—00
t

gAx / G(t —tup(hdr'. (8.37)

—00

%

The formal mathematical proof of this method is based on the method of functional
equations by Radok (1957) and was presented by Popov and Hef (2015).

Using rheological models instead of the integral representations (8.35) and
(8.37), the forces in the two fundamental elements of elastic bodies and fluids are
then given by

AFN = 4GU)1DAX and AFN = 47]11)1DAX (838)

for the normal force, and by
8 8 .
AF, = §Gu1DAx and AF, = §nu1DAx (8.39)

for the tangential force.
In summary, here are the most important steps of applying the MDR to viscoelas-
tic contacts of non-compressible media:



224 8 Viscoelastic Materials

I.  The three-dimensional viscoelastic body is substituted by a one-
dimensional Winkler foundation consisting of rheological models, which
is defined by the following functions of force:

t

2
AFy(x,1) = mAx [ Gt —t")wp(x,t)dt’

t
%4Ax[G(t—t’)wlD(x,t’)dt’, (8.40)
g - t
AF,(t) = ) Ax / Gt —t)up(t')dt
8 ( _
~ §AX / G(l—l/)l,‘tlp(t/)dt/, (8.41)

—00

or alternatively, is constructed from the usual rheological models of
springs (stiffness k) and dampers (damping coefficients «) in accordance

with:
Ak, =4GAx and A« = 4nAx (8.42)
8 8
Ak, = gGAx and Aa«a, = gr)Ax. (8.43)
II. The three-dimensional profile Z = f(r) is transformed into a one-

dimensional profile g(x) according to:

&

= ———dr. 8.44
£() = Ix] 0[ e (8.4

III. The one-dimensional profile according to (8.44) is now pressed into the
viscoelastic foundation according to (8.40)—(8.43). The relationships be-
tween the normal force, the indentation depth, and the contact radius
resulting from the one-dimensional model corresponds exactly to the
ones of the original three-dimensional problem at every point in time
and independent of the loading history.

IV. The stress distribution can, if necessary, also be calculated using an
equation given in Chap. 2 (2.13) and the deformation of the medium
(including the area outside the contact) also with an (2.14) from Chap. 2.
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8.1.5 Description of Elastomers by Radok (1957)

By substituting ¢’ = ¢ — & and expanding (8.2) to powers of &, (8.2) can be rewritten
in the following differential form:

N Z ) [ (D),
o0 = | G@d =t = 307 | TGO @y
0 n= 0
Similarly, (8.4) can be written in the form:
2 do() [ (1),
OEDY i —E ()dé. (8.46)

n=1 0

Equation (8.18) for the Kelvin model is a simple example of the series expansion
(8.45). For the case of the Kelvin model, only the terms of the order n = 0 and
n = 1 appear.

Radok (1957) noted that representations (8.45) and (8.46) were merely special
cases of a more general representation

Plsij (1)] = Olei; ()], (8.47)

where s5;; and ¢;; denote the traceless components of the stress tensor and deforma-
tion tensor in Cartesian coordinates. P and Q are the linear differential operators

defined as:
P = —_,
Z Pk dek
k=0
0:=>" G (8.48)
k=0
In the purely elastic case, these are zero-order operators with
h _ 6,
Po
g =0, pr=0, k>0, (8.49)

and the shear modulus G. It is easy to see that the two operators are simply in-
determinate, yet this can be easily resolved by an appropriate normalization. The
identities (8.5) and (8.6) can be written in the form

P[G(t)] = const,
Q[®(t)] = const. (8.50)

The creep and relaxation functions constitute a transformation pair. If we designate
the respective Laplace transforms by ®(s) and G (s), the following identity is valid:

s2D(5)G (s) = 1. (8.51)
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8.1.6 General Solution Procedure by Lee and Radok (1960)

The material behavior of viscoelastic materials is time-dependent. The state of a
viscoelastic contact is, therefore, dependent on its loading history. In the case of
the normal contact problem, the sole relationship that is independent of the loading
history is the contact configuration, i.e., the relationship

d = ga) (8.52)

between the indentation depth d and the contact radius a. Even this is valid only
when the contact radius monotonically increases over time. In this case, the re-
lationship is defined entirely by the form of the indenter but is independent of
rheology. On the basis of this idea and the form of the fundamental field equations
of elasticity and viscoelasticity theory, Lee (1955) proposed a method to derive the
viscoelastic solution from the solution of the elastic problem. This method, based
on the Laplace transform, was generalized by Radok (1957). In a joint effort, Lee
and Radok (1960) found the solution for the contact of a parabolic indenter, pro-
vided that the contact radius is monotonically increasing over time. Hunter (1960)
extended this to cases where the contact radius a exhibits a single maximum, fa-
cilitating the consideration of, for example, the Hertzian impact problem with a
viscoelastic half-space. The solutions for arbitrary loading histories stem from Ting
(1966, 1968) and Graham (1965, 1967). However, it should be noted that the calcu-
lation increases in complexity for every additional extremum of the contact radius.

Normal contacts with elastomers frequently appear in testing procedures to de-
termine the material properties of the viscoelastic material. The most frequently
used ones are the Shore hardness test (see Sect. 8.3.2), the rebound-indentation test
(see Sect. 8.3.3.1), and the impact test (see Sect. 8.3.3.2).

8.1.6.1 Contact Radius Increasing Monotonically Over Time

The solution by Lee and Radok (1960) can be generalized without great difficulty to
any rotationally symmetric indenter with the profile Z := f(r). It merely requires
the solution of the corresponding elastic problem, which is detailed in Chap. 2 and
summarized in the form:

del — alel(a)7
F = Fw.
ofl = ol(r;a) (8.53)

Here, r denotes the radial coordinate, d the indentation depth, a the contact radius,
Fy the normal force, and o, the normal stress at the surface of the half-space.
The superscript “el” indicates the elastic solution. As previously mentioned, for a
monotonically increasing contact radius, the relationship d = d(a) is independent
of the material law of the half-space. Using the method by Lee and Radok yields
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the following solution to the viscoelastic problem:

d(r) = d(a(1)),
1
Plo.(r,1)] = EQ [Uze;(r;a(f))],

PIEy0)] = 500 [F@)]. (854

Go
with the operators P and Q introduced in (8.47) and (8.48). Gy is the shear modulus
assumed for the elastic solution. Since all elastic stresses are linear in Gy, the
specific value of Gy is irrelevant. The solution can also be expressed using the
relaxation function:

t

1 0
0,,(r,t) = G_o / G(t — T)E {afi[r;a(r)]}dr,

Fy(t) = GLO / G(t —z)% {Fyla()]} dr. (8.55)

The stress vanishes outside the contact, i.e., for » > a(¢). This must be taken into
account for the integrations. Two particularly elegant and simple cases occur when
either the contact radius or the entire normal force is kept constant (see Sects. 8.3.1
and 8.3.2).

8.2 Explicit Solutions for Contacts with Viscoelastic Media Using
the MDR

8.2.1 Indentation of a Cylindrical Punch in a Linear Viscous Fluid

In this section, we will consider the indentation of a rigid cylindrical punch of radius
a with the constant force Fy in a linear viscous half-space (viscosity 1, no grav-
ity, no capillarity), as demonstrated in Fig. 8.9. We will calculate the indentation
velocity and the indentation depth as a function of time.

Fig. 8.9 Indentation of a a
cylindrical punch in a viscous
half-space

-~ —>I/l\1—1—1—1j;rl
— <
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The first step is to determine the equivalent one-dimensional profile using (8.44):

0, |x|<a,

gx) = (8.56)

00, |x|>a.

The second step is to define the Winkler foundation in accordance with (8.42). For
the “spring” force, we obtained AFy = 4nw1pAx = 4nd(t)Ax. At a contact
radius a(t), the vertical force is equal to the individual spring force multiplied by
2a/Ax, which is the number of springs in the contact:

Fy = 8na(t)d (1). (8.57)

In the case of a cylindrical punch, the contact radius remains constant and equal to
a. The force is given by: )
Fy = 8nad. (8.58)

If the force is constant, integration of (8.58) with the initial condition d(0) = 0
yields:
Fyt = 8nad(t). (8.59)

The indentation depth as a function of time is then given by:

d(r) = % (8.60)

8.2.2 Indentation of a Cone in a Linear Viscous Fluid

In this section, we will consider the indentation of a rigid cone f(r) = tan6 - |r|
with the constant force F) into a linear viscous half-space (viscosity 7, no gravity,
no capillarity), as demonstrated in Fig. 8.10. We will calculate the indentation speed
and indentation depth as a function of time.

First the equivalent one-dimensional profile is determined using (8.44):

gx) = %lxltan 0. (8.61)

The second step is to define the Winkler foundation in accordance with (8.42). For
the “spring” forces we get AFy = 4nipAx = 4nd(t)Ax. The total normal
force is determined by (8.57). The relationship between the current contact radius

Fig. 8.10 Indentation of a
cone into a viscous half-space J_ J_
— —» a LVl
RN i/

s
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and the indentation depth does not depend on the rheology and follows from the
equation d(t) = g(a(t)):

_2d0)
a(t) =~ 2. (8.62)

Substituting this equation into (8.57) for the force yields:

Fy = 16 nd(1)d (7). (8.63)
7 tan 6

If the force is constant, the integration with the initial condition d(0) = 0 results
in:

Fyt = nd(t)>%. (8.64)

7 tan 0
The indentation depth as a function of time is then given by:

) 1/2
() = (w) . (8.65)
n

8.2.3 Indentation of a Parabolic Indenter into a Linear Viscous Fluid

In this section, we will look at the indentation of a rigid paraboloid of rotation
f(r) = r?/(2R) (see Fig. 8.11) with the constant force Fy in a linear viscous
half-space (viscosity 7, no gravity, no capillarity). We will calculate the indentation
speed and indentation depth as a function of time.

First the equivalent one-dimensional profile is determined using (8.44):

g(x) = x*/R. (8.66)

For the second step, we will define the Winkler foundation in accordance with
(8.42). For the “spring” forces we get AFy = 4mipAx = 477(2 (t)Ax. The total
normal force is determined by (8.57). The relationship between the current contact
radius and the indentation depth does not depend on the rheology and follows from
the equation d(t) = g(a(?)):

a(t) = VRAQ). (8.67)

Substituting the contact radius into the equation for the force yields:

Fy = 87RY2\/d(1)d (1). (8.68)

Fig. 8.11 Indentation of
a paraboloid in a viscous
half-space J_ l

7
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If the force is constant, integration with the initial condition d(0) = 0 yields:
16 120302
Fyt = ?nR d(t)’=. (8.69)

The indentation depth as a function of time is then given by:

3Fyt 2/3
dit) =\ ——= . i
(t) (man/z) (8.70)

8.2.4 Indentation of a Cone in a Kelvin Medium

Let us now consider the indentation of a cone in a Kelvin medium with shear mod-
ulus G and dynamic viscosity 7. In the first step, the equivalent one-dimensional
profile is determined by (8.44): g(x) = tan 6 -|x|- /2. The contact radius is deter-
mined by the equation d = g(a), thusa = (2/7)(d/ tan 6). We now have to use a
superposition of the elastic contribution for the force (see Sect. 2.5.2 in Chap. 2):

Fyeo = 8G d° (8.71)
N tan @ '
and the viscous contribution (see (8.63)):
_8G d? 161

dd. 8.72
7 tanf  mtan6 ( )

N =

This equation can be written in the form

wtanf - Fy . d(d?)
— —— =d’+2tdd =d*? : 8.73
e + 2t +t ” (8.73)
where t = 1/G is the relaxation time of the medium. Integration of this equation
with the initial condition d(0) = 0 yields:

wtan6 - Fy

2 —
0=

(1—e/7). (8.74)

8.2.5 Indentation of a Rigid Cylindrical Indenter into a “Standard
Medium”

We will now look at the indentation of a rigid cylindrical indenter with radius a into
an elastomer, which will be described using the “standard model” (see Fig. 8.6).
The standard model of an elastomer consists of a Maxwell element (series-
connected stiffness G, and damping 1) and a parallel stiffness G;. The one-
dimensional counterpart is a foundation of elements at a distance Ax, whose
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individual components are characterized by the parameters 4G Ax, 4G, Ax, and
4nAx. The equivalent one-dimensional indenter is a rectangle whose side has the
length 2a. For the normal force the following applies:

Fy =8Giad + 8Gra(d — U)1,1D), (8.75)
where w, | p satisfies the following equation:
d =wiip + WD, (8.76)

with T = 1/ G,. The solution of these equations with the initial conditions d(0) = 0
and w; 1p(0) = 0 yields to:

wyp (1) = Fiv 1 —exp —L )
' 8G1a T (G1 + Gz)

FN Gz Glt
d(t) = 1— - ). 77
« SGla( Gi + G exp( (G + Gz))) ®70
In the limiting case G, > G we recover the result for a Kelvin body:
FN Glt
d(t) = 1— — ). 7
=561 ( o ( : ) ) ©7
8.3 Explicit Solutions for Contacts with Viscoelastic Media
by Lee and Radok (1960)

8.3.1 Constant Contact Radius

For a constant contact radius, i.e., the limiting case of the requisite monotonic
behavior, the right-hand side of (8.54) is populated by time-invariant terms. The
comparison to (8.50) immediately yields:

0.:(r,1) = mgi(r;a)G(l‘),
Fy(t) = mFﬁ(a)G(t), (8.79)

with the relaxation function G(¢).

8.3.2 Constant Normal Force (Shore Hardness Test, DIN EN ISO 868)

According to (8.54), for a constant normal force Fy(t) = const = Fy, it is valid
that P[Fy(¢)] = const. The comparison to (8.50) yields the relationship:

Fil(a(t)) = F® (), (8.80)
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with ®(7) denoting the (normalized) creep function. A few examples for (8.80)
were explicitly considered in Sect. 8.2.

From (8.80) we can design a very simple measurement procedure of the creep
function: an indenter can be placed on the viscoelastic half-space and the indenta-
tion depth resulting from its own weight can be measured as a function of time.

Another important application of (8.80) is measuring the hardness of viscoelastic
media according to Shore (DIN EN ISO 868). It involves indenting a test piece
with a rigid indenter by applying a constant force Fy for a predetermined amount
of time and measuring the achieved indentation depth at the end of the test. This
indentation depth is then the determining measure for the Shore hardness. The
values of the normal force and indentation time, as well as the particular indenter
geometry vary according to the specific test form (Shore-A, Shore-D, etc.). If the
creep function of the material to be inspected is known, the result of the hardness
test can be predicted by (8.80) (within the scope of the fundamental assumptions of
the equation, i.e., linear material behavior and validity of the half-space hypothesis).
As indenting bodies: a cone for the Shore-D test (see Sect. 8.3.2.1) and a truncated
cone for Shore-A test (see Sect. 8.3.2.2) are utilized. We will also consider the
indenter profile in the form of a power-law (see Sect. 8.3.2.3) as, through a Taylor
series expansion, it can function as a building block of a generalized Shore test for
any differentiable indenter profile.

8.3.2.1 Shore-D: The Cone in Contact with a Standard Solid

For illustration purposes, we will restrict the consideration to the viscoelastic ma-
terial model of the standard solid, for which we determined the normalized creep
function in Table 8.1 (Sect. 8.1.3.4) to be:

®(r) = % [1 —(1—k)exp (—g)] (8.81)

Here, k is the ratio between the static modulus and glass modulus, while 7 is the
characteristic relaxation time of the standard solid model.

In Chap. 2 of this book (see Sect. 2.5.2) it was demonstrated that, for the conical
indenter with the slope angle 6, which was first considered in viscoelastic contact
by Graham (1965), the normal force in the elastic case is proportional to the square
of the indentation depth d:

Fil ~d*. (8.82)

Equation (8.80) and the creep function (8.81) of the standard body give the follow-
ing relationship for the indentation depth as a function of time:

a kt
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Fig. 8.12 Depend f : ‘ ‘ ‘
ig ependency o 151 k=01 amrmd

the normalized indentation - k=001 Jie
depth on the normalized time e ’f
in logarithmic representation == k=0.001 K2

for the Shore hardness test of
a standard solid medium with
a conical indenter

log,  [d/ d(t=0)]

1 2
log10 (t/7)

The indentation depth at the beginning of the test d (¢ = 0) is then the instantaneous
elastic solution with the glass modulus Gy (see Sect. 2.5.2):

[%F tan
d(t = 0) = ”S—Ga:‘) (8.84)

Solution (8.83) is shown in normalized logarithmic representation in Fig. 8.12.

8.3.2.2 Shore-A: The Truncated Cone in Contact with a Standard Solid
The Shore A test, which is used for softer materials, is carried out with a truncated
cone as the indenting body. This body has the rotationally symmetric profile

0, r<b,
= 8.85
A {(r —b)tanf, r > b, ( %

with the radius b at the blunt end and the conical inclination angle 6 (note that the
complementary angle 6* = m/2 — 6 is used in the Shore hardness measurement
standard). The elastic solution needed to apply (8.80) for this contact problem was
derived in Chap. 2 (Sect. 2.5.9) and is described by:

d(a) = atan 0 arccos (é) ,

a

b b b2
F{l(a) = 4G tan fa® |:arccos (—) +—/1— —2} . (8.86)
a

a a
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The contact radius a as a function of time during the hardness measurement of a
standard medium, therefore, results implicitly by solving the equation

Gy tan a? b b b2
———Jarccos | — |+ —/1 ——
F a a a?

= l |:1 — (I —=k)exp (—ﬁ)} . (8.87)
k T

From the contact radius the remaining indentation depth, and thus the Shore hard-
ness, can then be determined with the first of the two equations given in (8.86). For
b = 0, the results for the fully conical indenter are reproduced.

8.3.2.3 Generalized Shore Test with an Indenter in the Form
of a Power-Law in Contact with a Standard Body
For an indenter with the profile

f(ry=cr", neR", (8.88)

where 7 is a positive real number and ¢ a constant coefficient, the relationship be-
tween the normal force and the indentation depth in the elastic case has been shown
in Chap. 2 of this book (Sect. 2.5.8):

n+tl

Fil ~dn, (8.89)

With (8.80) and the creep function (8.81) of a standard medium, we get the follow-
ing indentation depth as a function of time:

iy (1 kt\7) ™
m = %E |:1—(1—k)exp (—7):“ . (8.90)

Then the instantaneous indentation depth d (¢t = 0) results from the elastic solution
with the glass module Gy:

F np 1)
d(t =0) = Folk@m)e]" n +1 ’ (8.91)
8G n
with the stretch factor, which depends on the exponent of the profile
'n/24+1)
k() = J/m—7=, 8.92
(n) fF[(n+1)/2] (8.92)
where we have made use of the gamma function

I'(z):= / 17~V exp(—t)dr. (8.93)

0

For n = 1 the results of the conical indenter demonstrated here can be reproduced.
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8.3.3 Non-MonotonicIndentation: Contact Radius with a Single
Maximum

In this section, we consider loading histories consisting of an indentation and re-
bound phase. Let the contact radius have its maximum value at the time of reversal
t,» and let the time ¢t = 0 be zero. The latter condition presents a restriction to the
generality, but it is surely the most common case. A possible graph of the contact
radius is depicted in Fig. 8.13.

The first step is to solve the contact problem for the indentation phase t < #,,.
We have at our disposal the results of the previous sections and, specifically, we
have (8.54). Additionally, there exists an explicit function #,(z’) with #; < t,, and
t' > t,, so that (see the Fig. 8.13)

a(ty) = a(t'). (8.94)

For the indentation depth d(¢) and the normal force Fy (¢) during the rebound phase
t > t,, we obtain the expressions for arbitrary rotationally symmetric indenters
determined by Ting (1966):

’

t
a0 = d%a) - [0 -0 | [ 60— L ataenar far
Im 1 (t')
11 (t)
Fy(t) = / G(t—t’)%Fﬁ,l(a(t’))dt’, (8.95)
0

with the normalized creep function @, the normalized relaxation function G, and the
elastic solutions indicated by the superscript “el”, which is discussed in Chap. 2.

In the case of the parabolic indenter, the results from (8.95) were already known
to Hunter (1960). Furthermore, Ting (1968) and Graham (1967) found the solutions
for arbitrary counts of maxima and minima of the contact radius. Regrettably, the
analytical treatment of these increasingly interlinked differentiations and integra-
tions is not practically viable.

Of course one can conceive various loading protocols where the contact radius
has a single maximum and the contact problem thus decomposes into an indentation
and rebound phase. Two technically relevant cases are discussed in the literature:

Fig. 8.13 Schematic graph of A
the contact radius a(r)

~

u(t") tm t t




236 8 Viscoelastic Materials

rebound-indentation testing in which the first phase is displacement-controlled and
the force is zero in the second phase, and the linear centric impact problem, which
of equal importance for various testing procedures.

8.3.3.1 Material Tests Using the Rebound-Indentation Procedure
In rebound-indentation testing, an indenter is pressed under displacement-control
into a viscoelastic half-space, e.g., with a constant velocity vy:

d' (1) = vot. (8.96)

The superscript “I” indicates the indentation phase ¢t < #,,. The indenter is subse-
quently released and the half-space relaxes. By measuring the indentation depth
during relaxation, it is possible to determine the time-dependent material func-
tions of the elastomer. The protocols of the indentations are displayed in Figs. 8.14
and 8.15.

Argatov and Popov (2016) were able to prove that the indentation depth during
the rebound phase fulfills the relationship

Im

tm

d

d(t) = [K(z — 1ty — t/)@dl(t/)dt/ = vO/K(Z —t' ty—tdt', (8.97)
0 0

independent of the actual form of the indenter Equation (8.97). for the flat cylindri-
cal punch was already derived by Argatov and Mishuris (2011) and for the parabolic
indenter by Argatov (2012). The function K(¢,t"), which was previously utilized by
Greenwood (2010) for an alternative presentation of the solutions by Ting (1966)
and which presents the stress response via a unit deformation applied at # = 0 and

Fig. 8.14 Protocol of the
indentation depth during
rebound-indentation testing

d(t)

Fig. 8.15 Protocol of the
normal force during rebound-
indentation testing. The
rebound phase occurs under
zero force

I tm 1I t
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Fig. 8.16 The function 10

K (z,t) from (8.99) for the

three-element standard solid o
7

with k = 0.1 8 / 1
6, N
' d
e

t7/T

Fig. 8.17 The function 10
K(t,t') for the three-element
standard solid with k = 0.5

t7/T

removed at ¢ = ¢’, is connected to functions ® and ¥ by the relationship:

t
K(t,t)y=1-¥(@) + / \Il(t”)%(b(t —1Mdt”, >t (8.98)

t

For the three-element standard solid with k = G,/ G and the characteristic relax-
ation time 7, the expression is:

K(t,t) = (1—k) (1 —exp (—%)) exp (—M) L tsr. (899

T

A normalized representation of this function for two different values of k is given
in Figs. 8.16 and 8.17.
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8.3.3.2 The Hertzian Impact Problem for a Viscoelastic Half-Space
Another simple test method for determining the viscoelastic properties of elas-
tomers is rebound testing, which is usually carried out with spherical impact bodies.
From the measured number of impacts during the experiment, conclusions about the
dynamic material behavior of the rubber can be drawn.

Hunter (1960) looked at the Hertzian impact problem, i.e., the straight, centric,
frictionless impact of a rigid sphere, with a viscoelastic half-space when the peak
time is small compared to the smallest characteristic relaxation time 7 of the elas-
tomer. In this case, the creep and relaxation functions of the elastomer in normalized
representation can be approximated by the expressions of the Maxwell body:

d(t) =1+ %
G(t) = exp (—é) . (8.100)

The sphere has the radius R and the initial velocity vy. The half-space has the
glass module Gy and the (constant in time) Poisson number v. In this case, Hunter
determined the following equations of motion for the variable Z (1) = a?(t)/R:

.. 1 .
Z+~(Z—-v)+CZ? =0, t=<ty,
T

.. 1 .
Z—=BZ4v)+CZ?=0, t>t,, (8.101)
T
with "
8GoR
= — 8.102
3M(1—v) ( )

During the penetration phase, Z corresponds with the indentation depth (which is
the position of the sphere) and the equation of motion is exact. The presented equa-
tion of motion during the retraction phase, on the other hand, is an approximation
that is accurate only for large values of ¢ compared to the impact time. Hunter then
determined the following approximate solutions for the coefficient of restitution e
and the impact duration 7"

4T,
e=1——-——,
91
Ty
T =T1T,(1—-0.037—]. (8.103)
T

Here, T, denotes the duration of impact for the purely elastic case, according to
Hertz (1882). The viscoelastic impact problem was also examined in detail by
Argatov (2013) using an asymptotic approximation.
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8.4 Normal Contact of Compressible Viscoelastic Media

Most elastomers can, to a good approximation, be considered incompressible. This
was one of the general assumptions in the previous sections of this chapter, with
only the shear modulus (complex modulus, relaxation function, creep function, etc.)
being the subject of rheological study. Yet there is no theoretical justification re-
quiring this assumption of incompressibility. Indeed, elastomers generally exhibit
a deformation response to hydrostatic compression, and a relaxation function and
creep function associated with this volume deformation.

In the following sections, we will outline some possibilities on how to take the
compressibility of the viscoelastic medium into account for contact problems. At
several stages we will refer back to various concepts introduced earlier in this chap-
ter.

8.4.1 The Compressible Viscoelastic Material Law

Equation (8.47) in Sect. 8.1.5 introduced the general material law of a linear vis-
coelastic medium for the traceless components (belonging to the shear components)
of the stress and deformation tensor:

Ps[sij ()] = Qslei; (1)]. (8.104)

Here, s5;; denotes the traceless component of the stress tensor 0;; and e;; denotes the
traceless component of the deformation tensor ¢;;. P and Q are linear operators of

the form
P := —_—,
S Zps,k qik
k=0
Qs = Z%,kw, (8.105)
k=0

with an added index “S” to emphasize that we are dealing with the shear component
of the deformation. For the volume components, i.e., the trace components, an
analogous material law for the most general case can be formulated:

Pyloii ()] = Qvleii (1)] (8.106)

with analogous operators:

Py = ZPV”‘@’
k=0

Ov =) qviy- (8.107)
k=0
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For example, let us consider a compressible Kelvin medium for which the stress
state has only a purely linear-elastic and a purely linear viscous component. In this
case, the material law that we already split into its shear and volume components
is:

011 = 3Key + 38é,

Sij = 2G€,’j + 27)é,’j, (8108)

which means the previously introduced differential operators have the form:
Ps =Py =1,
Oy =3K + 3¢ 9
vV = 8[ I

9
Os =2G + 2n—

o (8.109)

Here, G and K are the shear and bulk modulus, while 7 and ¢ are the dynamic shear
and volume viscosity of the medium, respectively.

8.4.2 Is MDR Mapping of the Compressible Normal Contact
Problem Possible?

The solution process of the normal contact problem begins, once again, with the
fundamental solution for the displacement w of a half-space under the effect of a
normal point force Fj, which acts on the origin starting at time = 0 and is then
held constant. In the elastic case, the fundamental solution to the normal displace-
ment of the surface is the well-known solution by Boussinesq given in (2.2),

FyH(t) _ FyH(t)3K + 4G
xE*r ~ 47nGr 3K+G'’

w (r,1) = (8.110)
with the effective elasticity modulus E*. According to the principle of Radok
(1957), solving the viscoelastic problem involves the Laplace transform of the
elastic solution (owed to the analogous forms of the elastic and viscoelastic field
equations) with the accompanying substitution of the elastic moduli through the
operators P and Q. The following equation is obtained for the Laplace transform
(all transformed quantities are indicated by a “hat”) of the desired fundamental so-
lution:

Fy Oy +205

w(r,s) = — = . (8.111)
2mrs Qs[Qv + Qs/2]
However, the transforms of the operators are polynomials in s,
oo
Os =) qsis*,
k=0
Ov =) quist. (8.112)
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In other words, (8.111) can be written in the general form:

Fy »
D(r,s) = %@(s), (8.113)

with

2 S esoqvast +23 0 g qskst
S Y o s ast (rto quast + %Z/Zo:o qsk5¥)

which, after an inverse transform into the time domain, leads to the desired solution

D(s) := , (8.114)

w(r 1) = i—qum). (8.115)

Yet this is the fundamental solution for an incompressible medium with the (dimen-
sional, shear) creep function ®(¢). This means that the normal contact problem for a
compressible viscoelastic material can always be reduced to an equivalent problem
of an incompressible medium, assuming that the material law of the compressible
body in the form (8.104) and (8.106) is known and the inverse Laplace transform of
the expression (8.114) exists.

In particular, the relationship (8.51) between the creep function and the time-
dependent shear modulus G(¢),

s2D(5)G (s) = 1, (8.116)

allows finding the time-dependent shear modulus by using the inverse Laplace
transform of the expression

é(s) _ > o CIS,kSk (ZZO:O QV,kSk + %ZZO:O QS,kSk)
2s (Z?:o qvisk +23°02, QS,ksk)

Thus all previously derived MDR relations for the normal contact from previous
sections can also be used in the case of compressible viscoelastic media.

(8.117)

8.4.3 Normal Contact of a Compressible Kelvin Element

To illustrate the relationships derived in the previous section, we will provide a
brief demonstration of the transformation of the compressible normal contact to the
corresponding incompressible problem for an incompressible Kelvin element with
the general material law (8.108).

Inserting the operators (8.109) into (8.114) leads to the following expression for
the Laplace transform of the shear creep function of the incompressible medium in
question:

1 3K +4G + (3§ + 4n)s

s(G+ns)BK + G + B¢ +n)s]’

d(s) = (8.118)
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The inverse transform into the time domain yields the creep function

1 G 3 3K+ G
D) = G [1 —exp (—;l)} + K1 G [1 —eXxp (_ 3+ t)i| (8.119)

and the time-dependent modulus (to avoid any confusion with the shear modulus of
the original compressible medium, we add the index “ink™)

3 + 3K+ G
Gk (1) =1 S+ 5t)+G———
3¢ + 47 3K + 4G 5120,
G~ Kn)? (3K +4G ‘
X I —— .
GK +4G)3E+ 4n)2 “P\ " 3g 4y

Here, §(¢) denotes the Dirac function. In the limiting case of an incompressible
medium, we obtain the known solution

lim Giu(1) = G + n3(0). (8.121)

The limiting case of rapid relaxation

3¢+ 4n

— Lt 8.122
3K +4G < ( )

also results in an incompressible Kelvin body with

G (1) = G

3K+ G ( 347 27(GE — Kn)?

3K+4G  \"3e 147 " (3K +4G)2(3¢ + 4;7)) 3. (8.123)

It should be noted that the creep function (8.119) and the time-dependent modulus
(8.120) can be interpreted in different ways in terms of rheological models (and
consequently also for the purposes of the MDR). For example, the modulus (8.120)
can be produced by a parallel arrangement of a Kelvin element and a Maxwell
element (see Fig. 8.18) with the material parameters of the rheological models set
to (v is the Poisson’s ratio of the medium):

G _glK+G G . 27(GE — Kn)?
3K +4G 2(1-v)’ (3K + 4G) (3¢ + 4n)*’
3t + 1 27(G§ — Kn)®
=034y ™7 GK + 46238 + 41)°

4n(1 —v +v?) +35(1 —2v)?

30y (8.124)

n+n =

However, other rheological models are also possible. For instance, the form of
the creep function (8.119) suggests the possibility of a serial arrangement of two
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Fig. 8.18 Rheological

element to model a com- 7,
pressible Kelvin body within G, 77'
the framework of the MDR G,

Fig. 8.19 Element for a

compressible Kelvin body

in the limiting case of rapid G M+
relaxation :

Fig. 8.20 Rheological ele-
ment for an incompressible
Kelvin body G

=

suitably chosen Kelvin elements. The rheological models for the limiting case of
fast relaxation and for the incompressible body are shown in Figs. 8.19 and 8.20.

Once the compressible normal contact problem has been reduced to the equiv-
alent incompressible problem and the corresponding rheological model has been
identified, all previously derived MDR rules pertaining to the solutions of incom-
pressible problems can be applied. As an example, Brilliantov et al. (2015) derived
the dissipating force during the impact of two spheres in the limiting case given
by (8.122). using developments from perturbation theory. Based on the aforemen-
tioned derivations and the relationships of the incompressible MDR model, it is
immediately obvious that, for an arbitrary axially symmetric indenter, this force is
given by:

Fais = 8(n1 + m)ad = (12il—cll))2 [gn(l —v )+ E1 - 2v)2:| . (8.125)

which (in the case of impacting spheres in the Hertzian approximation) naturally
corresponds to the result of Brilliantov et al. In (8.125) a, as always, refers to the
contact radius and d refers to the indentation depth.

8.5 Fretting Wear of Elastomers

Contacts of rigid bodies with polymers or elastomers occur in many applications.
If they are moving relative to one another, then the surfaces in such contacts are
subjected to wear. Counterintuitively, the endangered partner is not necessarily
the softer polymer piece but may well be the metal surface (Higham et al. 1978).
Whether there is wear to the more rigid or to the softer contact partner depends on
many load and material parameters. In the following, we explore the idea that the
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“rigid” indenter wears while the elastic deformation is solely due to the elasticity of
the polymer.

Let us consider an axially symmetric rigid profile which is brought into contact
with a polymer (average indentation depth dj) and is subjected to vibrations of the
amplitude Au© in the tangential direction and vibrations of the amplitude Aw©®
in the normal direction:

d(t) = dy + Aw® cos(wr),
u@ ) = Au® cos(wt + ¢). (8.126)

Under the assumption of complete stick in the entire contact area, the tangential
stresses at the edge of the contact would exhibit a singularity as in the elastic case.
This means that the no-slip condition cannot be met in the vicinity of the edge of
the contact. Thus, even small amplitudes lead to the formation of a ring-shaped slip
zone at the edge of the contact which results in wear. The inner zone remains stick-
ing. The existence of this stick zone was demonstrated by Barber et al. (2011) for
arbitrary two-dimensional topographies (not necessarily with a singular, connected
contact area) under very general assumptions and for three-dimensional topogra-
phies under the assumptions of the theory of Cattaneo and Mindlin.

In this book, we will restrict our consideration to axially symmetric contacts.
Furthermore, we assume that the friction in the contact obeys the local form of the
Coulomb law of friction: the surfaces remain sticking if the tangential stress 7 is
lower than the normal pressure p multiplied by the coefficient of friction u, and that
the tangential stress remains constant once slip sets in:

|t| < up, stick,
|| = up, slip. (8.127)

We refer to the entirety of all points that fulfill the condition |t| < wp at every point
in time as the “permanent stick zone”. Due to wear, the stress in the slip zone will
decrease over time and be re-distributed to the stick zone. We can assume that the
original stick zone remains sticking over the course of the wear process, while in
the area of the original slip zone the slip condition is fulfilled even in the worn state.
The progressing wear leads to a continual pressure decrease in the slip zone. This
process finally ends when the pressure vanishes completely. In this limit state, the
wear rate in the slip zone approaches zero: the system approaches a state in which
no further wear occurs. The precise kinetics of this process depend on the form of
the wear law. The shape of the profile in its final state, however, does not depend
on the details of the wear law and it can be determined in a general form.

We will not presume any particular local wear law. Instead, we will just assume
that the following very general conditions are met: (a) wear occurs only where
there is a finite relative displacement of the surfaces (the existence of tangential
stresses alone is not sufficient for wear); (b) wear occurs only in zones of non-zero
pressure. Combined with the assumed Coulomb law of friction, these assumptions
alone uniquely determine the limit shape of the worn profile. Indeed, from the
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1T

Fig. 8.21 Three zones of the worn profile in the limit state. I is the zone of permanent stick; here
the original profile remains unchanged. II is the zone in which the pressure vanishes, even though
at maximum indentation the surfaces are in a state of established contact with no pressure. III is
the zone in which no contact is established (and consequently no change of the profile occurs)

assumption (a) it follows that the shape of the indenter in the permanent stick zone
must match the original (unworn) shape (zone I in Fig. 8.21). Under assumption
(b), the pressure outside the permanent stick zone vanishes in the limit state. Yet
this unpressurized state should result due to the wear. This means that the surfaces
in zone II at the maximum indentation are “just barely touching”; i.e., contact has
been established with zero pressure. This in turn means that the worn indenter at
the time of maximum indentation must coincide exactly with the shape of the free
surface, which would have resulted from the indentation from the original indenter
shape within the permanent stick radius (zone II in Fig. 8.21).

According to the half-space hypothesis, small oscillations parallel to the con-
tact surface, independent of their particular oscillation mode (linear oscillations in
a single direction, superposition of oscillations in two direction, or torsional oscil-
lations), only result in a tangential displacement of the surfaces that are just barely
in contact and therefore cause no wear. Since the shape of a surface that is indented
by a non-varying contact area does not depend on the rheology of the medium and
matches the one for an elastic body, the shape of the worn indenter in its final state
is given by (6.18) which can be found in Chap. 6:

ﬁ)(r), r<c,r>a,
Joo(r) =142 ¢ x)dx c (8.128)
o0 ;[ i %—kdmaxarccm(;)] c<r=a.
with
dmax — dO + Aw(o) (8129)

in which gy(x) is the MDR transformed profile:

x|

g0(x) 'X'O/m' (8.130)
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The solution is uniquely defined by the maximum indentation depth and the radius
c of the permanent stick zone. We, therefore, concern ourselves with the calcula-
tion of this determining parameter ¢ depending on the loading procedure and the
material parameters.

8.5.1 Determining the Radius c of the Permanent Stick Zone
In elements of the one-dimensional MDR model, the normal and tangential forces
(in the case of an incompressible elastomer) are given by (8.35) and (8.37). The

displacements of the “springs” at location x are calculated to:

wip(x, 1) =dy—g(x) + Aw® cos wt,
uip(x,1) = Au® cos(wr + @p). (8.131)

The normal and tangential forces are given by equations

AFy = 4AxG'(0)(do — g(x))
+ 4AxAw©® (G'(w) coswt — G"(w) sinwr) (8.132)

and
8
AF, = §AxAu(0) (G'(w) cos(wt + @) — G"(w) sin(wt + ¢p)),  (8.133)
where G(w) = G'(w) + i G"(w) is the complex shear modulus; i is the imaginary
unit, G’ (w) is the real component of the complex shear modulus (storage modulus),

and G”(w) is the imaginary component of the complex modulus (loss modulus).
The no-slip condition reads |AFy| < pAFy or

%Au(o) |G’ (w) cos(wt + @) — G" (w) sin(wt + ¢o)|
< 1[G (0)(do — g(c)) + Aw® (G'(w) coswt — G"(w) sinwt)].  (8.134)

It follows that:

1 |12
g(e) <dy— ——| —=Au? |G'(w) cos(wt + @o) — G (») sin(wt + ¢o)|
G'0)| 3

— Aw® (G'(w) cos wt — G"(w) sin wt)]. (8.135)

The radius c of the permanent stick zone is the largest radius, for which there is no
slip at any point in time or, alternatively, the smallest of the values where slip is just
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avoided:

1 12
g(c) = min {dy — —ZAuY |G (w) cos(wt + @o) — G (w) sin(wt + @)
‘ G'O)| p3

— Aw© (G/(CO) coswt — G"(w) sina)t) :|§ (8.136)

This equation can also be rewritten in the more compact form, as follows:
|G(@)| [ 12
G'(0) Lu3

with Q = wt + ¢, where ¢ is defined as the phase angle of the complex shear
modulus with:

g(c) = min %do — Au® [cos(Q + ¢o)| — Aw® cos .Q:“ , (8.137)

G// (a))

G'(w)
Let us first examine the case in which the phase shift ¢y between the tangential and
normal oscillation is not fixed (e.g., slow “phase creep”). This case would simply

require inserting the maximum absolute values of | cos(2 4+ ¢;)| and cos Q into
(8.137):

tang; = (8.138)

g0 == "Gl |22

"~ G(0) Lp3

This equation is equally valid for the case of two different incommensurable oscil-
lation frequencies in the normal and the tangential direction.

If the frequencies are equal and the phase shift is fixed by some phase syn-
chronization mechanism, the situation is more complicated. An analysis of (8.137)
shows that the smallest stick radius is achieved at ¢y = 0. In this case, the radius
can also be determined from (8.139). The maximum stick radius is achieved at
@o = /2 and is given by the following equation:

|Au©| + Aw(o)i| , (non-fixed phase shift). (8.139)

G 12 2
8(0) =do - IG’((Q();' \/(ﬁ 3 |Au<°)?) +(AwO) (8.140)

The general case of an arbitrary phase shift comprises several special cases, which
are presented in research by Mao et al. (2016).

8.5.2 Fretting Wear of a Parabolic Profile on a Kelvin Body

As a concrete example for the application of (8.140), we consider a parabolic pro-
file fo(r) = r?/(2R) in contact with a Kelvin body, which can be represented as
a parallel arrangement of an elastic body (shear modulus G) and a viscous body 7.
Accordingly, the elements of the one-dimensional foundation consist of the follow-
ing elements:
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e In the normal direction, they consist of a spring with the normal stiffness Ak
arranged in parallel with a damper with the damping coefficient Ac..

e In the horizontal direction, the elements have a tangential stiffness Ak, and the
damping coefficient Ac,.

Said values of stiffness and damping coefficients are determined according to (8.38)
and (8.39) by the following rules:

8 8
Ak, =4GAx, Aa,=4nAx, Ak, = §GAx, Ao, = §nAx. (8.141)

The MDR profile is, in accordance with (8.130), equal to g(x) = x2/R, and the
complex shear modulus of the medium is equal to G(w) = G + iwn. For the
rheological quantities |G(w)| and G’(0) occurring in (8.140) we obtain:

IG(w)| = VG? + p?0? and G'(0) =G. (8.142)

In the case of ¢y = /2, (8.140) takes the form of

c
R

2

2
do— VT T (m)z\/(%muwn) +(AwOY, (8.143)

with the introduction of the relaxation time t = n/G.
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Contact Problems of Functionally Graded 9
Materials

Modern technological developments require innovative materials to meet ever in-
creasing performance demands. An example of this is functionally graded materials
(FGMs) whose material composition or micro-structure varies continually within
the volume in a pre-defined way. In this manner, the material properties can be
set (possibly independently of each other) to the optimal values. A controlled gra-
dient of the elasticity modulus has been proven to lead to a greater resistance to
contact and friction damage (Suresh 2001). For instance, Hertzian cone cracks
are suppressed due to the reduction of the maximum tensile stresses in the surface
(Jitcharoen et al. 1998) and the wear resistance is increased (Suresh et al. 1999).
In mechanical engineering, components such as cutting tools, gears, and parts of
roller bearings or turbine blades are made from FGMs. This is just a small sample
of the constantly expanding range of applications of FGMs (Miyamoto et al. 1999).
In the biomedical arena, for endoprosthetics in particular, the use of FGMs in arti-
ficial knee and hip joints is intended to improve biocompatibility and reduce wear,
extending the service life of the endoprosthesis and, thereby, increasing quality of
life (Sola et al. 2016). A high degree of biocompatibility is also essential for dental
implants (Mehrali et al. 2013).

Many insects and animals such as geckos possess highly effective attachment
devices, allowing them to stick to and move on surfaces of widely varying ranges
of roughness and topographies. This has inspired a great amount of research into the
adhesion of biological structures with the aim of manufacturing artificial surfaces
with similar adhesive properties (Boesel et al. 2010; Gorb et al. 2007). In fact, many
biological structures exhibit functional material gradients which serve to optimize
the adhesive properties (Peisker et al. 2013; Liu et al. 2017). Furthermore, the
adhesive properties of FGMs are of importance to the fields of innovative nano-
electromechanical and micro-electromechanical systems (NEMS, MEMS).

Although the term “functionally graded material” was only coined in 1986
(Miyamoto et al. 1999), analytical and experimental research of their contact
mechanical behavior had already been conducted much earlier. The origin lies in
the field of geomechanics where the influence of the elasticity modulus, which in-
creases with the depth of the soil foundation, on the stresses and displacements was
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of particular interest (Frohlich 1934; Holl 1940). Over the years, different functions
for the varying elasticity modulus were in use. On this issue, the works of Selvadu-
rai (2007) and Aleynikov (2011) offer a good overview and we can safely skip
over providing a complete list of references. In nearly all cases, the calculations
are exceedingly complex and only allow numerical solutions. The majority of the
publications deal with an exponential increase or a power-law dependent increase
of the elasticity modulus. For an exponential change of the elasticity modulus, only
approximate solutions exist (so far) (Giannakopoulos and Suresh 1997). However,
contact problems of elastically inhomogeneous materials that obey the law

k
E(z) = E, (CZ—O) with —1 <k <1 ©.1)

can be solved exactly in an analytical manner. The Poisson’s ratio is assumed to be
constant. Due to the fact that the elasticity modulus of the foundation always in-
creases with the depth, law (9.1) was initially restricted to positive exponents. The
first solutions go back to Holl (1940) and Rostovtsev (1961), who imposed the addi-
tional restriction v = 1/(2 + k). Complete solutions of frictionless normal contacts
were provided by Booker et al. (1985) and Giannakopoulos and Suresh (1997). A
special case of (9.1) is the famous Gibson medium: the linear-inhomogeneous, in-
compressible half-space (k — 1,v — 1/2). Gibson (1967) managed to prove that
such a medium behaves like a Winkler foundation (see also the work of Awojobi
and Gibson 1973). If the solutions of the contact without adhesion are known, the
work required to transfer that understanding to the adhesive normal contact between
graded materials is not too great. Still, for an elastic inhomogeneity according to
(9.1), the problem was only solved in the previous decade and remains the subject
of current research (Chen et al. 2009; Jin et al. 2013, 2016; Willert 2018). How-
ever, all of these works assume a positive value of the exponent, which restricts their
theoretical application to the class of graded materials where the elasticity modulus
grows with increasing depth. Yet, as already mentioned in this chapter, plenty of
practical applications exist (e.g., cutting tools, dental implants) which require a hard
surface along with a softer core. A careful examination of the literature revealed that
the theory is equally valid for negative exponents —1 < k < 0 (Rostovtsev 1964;
Fabrikant and Sankar 1984). Although law (9.1) now permits the representation of
positive and negative material gradients, and barring the special case of k = 0, the
law remains physically unrealistic for homogeneous materials due to the vanishing
or infinitely large elasticity modulus at the surface and at infinite depth, respectively.
Nevertheless, FEM calculations by Lee et al. (2009) confirmed that it yields qualita-
tively correct results for functional gradients, if the modulus is described piecewise
by a power-law.

Analytical solutions of tangential contacts between materials exhibiting an elas-
tic inhomogeneity according to (9.1) were only recently developed by Hel3 (2016b)
and HeB and Popov (2016). Up until then, merely the plane tangential contact prob-
lem between a rigid, infinitely long cylinder and the elastically inhomogeneous
half-space was considered completely solved (Giannakopoulos and Pallot 2000). In
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very recent times, the MDR-based theory of Hefl and Popov enabled the fast calcu-
lation of even complicated impact problems of FGMs (Willert and Popov 2017a,b).

Following the order in which the applications of FGMs are presented in this
chapter, we will now discuss frictionless normal contacts (Sect. 9.1), adhesive nor-
mal contacts (Sect. 9.2), and tangential contacts with partial slip (Sect. 9.3). We
restrict the consideration to the elastic inhomogeneity given by (9.1). Furthermore,
the parameter studies of the majority of the graphical solutions were conducted for
positive exponents 0 < k < 1 only. Yet it must be expressly noted that all provided
solutions are also valid for negative exponents —1 < k < 0. Additionally, our
examination is usually limited to the contact of a rigid indenter and a functionally
graded material. However, the theory is equally applicable to the contact between
two elastically inhomogeneous bodies of the same exponent k and of the same char-
acteristic depths c¢y. In this case, the Poisson’s ratios v; and the elastic parameters
Ey; are allowed to differ. It should also be noted that the special case k = 0 yields
many of the solutions for the contact problems of elastically homogeneous materials
previously examined in Chaps. 2, 3, and 4.

9.1 Frictionless Normal Contact Without Adhesion

The frictionless normal contact between a rigid indenter of the shape f(r) and a
functionally graded material is shown in Fig. 9.1. Here, we differentiated between
an elasticity modulus which drops with increasing depth (left) and one which rises
with increasing depth (right). Law (9.1) has been demonstrated using a graphical
representation.

9.1.1 Basis for Calculation of the MDR

For the solution of frictionless normal contacts without adhesion under considera-
tion of the elastic inhomogeneity given by (9.1), we make use of the mapping rules
and calculation formulas of the MDR developed by Hef3 (2016a). Accordingly, the

0<k<1

Fig.9.1 Indentation of a rigid indenter with the profile f(r) in an elastically inhomogeneous half-
space, whose elasticity modulus drops (left) or rises (right) with increasing depth according to the
power-law (9.1), depending on whether the exponent & is negative or positive
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Fig. 9.2 The equivalent
substitute model for the nor-
mal contact between two
elastically inhomogeneous
half-spaces whose elasticity
moduli satisfy condition (9.1)
while assuming that both
media have equal exponents k

contact problem shown in Fig. 9.1 is equivalent to the indentation of a rigid, planar
profile of the shape g(x) in a one-dimensional Winkler foundation with respect to
the relationships between normal force, contact radius, and indentation depth. This
is valid for Winkler foundations whose stiffness depends on the coordinate x, which
is expressed by a laterally varying foundation modulus cy (x) (spring stiffness di-
vided by spring distance Ax). The equivalent substitute model is demonstrated in
Fig. 9.2.

The planar profile g(x), which is sometimes called the equivalent, one-dimen-
sional substitute profile, is calculated according to:

gx) = |x|1_k/ L)l;kdr. 9.2)
0

The spring stiffness is given by equation:
Ak, (x) = cy(x) - Ax. 9.3)

Here, cy (x) refers to the foundation modulus (stiffness per unit of distance) which,
in this case, depends on the distance to the contact mid-point

1—v? 1—v2 N\ )
entr) = (hN(k,Vl)Em * hN(k,Vz)Eoz) (E) . O

The coefficient /iy is dependent on the Poisson’s ratio v and the exponent k of the
inhomogeneity in the following way:

2(1 + k) cos (%”) r(1+ %)
VrC(k,v)B(k,v)sin (W‘T")”) r (#)

hy(k,v) = , 9.5)

with

Ik <3+k+2ﬂ(k.,V)> r (3+k72ﬂ(k,V))
a2+ k)

C(k,v) = 9.6)
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and

ﬂ“”*=J0+k)O_1ﬁL) 9.7)

Thereby making use of the Gamma function:

[ee)

F@p:/f4mm4mn 9.8)

0

Due to the mutual independence of the springs, the vertical displacement of the
springs at location x is given by the obvious equation

wip(x) =d —g(x). 9.9)

The indentation depth d is determined from the condition of a vanishing displace-
ment at the edge of the contact:

The normal force Fy is the sum of all spring forces in the contact:

Additionally, the normal displacement of the Winkler foundation w;p(x) = d —g(x)
uniquely defines the pressure distribution and the normal surface displacement:
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These equations also solve sets of problems related to situations where the stresses
at the half-space surface are known and the displacements are the desired quanti-
ties. This requires the preliminary calculation of the displacement of the Winkler
foundation using the stresses according to

dr 9.13)

1+k ’

wip(x,a) = (r2 2B
r’—x%)2

2¢k cos ('%) [a rp(r)

cn(co) J

which are then inserted into (9.12).

Here it should be noted that contact problems between FGMs with arbitrary
elastic inhomogeneities can always be represented by the MDR-based model from
Fig. 9.2. The difficulty lies in finding the correct calculation formula for the one-
dimensional profile and determining the foundation modulus depending on the co-
ordinate x (Argatov et al. 2018). Taking advantage of the expanded model from
Fig. 9.20, these statements even extend to adhesive contact problems.

9.1.2 The Cylindrical Flat Punch

The complete solution of the contact problem between a rigid, cylindrical flat punch
and an inhomogeneous half-space (shown in Fig. 9.3) is attributed to Booker et al.
(1985). The simple geometry of the contact allows for an extremely simple deriva-
tion of the solution using the MDR. Since the profile function is always measured
from the indenter tip f(r) = O, it follows from (9.2) that g(x) = 0. The surface
displacement of the 1D Winkler foundation is then

wip(x) =d [H(x +a) —H(x —a)], 9.14)

where H(-) represents the Heaviside function. For the contact of a flat punch, the
indentation depth is independent of the (fixed) contact radius. Thus the evaluation

Fig. 9.3 Normal indentation F,
of the elastically inhomo- /%
geneous half-space by a flat

cylindrical punch

Y
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of (9.10) is not necessary and the solution of the contact problem merely requires
applying (9.11) and (9.12). Under consideration of the derivative

wip(x) =d[6(x +a)—8(x —a)], 9.15)
with the Delta distribution §(-) and its filter property, it follows that:

i 2/’1N(k, V)Eodal+k

D= A og
o hykWEy [dBGx+a) = 8(x—a)]
p(rid) = TR / e dx
]’lN(k, U)Eod

(1 —v2)ck(@? —r2)'7

2cos (kx) f k
w(r;d) = COS(Z)/ xd dx

T G x2)
B TN UNETREY 010
F14 r 2 2
where B(z; x, y) represents the incomplete Beta function according to:
z
B(z;x,y) := [t""l(l —1)’7'dr Vx,y eRY. 9.17)

0

The pressure distribution normalized to the average pressure in the contact area
is shown in Fig. 9.4. It is clear to see that a rising exponent of the elastic inhomo-

Fig. 9.4 Pressure distribu-
tion for the indentation by a
flat cylindrical punch for dif-
ferent exponents of the elastic
inhomogeneity k, normalized
to the average pressure
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—w(r)ld

Fig. 9.5 Normal surface displacement of the inhomogeneous half-space for the contact of a flat
punch and different exponents of the elastic inhomogeneity k, normalized to the indentation depth

geneity reduces the singularity at the contact edge. Figure 9.5 displays the normal
surface displacements for different k at equal indentation depth d. It shows that the
displacement of the half-space surface outside the contact area drops with increas-
ing k.

9.1.3 The Cone

Most solutions and the insights derived therefrom for the conical contact as shown
in Fig. 9.6 can be found in the work of Giannakopoulos and Suresh (1997). The
shape of the rigid conical indenter is given by:

f(r) =rtané. (9.18)

Fig. 9.6 Normal indentation
of the elastically inhomoge-
neous half-space by a conical
indenter
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Applying the mapping rule (9.2) leads to the equivalent plane profile

gx) = —| |B (l ﬂ)tan@, 9.19)

2
where B(x, y) denotes the complete beta function, which is related to the incom-
plete beta function (9.17), according to B(x, y) := B(1;x, y). Substituting (9.19)
into (9.10)—(9.12), gives the solution of the contact problem, after a short calcula-
tion:

1 1 1+k
d(a) = —a tan 6B ( L) ,
27 2
hy(k,v)tan 6B (3, %) Eoa*+?

Fy(a) = ,
(1—v2)c§(k + ) (k +2)
hy(k,v)tan 6B (3, 2%) Eq
p(ria) = (2 2) rk
4 (1 —v2)ck
- y
T2k 14k (. =k 1K\
i 2 2 a’’ 2 2
tan OB (L, £ cos (E2) ¢
L TOE SETL)
r 2 _ 2 _
g (e, Ltk 1=k rp (e 34k 1-k\T (o
|\ 2 2 a \r* 2 2

(9.20)
Since the beta function in the pressure distribution partially contains negative ar-
guments, we expand the definition of (9.17) by using (for negative arguments) the
representation via the hypergeometric series

X

z
B(z;x,y) = ;zFl(x, 1—y;14x;2). 9.21)

The definition of the hypergeometric series is given in Chap. 11 by (11.93). To
obtain the limiting case of the homogeneous half-space, k — 0 should be set.

From (9.20) it can be seen that (among other things) with the same normal force
the contact radius depends both on the exponent k and on the characteristic depth
co. If one normalizes the contact radius by the contact radius a;, which would be
valid for contact with a homogeneous half-space, then it is

a ( a1+bE+h = ¢\ 7%
ah_(th(k B (1, 1+k)) (ah) ' 022

Depending on the choice of k and ¢y, a larger or smaller contact radius can result in
comparison to the homogeneous half-space. This can be seen from the abscissa in
Figs. 9.7 and 9.8 which illustrate the pressure distribution for various characteristic
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Fig. 9.7 Stress distribution
in a contact with a cone for
different exponents of elastic
inhomogeneity k, normalized
to the mean pressure 7y,
which results from contact
with the homogeneous half-
space. The characteristic
depth is ¢y = ay,

Fig. 9.8 Stress distribution
in a contact with a cone for
different exponents of elastic
inhomogeneity k, normalized
to the mean pressure p,,
which results from contact
with the homogeneous half-
space. The characteristic
depth is ¢y = 0.1ay,

depths. Thereby the pressure was normalized to the average pressure p;, in conical
contact with a homogeneous half-space, which is known to be independent of the
contact radius:

_ Fy Eygtan 6
=== — 9.23
P mwa;  2(1-1?) 0-23)

The influence of the elastic inhomogeneity is reflected, above all, in the maxi-
mum pressure in the center of the contact area. Because the pressure singularity in
the homogeneous case is suppressed the pressure maximum takes a finite value.

In Fig. 9.9, the surface normal displacements of the inhomogeneous half-space
are graphically compared for different exponents k at the same contact radii. They
were normalized to the indentation depth dj,, which results in contact with a homo-
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-w(r)ld,

Fig. 9.9 Normalized normal displacements of the surface of the inhomogeneous half-space for a
contact with a cone for different exponents of elastic inhomogeneity k; dj, is the indentation depth,
corresponding to the homogeneous half-space

geneous half-space. By increasing k the indentation depth and the displacements
decrease successively.

9.1.4 The Paraboloid

Figure 9.10 shows the normal contact between a rigid parabolic indenter and an
elastically inhomogeneous half-space. The shape of the rigid indenter is given by

the function )

r
fr) = 7R (9.24)

Fig. 9.10 Normal inden-
tation of the elastically
inhomogeneous half-space
by a parabolic indenter
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and can be understood as a (parabolic) approximation for a spherical contact with
the radius of curvature R. The equivalent planar profile follows from (9.2):

X2
(k+ DR

Considering (9.25), the evaluation of (9.10)—(9.12) provides the solution to the
contact problem:

gx) = 9.25)

2

a
da) = —4
@ =TI DR
k+3
FN(a) _ 4hNk(k,l))an ’
(I —v))ck(k + D2k + 3)R
1+k
2hy(k,v)Egak*! 21
p(ria) = Nz r 2 [1_<_):| ’
(1 —=v?)cs(k +1)*R a
a?cos (A1) a* 1+k 1—k
v = TR B(ﬁ’T’T)

2 (a* 3+k 1—k
; (ﬁ, T, T) forr > a, (9.26)
where B(z; x, y) is the incomplete beta function from (9.17).

Figure 9.11 shows the pressure distribution in the parabolic contact normalized
to the maximum pressure in the Hertzian contact. At the same normal force, a Pois-

son’s number of v = 0.3 and a characteristic depth ¢y (which was chosen equal to

Fig.9.11 Pressure distribution in parabolic contact for different exponents of elastic inhomogene-
ity k, normalized to the maximum pressure of Hertzian contact pg gy
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 9.12 Normalized surface normal displacements of the inhomogeneous half-space in a
parabolic contact and different exponents of elastic inhomogeneity &

the contact radius ay in Hertzian contact), the maximum pressure decreases with
increasing exponent k of the elastic inhomogeneity with simultaneous enlargement
of the contact area. It should be noted that, depending on the choice of the char-
acteristic depth and the Poisson’s number, an opposite effect can also occur. In
Fig. 9.12, the normalized normal displacements of the surface of the inhomoge-
neous half-space are visualized for different exponents k at the same contact radii.
By increasing k the indentation depth and the displacements decrease successively.

In the limiting case k = 1 the displacements outside the contact area disap-
pear completely—the inhomogeneous half-space behaves like a (two-dimensional)
Winkler foundation. Strictly speaking, the latter behavior is coupled to the linear-
inhomogeneous incompressible half-space because only the v = 0.5 contact has a
non-zero contact stiffness (see Sect. 9.1.8).

9.1.5 The Profile in the Form of a Power-Law

The contact between the inhomogeneous half-space and an axisymmetric indenter
whose shape meets the power-law

f(r)=A,r" withn € RT, A, = const (9.27)

(see Fig. 9.13) was examined by Rostovtsev (1961) for the special case
v = 1/ (2 + k). A general solution was provided by Giannakopoulos and Suresh
(1997). Their derivation by means of the MDR requires the calculation of the
equivalent plane profile according to (9.2):

g(x) = k(n.k)Ay|x|" = Kk(n.k) f(|x]). 9:28)



264 9 Contact Problems of Functionally Graded Materials

Fig.9.13 Normal indentation Fy
of the elastically inhomo-
geneous half-space by an
indenter whose profile is de-
scribed by a power function

Dl

Equation (9.28) clearly shows that the equivalent profile results from a simple
stretch from the original profile. The stretch factor is dependent on the exponent of
the power function and the exponent of the elastic inhomogeneity,

1 1
n—1
K(n,k) =[ng—dd§ = %[t%_l(l—t)l%_ld[
o (1=¢?)7 0

—.p (f, k—“) , (9.29)
2o\ 2

where B(x, y) denotes the complete beta function, which follows as a special case

B(x,y) := B(1; x, y) from the definition of the incomplete beta function (9.17).
The stretch factor increases as the exponent of the power profile increases (see

Fig. 9.14). In homogeneous cases, the known values «(1,0) = /2 for the conical

Stretch factor x(n,k)

Exponent » of the profile function

Fig. 9.14 Dependence of the stretch factor « on the exponent n of the power-law profile function
for different exponents k of the elastic inhomogeneity (from Hef3 2016a)
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and k(2,0) = 2 for the parabolic indenter are reproduced. As the exponent of
elastic inhomogeneity increases, the stretch factor decreases. The limiting case,
k — 1 coincides with the simple cross-section of the three-dimensional profile in
the x—z-plane.

The application of rules (9.10)—(9.12) leads to the solution of the contact prob-
lem:

d(a) =k(n,k)A,a",
2hy (k,v)k(n, k)nA, Ega"t*+!

F = .

v@ (1= +D(n +k+1)
p(ria) = hy (k, v)K(n,k)n:l,,Eoer_l

27T(1 —v2)cy
—n 1+k 2 1l—k—n 1+k
—B —_—— ,
a? 2 2
co /c(n k)A,a"

w(r;a) =

a? l—l-k l—k
_2

2 _
(—) (a 1+k+",1 k)] forr > a. (9.30)

~

a 2 2

As already discussed in the context of the investigation of the conical contact
(Sect. 9.1.3), the expanded definition of the beta function according to (9.21)
should be used.

9.1.6 The Concave Paraboloid (Complete Contact)

The shape of a cylindrical indenter with a parabolic-concave end is described by:
2 a2
f(r)y=—hy— for0<r <a withhy=—. 9.31)
a? 2R

The complete indentation of such a punch (so that all points of the face are in con-
tact) leads to a surface displacement in the contact area

w(rido) =do— f(r), 9.32)

where dj denotes the displacement in the center of the punch. The contact geometry
is shown in Fig. 9.15. Adding a suitable rigid body displacement fraction and taking
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Fig.9.15 Normal indentation F,
of the elastically inhomo-
geneous half-space by a

parabolic concave indenter

>,
J\\

-
S

th

into account (9.31), (9.32) can be written as follows:

a® a? r?

=w] =w2

According to (9.33), the displacement can be represented as the difference be-
tween the rigid body displacement w; and the displacement w, resulting from a
parabolic contact. For both separate fractions the solutions have already been de-
veloped (see (9.16) and (9.26)). Due to the validity of the superposition principle,
the overall solution is the difference of the partial solutions

Fy(dy) = F— F =

2]’1N(k, V)ank+1 ( 2h0 )
do + T A ki
(1 —2)(1 + k)ck K+3
p(rido) = p1—p»
k,v)E 2 2
_ huk VEy d0+—h°2(k—1+2r—2) :
r(1—v)ck(a?—r)= (k+1) a

w(r;do) = wy —ws

_ cos(%”) |:d0B (ﬁ.l—i-k 1—k)

T r2’ 2 2
N 2hy r2B a* 3+k 1—k 9.34)
k+1a? r2’ 2 72 ’ ’

With the exeption of the displacements, solutions (9.34) were derived by Jin et al.
(2013). It should be emphasized that these solutions are only valid under the condi-
tion of complete contact; for this, the requirement p(r = 0) > 0 must be fulfilled,
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Fig. 9.16 Pressure distribution when indented by a cylindrical punch with parabolic-concave tip
for different exponents of elastic inhomogeneity k and /y/dy = 0.2, normalized to the mean
pressure p in the contact area

which suggests:

2(1 —k) 16hy (k,v)Ega't*h
0> 7}10 or Fy > .
(1+k)? (1 —=v2)ck (1 + k)33 +k)

d (9.35)

Figure 9.16 shows the pressure distribution in the contact area, normalized to the
mean pressure p for hy = 0.2dy. As the k increases the graph progressively
approaches the shape of the indenter. For the same specification, the surface dis-
placements are illustrated in Fig. 9.17.

Finally, to solve contact problems with concave profiles, the MDR rules (9.2),
(9.11), and (9.12) are still valid. However, care must be taken to ensure that the cen-
ter displacement d is used instead of the indentation depth. In addition, complete
contact in the replacement model does not necessarily result in full contact with the
original problem so the requirement p(r) > 0 always has to be checked. For the
contact problem investigated here the following is valid:

2]’10 x2 2h0 X2

il — W@ i=do—gl) =dot—m s (936)

gx)=—

An evaluation of (9.11) and (9.12), and taking into account (9.36), gives solutions
(9.34) exactly.
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Fig. 9.17 Surface normal displacements normalized by the center displacement d, on impression
with a cylindrical indenter with parabolic-concave tip for different exponents of elastic inhomo-
geneity k and hy/dy = 0.2

9.1.7 The Profile That Generates Constant Pressure

In contrast to the previous contact problems, where the indenter shape was known
a priori, the issue now lies in determining the surface displacement caused by a
known constant pressure distribution:

p(ry=py for 0<r<a. (9.37)

This requires first determining the 1D displacement of the foundation according to
(9.13):

2c/(§(1 —v?)cos (%”) [a Do
hy(k,v)Eq (r2 _xz)#

wip(x) =
~ 2¢G(1 —v?)cos (&) po(a® - x5
hy(k,v)(1 —k)Ey
The displacement at location r = 0 in the original must coincide with the displace-
ment at location x = 0 in the substitute model, as follows:

(9.38)

2¢k (1—v?)cos (&) Fy
Ty (ko) (L —K) Eort @' +F°

we ;= w(r =0) =wpx =0) = (9.39)

taking into account that Fy = poma®. When the stresses are specified instead of
the indenter shape, the equivalent quantity to the indentation depth is the center dis-
placement. Inserting (9.38) in (9.12) yields, after a short calculation, the following
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Fig. 9.18 Normalized normal surface displacement of the inhomogeneous half-space for a con-
stant pressure distribution and for different exponents of the elastic inhomogeneity k and fixed
Co

surface displacements of the inhomogeneous half-space:

k=1 1+k _r?

WeoFi | ———, ——: 1, = forr <a,
w(ria) = 2 L (9.40)
R 1 —k say\1+k 1+k 1+k _ a* )
We——— (—) JFil —, —:2:— forr > a,
2 r 2 2 r?

which coincide with ones calculated by Booker et al. (1985). The displacements
normalized to the center displacement of the homogeneous half-space,

200 —vH)poa

eh = , 941
We E, (9.41)

are displayed in Figs. 9.18 and 9.19. Fig. 9.18 studies the influence of the elastic
inhomogeneity exponent at a fixed characteristic depth ¢(. For the chosen charac-
teristic depth, an increasing exponent k causes a rise of the displacements within
the load zone and a drop outside this zone. We consciously avoided particularly
large exponents k since it results in unbounded displacements within the load zone
(see the discussion in Sect. 9.1.8). Figure 9.19, on the other hand, demonstrates
decreasing displacements for a reduction of the characteristic depth, which is fixed
at k = 0.2. It should be noted that these graphs are offered as examples and do
not present all characteristics. However, a complete analysis of the fundamental
displacement behavior depending on k, ¢y, and py can already be gained from the
power-law of the elastic inhomogeneity from (9.1).



270 9 Contact Problems of Functionally Graded Materials

“w(r)wep

Fig. 9.19 Normalized normal surface displacement of the inhomogeneous half-space for a con-
stant pressure distribution and for different characteristic depths ¢y, and fixed exponent k of the
elastic inhomogeneity

9.1.8 Notes on the Linear-Inhomogeneous Half-Space—the Gibson
Medium

In a linear-inhomogeneous half-space, the elasticity modulus increases proportion-
ally with the depth z. This dependency is covered by the general power-law (9.1); it
merely requires the setting of k = 1. Accounting for this condition in (9.2)—(9.12)
exposes some interesting characteristics, independent of the geometry of the con-
tact. For instance, it follows that the equivalent planar profile coincides with the
cross-section of the real profile in the x-z-plane,

g(x) = f(|x]). 9-42)

Hence the rule for the calculation of the indentation depth (9.10) already returns an
unusual result of

d= fa) = wkr)=fla)— f@r) for0<r <a. (9.43)

According to (9.43), the displacement of the half-space surface at the contact edge
is zero like in the 1D model. The calculation formula for the displacements of
(9.12) even reveals that the half-space surface exterior of the contact area remains
in its original, undeformed state. Such behavior is typical for a (two-dimensional)
Winkler foundation, whose surface points are displaced in proportion to the normal
stresses acting locally at these points. However, an evaluation of the rule for the
calculation of the pressure distribution from (9.12) reveals that this proportionality
is valid only for the special case of a linear-homogeneous, incompressible half-
space since the factor /(1, v) takes on a non-zero value only for v = 0.5. With
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h(1,0.5) = /2 it follows that:

2F
px.y) =3 w(x. ). (944)
Co

The latter finding goes back to Gibson (1967), which is why the linear-inhomoge-
neous incompressible half-space is also named the Gibson medium. A normal load
on a linear-inhomogeneous, compressible half-space results in unbounded surface
displacements within the load zone (Awojobi and Gibson 1973). This is indicated
by (9.11). The foundation modulus vanishes according to (9.4). Therefore the
effects of an external force cannot be balanced out. The indeterminateness of the
displacements is a consequence of the vanishing elasticity modulus at the half-space
surface in a medium defined by (9.1) (Brown and Gibson 1972).

9.2 Frictionless Normal Contact with JKR Adhesion
9.2.1 Basis for Calculation of the MDR and General Solution

The framework provided by the JKR theory (see Sects. 3.2 and 3.3 in Chap. 3 of this
book) permits a particularly easy solution to contact problems with adhesion since
the basic idea relies on a simple superposition of the corresponding non-adhesive
contact and a rigid-body translation. The latter does depend on the particular contact
radius but not on the shape of the indenter. Application of this approach to contact
problems related to the elastically inhomogeneous half-space gives the indentation
depth as a function of the contact radius

2rAyckal~*

d(@) = da(@) = A(a) with  Ab(a) = \[Z0m i

(9.45)

Here, d, , refers to the indentation depth of the contact without adhesion (which
would lead to the same contact radius as the one of the adhesive contact). The
unusual notation of the superimposed rigid-body translation Af(a) stems from the
substitute model of the MDR displayed in Fig. 9.20.

tute model for the adhesive
normal contact between two
elastically inhomogeneous
half-spaces, whose elastic-
ity moduli satisfy condition
(9.1), assuming equal expo-
nents k of both media

Fig. 9.20 Equivalent substi- T [£n]
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For the complete solution of a contact problem with adhesion via the MDR, all
rules and calculation formulas from Sect. 9.1.1 remain valid with the exception of
(9.10). It must be replaced by the condition

2w Ayckal~*

win(@) = ~Al@) = [ ZoE

(9.46)

with the displacement of the spring elements given by the same equation as in the

non-adhesive case:
wip(x) =d — g(x). 9.47)

This means that (under the condition that all springs in the contact area remain in
contact) the critical detachment state of the edge springs is achieved when the elon-
gation of the springs at the edge reaches the pre-defined value Af(a) (see Fig. 9.20).

For convex profiles, the solution approach via the MDR additionally offers a
simple way to calculate the critical contact radii (after achieving this, no equilib-
rium state of the contact as a whole exists). The critical contact radii satisfies the
following equation:

‘ o

Al(a.) _ C’(k) dg(a) for Fy = const,

= with C (k) :=
a, da

(98]
o+
Pl

e for d = const.

(9.48)

11—k

The definition of the coefficient C (k) varies depending on whether the experiment
is force-controlled or displacement-controlled (Hef3 2016a).

Taking (9.47) into consideration, (9.11) and (9.12) yield the general solution of
the contact with adhesion:

2hy (k,v)E* Al(a)a'+*
(1 +k)ck
_ hy(k,v)E*Al(a)

7k 9
mek(a? - r2)s

FN(a) = Fn.a.(a) -

3

p(ria) = pna(ria)

dna(a) — f(r) — Al(a) forr <a,
w(r;a) = kzy Ap 2 _
wn'a'(r;a)_MB (a_z’ﬂ’i) forr > a.
b4 r 2 2
(9.49)

The quantities with the indices “n.a.” indicate the solutions of the non-adhesive
contact. The additional terms result from the rigid-body translation and correspond
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to the solutions of the flat punch contact (if, instead of the indentation depth d, the
(negative) rigid-body translation —Af(a) is used).

9.2.2 The Cylindrical Flat Punch

When applying a tensile force to a cylindrical flat punch of radius a, which is adher-
ing to the surface of the inhomogeneous half-space, all points in the contact area are
subjected to the same displacement w(r) = d < 0. Therefore, except for the neg-
ative value of the indentation depth d, the boundary conditions match those of the
indentation of a cylindrical flat punch in an inhomogeneous half-space. Therefore,
we can adopt the solutions from Sect. 9.1.2:

_ ZhN(k, U)Eodal+k

Fy(d) = ,
v(d) (1= v2)(1 + k)ck
hy(k,v)Eod
prid) = —wEDEL
(1l —v?)cs(a?> —r?)
kxya 2 14k 1-k
w(r;d) = MB (a_z; L, _) ) (9.50)
T r 2 2

Since the contact radius cannot (stably) decrease in a tensile test, the adhesive con-
tact radius of the flat punch becomes unstable once the “indentation depth” reaches

the critical value
2w Ayckal=*
d, =—Al(a) = —, —10° 9.51
(@ = =A@ = -\ | 50 ©51)

In this case, the flat punch will instantly completely detach from the half-space sur-
face. The corresponding normal force, the absolute value of which is the maximum
pull-off force, is:

r 87 Ayhy (k. v)E*a>tk
\/n yhy(k,v)E*a 0.5

Fi@) = = [ evatias = - [FEEEE
A comparison of (9.51) and (9.52) with the equilibrium conditions (9.49) for curved
profiles reveals that the solution of the contact without adhesion is calculated by

summing the aforementioned terms. This is a pre-requisite step for the solution of
the adhesive contact.

9.2.3 The Paraboloid

The solution of the contact problem between a parabolic, rigid indenter and the
elastically inhomogeneous half-space, displayed in Fig. 9.21, is gained from the
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Fig. 9.21 Adhesive nor-
mal contact between a rigid Fy
parabolic indenter and an
elastically inhomogeneous
half-space

universal superposition (9.49) by incorporating the solution of the non-adhesive
contact problem (9.26):

d(a) = a*>  [2mAycgalk
~ (k+ DR E*hy(k,v) "’

4hy (k,v)E*a*+3 8w Ayhy(k,v)E*a3+k
Fy(a) = — 5 - 2k
co(k +1)*(k +3)R (k + 1)*co
1+k
2hy (k,v)E*a**! |: r Z}T
a) = 1=~
piria) nck(k +1)2R (a)

2hy(k,v)AyE*ak—1 . (r)Z T
ok a ’

. a*cos (%) 2w Aycka—3*k
w(r;a) = 7(]{ DR 1-(1+k)R 7E*h1\;(k, 2

a* 1+k 1—k r? a*> 3+k 1—k
B(=:——, — ") -=B(=: 2= —=) [. o
(rz’ 2 72 ) (rz’ 272 ) ©9:33)

The calculation of the critical contact radii from the condition of global stability
(9.48) merely requires a knowledge of the slope of the equivalent substitute profile
at the contact edge. From (9.25) it follows that

2a

"(a) = ——, 9.54
g'(a) 1+ 0R (9.54)
and thus, with (9.48), a short calculation yields:
1
7(1 4+ k)2R2Aycok\ 3
.= ( (L+ b R Ayco ) . (9.55)
2C (k)*hy (k,v)E*
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Fig. 9.22 Normal force as a function of the indentation depth in normalized representation for
k = 0.5 at different characteristic depths cg

Inserting the critical contact radii (9.55) into the first two equations of (9.53) returns
the following critical indentation depths and normal forces:

_1-20(k) (n(l n k)ZRZAycg)ka
7 (1+k)R \2C (k)%hy(k,v)E*

o (M) reAYR

C(k)2(3 + k)

k+3
k43 TAYR (force-control)

T |06+ 3k (9.56)
B % mAyR (displacement-control).

Solutions (9.53)—(9.56) were derived by Chen et al. (2009), and are focused on
force-controlled experiments. They noted that, according to (9.56), the maximum
pull-off force (absolute value of the critical normal force under force-control) is in-
dependent of the elasticity parameters and characteristic depth, as for homogeneous
cases. This is made clear in Fig. 9.22, which provides a graph of the normal force in
relation to the maximum pull-off force in the classic JKR theory as a function of the
normalized indentation depth. Equilibrium states corresponding to the dotted parts
of the curves can only be realized for displacement-control. Additionally, Fig. 9.23
shows that the maximum pull-off force rises by increasing k, while the absolute
value of the pull-off force decreases under displacement-controlled test conditions.
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Fig. 9.23 Normal force as a function of the indentation depth in normalized representation for
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The pressure distribution in the critical state, i.e., under the effect of the max-
imum pull-off force, is demonstrated for an incompressible material in Fig. 9.24.
For the chosen parameters, the critical radius drops by increasing k. Figure 9.25
demonstrates that this property is not universally valid but instead dependent on the
characteristic depth. Here we can also see that, for a fixed k, a decrease in the char-
acteristic depth also leads to a decrease of the critical contact radius. Furthermore,
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Fig. 9.25 Ciritical contact radius (fixed-load) as a function of k for select characteristic depths ¢y
and incompressible material

the maximum pressure is extremely sensitive to parameter variations and must be
determined on a case-by-case basis. For the given parameters, the maximum pres-
sure is reached at k &~ 0.19. In the Gibson medium (k — 1) the maximum pressure
and, consequently, the (critical) indentation depth is zero.

As a last point, we have provided the following dimensionless equations:

~ 1 ~ 1-k ~ d a
d@) = ———(a*>—2C(k)a > ithd := —anda := —,
(a) 20 (a (k)a 2) wit a and a o
s 1 ~ NN 1 = Fy
Fy@)=——— 3"~ 3+ k)Ck)a th Fy := —,
VO = e ocm 8T -G HRC®ET | i Fy =
(9.57)

where the indentation depth, the normal force, and the contact radius are given in
relation to their critical value. Jin et al. (2016) noted that the dimensionless forms
of (9.57) depend solely on the exponent of the elastic inhomogeneity k.

9.2.4 The Profile in the Form of a Power-Law

Taking into consideration solutions (9.30) for the contact without adhesion, the uni-
versal superposition (9.49) provides the solution of the adhesive contact. For the
adhesive normal contact of a rigid indenter with a profile in the shape of a power-law
and an elastically inhomogeneous half-space, displayed schematically in Fig. 9.26,
we obtain the following relationships between the indentation depth, contact radius,
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Fig. 9.26 Adhesive normal F
contact between a rigid in-
denter with a profile in the
form of a power-law and an
elastically inhomogeneous

half-space T

and normal force:

2w Ayckal~k
- Apa" — | T
d(a) =«k(n,k)A,a Evhn(kv)

2hN(k,v)K(n,k)nA,,E*a”+k+1_ 8why(k,v)AyE*a3tk
(k + )(n+k + ek (k 4+ 1)2¢ok

Fy(a) = . (9.58)

The pressure distribution in the contact area and the normal surface displacement
outside of the contact area are given by:

hy(k,v)k(n,k)nA, E* k=1

ria) =
p(ria) o
s l—k—n71+k B r_zgl—k—n,l—l—k
2 2 a? 2 2

k—1
2hy (k,v) AyE*a*—! | (r)2 7
ok a ’

w(rid) = cos (1%) k(n,k)A,a"

T

a? l+k 1—k r\" a? l+k+n 1—k
P (E5R ) -0 e (550

;
_oos () [2mAychalt (@’ 14k 1k (9.59)
b E*hy(k,v) r2o2 2 ) ‘

The critical contact radii are determined by evaluating condition (9.48), which
requires the slope of the equivalent profile at the contact edge as its input. Dif-
ferentiation of (9.28) yields g'(a) = nk (n,k) A,a"~", resulting in the following
critical radii:

1

21A k 2n+k—1

4y = ( il ) 2) . (9.60)
hy(k,v)E*C (k)*k(n,k)*n%A,
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Substituting (9.60) into (9.58) leads to critical indentation depths and forces,

g - ( 2w Aycyk )n( 1 )l_k T 1—nC (k)
T \hankv)E*) \C(knk(n. k)A, nCk) |’

Fc=2< 1-Ck)yn+k+1) )

Ck)(n+k + 1)k + 1)

. (2my)"+k+1( & )H(~ ! )k+3 m 9.61)
hy(k,v)E* C(k)nk(n,k)A,

Jin et al. (2013) presented a detailed examination of the maximum pull-off force
depending on the shape exponents n. For scaling reasons, the indenter shape was
specified according to slightly modified function f(r) = r"/(nR"~") instead of
(9.27). Normalizing their result to the maximum pull-off force of the classical JKR
problem, they derived the following relationship:

F, 2(1 —k —2n)
1.57AyR  3n(n+k 4+ 1)(k + 1)

e [ T=v2 T 34k P
'[(2”) “(nzn) Gen)

R k(n—2) E()R n—2 2n+lk—1
1% A , (9.62)

which is visualized for selected parameters and shape exponents in Fig. 9.27. It is
clear to see that the maximum pull-off force changes linearly with k only for the
parabolic contact (n = 2) and otherwise exhibits a non-linear dependency.

Putting the indentation depth and normal force in relation to their critical values
results in the following dimensionless representations, which depend solely on the
exponents k and n (see He3 2016a):

~ 1 ~ 1—k ~ d a
did) = ——— (a"—nC(k)a =z withd ;= — anda := —,
() 1—C(k)l’l< ( ) ) dc ac
- 1 ~ k+3
Fy(@@) = _ Attt _Ckyn+k 4+ a =
V@ l—C(k)(n—i-k—l—l)[ e it
o= Fy

c

9.2.5 The Concave Paraboloid (Complete Contact)

In the following, we will assume that a rigid, cylindrical, concave punch is initially
pressed into the inhomogeneous half-space to the point of complete contact. During
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Fig. 9.27 Maximum pull-off force as a function of the exponent of the elastic inhomogeneity k
for different exponents of the power-law profile according to Jin et al. (2013)

the subsequent unloading, two competing mechanisms lead to the separation of the
surfaces:

1. For slightly concave punch profiles, the separation of the punch is caused (as in
convex profiles) by the stress singularity at the contact edge.

2. For highly concave punch profiles, the separation occurs in the center of the
contact area because of too high tensile stresses, whose absolute values exceed
the theoretical tensile strength (of the adhesion) oy,.

The two states, whose accompanying quantities we denote by the indices “P” (Pe-
riphery) and “C” (Center), were examined in greater detail by Jin et al. (2013). The
critical state, at which the separation at the edge occurs, satisfies the equilibrium
condition (9.45). The displacement of the Winkler foundation is taken from the so-
lution of the corresponding contact without adhesion, (9.36). By replacing d by dp
we get:

2h0 X2

k+1la?

The evaluation of condition (9.45) yields the critical indentation depth dp at which
the edge begins to separate:

2nAyckal—k 1—k
dp = — 0 —h . 9.65
PN vt Er T vk (9.65)

The remaining terms of the complete solution of the contact problem are obtained
by simply inserting (9.65) into (9.34), taking into account that dy = dp — h. Here,

wip(x) =dp—ho + (9.64)
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we restrict the presentation to the normal force and the pressure distribution:

(14 k)2ck (k + 1)2(k + 3)ck

hy(k,v)E* 2 Ayckal~k 4hy r?
4y = B - 1— =) 1. 9.66
pe(ria) rck@—r) 7 Iy E* (k + 1) 2) | ¢

The first term of the critical force in (9.66) returns exactly the adhesive force of
the flat punch according to (9.52). The second term results from the concave shape.
Since both terms have the same sign, the maximum pull-off force of weakly concave
profiles is always greater than the one of the flat punch contact.

For strongly concave profiles, the separation begins in the center of the contact
area upon reaching the theoretical adhesive tensile strength. The critical indentation
depth is gained from the condition p(r = 0) = —oy,, where once again, in the
pressure distribution of the contact without adhesion (9.34), d is replaced by dc.
Therefore, we obtain:

8why(k,vV)AyE*a’+k  8hy(k,v)E*hoa'**
Fola) = — -

ncka'~k 3+k?

de = — ,
= T E T ™

(9.67)

from which the normal force and the pressure distribution in the critical state follow
as:

Fela) 2ma? N 16hy (k, v)ho E*ak*!
a)=————o0 ,
¢ A+5)" "k + 13k + 3)ck
1 dhy (k,V)hoE* 12
pc(a) = —0 |:—6llk0m N(—)zok_2:| (9.68)
(a2 —r2)* w(k +1)%c; a

For k = 0, these solutions coincide with those of Waters et al. (2011).

9.2.6 The Indenter Which Generates a Constant Adhesive Tensile
Stress

The optimal profile of a rigid, concave, cylindrical indenter is defined by the condi-
tion that, in the critical state, the constant tensile stresses in the contact area are (in
absolute terms) equal to the theoretical adhesive tensile strength (see Gao and Yao
2004):

Popi(r) = —ow  forr < a, (9.69)

The maximum pull-off force is then
Fop(a) = —opma’. (9.70)

Determining the corresponding optimal shape is rendered particularly easy when
accounting for the results from Sect. 9.1.7. Equations (9.39) and (9.40) determine
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the necessary surface displacement to generate a constant pressure in the contact
area. Replacing py with —oy, or, alternatively, Fiy by Fyp according to (9.70) leads
to the surface displacement of the considered problem:

k—1 1+k r?
Weopt 2F1 | ——, ——:1: — forr <a,
N P 2 2 a?
Wop(rsa) = 1=k ja\+ (14K 1+k  d
Weopt—2— | — JFil —, —:2;— | forr >a,
2\ 2 2 r?
9.71)

with k (k ) 1-k
2¢g cos () a ™
copt = — . 9.72
e = it - B E o7
The optimal indenter shape f, can basically be extracted from (9.71) and (9.72).
Accounting for fo,(r = 0) = 0 returns:

k—1 1+k  r?
fopt(r) = We,opt |:1 —oF (Ts T; L; ;)i| . (9.73)

For the purposes of a graphical representation of the influence of the elastic inhomo-
geneity k and the normalized characteristic depth c/a, it seems more appropriate
to use the function shifted by the boundary value fip(a)

Fopt(r) := fopt(r) = fopt(@) (9.74)

In Figs. 9.28 and 9.29 the optimal profile functions are plotted for different values
of k and c¢y/a, according to the publication by Jin et al. (2013). For a fixed exponent
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Fig.9.28 Optimal concave profile for a fixed characteristic depth ¢ and different set parameters k
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different characteristic depths ¢y

k, a decrease of the characteristic depth ¢ causes a drop in the height of the concave
section.

9.3 Tangential Contact
9.3.1 Basis of Calculation and Restricting Assumptions

In the following, we present selected solutions of tangential contact problems with
partial slip between two bodies constructed of FGMs, according to (9.1). For both
bodies we assume equal exponents k and characteristic depths ¢y. Furthermore, as
in the classical theory of Cattaneo (1938) and Mindlin (1949) (see Chap. 4), we
operate under the assumption of a decoupling of the normal and tangential contact,
which is valid for the following material pairings:

1. Equal elastic materials: v; = v, =: v and Ey; = Epp =: Ej

2. One body is rigid and the other elastic with a Poisson’s ratio equal to the Holl
ratio: Eg; - ooandv; = 1/(2+ k) withi # j

3. The Poisson’s ratios of both materials are given by the Holl ratio: v; = v, =
1/2+ k)

Note that, due to thermodynamic stability, the Holl ratio can only be fulfilled for
positive k. If we assume that the bodies are initially pressed together by a normal
force Fy and subsequently (under a constant normal force) are subjected to a tan-
gential force, then the contact area will be composed of an inner stick zone and an
outer slip zone (see Fig. 9.30).
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Fig. 9.30 Tangential contact
with partial slip between two
elastically inhomogeneous
bodies; the contact area is
composed of an inner stick
zone and an outer slip zone

The boundary conditions are determined by the rigid-body translation of the
points of the stick zone

u(x,y) =const. and v(x,y)=0 forO<r<c (9.75)

and by the Coulomb law of friction

‘?(r)‘ <up@r) for0<r<c,

IA

)?(r)) — up(r) fore <r<a. (9.76)
In the slip zone, the tangential stresses must be additionally directed opposite to the
relative tangential displacement of the surface points. With increasing tangential
force, the stick zone shrinks until, finally, gross slip sets in. For the calculation of
this problem using the generalized Ciavarella—Jdger theorem is recommended, ac-
cording to which the tangential contact can be represented as the superposition of
two normal contacts. For the tangential stress, the tangential force, and the relative
tangential displacement 1(?) between two remote material points—within the con-
tacting bodies and far from the contact interface—the following is valid (see Hel3
2016b):
©(r) = ulp(r.a) — p(r.c)l,
Fy = pu[Fy(a) — Fy(0)],
u® = pald(a) —d(c)). (9.77)

We have defined 7(r) := —rt.,(r) and assume that a tangential force in the x-
direction only leads to tangential stresses in the same x-direction. « represents the
ratio of normal stiffness to tangential stiffness:

1 1
+
hr(k,vi)Eo; ~ hr(k,v2)Ep
1—v? N 1—v3
hn(k,vi)Eor  hy(k,v2)Ep

a(ks Vi, EOi) = N (978)
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where
I’lT(k, 1)) =
2B(k,v)cos (5Z) T (1 + %)

(1= v2)/mC(k,v)sin (_ﬂ(kW) () + k(1 + 0T (11 5) (9.79)
: 2 , 2

and the additional functional relationships are defined as an addendum to (9.5).
With (9.77) we are able to solve the tangential contact between arbitrarily shaped
bodies, provided the solutions of the corresponding normal contact problem are
known. It is noted that tangential contacts can be solved in an equally simple fashion
using the MDR (Hef} and Popov 2016).

9.3.2 Tangential Contact Between Spheres (Parabolic
Approximation)

Applying (9.77) to the (parabolic) contact of two equally elastically inhomogeneous
spheres of radius R leads to the following results:

w(r;a,c) =
" 2hy (k,v)Eo @-r)5 =@ =r)% for0<r<c,
(1 —v)ck(k + 1R |(a? — r?)'s" forc <r <a,

%)
k+3
ﬂ@m=umwﬁp__ }

(0) _ hy(k,v) (¢ 2
u (c’a)_M—(l—vz)hr(k,v)d(a)1 <a) , (9.80)

where Fy (a) and d(a) are taken from the solutions of the normal contact (9.26).
Figure 9.31 shows the values of the tangential stresses along the x-axis under
the assumption that the normal force is kept constant for all selected exponents k of
the elastic inhomogeneity. The quantities are normalized to the maximum pressure
po.n and the contact radius ay of the Hertzian contact problem. It is clearly visible
that, compared to the respective Hertzian contact radius (contact of homogeneous
materials), the contact radii are smaller for negative exponents and greater for pos-
itive exponents. In contrast, the tangential stress is greater for negative exponents
and vice-versa. However, this behavior of the stresses is only observed in the slip
zone and not necessarily true for the entire contact area. The curves presented in
Fig. 9.32 make it clear that gross slip sets in at a small tangential displacement
u® for negative exponents, and at a substantially greater displacement for positive
exponents. For ease of comparison, the quantities are normalized to the tangential

©  which marks the onset of gross slip of elastically homogeneous

displacement v} .

materials.
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Fig. 9.31 Normalized tangential stresses along the x-axis for different exponents of the elastic
inhomogeneity for set values of Fy = 0.8uFy, co = ay and v = 0.3

4O/t o

Fig.9.32 Normalized tangential force as a function of the normalized tangential displacement for
different exponents of the elastic inhomogeneity for set values of ¢y = ay, v = 0.3
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9.3.3 Oscillating Tangential Contact of Spheres

Two bodies with parabolically curved surfaces (curvature radii R) of the same elas-
tically inhomogeneous material according to (9.1) are initially pressed together by
a normal force, and subsequently (under a constant normal force) are subjected to
the oscillating tangential force given in Fig. 9.33. Accordingly, the tangential force
varies within the bounds £0.9 Fyy to avoid gross slip at every point in time.

The solutions of the contact problem for the initial rise to Point A on the load
curve were covered in Sect. 9.3.2. Slip will occur, beginning at the edge of the con-
tact, during a subsequent successive reduction of the tangential force. It is directed
opposite to the initial slip and propagates inwards during the unloading process. In
the new ring-shaped slip zone b < r < a, frictional stresses develop, which are
again directed opposite to the initial frictional stresses. Therefore, a reduction in
the tangential force leads to a change of the frictional stresses in the ring-shaped
slip zone by —2up(r). Yet since no slip occurs in the remaining contact area, all
surface points in that domain are subjected to the same change in their tangential
displacement. Therefore the change of the tangential force leads to changes of the
tangential stresses and tangential displacements, which solve the contact problem
formulated in Sect. 9.3.1. Thus, except for the factor “2” and a negative sign, the
changes satisfy (9.77):

At(r) = 2u[p(r,a) — p(r,b)],
AF = =2u[Fy(a) — Fy(b)],

Au® = 2pald(a) — d(b))]. (9.81)
Fig. 9.33 Loading history F./puFy
of the tangential force: oscil-
lation of the tangential force 1.0
between the extreme values -
+0.9uFy

0.5

X0.5

R1.0
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The absolute values result from the summation of the state variables in Point A and
the changes (9.81). For the stresses, this leads to:

T(r) =
R MO0
a(l—v)ck(k + 1)2R
—(a* — rz)# +2(b% - rz)# —(c? - rz)# for0<r <ec,
—(@ - 12— ) forc <r<b, (9.82)

k
—(az—rz)% forb <r <a,

and for the tangential force and the tangential displacements, this leads to:

k+3
F. = Fy—2uFy(a) |:1 - (é) ] with  Fy = ukFy(a) [1 - (g)kH} .
a a

b\’ 2
u® = uilo) —2unad(a) |:1 — (E) :| with u&o) = pad(a) |:1 — (2) i| .

(9.83)
F4 and ugo) represent the load and displacement quantities in Point A, and c is the
radius of the corresponding stick zone. For the selected exponents of the elastic
inhomogeneity k = 0.5 and k = —0.5, Figs. 9.34 and 9.35 display the tangen-
tial stress distribution along the x-axis for the characteristic points A through E
of the unloading curve (see Fig. 9.33). In both cases, the same normal force was
applied and the representation was normalized to the radius ay of the Hertzian con-
tact corresponding to this normal force. For positive k, the increase of the contact

/U Py

-0.8

X/ay
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Fig. 9.34 Curve of the normalized tangential stresses along the x-axis for different points of the
load curve from Fig. 9.33 and positive exponents of the elastic inhomogeneity k = 0.5
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Fig. 9.35 Curve of the normalized tangential stresses along the x-axis for different points of the
load curve from Fig. 9.33 and negative exponents of the elastic inhomogeneity k = —0.5

area is coupled with a decrease in the tangential stresses. On the other hand, neg-
ative exponents reduce the contact area, resulting in an increase of the tangential
stresses compared to the homogeneous case k = 0. However, this effect is ex-
tremely sensitive to changes in the characteristic depth and can even manifest in
the inverse behavior. In Figs. 9.34 and 9.35 it is assumed that ¢y = ag. The char-
acteristic difference in the shape of the curves for positive and negative exponents
remain unaffected. The dependency of the stress distribution on the loading history
is demonstrated best at the load point C. Here, non-zero tangential stresses arise,
even though no external tangential force is applied.

The solutions for the load curve from E to F (see Fig. 9.33) follow in complete
analogy to the solution from A to E.

Using (9.83), the tangential force can be expressed as a function of the tangential
displacement for the unloading path from A to E and in the same manner for the
subsequent loading path from E to F. These are:

k+3
2

u® — u&o)
Fy—2uF 1— {14+ —7 ,
4 —2uFy(a) + 2and(a)

A — E:F,

k+3

u® 4 MOASES
E— F:Fy=—F(+2uFy()|1—|1—- ——2 . (9.84)
2apud(a)
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Fig. 9.36 Hysteresis loops as a result of an oscillating tangential contact for different exponents
of the elastic inhomogeneity

where the tangential displacement in Point A depends on the corresponding tangen-
tial force according to:

u') = pad(a) [1 - (1 _h )m} (9.85)

wEN

Equations (9.84) characterize a hysteresis curve, a graphical representation of which
is given in Fig. 9.36 for different values of the exponent k. In the chosen normaliza-
tion, it is quite visible that, compared to the homogeneous case, the gradient of the
hysteresis is greater for negative exponents and smaller for positive exponents. Ad-
ditionally, an increasing k is connected with an increase of the area enclosed by the
hysteresis loop and, therefore, the dissipated energy per loading cycle. An explicit
calculation of the energy dissipated per cycle yields:

A = 243k + D Fich
(k + 5)hr(k,v)Epak+!

F, O\ 65
[6)
wEy

2

k+5 F4 Fy \*3
- 1 1— . 9.86
2<k+3)uFN(+( uFN) )} 50
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The special case of elastically homogeneous bodies (k = 0) leads to the result
derived by Mindlin and Deresiewicz (1953):

3

182 F2 Fi\3 5 F Fi\’
AW = TN 1—(1— A) -2 1+(1— A) . (9.87)
5G*a uFy 6 uFy wEy
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Annular Contacts 10

In this chapter, we will turn our attention back to contact problems with an ide-
ally elastic, homogeneous, isotropic half-space. However, now the contact area
is not compact but instead ring-shaped. The simplest example of such a problem
is the contact between a flat, hollow cylindrical punch and the half-space. Even
for this simplest of examples, there exists only an extremely complicated solution.
Nonetheless, for this class of problems there exists a range of analytical approaches
which will be documented in this chapter. These approaches are for the frictionless
normal contact with and without adhesion and the non-slipping, purely torsional
contact.

10.1 Frictionless Normal Contact without Adhesion

Due to its complexity, the Boussinesq problem of ring-shaped contact areas, i.e., the
frictionless normal contact without adhesion between a rigid indenter and an elastic
half-space with the effective elasticity modulus E*, has rarely been considered in
literature. Of most practical importance is the case of indenters in the form of
hollow cylinders. Some concave rotationally symmetric indenter profiles have been
studied as well. The problem here lies in the fact that, for a small normal load and
the corresponding ring-shaped contact area, the inner contact radius is unknown and
must be determined—as is generally the case for contact problems—as part of the
solution. Barber (1974) observed that the current contact area A, must be the one
which maximized the normal force Fy. From the resulting condition

oFy

-— =0 10.1
04 |44, (10.1)
one can determine the contact area if the relationship Fy (A) is known. Barber
(1983b) also examined the boundary value problem of a flat-ended cylindrical
punch and a central circular recess. Finally, Argatov and Nazarov (1996, 1999) and
Argatov et al. (2016) performed a study of toroidal indenters.
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Support structures are frequently constructed as hollow cylinders to save weight
and material. The interior of the hollow cylinder can also be filled with a very
soft matrix—similar to bones. The corresponding normal contact problem is con-
sidered in Sect. 10.1.1. Some tools feature conical (see Sect. 10.1.2) or parabolic
(see Sect. 10.1.3) concave heads, e.g., for stamping purposes. The circular, central
recess at the tip of a cylinder (see Sect. 10.1.4) is a classic engineering solution
to ensure form-fit connections. The tori examined in Sects. 10.1.5 and 10.1.6 also
see wide-spread use. As an example, direct current transformers are increasingly
constructed in a toroidal shape instead of the classic E-I design.

10.1.1 The Hollow Flat Cylindrical Punch

The simplest problem considered in this chapter is the normal contact of a flat,
hollow cylinder with an elastic half-space. The use of the word “simple” is meant in
a relative sense, since even this problem proves to be extremely complex. However,
there are a number of solutions to the problem. A schematic diagram of the problem
is displayed in Fig. 10.1. Let the cylinder have the outer radius a and the inner radius
b and be pressed by the normal force Fy into the half-space to the depth d.

Shibuya et al. (1974) performed a series expansion of the stresses in the contact
area b < r < a proceeding from the singularities at r = b and r = a, thereby
reducing the problem to an infinite system of coupled linear equations. The coeffi-
cients of this system of equations are integrals of a product of four Bessel functions,
which does not make the solution particularly easy. Nonetheless, the system can of
course be solved numerically and the authors provide a great number of graphical
representations of the obtained numerical solutions for the stresses and displace-
ments.

Gladwell and Gupta (1979) made use of an especially elegant superposition of
appropriate, known potentials to find an approximate analytical solution of the prob-
lem. The potentials result from the solution of the Dirichlet-Neumann problem

Fig.10.1 Normal contact of F
a hollow flat cylinder with an
elastic half-space

\
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within and outside the circles » = b and r = a. For the relationship between Fy
and d they obtain the expression:

Fy = 2E*day, (10.2)

4 (b\> 1 /b\* b\>

The approximation coincides with the ratio of the radii of the exact solution, except
for a fourth-order term which is erroneous. The authors also applied their method to
the normal contact of a concave paraboloid (see Sect. 10.1.3) and to the Reissner—
Sagoci problem for the hollow cylinder (see Sect. 10.3.1).

Using the superposition of harmonic potentials, Gubenko and Mossakovskii
(1960) and Collins (1962, 1963) managed to reduce the problem to a Fredholm
integral equation, which can be solved iteratively. For y, Collins found the expres-
sion:

14b38b516b60b7 l04
V= 32 (a) 1572 (a) 2774 (a) + (a) - 109
All series terms given are exactly correct.

Borodachev and Borodacheva (1966a) utilized a similar approach as Collins and
determined numerical solutions for the indentation depth d = d(Fy ) and the stress
0. = 0..(r, Fy) in a series expansion to the ratio b/a. Borodachev (1976) ad-
ditionally obtained an asymptotic solution for the stresses in the vicinity of the
singularities.

The complete exact solution of the problem was finally worked out by Roitman
and Shishkanova (1973), albeit in the form of recursive formulas. Through series
expansions and coefficient comparisons they obtained the following expression for
the stresses in the contact area:

* 00 00 P 2k+3
Ozz(r;d) = _iad ZZ (g) |:Olpk (g)Zk + IBPk (g) :| ’ (10.5)

k=0 p=0

with

with the recursively determined coefficients

L@k L@k
%k = “opn 9k P = =g P

L2 1 IR

T T+ YT pk 1
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o = = :O’ = —=————,
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1(55°) 5 15
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Fig. 10.2 Normalized nor-
mal force as a function of the
ratio of the radii for a normal
contact with a hollow cylin-
drical punch, according to
(10.4) and (10.9). The solid
line represents the approxi-
mation (10.10)

0.3} == Roitman, Shishkanova
"""" Collins
0.2 : : : :
0 0.2 0.4 0.6 0.8 1
b/a

Here, (-)!! denotes the double faculty

il §2~4~...~n, n even, (10.7)

1-3-5-...-n, nodd

and /(x) is the largest integer which x does not exceed. For b = 0 it returns the
familiar result of the flat cylindrical punch:

E*d & r\2k E*d
(rid:b=0)=— ) 10.8
0. (r )= e () = (1038)

As expected, the series in (10.5) converges in the open interval b < r < a. Term
by term integration gives the following expression for y:

R A h\H+?
r=522() [2k+2(1_(5)
k=0 p=0
bz b 2k+1
+2kﬂp-t1?<l_(2) )] (109

It should be noted that the result for y in (2.18) of the publication by Roitman
and Shishkanova (1973) is incorrect. Grouping the right-hand side of the (10.9) by
terms (b/a)" returns the series expansion from (10.4).

The solutions for y and the pressure distribution from the (10.9) and (10.5) are
shown in Figs. 10.2 and 10.3. The coefficients in (10.6) were evaluated only to
p,k = 150, with the curve, then scaled to the value y(b = 0) = 1.

A closed-form analytical solution was later published by Antipov (1989), the
complexity of which would exceed the scope of this handbook. A very good ap-
proximation for y(e),

yle)~ (1 -=-&m", m=20915 n=0.147 (10.10)
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Fig.10.3 Normalized pres- ba=0.1

sure distribution for a normal SH_ . bla=05
coptact with a holloW cyhp- fm= bJa=009
drical punch. The thin solid ab
line represents the solution of —~
L <
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was given by Willert et al. (2016) on the basis of a very precise boundary element
calculation. This is also displayed in Fig. 10.2.

10.1.2 The Concave Cone

The Boussinesq problem of a concave cone was examined by Barber (1976) and
Shibuya (1980). A schematic diagram of the problem is shown in Fig. 10.4. Let
the base cylinder have the radius a and a concave, conical tip of the depth h. A
normal force Fy presses the body into the elastic half-space to the depth d, with the
(a priori unknown) inner contact radius of b.

Shibuya utilized the same solution approach as in his 1974 publication on the
annular punch, i.e., he reduced the problem via a series expansion at the stress
singularity at r = a to an infinite system of coupled linear equations and then

Fig. 10.4 Normal contact Fy
of a concave cone with an
elastic half-space

Y
>
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solved these numerically. He provided a variety of graphical representations of the
numerical solution.

Barber (1976) examined the contact problem in two limiting cases: firstly, for
very small values of ¢ = b/a, and secondly, for the case ¢ — 1. For the first ap-
proach he used the method by Collins (1963), and for the second approach he used
the one by Grinberg and Kuritsyn (1962). For small values of ¢, the relationship
between Fy, d and ¢ is given by:

3
Fx(d.e) = 2E*a [(d e + (n(e) - wm(s))} 01

3x2
with
4¢3 8¢’ 16¢° 92¢7 4488
= 1 _— J— — — 0 9 ,
7€) 32 15n2  27n 3152 ersms T 06
8e3  52¢° 32¢° 32667 4968
=1 R— — _ _ 0 9 )
208) =14 5 5 = 353 T8t 73522 1012508 T O¢)
2 483 3t 92
=14+ ———4+=—-——+0(". 10.12
pE =1+ =55 35 " g5 T 0@ (10.12)
The condition stemming from (10.1)
oF
“N_o (10.13)
de
leads to the desired relationship between d and &,
d 2 21
d __meye)+ neys(8)7 (10.14)
h 4 Y6(8)
with ) 5
16¢ 5¢ 14792¢
=1 = " 4 0(Y,
@) =1+ o5 T 5~ Toizsaz T 0
g 8 &t 7368
=14+ =——-—+—=- 0(&%),
@ =1+ 355+ 5 " 5n T OE)
262 8¢3 234 896¢°
Ye(e) = 1 + = + + 0(£°). (10.15)

3 "o T s et

Figures 10.5 and 10.6 provide a visualization of the shorthand symbols introduced
in (10.12) and (10.15).

Greater normal forces cause the radius b to increase and the expression 1 — ¢ to

shrink correspondingly. For this case, Barber (1976) gave the following solution for
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Fig.10.5 The parameters y; 1.15
to y3 from (10.12) as func-

tionsof e = b/a 1.7

1.05¢

> 0.95¢
0.9r

0.85
0.8

0.75
0
b/a

Fig.10.6 The parameters y,
to y¢ from (10.15) as func-
tionsof e = b/a
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the relationship between the global quantities:

272 E*ah (82 d 1 & 5 4

(-2 +5(19- 5+ 5) - 50-6L)+ 0]

d
Z=1- )
h A+[F-S+ 565 +4)-56-20)+ 00
(10.16)
with the expressions
1—¢
R
16
L=1In—. (10.17)
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Fig.10.7 Normalized inden-
tation depth d/ h and normal
force Fy /(2E*ha) as func-
tions of ¢ = b/a for normal
contact with a concave coni-
cal indenter

Fig.10.8 Normalized normal
force as a function of the
normalized indentation depth
for the normal contact with

a concave conical indenter

*

F\/(2E ha)
N @~ O N @

—d/h r
£
|===Fy/(E ha)||

A graphical representation of the relationships between the global contact quantities
is given in Figs. 10.7 and 10.8. For ¢ < 0.5, (10.11) and (10.14) were used; for all
others (10.16) was used. They achieve a near perfect match at the transition point
e = 0.5. It can also be seen that, quantitatively, the curves are nearly identical, thus
the implicitly given relationship Fy = Fy(d) can be written as:

Fy

~ 2E*da, (10.18)

which means that the relationship between the normal force and the indentation
depth roughly corresponds to the one of the flat cylindrical punch! The case b = 0,
i.e., complete contact, is impossible since it would imply an infinitely large normal

force.
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10.1.3 The Concave Paraboloid

The normal contact with a concave paraboloid was investigated by Barber (1976),
Gladwell and Gupta (1979), and Shibuya (1980). Shibuya formulated the problem
as a coupled system of infinitely many linear equations and then solved these nu-
merically (see the beginning of the previous section). Gladwell and Gupta utilized
an elegant approximation method which relied on a superposition of appropriate
potentials (see Sect. 10.1.1). They compared their results to that of Barber’s which
was the source of the only completely analytical calculations.

A schematic diagram of the contact problem is displayed in Fig. 10.9. Let a
flat punch of radius a have a parabolic depression of height 4 at its tip. Under
small loads, the contact area will be ring-shaped with an inner radius b. As already
demonstrated in Chap. 2 (see Sect. 2.5.15), fulfilment of the condition

d>d. =3h, (10.19)

or alternatively
16

FN = F(? = ?E*ah, (1020)
leads to the formation of complete contact (b = 0), in which case solution is much
simpler. In the following section, we will present the solution of the incomplete
contact. Barber (1976) examined, as in the case of the concave conical indenter, the
limiting cases ¢ = b/a — 0 (using the method of Collins 1963) and ¢ — 1 (with
the method of Grinberg and Kuritsyn 1962). Small values of ¢ return the following
equations as the solution of the contact problem:

2h
Fx(d.e) = 2E%a [(d — e + ;n@} ,

d v3(e)
- = 1 + 2 )
h va(e)

Fig.10.9 Normal contact of Fy
a concave paraboloid with an
elastic half-space

(10.21)
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with the previously introduced shorthand symbols:

4¢3 8¢’ 16¢° 92¢7 4488

= 1 _— = J— — — O 9 ,
7€) 302 15n2  27n 3152 67sms T 06
4¢3 8¢ 16e°  4¢7 32¢8
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72(8) + 7?2 572 9t 57?2 225xm4 +0()
2¢% 83 Tt 6480
neE)=1-——-————-— + 0(&%),

3 o2 15 67572
2¢2 83 234 896¢°

= O(&® 10.22
55 e TOE) (10:22)

For values of ¢ — 1 we obtain:

Fn(d,8) =
272E*ah

52
(1+682) )4

5622

A
—
+
S5
N
[\S]
/N
> X
|
—_
—
+

1 _ 58 4 & 3 4 8
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o = 1_ 8, &8 13 | 4 8 » (1023)
2 4
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with the expressions:
_l—e
T l4¢
16
L=In—. (10.24)
]
Fig. 10.10 Normalized in- 3 4/ h
dentation depth d/ h and .
normalized normal force =~ 00 F==<__ == -F\/(2E ha)
Fy/(2E*ha) as functions 2.5¢ 1
of ¢ = b/a for the nor-
mal contact with a concave 2r
parabolic indenter. Left-hand
side according to (10.21), and 1.5
right-hand side according to
(10.23) 1
0.5
0 i i i i
0 0.2 0.4 0.6 0.8 1
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Fig. 10.11 Normalized nor- 3
mal force as a function of the
normalized indentation depth
for the normal contact of a
concave parabolic indenter.
Left-hand side according to
(10.21), and right-hand side
according to (10.23)

n
[

F_/(2E" ha)
o

N

0.5f

Note that (25) of Barber’s publication (corresponding to (10.23)) contains a small
printing error.

Figures 10.10 and 10.11 offer a visual representation of the relationships between
the global contact quantities. For ¢ < 0.5, (10.21) were used; for all others, (10.23)
were used. They achieve quite a good match at the transition point. The limits
stated in this section for b = 0 are quite clear to see.

10.1.4 The Flat Cylindrical Punch with a Central Circular Recess

To fully understand the line of reasoning present in the literature, and due to the
technical importance of this problem, this section is devoted to describing a contact
problem that so far has completely evaded an analytical solution. It has even evaded
one in the form of integrals, series expansions, or recursions as in the previous
sections.

We consider the frictionless normal contact of a flat cylindrical punch of radius
a, which features a central circular recess of radius b and depth e. Let the normal
force F be sufficiently large to form another contact domain in the interior of the
recess of radius ¢ (for ¢ = 0 it would result in the contact of the annular punch
discussed in Sect. 10.1.1). A schematic diagram of the contact problem is given in
Fig. 10.12.

This is a four-part boundary value problem, since in the zones 0 < r < ¢ and
b < r < a the displacement are known. In the zones ¢ < r < b andr > a
the (vanishing) normal stress are the given values. The problem was considered
by Barber (1983b), who reduced it to two coupled Fredholm equations using the
method of complex potentials by Green and Collins (see, for example, the preceding
publication by Barber 1983a). The equations are then solved numerically. The
author provides graphical representations for the normal force and the indentation
depth as functions of the contact radius.
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Fig. 10.12 Normal contact Fy
of a flat punch with a central
recess and an elastic half-

space

10.1.5 The Torus

We now consider the frictionless normal contact between a toroidal indenter and an
elastic half-space. Let the torus of radii R; and R; be pressed by a normal force Fy
into the elastic half-space to the depth d (see Fig. 10.13).

A ring-shaped contact area of the thickness 2/ is formed. Argatov and Nazarov
(1996, 1999) found the asymptotic solution of this problem for 4 <« R,. The
relationships between Fy, d, and & are given by:

w2E* &hz
2 R

h? R, 1

d ~ — ln7+4ln2+§ . (10.25)

~
N ~ s

2R,

As a first-order approximation, the stress state under the torus (i.e., in the contact
area) can be treated as two-dimensional and is given by:

E*d 1
2In(16R2/h) \/h> = (r — R,

(10.26)

0--(r;h) ~

"

Fig.10.13 Normal contact (cross-section) between a torus and an elastic half-space
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10.1.6 The Toroidal Indenter with a Power-Law Profile

An analogy to the classic torus in the preceding section, the toroidal indenter with
an arbitrary profile in the shape of a power-law could also be solved through an
asymptotic solution, which was first published by Argatov et al. (2016). A cross-
section of the contact problem is given in Fig. 10.14. Let the torus have the radius
R and the resulting ring-shaped contact area the width 2. The indenter is pressed
by a normal force Fy into the half-space to the depth d. The following results are
only valid for thin rings; i.e., for 7 < R.
Consider an indenter having the rotationally symmetric profile

f(ry=clr—R|", neR", (10.27)

where c is a constant and 7 a positive real number. The relationship between /# and
d is given approximately by the expression:

W[ R 1
di)y ~ 2 (2 4 4m2+-), (10.28)
Kk(n) h n

with the scaling factor from Chap. 2:

. F'n/2+1)
() = VT e TESAL (10.29)

Here, I'(-) denotes the Gamma function

oo

I'(z):= / 177 exp(—t)dr. (10.30)
0

The normal force Fy is approximately equal to:

na?cRE* "

Fy(h) ~ (10.31)
K(n)
FN
l AZ
A
>, d
Y

Fig.10.14 Normal contact (cross-section) between a toroidal body and an elastic half-space
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Forn = 2 and ¢ = 1/(2R;), we obtain the results of the preceding section. The
stress distribution is, in first approximation, two-dimensional and (independent of
n) identical to the term in (10.26).

10.1.7 The Indenter Which Generates a Constant Pressure
on the Circular Ring

It poses no problem to determine the indenter shape which generates a constant
pressure pg on the circular ring b < r < a. The pressure distribution is a superpo-
sition p(r) = pi(r) + p2(r) of both distributions

pi(r)=po, r<a
pa(r) = —po, 1 <b. (10.32)

Chap. 2 (Sect. 2.5.6) provides the following displacements of the half-space under
the influence of a constant pressure on a circular area of radius a:

4poa _ (1
wi(r:a, po) = nlg*E<5)’ r<a,

wi(r:a, po) = ipE‘): [E (%) — (1 — ‘r’—j) K(%):| Cr>a. (1033)

Fig.10.15 Normalized curve 0 —]
of the half-space displace- S E (N AT T b
ments under the influence of R I e o S
a constant pressure on a ring- ~ 04}
shaped area b < r < a for QQ
different ratios of the radii. :* 0.6
The thin solid line corre- Ng 08kt~
sponds to the case b = 0 B AN
* 1 - ‘\
LE -
= L2y —ba=0.1]]
1.4k ===b/a=0.5|
==b/a=09
1.6 : : : :
0 0.5 1 1.5 2 2.5

r/a



10.2 Frictionless Normal Contact with JKR Adhesion 309

It follows that the displacement under the influence of a constant pressure on a
ring-shaped area is:

w(r;a,b, po) =

4
o ,[E(g) (- j’—j)K(é) ~(?) (1034

These displacements are shown in a normalized representation in Fig. 10.15.

10.2 Frictionless Normal Contact with JKR Adhesion

Ring-shaped contacts also occur in systems which are sufficiently small or soft so
that surface forces play a role. One example are hollow ring-shaped positioners in
micro-assemblers; such structures are also typical for various biological systems.

As in the compact adhesive contacts, all adhesive models described in Chap. 3
can be applied to ring-shaped contacts, which was the theory of Johnson, Kendall,
and Roberts (1971), Maugis (1992), and others. We can also distinguish whether a
contact is frictionless or truly adhesive, i.e., sticking without tangential slip. We will
restrict our consideration to frictionless normal contacts in the JKR approximation.
This means that we will assume the range of the adhesive interactions to be small
compared to all characteristic lengths of the system. In the JKR approximation,
adhesion properties can be completely characterized by the effective surface energy
(work of adhesion) per unit area, Aw. The notation Aw used in this chapter differs
from the standard notation Ay used in all other parts of this book. This is to avoid
confusion with the many y used in the solutions of ring-shaped contacts. Let the
half-space have, as always, the effective elasticity modulus E*.

For contact areas in the form of very thin circular rings, Argatov et al. (2016)
presented a very elegant solution for the toroidal indenter in the style of the MDR.
It presents the relationships between the global quantities—normal force Fy, in-
dentation depth d, and half of the contact width 7 = (a — b)/2 (with the contact
radii b and a)—in the case of the adhesive normal contact. First, the variable

2h a—>b
§ = = 10.35
a+b a+b ( )
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is introduced, which (in the case of thin circular rings) represents a small parameter.
If the adhesion is structured according to the framework of the JKR theory and the
relationships of the indentation depth and the normal force of the non-adhesive
contact, dy, = dna(8) and Fyn, = Fnna(8), are known, the relationships of
the adhesive contact can be obtained through the addition of an appropriate “punch

solution”.
d(8) = dpa(8) — 21n (E) @tbswe
8 ”E*

Fy(8) = Fyna(8) — v/m3(a + b)3E* Aws. (10.36)

The critical state, in which the contact loses its stability and detaches, results from
the local maximums of these expressions as functions of §.

In general though, the solutions are usually only available in the form of asymp-
totic expansions, which will be presented in the following sections.

10.2.1 The Hollow Flat Cylindrical Punch

Let a hollow flat cylindrical punch with the radii b (inner) and a (outer) be pressed
into an elastic half-space. And let adhesion act in the ring-shaped contact area
b < r < a with the effective surface energy Aw. As in the previous sections, we
introduce the ratio ¢ = b/a. The following solution was first presented by Willert
et al. (2016).

In Sect. 10.1.1 the following relationship between the normal force Fy,, and
the indentation depth d for the non-adhesive contact was derived:

Fyna =2E*day(e). (10.37)

Here, the index “n.a.” indicates the non-adhesive quantity. The complete expression
of the function y; (&) can be referenced in (10.4), (10.9), and (10.10). It should
be noted that the two analytical approximations result from series expansions at
& = 0, thus they are only accurate for small values of . In Fig. 10.2 a graphical
representation of both approximations of the function is given. The elastic energy
is then given by:

d

Uy = / Frna(§)d8 = E*d%ay(e). (10.38)
0
The surface energy, according to the JKR theory, is given by the expression:
b2
Uh = —AwA, = —tAwa® (1 - —2) = —Awa’y:(¢), (10.39)
a

with the contact area A.. The total potential energy is then:

U = E*d*ay(e) — tAwa’y,(g). (10.40)
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The relation between the normal force and the indentation depth in the adhesive
case is then given by:

a Utol
Fyv =
N d

=2E*day(s) = Fypa. (10.41)

The contact experiences a loss of its stability at:

d=—— D (10.42)

ey

(the prime denotes the derivative with respect to the argument). The corresponding
critical normal force, which is also called the adhesive force, is given by:

Foy(e)

Fo=———
Vy(e) —ey'(e)

Here the values of the full cylinder, according to Kendall (1971), were used:

(10.43)

2ral
do = $’F0:=\/8na3E*Aw. (10.44)

Using the results of Collins for y(e) (see (10.4)) yields the expression in the de-
nominator:

d L3+ 25565+ 226 + 0
oA T W ©)__ (10.45)
vy de 1= 5260 = 55a6% = et + O()

The Case e — 1
As noted in this section, Collins’ solution is only usable for small values of ¢. For
the other limiting case ¢ — 1, i.e., with § — 0 (8 from (10.35)), the solution by
Argatov et al. (2016) can be used.

The relation Fy = Fyn, remains valid of course. Independent of whether
a force-controlled or displacement-controlled trial is being conducted, the contact

loses its stability at:
d=d =—2m(0) [etDiw,
8 TE*

Fy = F. = —\/n3(a + b)}E*Aw§. (10.46)

The curves of the critical indentation depth and the adhesive force, both normalized
to the values of the solid cylinder, are depicted in Fig. 10.16. For ¢ > 0.85, the
results of (10.46) were used; for all others, (10.42) to (10.45) was used. The values
at the transition point are clearly in good agreement. Additionally, the approximate
solutions are displayed for which the numerical expression (10.10) was inserted into
(10.42) and (10.43).
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1
0.8}
0.6}
0.4 \dc| /do (Collins, Argatov et al.) “
- = -|d| /d, (Naherung) A
02|~ |F | /F, (Collins, Argatov et al.) Y
....... \Fc\ /Fo (Naherung)
0 : ‘ : ‘
0 02 04 0.6 0.8 1

b/a

Fig.10.16 Dependency of the critical indentation depth and adhesive force for the adhesive nor-
mal contact with a flat annular punch on ¢ = b/a. The curves are normalized to the values of the
full cylinder (b = 0). For ¢ < 0.85, (10.42), (10.43), and (10.45) were used, and for & > 0.85,
the expressions from (10.46) were used. The smooth transition is clearly visible. The approximate
solutions refer to (10.42) and (10.43) with the approximation (10.10)

10.2.2 The Toroidal Indenter with a Power-Law Profile

We consider the adhesive normal contact between a toroidal indenter and an elastic
half-space. The indenter has the profile:

f(r)y=clr—R|", neR", (10.47)

with a constant ¢, the radius of the torus R, and a positive real number n. Let the
annular contact have the width 2/ and let the value

§ = — 10.48

R ( )
be small. In this case we can use (10.36). Section 10.1.6 documents the derivation
of the following equation for the non-adhesive relationships between the normal
force Fy, indentation depth d, and the normalized contact width §:

ncé"R" 16 1
dn.a.(S) ~ W [ln (7) + ’;:| s

naicE*

Fyna(8) ~ )

R*ngn, (10.49)
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Here, the index “n.a.” indicates the non-adhesive quantities. The function « (n) can
be gathered from (10.29). Using (10.36), the adhesive relationships are then given

by:
ncé" R" 16 1 16 2RAw
d(é) ~ In(— —|—2In{ + g,
o~ [n(F) +a) - (5)V5E
nmlcE* I+
Fy(§) ~ R ™'§" — V83 RIE*Aws. (10.50)
K(n)
In a force-controlled trial, the contact experiences a loss of stability at
_ 2 (Kk(n) 2 Aw
=2 =) RV —. 10.51
‘ b4 ( cn? ) E* ( )

The corresponding adhesive force has the value

(E*)nfl (Aw)”/c(n)n3”*22”
n2n+lc

F. = —R [ ]2"1 Qn—1). (10.52)

It is obvious that these expressions can be valid only for n > 0,5. Forn — oo we
obtain the results of the hollow flat cylindrical punch from (10.46). Other special
cases which we will briefly examine are:

The V-Shaped Toroidal Indenter with n = 1
In case of a V-shaped toriidal indenter it is ¢ = tan 6, with the slope angle 6 of the
V-profile, n = 1 and k(n = 1) = 7/2. This yields:

_n Aw
¢ 2tanf RE*’
Awr?
F.=—-R . (10.53)
tan 0

Thus the adhesive force is independent of the elasticity properties of the half-space.

The Classic Torus n = 2
With ¢ = 1/(2R;), the radius of the torus R;, n = 2 and x(n = 2) = 2, we obtain:

5 1 Aw
¢\ zR, RRE*’

* 2,4
F, = —3R§/(w> (10.54)
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10.3 Torsional Contact

The purely torsional contact problem between a rigid indenter and an elastic half-
space is also referred to as the Reissner—Sagoci problem. The boundary conditions
at the surface of the half-space at z = 0, in the axisymmetric case for a ring-shaped
contact area with the radii b and a > b, are as follows:

uy(r.z =0)= f(r), b=r=a,
0yp:(r,z=0)=0, r<b,r>a, (10.55)

with the rotational displacement and the tangential stresses. This consideration only
deals with the pure torsion problem without slip, which means that all other stresses
and displacements vanish.

10.3.1 The Hollow Flat Cylindrical Punch

In drilling applications, sometimes hollow or concave drill bits are used. This ap-
proximately corresponds to the contact problem described in this section. For the
contact of a hollow flat cylindrical punch, the function f(r) of the torsional dis-
placement is given by:

f(r) =or, (10.56)

with the twisting angle ¢ of the punch around its axis of symmetry. The contact
problem was studied by Borodachev and Borodacheva (1966b), Shibuya (1976),
and Gladwell and Gupta (1979).

Borodachev and Borodacheva (1966b) applied the same method which Collins
(1962, 1963) utilized for the solution of the normal contact problem of a flat annular
punch. They numerically solved the Fredholm equation that arose over the course of
the solution process and obtained the following relationship between the torsional
moment M, and the torsion angle ¢:
EGa%py(e), (10.57)

M, =
3

once again introducing the shorthand notation ¢ = b/a. G is the shear modulus of
the elastic half-space. A series expansion of the function y(¢) is only possible for
small values of €. The authors presented the approximate solution:

y = 140.0094c*—0.1189¢° —0.0792¢” —0.0094£® —0.0645¢° + 0 (£'%). (10.58)
For the stresses in the contact area they provided the expression:

4G6O

r 85 r2 4 r6
0p-(r) ~ — ——— |1+t S|t taug+ta—
T a2_r2 T a a a

eb* b2 X Bo
+ m (.30 + ,32’5—2 + ﬁ4r—4 + ﬁar—6) §, (10.59)
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with the shorthand notation:

ap = 0.0839 + 0.0913¢> 4 0.0929¢* + 0.0007&> + 0.1469¢°,

oy = 0.0531 + 0.0698¢ 4 0.101¢*,

oy = 0.0434 + 0.0844¢%, g = 0.0579,

Bo = 0.2896 + 0.0917¢> 4 0.0562&* + 0.0025¢> + 0.0625¢°,

B> = 0.2083 + 0.075% + 0.05&*,

Bs=0.154+0.12, B¢ =0.2. (10.60)
Gladwell and Gupta (1979) solved the contact problem in a very elegant manner

through a combination of appropriate potentials. They gave the sought stresses and
displacements inside and outside the contact area as:

r ro r?
E—zblg l—ﬁ, O<r<b
i, b<r<a
. a
uy(r) = ga 2r a a a? ’
— |:arcsm (;) — 7 — ﬁ}
a? a?
— 6a;— l——2, r>a,
r r
[4r _cr\  9byr (b a* r
00:(r) = Gy | R (5)-—-v (;) —9a5U (5)}
b<r<a, (10.61)

with the functions U and R and the shorthand notations defined as follows:

arcsin x x (1 xz) x <1
Ux) =1 V1—2x2 3)°
A X Z 15
2
! <1
_— X
R(x) =1 V1 —x2
0, x>1,
) 600g2 4e3b, 160g° (10.62)
=, a) = = N .
' T 675n2— 485 1T 15m  6757° — 48weS

which is in very good agreement with the results of Shibuya (1976), who converted
this problem into a coupled system of infinitely many linear equations and solved
these numerically.

If we then determine the torsional moment via integration of the stress distribu-
tion (this step was not performed in the publication by Gladwell and Gupta) and
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Fig. 10.17 Normalized 1.05
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expand the expression for y in Taylor series to powers of &€ we obtain:

6 s + 0(c°%). (10.63)

= 1—
Y 1572

Figure 10.17 shows the solutions for y, according to Borodachev and Borodacheva
(1966b) and Gladwell and Gupta (1979). For values of ¢ < 0.6 they are in very
good agreement. We must keep in mind that both solutions are intended only for
small values of e. Figures 10.18 and 10.19 display the solution for the tangential
stress distribution on the basis of (10.59) and (10.61). The stress singularities at
the sharp edges of the indenter and the convergence with the solution for the flat
cylindrical punch from Chap. 5 (see Sect. 5.1.1) are easily recognized.
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Fig. 10.19 Normalized tor-
sional stresses according to
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Appendix

A significant number of contact problems concerning rotationally symmetric bodies
can be solved via reduction to the non-adhesive frictionless normal contact prob-
lem. The problem of an adhesive normal contact is thereby reduced entirely to
the solution of a non-adhesive normal contact. Likewise, the tangential contact
problem in the Cattaneo—Mindlin approximation can be reduced to the frictionless
normal contact problem using the principle of superposition by Cattaneo—Mindlin—
Jager—Ciavarella. And finally, contacts of viscoelastic bodies can be reduced to the
corresponding elastic problem, i.e., the non-adhesive elastic normal contact, using
the method by Lee und Radok.

This problem of the elastic, frictionless, non-adhesive normal contact of rotation-
ally symmetric bodies can in turn be reduced via the MDR to the problem of the
indentation by a rigid cylindrical indenter. If the solution for the contact between a
rigid cylindrical punch of an arbitrary radius and a given elastic medium is known,
then the solution for an arbitrarily shaped punch consists of a simple superposition
of indentations by punches of varying radii.

The problem of an indentation by a flat cylindrical punch cannot be further re-
duced and thus requires an actual formal solution. In this appendix, we perform
this basic step and describe the “construction of the building” of the MDR. In doing
this, we follow the appendix of the book by Popov (2015). In Sect. 11.8 of this
chapter an overview of the special functions used in this book is provided. In (the
closing) Sect. 11.9, the historical solution of the contact problem for an arbitrary
axisymmetric profile with a compact contact area according to Foppl (1941) and
Schubert (1942) is given.
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1.1 The Flat Punch Solution for Homogeneous Materials

This section demonstrates that the pressure distribution at the surface of an elastic
half-space

2\ —1/2
P(r;a)ZPO(l—r_z) . rr=xr4yhr<a (111
a

leads to a constant normal displacement of the circle r < a and, therefore, corre-
sponds to the indentation by a rigid circular punch. The basis for the calculation is
the general relationship between an arbitrary pressure distribution p(x’, y’) and the
resulting surface deformation w given by the fundamental solution of Boussinesq:

1 dx'dy’
wix.y) = /f P B S =y (1)

T E* r

with the effective elasticity modulus £*. The integral (11.2) is calculated using the
system of coordinates and notations shown in Fig. 11.1. Due to rotational symmetry
of the stress distribution, the vertical displacement of a surface point is dependent
solely on the distance r of this point from the origin O. Therefore, it is sufficient
to determine the displacements of the points on the x-axis. In the following, we
will calculate the vertical deformation at point A. For this, we must determine the
displacement at point A caused by the stress in the “varying” point B, and subse-
quently integrate over all possible positions of point B within the load zone. Due
to rotational symmetry, the stress at point B also depends solely on the distance ¢
of the point to the origin O. For this distance we obtain 1> = r? 4 52 + 2rs cos ¢.
Therefore, the pressure distribution is:

r? +s2 4+ 2rscosg ~172
p(s.o) =po|1— 5
a
= poa(a® —r* — s> = 2rscos )~ \/?
= poa(a® —2Bs — 52712, (11.3)

where we have introduced o> = a> — r? and B = r cos ¢.

For the z-component of the displacement of a point within the load zone we
obtain:

2 K
1
w = poa/ /(a2 —2Bs —s2)"2ds | do. (11.4)
nE*
0 \o

Here, s, is the positive root of the equation «®> — 28s — s> = 0. The integral over
ds is calculated to:

[(0{2 —2Bs —s*)V2ds = % —arctan(B /). (11.5)
0
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Fig. 11.1 Calculation of the a
vertical deformation caused

by normal stresses acting

on a circular area: (a) at a

location within the load zone,

(b) at a location outside of the

load zone

LY

Y

A

It is apparent that arctan(B(¢)/«) = —arctan(8(¢ + 7)/a). Thus, by integrating
over ¢, the term with arctan is eliminated. Therefore,

2
w(r;a) = — 5 poa/ %dqo = ngia =:d =const, r<a, (11.6)
0

where the indentation depth d is introduced.
We now consider a point A outside the load zone (Fig. 11.1b). In this case:

p(s.@) = poa(a’® +2Bs —s) /2. (11.7)

The displacement is then given by the equation:

P1 52
1 B
w = poa/ /(a2+2ﬁs—s2) Y2 45 | dg (11.8)
T E*
—¢1 S1

where s; and s, are the roots of the equation:

o> +2Bs—s>=0. (11.9)
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Accordingly, it follows that:

52
/ (02 +28s — %) ds = 7. (11.10)

s1

The remaining integration in (11.8) now results trivially in w = % Ppoag; or, taking
into account the obvious geometric relation from Fig. 11.1b, ¢ = arcsin(a/r),

w(r;a) = %poa'arcsin(a/r), r>a, (11.11)

which, accounting for (11.6), can also be written as:
w(r;a) = %d -arcsin(a/r), r >a. (11.12)
From the result (11.6) it follows directly that the assumed pressure distribution is

generated by an indentation by a rigid cylindrical punch. The total force acting on
the load zone equals:

“ 2y —1/2
Fy = /po (1 - %) 2rdr = 27 poa’. (11.13)
0

The contact stiffness is defined as the relation of force to displacement:
k. =2aE*. (11.14)

The pressure distribution (11.1) can also be represented in the following form with
the consideration of (11.6):

E*d

1
3 11.15
T (11.15)

p(r) =

11.2 Normal Contact of Axisymmetric Profiles with a Compact
Contact Area

In this section we will present the solution for the normal contact problem for ax-
isymmetric profiles with a compact contact area in its general form. For this, we
will use the solution of the contact problem of a rigid flat cylindrical punch obtained
in the preceding section. Simultaneously, a derivation of the fundamental equations
of the MDR will be performed.

We will now consider the contact between a rigid indenter of the shape Z = f(r)
and an elastic half-space characterized by the effective elasticity modulus E*. Let
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the indentation depth under the effect of the normal force Fy be d and the contact
radius a. For a given profile shape, any of these three quantities uniquely determines
the other two. The indentation depth is a unique function of the contact radius,
which is denoted by:

d = g(a). (11.16)

Let us examine the process of the indentation from the first touch to the final in-
dentation depth d, denoting the values of the force, the indentation depth, and the
contact radius during the indentation by Fy. d and a, respectively. The process
can then be viewed as a change in the indentation depth fromd = Otod = d,
with the contact radius changing from a = 0 to a = a, and the contact force from
F v =0to F N = Fy. The normal force at the end of the process can be written in

the following form:
Fy

a ~ ~
. dFy dd .
Fy = | dFy = | — —da. (11.17)
dd da
0

Taking into account that the differential stiffness of a zone of radius a is given by:

—2 =2FE*a (11.18)
dd

(see (11.14)), and using the notation (11.16), we obtain:

FN_ZE/ dg(@) 4 (11.19)
da

0

Integration by parts now results in:

a

Fy =2E* |a-g(a)— / g(@)da | = 2E7 / g(@) — g(@)]da
0

L 0

a

= 2E* /[d — g(@))da | . (11.20)

LO

We now turn our attention to calculating the pressure distribution in the contact
area. An infinitesimal indentation of an area of radius @ generates the following
contribution to the pressure distribution (see (11.15)):

1 E* .
dp(r)z—ﬁdd, forr < a. (11.21)

S
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The pressure distribution at the end of the indentation process equals the sum of the
incremental pressure distributions

()—[dl E dcsz (11.22)
pr) = —r2 _era a, .

d(r)
or under consideration of the notation (11.16)

EC [ 1 dg@
£@ .

p(r) = | V@ —r

(11.23)

The function g(a) from (11.16), therefore, uniquely defines both the normal force
(11.20) and the pressure distribution (11.23). The normal contact problem is re-
duced to the determination of the function g(a) (11.16).

The function d = g(a) can be determined as follows. The infinitesimal surface
displacement at the point r = a for infinitesimal indentation by dd of a contact
area of radius a < a is, according to (11.12), equal to:

dw(a) = % arcsin ( ) dd. (11.24)

The total vertical displacement at the end of the indentation process is, therefore,
equal to:

d -
2 ay .~ 2 . fa\dd .
w(a) = /arcsm dd = —/arcsm — | —da, (11.25)
b4 a b4 a) da
0

or with the notation (11.16), it is:

a

d
w(a) = /arcsm( ) g(a) . (11.26)
a da
0
This vertical displacement, however, is obviously equal to w(a) = d — f(a):
2 [ d
d— fla) = —/arcsin (—) £@ 5 (11.27)
b4 a da
0

Integration by parts and consideration of (11.16) leads to the equation:

[ g@

a2 — a2

fay=2

0

da. (11.28)
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This is Abel’s integral equation, which is solved with respect to g(a) in the follow-
ing way (Bracewell 1965):

/(@)

——da. (11.29
[a2 — &2 )

gla)=a
0

With the determination of the function g(a), the contact problem is completely
solved.

It is easy to see that (11.16), (11.20), (11.23), (11.28), and (11.29) coincide
exactly with the equations for the MDR (Chap. 2, (2.17)) , which proves the validity
of the MDR.

11.3 Adhesive Contact of Axisymmetric Profiles with a Compact
Contact Area

The MDR described in Sect. 11.2 for the solution of non-adhesive contact of ro-
tationally symmetric bodies can easily be generalized to adhesive contacts. The
generalization is based on the fundamental idea of Johnson, Kendall, and Roberts
that the contact with adhesion can be determined from the contact without adhe-
sion plus a rigid-body translation. In other words, the configuration of the adhesive
contact can be obtained by initially pressing the body without consideration of the
adhesion to a certain contact radius a (Fig. 11.2a) and, subsequently, retracting to a
certain critical height A/ while maintaining the constant contact area (Fig. 11.2b).
Since both the indentation of any rotationally symmetric profile and the subsequent
rigid body translation are mapped correctly by the MDR, this is valid also for the
superposition of these two movements.

The still unknown critical length A/ = Al(a) can be determined using the prin-
ciple of virtual work. According to this principle, the system is in equilibrium when
the energy does not change for small variations of its generalized coordinates. Ap-
plied to the adhesive contact, it means that the change in the elastic energy for a
small reduction of the contact radius from a to a — Ax is equal to the change in

Fig. 11.2 Qualitative representation of the pressing and retraction process of a one-dimensional
indenter with an elastic foundation, which exactly represents the characteristics of the adhesive
contact between a rigid spherical punch and an elastic half-space. a Indentation without accounting
for adhesion; b retraction with constant contact radius
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the surface energy 2ma AxAy, where Ay is the separation work of the contacting
surfaces per unit area. Since the MDR maps the relation of force to displacement
exactly, the elastic energy is also reproduced exactly. The change in the elastic
energy can, therefore, be calculated directly in the MDR model. Due to the de-
tachment of each spring at the edge of the contact, the elastic energy is reduced by
E*AxAl?. Balance of the changes in the elastic and the adhesive energy results in:

2mraAxAy = E*AxAl> (11.30)
It follows that:
2mal
Al = [ ZZ42Y (11.31)
E*

This criterion for the detachment of the edge springs in the adhesive MDR model
was found by HeB3 (2011) and is known as the rule of Hef3.

11.4 The Flat Punch Solution for FGMs

In Sect. 11.1, the solution of the contact problem between a rigid, cylindrical flat
punch and an homogeneous elastic half-space was derived via the Boussinesq fun-
damental solution. Analogously, the corresponding solution can be found for an
elastically inhomogeneous half-space with the variable elastic modulus

k
E(z) = E, (CZ—O) with —1 <k < 1. (11.32)

The fundamental solution in this case is given by:

(1—v?)cos () ck Fy

wir) = hy(k,vVTEy  ritk’

(11.33)

with &y (k, v), which was introduced in (9.5) in Chap. 9. Using the superposition
principle and (11.33) the normal displacement of the half-space surface can be de-
termined for any pressure distribution p(x’, y'):

(x.y) = (1—v2)cos k” CO // o dx/dy
w(x,
Y Iy (K, v)nEo )

with r = v/(x —x/)2 + (y — y)2. (11.34)

In the following we will show that a pressure distribution

2\ 7
p(ria) = po (l—r—z) . rr=x*+yLr<a (11.35)
a
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generates a constant normal displacement inside the circle with radius a. Utilizing
the transformed variables depicted in Fig. 11.1a and by introducing the short-cuts

a? =a?—r?and B = r cosg, (11.35) can be written in the form:

poal—k

(Vo285 —7) "

The surface normal displacement of a point within the circular area stressed by the
pressure distribution (11.36) is determined by (11.34):

pls, ) = (11.36)

2w 8]

(ria) = (1 —vz)cos( cop oa'* // dsd
w(ria T e
hN(k \))ﬂEO 2,8.5‘ N

(11.37)
where 51 = —f8 + /B2 + a2 is the positive root of the denominator under the
integral in (11.37). The inner integral over s results in

[
( a—2Bs — sz)lik s*

_F(1—§)r(#) B g (L1tk3 B?
JT NCEEYE 202 224 B
With the symmetry relation (¢ + m) = —fB(¢) it is clear that the second, hy-

pergeometric term will not contribute after integrating over ¢. Hence, the normal
displacement inside the pressured ring is given by:

) (11.38)

1- vz)cgnpoal’k

]’lN(k, U)Eo

w(r;a) = =:d =const, r <a. (11.39)

As such, the pressure distribution (11.35) results from the indentation by a rigid flat
cylindrical punch.

We now proceed to the calculation of the normal displacement of a point outside
the loading zone. Taking into account the variables introduced in Fig. 11.1b, the
pressure distribution (11.35) then takes the form:

poa'=k

(Vo2 +2B(p)s — )

p(s.9) = e (11.40)




328 11 Appendix

and the normal displacements can be determined from the integral:

(1 =v?)cos (&) ¢k poa'=* r ds
w(r;a) = > / / 1—k S_kd(pv

hy(k, E
n( v)ﬂ 0 Zoi Va2 +2Bs —s?
(11.41)
whereas 51/, = B F /B? + 2. The inner integral resolves to:
52
/ 1 ds
1k ok
5 (s/a2+2ﬁs—s2) s
VAT (B5) (2 + 2\ k 1+k kot B
P (= — =1+ o . (11.42)
r(1+5%) p? 20 2 20 B

The subsequent integration over ¢ after some transformations leads to the sought
normal displacements outside the loaded area:
w(r;a) =

2(1 = v?)cos (&) ¢k poa'~* (a>k+l l+k 14+k 3+k a?
iy (k, V) Eo(1 + k) T\ 2 T

) , (11.43)

which (taking into account (11.39)) can be written in the form:

2d kx k+1 2
w(r;a)zL(Z)(_l) " ) l(l+k L+k 3+k a

, ; =) 11.44

w(1+k) 2 2 2 r2) ( )
Integration of the pressure distribution over the contact area will give the total nor-
mal force:

q 2N\ 2 2 2
FN(a)Z/po(l—%) 2rdr = T4 (11.45)
0

k+1
The normal contact stiffness results from (11.39) and (11.45):

dF 2y (ko v)E
ko= 958 _ 2wk VE (11.46)
dd ~ (-1 +k)

Application of (11.39) also allows for the reformulation of the pressure distribution
in terms of the indentation depth:

hy (k,v)Eod
p(r;a) = v (k. v) o —- (11.47)
r(1—v)ck(@?—r=
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11.5 Normal Contact of Axisymmetric Profiles with a Compact
Contact Area for FGMs

Starting from the contact solution for the indentation of a power-law graded elas-
tic half-space by a rigid, flat-ended cylindrical punch, we derive the solution of
an arbitrarily shaped, axisymmetric contact problem with a compact contact area.
Analogous to the derivation for elastically homogeneous materials from Sect. 11.2,
we first assume that the indentation depth can be written as an unambiguous func-
tion of the contact radius:

d = g(a). (11.48)

In the following, formulas for the normal force, pressure distribution, and the nor-
mal displacements of the surface are derived, all of which depend only on the
function g. For this purpose we will make use of an idea by Mossakovskii (1963),
according to which the solution of the general axisymmetric contact problem results
from a superposition of (differential) flat-ended punch solutions. As a final step the
determination of the function g will be shown.

For the calculation of the normal force, we assume the incremental contact stiff-
ness according to (11.46) which, taking (11.48) into account, will lead to:

Fo = 2hy(k,v)Eg Slkgd — 2hy(k,v)Eg dedg( )
(1 —v2)cf (1 +k) (1 =v2)ef(1+k) da

. (11.49)

The indentation process can be viewed as a change in the indentation depth from
d =0tod = d, with the contact radius changing froma = 0 to @ = a and the
contact force from Fy = 0to Fy = Fy. The normal force at the end of the process
can be calculated from (11.49) by integration:

2hy (k,v)Ey Sk dg(&)dd

= g0 +0 da (11.50)
0
Integration by parts results in:
2y (k. v)Eq [ o
Fv@ = 2O [k o) - g(@))aa
(1 =v?)c; )
= /CN(d) [d —g(a)]da, (11.51)

—d

wherein cy (@) denotes the foundation modulus defined by (9.4).
The calculation of the pressure distribution is done in the same way. An infinites-
imal indentation of an area of radius a generates the following contribution to the
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pressure distribution (see (11.47)):

hy(k,v)E -
~(k,v)Eg _ dd
(1 —v2)ck@:—ry)=
hy(k,v)E dg(a
_ v (K, v) Eo _ 8@ 47 forr <a. (11.52)
n(1—v2)ck@>—r2=> da

dp(r;a) =

The pressure distribution at the end of the indentation process equals the sum of the
incremental pressure distributions:

_ hn(k,v)Ey [ dg(a) da _en(co) wip@ .
p(r) = ok — — T =% - —da,
m(l —v?)c; da @ —r2= mey @ —r2=

(11.53)
wherein w;p denotes the displacement of the Winkler foundation introduced by
(9.9).

For the calculation of the normal displacements outside the loaded area, we first
need the displacement proportion caused by an incremental indentation with the
radius a. Thereby, (11.44) will provide the relation

dd forO<r<a
2 cos (kT”) a\'tk
dw(r,a) = 7.[(1 + k) ; (1154)
l+k 14+k 34k a*\ -
-oF * , + ; + :— |dd forr > a.
2 2 2 r2

Summation over all incremental contributions 0 < a@ < a, accounting for the con-
dition r > a, gives:

w(ria) =

2 k_f[ 4 ~N\ 14k ~2 ~
cos(z)/ a JF, l+k’l+k;3+k;a_ dg(Na)dd’ (11.55)
a(l+k) r 2 2 2 'r?) da

0

which (after integrating by parts) results in the determining relation for the displace-
ments outside the contact area:

2cos (%) / i*lg(@) g @)
e (r2—a2's

w(r;a)

da forr > a. (11.56)

a
2cos (kT”)/ a*wp(a)
b4 J — a2
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Equations (11.51), (11.53), and (11.56) reproduce the MDR relations (9.11) und
(9.12) for the normal contact of power-law graded elastic bodies. They only depend
on the yet not determined function g(a). To give an expression for this function
we first calculate the normal displacements inside the contact area based on an
incremental formulation and (11.54). We obtain:

w(r;a) = /—dig)dd

2cos )/( )“" . (1+k 1+k 3+k a )dg(a)
261 ’ ) E) ~

71(1 + k) 2 2 2 'r2) da

forr <a.
(11.57)
Integration by parts results in:

w(r;a) = gla) — da for0<r <a, (11.58)

1+k

2 cos (/%) /r akg(a)

R AGET O
which of course must equal the normal displacements due to the indenting profile:
w(r;a)=d — f(r) forO<r <a. (11.59)

Hence, the functions f and g are connected via the Abel transform

fr) =

ZCOS(%)/F dg@ . (11.60)
(r?

T F2 a2)1+k

Inverse transform of this equation yields a determining relation for the function
g(a:

la| ,
~|17k f (r )

ga) =la @ 2)ﬂdr, (11.61)
ac—r-)2

which naturally corresponds to (9.2) in Chap. 9.

11.6 Adhesive Contact of Axisymmetric Profiles with a Compact
Contact Area for FGMs

The calculation of adhesive contacts with FGMs is performed completely analo-
gously to the case of adhesive contact of homogeneous materials. Only the Winkler
foundation is redefined by (9.3):

Ak, = cy(x) - Ax (11.62)
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with ¢y (x) defined by (9.4). The energy balance now takes on the form:

2mraAxAy = cy(a)AxAl> (11.63)
It follows that:
A= [2TeAY (11.64)
cn(a)
For a rigid indenter,
en(x) =hy(k,V)E® (%)k (11.65)

and (11.64) can be written in the following form:
[2maAyckal=*
Al = | ——2 9 11.66
E*l’lN (k, 1)) ( )

11.7 Tangential Contact of Axisymmetric Profiles
with a Compact Contact Area

which justifies (9.45).

There exists a very close analogy between normal and tangential contact problems.
The normal force and pressure distribution for an indentation d of a flat cylindrical
indenter of radius a are given by the equations:

Fy = 2E*ad,
1 E*d

p(r) = P ey (11.67)

(see Sect. 11.1). A tangential displacement u(? leads to the tangential force and
stress distribution given by Johnson (1985):

F, =2G*au?,
1 G*u®

w(r) = ;—m,

which differs from those for the normal contact only in the notation. Now we
consider the simultaneous impression of an axisymmetric profile z = f(r) in the
normal and tangential directions and characterize these movements through the nor-
mal and tangential displacements as functions of the contact radius:

(11.68)

d=g(a), u®=h). (11.69)
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The force and stress during the indentation starting at initial contact are then:

Fy ZE[ 198D g oy = E/ L 8@ q170
da G2 — r2

da
0
and
@ | G [ 1 dh(@)
Y =2 11.71
G/ T da, t(r)= 2—r2 G ( )

0

We now consider the following two-step process. The punch is initially pressed in a
purely normal motion until the contact radius c is reached, and then further pressed
in such a way that it moves simultaneously normally and tangentially until contact
radius a is reached, whereby

dh = A-dg. (11.72)

The normal force and the pressure distribution at the end of this process is still given
by (11.70), while the tangential force and stress distribution obviously result in:

dh d
F, = 2G* / @ 47 = 26 A/ @ (11.73)
da da
C c
and G . : o
)k g(a)da, forr < c,
2 —r2 da
t(r) = (11.74)
G*A ’ ! dg(a)da forc <r<a
m da ’ ’

In the area ¢ < r < a, the normal and tangential stress distribution have the same
form:

G*
(r) = Aﬁp(r). (11.75)
If we set
)LG—* = (11.76)
! ‘

then the examined contact will have the following properties:

u(r) = u® = const, forr <c,
w(r) = up(r), forc <r <a. (11.77)

These conditions correspond exactly to the stick and slip conditions in a tangen-
tial contact with the coefficient of friction w. Therefore, the force (11.73) and the
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stress distribution (11.74) under consideration of (11.75) solve the tangential con-
tact problem:

a
ot
F, = ZME*[d 8@ 45
da

c

E( « 1 dg@) ..
h— 4
T r vdz—rz da
¢ 1 dg(@ .
= _ 11.78
7(r) =t da|, forr<c, ( )
E* [ 1 dg(a
M7/I ﬁ i(da)dd, forc<r <a,
or
5 - 5 ) f )
') = p(ria)— p(ric), forr <c (11.79)
p(r;a), forc <r <a,

where we denote the normal pressure distribution at the contact radii a and ¢ by
p(r;a) and p(r;c), respectively. The tangential displacement in the contact is
obtained by integration of (11.72):

E*
u® = ngrlg@ —g©). (11.80)

It is easy to see that (11.78) and (11.80) coincide with (4.39), thereby proving the
validity of the MDR for tangential contacts.

11.8 Definitions of Special Functions Used in this Book

At certain points in this book, non-elementary functions have been utilized. For ease
of reference, we have provided a short summary of their definitions and significant
properties.

11.8.1 Elliptical Integrals

Several definite integrals that cannot be solved in the form of elementary func-
tions are themselves defined as (non-elementary) functions. The so-called elliptical
integrals belong to this class of functions. Let k be an elliptical modulus with
0<k><1land0 <6 < x/2. The incomplete elliptical integrals of the first and
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second kind are defined as:
0 d
F(0,k) := [ s
J 1 —k2sin’ ¢

6
E,k) := [ V1 —k2sin® pdg. (11.81)
0

For the case of & = /2, this results in the so-called complete elliptical integrals:

/2
d
K (k) ::/7‘”:1:(1,1«),
, V1—k2sin’¢ 2
/2

E(k) = / V1= k2 sin? pdg =E(%,k). (11.82)
0

It should be noted that several mathematical databases provide the elliptical inte-
grals as a function of the modulus m = k2.

11.8.2 The Gamma Function

Euler’s Gamma function can be defined in an integral form by the expression:

I'(z):= /zl*l exp(—t)ds, Refz} > 0. (11.83)
0

It is easy to prove the recursion property
Fz)=c-DHr'z-1. (11.84)

The Gamma function is, therefore, a generalization of the faculty function for
arbitrary complex arguments, since (11.84) immediately returns the following rela-
tionship for positive integer arguments of the function:

T(n)=(m—1), neN* (11.85)
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The complete Gamma function defined in (11.83) can be generalized to the “lower”
or “upper” incomplete Gamma function by restricting the integration limits,

[o.¢]
[y(z,a) = /tz_l exp(—t)dt, Re{z}>0,aeR"

a
a

I(z,a):= /ZZ_I exp(—t)dt, Re{z} >0, aecR" (11.86)
0

with the obvious property

I(z,a)+ Ty (z,a) =T(2). (11.87)

11.8.3 The Beta Function

The complete Beta function relates to the Gamma function according to the defini-

tion: FOT ()
B(x.y) = ﬁ

The integral definition can also be shown in this representation:

Re{x,y} > 0. (11.88)

1
B(x,y) = /u"‘*l(l —u)’"'du, Re{x,y}>0. (11.89)
0

The Beta function is clearly symmetric, with B(x, y) = B(y, x). From (11.85)
and (11.88) it is apparent that the binomial coefficient

n\ n! B 'm+1)
k] kln—k) T(k+DI(n—k+1)
1
T+ DBk +Lan—k+1)

can be expressed by the Beta function. From the definition of the Beta function also
follows the recursion property

nkeN, n>k (11.90)

B(x,y) =B(x+1,y) +B(x,y +1). (11.91)

By restricting the integration limits in (11.89), the complete Beta function can be
generalized to the “lower” or “upper” incomplete Beta function. Usually the upper
limit is set, resulting in the definition

4

B(z;x,y) = /u“"l(l —u)’"'du, Re{x,y}>0, z €[0:1]. (11.92)
0
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11.8.4 The Hypergeometric Function

Many different hypergeometric functions exist. In this book, only the Gaussian
hypergeometric function

>Fi(a,b;c;z) = g F(?(:)’;)(E)(?(t ’.:_)Z)(C) i—’: (11.93)
is used. It is the solution of the hypergeometric differential equation
z(1—=2)y"(z2) +[c—(a+ b+ 1)z]y'(z) —aby(z) = 0. (11.94)
The derivative of this function is given by:
d ab
i LFi(a,b;c;z)] = 72F1(a +1,b+1;¢c+1;2). (11.95)

Certain special cases of the hypergeometric function can be expressed by elemen-
tary functions, such as:

1
JFi(l,1;1;2) = ——. (11.96)
1—2z

11.8.5 The Struve H-Function

The Struve H-function is a Bessel-type function. It can be expanded to the power
series

H,(2) :

R .
) ) (Z)Zk+ YoLec (11.97)

:gr(k+§)r(k+n+§ 2

and is the solution of the inhomogeneous Bessel differential equation

. , _ 4 z\n+1
V()22 + y(2)z + (2% —n)y(z) = NPy (5) . (11.98)

Additionally, the following differentiation property of the Struve H-function can be
demonstrated:

di [H,(2)] = H,-1(2) — “, (2). (11.99)
VA z
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11.9 Solutions to Axisymmetric Contact Problems According
to Foppl and Schubert

In this section, we will present the derivation of the solution for the contact problem
of an arbitrary axially symmetric indenter, which was published by Foppl (1941)
and Schubert (1942). This is the first known publication to perform the derivation
of the equations that lay the foundation for this book. Over the course of the history
of contact mechanics, they were derived multiple times using different approaches.
For instance, they were later found by Galin (1946) as well (likely independently).
They reached a high degree of international recognition through the paper of Sned-
don (1965)—one of the most cited publications in the history of contact mechanics.
Yet Sneddon merely offered a different derivation approach to obtain already known
solutions, including those of Galin (whom he cites). And much later, new inter-
pretations and derivations of the same equations were published multiple times.
Some of these were quite useful since they provided a new perspective on the is-
sues and facilitated different generalizations and developments. This includes the
interpretations by Jager (1995), who treated the indentation of a curved body as the
superposition of infinitesimal indentations of flat cylindrical punches (although even
this idea was not original and was previously used by Mossakovskii). The MDR is
also based on the equations of Foppl-Schubert—Galin—Sneddon-Jéger, however, it
offers an intuitive physical-mnemonic interpretation, which can be directly gener-
alized to many other contact problems.

Although 77 years have passed since the publications of Foppl and Schubert, this
first historic derivation still surprisingly remains the most direct and simple of all.
It is valuable to understand this derivation both for historic and didactic reasons.
The presentation of the derivation of Foppl and Schubert very closely follows the
original publication, however, modified notations are used to highlight the direct
connection to the equations of the MDR.

We consider an axially symmetric pressure distribution p(r) in a circle of radius
a (see Fig. 11.3). We calculate the displacement at the “point of observation” A
caused by an infinitesimally small force in the “source point” B and then integrate
over all source points. The location of the source point is parametrized by the linear
coordinate s and the angle ¢. The vertical displacement of point A by the force
dFy = p(p)sdsde in point B is given by the fundamental solution (2.2):

p(p)sdsde

dw(r) = —Fs

1
p(p)dsde. (11.100)
nE*
The total vertical displacement caused by the entire pressure distribution results
from the integration of

g

w(r) = l/ L*/p(p)ds do. (11.101)
F14 E

0 81
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Fig. 11.3 Schematic dia- A
gram to display the notation
proposed by Foppl (1941) &

B

N s
o
4 >
0] A Tx

In his paper, Foppl (1941) proposed replacing the parametrization s and ¢ with new
variables p and &, which uniquely define the location of point B too, and relate to s
and ¢ according to the following equations:

s=Vp -8+ V-8 f<p=a

@ = arcsin (g) , 0<é¢<r (11.102)
r

Accordingly, the derivations are:

ds 0
ap /02 — gz’
dp 1
—_— = . (11.103)
0 /r2 — g2
Denoting the expression in parenthesis in (11.101) by w;p (§):
1 52 ) a ( ) d
pp)pdp
wip(§) = —/p(p)ds =— | —/—. (11.104)
E* E* 2 _ g2
J AR §
For the vertical displacement (11.101), we then obtain:
T [ wip(E)de
2 2 fw d
0 re-§

0

Both (11.104) and (11.105) are identical to (2.16) and (2.14) of the MDR. These
were already derived in the paper by Foppl (1941), as previously described in this
chapter, and enable the calculation of the displacement field resulting from a known
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pressure distribution. In his paper, Foppl examined the pressure distributions (1 —
r2/a®)~'/2, (1 — r?/a®)"/? and a constant pressure distribution, demonstrating that
the former corresponds to a constant displacement and the latter corresponds to a
parabolic indenter.

The contribution of his doctoral candidate, Schubert (1942), was the inversion
of the integral equations (11.104) and (11.105). Since these are Abel transforms,
Schubert found the solutions

mﬂ@:g[J;fL. (11.106)
and .
Ef wn® (11.107)

p(p) = — J?:F

which are identical to (2.6) and (2.13) of the MDR.

Equations (11.106) and (11.107) completely solve the contact problem: with
three-dimensional form w(p) and using (11.106), one can calculate the auxiliary
function w;p(§), which then determines the pressure distribution by (11.107).
Schubert used this approach to solve the contact problems of the flat punch, the
cone, and the power-law profiles of second, fourth, and sixth-order, the concave
power-law profiles of the second and fourth-order, and the cylindrical indenter with
rounded edges.

The publications of Foppl and Schubert of course did not contain the MDR in-
terpretations of their equations, which requires a couple of additional steps. In the
interpretation of the MDR, w;p(§) is the vertical displacement in the equivalent
MDR model. The necessary property for the transition to the MDR interpretation is
the relation wip(§ = 0) = w(r = 0) (which guarantees that indentation depth of
the three-dimensional profile is also the indentation depth of the equivalent MDR
profile). It follows from (11.105), when the limit w;p(§ = 0) is substituted for
wip () in the limit case r — 0 and the identity

2 [ dt

] Ve

1. (11.108)

is taken into account. Then

&

= wp(E = 0). (11.109)

w(r = 0) = lim{uw()] = wip(E = 0)- >
r—> 7[
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It follows trivially from (11.104) that the contact radius is determined by the equa-
tion wyp(a) = 0. The equation determining the force (2.11) follows from (11.107):

a

a
Fy = 27t/p(r)rdr = —ZE*[

0

wu)(é)

——=——d¢& | rdr

a

= 25" [uip®) / virrdk

0

Y [ fw (6)ds = 2E° [ w1 (€)dE. (11.110)

0

Thus, all fundamental equations of the MDR are determined and the only task re-
maining is to “put them into words”.

In closing, it should be noted that the publication by Schubert also contained the
complete solution of the plane contact problem, which he applied to the following
profiles: flat punch with symmetric load, flat punch with axisymmetric load, wedge
profiles, parabolically rounded wedge profile, power-law profiles of the second,
fourth, and sixth-order, concave power-law profiles of the second and fourth-order,
and the flat punch with rounded edges.

It is most regrettable that this excellent work, which in itself nearly represents a
small “handbook of contact mechanics”, remained nearly unknown for a long time
and has only just been “rediscovered” in recent years.
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