
S P R I N G E R B R I E F S I N A P P L I E D S C I E N C E S A N D
T E C H N O LO G Y P O L I M I S P R I N G E R B R I E F S

Elisabetta Di Nitto
Peter Matthews
Dana Petcu
Arnor Solberg Editors

Model-Driven
Development and
Operation of Multi-Cloud
Applications
 The MODAClouds Approach

SpringerBriefs in Applied Sciences
and Technology

PoliMI SpringerBriefs

Editorial Board

Barbara Pernici, Politecnico di Milano, Milano, Italy
Stefano Della Torre, Politecnico di Milano, Milano, Italy
Bianca M. Colosimo, Politecnico di Milano, Milano, Italy
Tiziano Faravelli, Politecnico di Milano, Milano, Italy
Roberto Paolucci, Politecnico di Milano, Milano, Italy
Silvia Piardi, Politecnico di Milano, Milano, Italy

More information about this series at http://www.springer.com/series/11159
http://www.polimi.it

http://www.springer.com/series/11159
http://www.polimi.it

Elisabetta Di Nitto • Peter Matthews
Dana Petcu • Arnor Solberg
Editors

Model-Driven Development
and Operation of Multi-Cloud
Applications
The MODAClouds Approach

Editors
Elisabetta Di Nitto
Politecnico di Milano
Milan
Italy

Peter Matthews
CA Technologies
Datchet, Berkshire
UK

Dana Petcu
Institute e-Austria
Western University of Timisoara
Timisoara
Romania

Arnor Solberg
SINTEF
Oslo
Norway

ISSN 2191-530X ISSN 2191-5318 (electronic)
SpringerBriefs in Applied Sciences and Technology
ISSN 2282-2577 ISSN 2282-2585 (electronic)
PoliMI SpringerBriefs
ISBN 978-3-319-46030-7 ISBN 978-3-319-46031-4 (eBook)
DOI 10.1007/978-3-319-46031-4

Library of Congress Control Number: 2016951966

© The Editor(s) (if applicable) and The Author(s) 2017. This book is published open access.
Open Access This book is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons license and indicate if
changes were made.
The images or other third party material in this book are included in the work’s Creative Commons
license, unless indicated otherwise in the credit line; if such material is not included in the work’s
Creative Commons license and the respective action is not permitted by statutory regulation, users will
need to obtain permission from the license holder to duplicate, adapt or reproduce the material.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

In the last decade Cloud computing gained significant attention from both industrial
and scientific communities. Despite the worldwide efforts to make it a utility service
for anyone, the concept implementation still require specific IT skills. In this
context, the book aims to present the approach undertaken to simplify the Cloud
service usage process by the team of the European project named MODAClouds.
The targeted audience are the developers and operators of the Cloud aware appli-
cations. More precisely, the undertaken approach is supporting the simplification
of the cycle development-operation in multi-Cloud environments with a special
emphasis on ensuring the quality of services.

This book covers a large number of topics related to development and operation
in multi-Clouds and was designed to offer to its readers ideas on how to address the
Development and Operation—DevOps—problems encountered when working with
Cloud services. It is structured as follows:

• Chapter 1 introduces the problems faced by MODAClouds and provides a
general overview of its approach.

• Chapters 2–4 are dedicated to the development (Dev) of multi-Cloud applica-
tions. In particular, Chap. 2 focuses on the approach for selecting a set of Cloud
service offers by taking risks and costs into account, Chap. 3 focuses on the
metamodels and on the tool supporting our model-driven development
approach, and Chap. 4 on the way we support Quality of Service assessment as
well as the management of Service Level Agreements.

• Chapters 5–8 are dedicated to the operation (Ops) of applications in a
multi-Cloud context. More specifically, Chaps. 5 and 6 shortly present our
multi-Cloud monitoring and load balancing mechanisms, respectively. Chapter 7
focuses on the way we support data migration and synchronization between dif-
ferent NoSQL Databases as a Service (DaaS). Finally, Chap. 8 focuses on the
supporting services that enable the proper management of the MODAClouds
runtime platform.

• Chapters 9–11 describe those features that enable integration between devel-
opment and operation into a single DevOps framework. These include the usage

v

of the models@runtime paradigm for continuous design, deployment, operation
and self-adaptation (Chap. 9), the way monitoring data from the operational
environment are used at design time to support optimization of multi-Clouds
applications (Chap. 10), and the best practices and design patterns we have
identified to enable application DevOps in a multi-Cloud context (Chap. 11).

• Chapters 12–15 are dedicated to the presentation of the industrial cases we have
adopted to evaluate and put in practice the MODAClouds approach. These cases
concern different application domains and business needs. The first case is
concerned with the development of collaborative Cloud-based features for a
pre-existing, desktop-based UML case tool (Chap. 12), the second with a
business process supporting system to be cloudified and optimized (Chap. 13),
the third with an application to support care of patients with mental problems
(Chap. 14). Finally, the fourth case describes how, from a research idea
developed in the project, our partner infrastructure software provider has
developed a specific technology that extends the features it offers to its users
(Chap. 15). Three out of the four presented cases are now commercialized by the
respective companies.

• Finally, Chap. 16 draws some conclusions and identify future research trends in
the context of support to multi-Cloud applications development.

Acknowledgments Together with all authors of this book we are indebted to our
advisory board members, Paola Inverardi, Parastoo Mohagheghi and Miguel Vidal,
and to our reviewers for their constructive and useful suggestions. They have
greatly helped us in shaping our project results. Also, we own gratitude to our
project officer Lars Pedersen for his invaluable support through all phases of the
project.

The work reported in this book is partially funded by the European Commission
grant agreement number FP7-ICT-2011-8-318484 (MODAClouds). The
MODAClouds project has been vital to the composition of this book and has been
completed successfully with the end result of “excellent”.

Milan, Italy Elisabetta Di Nitto
Datchet, UK Peter Matthews
Timisoara, Romania Dana Petcu
Oslo, Norway Arnor Solberg
June 2016

vi Preface

Contents

1 Introduction . 1
Elisabetta Di Nitto and Dana Petcu

2 Cloud Service Offer Selection . 13
Smrati Gupta, Peter Matthews, Victor Muntés-Mulero
and Jacek Dominiak

3 The MODAClouds Model-Driven Development 23
Nicolas Ferry, Marcos Almeida and Arnor Solberg

4 QoS Assessment and SLA Management . 35
Danilo Ardagna, Michele Ciavotta, Giovanni Paolo Gibilisco,
Riccardo Benito Desantis, Giuliano Casale, Juan F Pérez,
Francesco D’Andria and Román Sosa González

5 Monitoring in a Multi-cloud Environment . 47
Marco Miglierina and Elisabetta Di Nitto

6 Load Balancing for Multi-cloud . 53
Gabriel Iuhasz, Pooyan Jamshidi, Weikun Wang and Giuliano Casale

7 Fault-Tolerant Off-line Data Migration: The Hegira4Clouds
Approach . 59
Elisabetta Di Nitto and Marco Scavuzzo

8 Deployment of Cloud Supporting Services . 69
Gabriel Iuhasz, Silviu Panica, Ciprian Crăciun and Dana Petcu

9 Models@Runtime for Continuous Design and Deployment 81
Nicolas Ferry and Arnor Solberg

10 Closing the Loop Between Ops and Dev . 95
Weikun Wang, Giuliano Casale and Gabriel Iuhasz

11 Cloud Patterns. 107
Teodor-Florin Fortiş and Nicolas Ferry

vii

12 Modelio Project Management Server Constellation 113
Antonin Abhervé and Marcos Almeida

13 BPM in the Cloud: The BOC Case . 123
Alexander Gunka, Harald Kuehn and Stepan Seycek

14 Healthcare Application . 133
Francesco D’andria and Roi Sucasas Font

15 Operation Control Interfaces . 141
Craig Sheridan and Darren Whigham

16 Conclusion and Future Research . 147
Arnor Solberg and Peter Matthews

viii Contents

Chapter 1
Introduction

Elisabetta Di Nitto and Dana Petcu

1.1 Context

Cloud computing is a major trend in the ICT industry. The wide spectrum of avail-
able Clouds, such as those offered by Microsoft, Google, Amazon, HP, AT&T, and
IBM, just to mention big players, provides a vibrant technical environment, where
even small and medium enterprises (SMEs) use cheap and flexible services creating
innovative solutions and evolving their existing service offer. Despite this richness
of environments, Cloud business models and technologies are characterized by crit-
ical issues, such as the heterogeneity between vendor technologies and the resulting
lack of interoperability between Clouds. In this setting a number of challenges for
systems developers and operators can be identified, especially for SMEs that have
limited resources and do not have the strength to influence the market. In particular:

• Vendor Lock-in [1, 2]. Cloud providers offer proprietary solutions that force
Cloud customers to decide, at the early stages of software development the design
and deployment models to adopt (e.g., public vs. hybrid Clouds) as well as the
technology stack (e.g., Amazon Simple DB vs. Google Bigtable).

• RiskManagement. There are several concernswhen selecting aCloud technology
such as payment models, security, legal and contractual, quality and integration
with the enterprise architecture and culture.

E. Di Nitto (B)
Politecnico di Milano - DEIB, Piazza L. da Vinci, 32, 20133 Milan, Italy
e-mail: elisabetta.dinitto@polimi.it

D. Petcu (B)
Institute e-Austria TimiŞoara and West University of TimiŞoara,
B-dul Vasile Pârvan 4, 300223 TimiŞoara, Romania
e-mail: petcu@info.uvt.ro

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_1

1

2 E. Di Nitto and D. Petcu

• Quality Assurance. Cloud performance can vary at any point in time. Elastic-
ity may not ramp at desired speeds. Unavailability problems exist even when
99.9% up-time is advertised (e.g., Amazon EC2 andMicrosoft Office 365 outages
in 2011).

The above issues can be addressed by enabling companies to develop their appli-
cations for multiple Cloud targets, by offering them proper tools to analyze the risks,
performance and cost of various solutions and identify the ones that best suit the
needs of the specific case, and by supporting a multi-Cloud deployment of appli-
cations to ensure a level of availability that is greater than the one offered by each
specific Cloud. In this context, within the MODAClouds project, we focused on the
following objectives:

• Deliver an advanced software engineering model-driven approach and an Inte-
grated Development Environment (IDE) to support systems developers in building
and deploying applications, together with related data, to multi-Clouds spanning
across the full Cloud stack (Infrastructure as a Service, shortly IaaS, Platform as
a Service, shortly PaaS, and Software as a Service, shortly SaaS).

• Define qualitymeasures,monitoringmechanisms, predictionmodels, and adaptive
policies to provide quality assurance in Clouds and multi-Clouds.

• Provide support to costs and risks analysis to increase trust in Clouds.
• Develop an integration framework between design tools and run-time.
• Create relevant and complex case studies for the entire risks assessment and soft-
ware engineering methodologies.

• Analyze and validate project outcomes through case studies.
• Ensure distribution of project results via dissemination activities on relevant pub-
lication channels, training, and standardization.

• Provide community-based open source solutions supporting the full applications
life-cycle.

In this chapter we provide amotivation for the adoption of amulti-Cloud approach
andof amodel-driven, quality aware development andoperation paradigm (Sect. 1.2),
offer a brief overview of related work (Sect. 1.3), introduce the MODAClouds
approach and toolset (Sects. 1.4 and 1.5), and, finally, define the goals of this book
(Sect. 1.6).

1.2 Motivation

The main drivers for exploiting a multiple Cloud approach can be of various nature,
from the need to avoid dependence from a single provider to the need to follow local
constraints and laws, to the opportunity to replicate software in order to enhance
availability. The main factors we have identified are summarized in Fig. 1.1. In the
figure we distinguish between those drives that imply the simultaneous usage of
services frommultiple Clouds and those that are more concerned with the possibility

1 Introduction 3

Fig. 1.1 Drivers for multi-Cloud adoption

of preparing a software system to be run on multiple Clouds but still using a single
Cloud at a time during operation.

To exemplify concrete needs in an industrial context, we refer to the case of a
small company that we call MODAFIN, specialised in IT applications for financial
services. Its main product line is a proprietary solution for stock market operations,
cash administration, and lending management.

MODAFIN most profitable activities are software customization and life-cycle
management for this product line.

Customisation involves development of custom modules to accommodate new
functional requirements. Moreover, it includes application integration with existing
databases and legacy business systems at the customer’ site.

Life-cycle management needs to assure high-availability for real-time computa-
tions during market hours, scalability and low operational costs for batch analytic
workloads running after-hours. MODAFIN fulfills these quality requirements with
a capacity management consultancy team following the application life-cycle.

The consultancy team has been working for a long time at the customers’ site,
where the system is deployed in the operation environment. Thanks to the diffusion
of the Cloud, however, new needs have arisen. At night, some customers want to
run their batch analytic workloads at the cheapest operational costs of Amazon on-
spot instances. During the day, they expect calculation engines to ramp-up computing
power at an unprecedented pace when the stockmarket gets volatile.Moreover, some
customer applications are collecting and processing stock market data directly on the
Cloud using PaaS datastore services such as Google Bigtable or Amazon SimpleDB.
At the same time, customers are cutting spending in consultancy services for life-
cycle management as they are relying more and more on SaaS services.

To remain competitive, MODAFIN solution must evolve addressing all above
requirements. To do so, the Company needs to apply advanced software engineering
methodologies revising both the software development process and its life-cycle
management services:

4 E. Di Nitto and D. Petcu

• It needs to develop a solution that can be executed on a broad spectrumof customers
IaaS/PaaS, also supporting Cloud bursting, that is, the ability to move part of the
system on a different Cloud to manage pick of traffic when needed.

• It must develop a flexible architecture for the system so that it could be adapted to
new Cloud offers emerging in the next 5–10 years to adapt to changes of context
and requirements.

• It needs libraries and connectors to integrate various data storage tools and services
to address different needs in terms of performance, data locality, scalability and
the like.

• It needs simple to use tools to perform what if analyses and optimizations on the
system configuration in order to allow for the fulfillment of the required QoS.

• It needs a multi-Cloud environment for execution, which supports monitoring,
smart load balancing, scale-in and out on several Clouds to avoid that availability
or performance outages of a single Cloud provider would turn into a disaster for
MODAFIN’s own business.

All above needs result not only in the adoption of a multi-cloud approach, but also
in the exploitation of a proper development and operation set of tools and methods,
which are specifically built to support multi-Cloud.

Within the MODAClouds approach we have experimented with model-driven
development enhanced with the possibility of exploiting models not only as part of
design but also as part of the runtime. In this case the system model becomes a live
object that evolves with the system itself and can be used to send back to the design
time powerful information that enables a continuous improvement of the system. In
new terms, this approach goes into the direction of offering a valid tool to support
DevOps, that is, the ability to support development and operation in a seamless way.

1.3 Related Work

Model-driven engineering (MDE) allows developers to build the system at various
level of abstractions. It is often summarized as “model once, generate anywhere” and,
as such, becomes particularly relevant when it comes to provisioning and deployment
of applications and services across multiple Clouds, as well to migration of source
code and data from one service provider to another.

ServicesOrientedArchitecture (SOA) related technologies are often used to define
Cloud-enabled applications without going into the fine details of deployment. Ser-
vices are often modeled by means of general purpose languages such as UML.
Service-specific languages have also beendesigned for SOAapproach (e.g. SoaML1).
USDL2 goes even further, by allowing designers to specify, beside services and their

1http://www.omg.org/spec/SoaML/1.0/Beta2/.
2http://www.w3.org/2005/Incubator/usdl/.

http://www.omg.org/spec/SoaML/1.0/Beta2/
http://www.w3.org/2005/Incubator/usdl/

1 Introduction 5

interfaces, non-functional aspects of these services (e.g. pricing, legal, certification,
documentation).

Other approaches are related to the specific concept of Web Service: WSDL3

enables the specification of a list of services, interfaces, data types and orchestration
processes at a syntactical level, OWL4 is a semantic Web language which enables
the specification of the semantics of the services, besides their syntax. Both these
approaches do not allow for the description of non-functional requirements and
constraints. However, they can be complemented with the OMG UML profile for
QoS, QFTP,5 which allows a designer to specify QoS requirements and to connect
them to service descriptions.

While the above approaches are Cloud-agnostic, modeling concepts and technolo-
gies for supporting provisioning, deployment and adaptation of applications in the
Cloud have been recently developed. They exploit the uniform interfaces provided by
various libraries for application deployment and control at run-time.We can mention
here the most successful ones: jclouds,6 libcloud,7 δ-cloud8 or fog.9 For example,
the jclouds model includes the description of nodes with metadata (like CPU, RAM,
security policy), parameters (like minCPU, OS type) and a set of commands to be
executed on nodes, as well as on the groups of nodes to be managed together.

Most of the above mentioned libraries are providing a common access to multiple
Clouds, but are dependent on the programming language. Typically, they provide a
code-basedmodel of the infrastructure and do not offer anymechanism for automatic
provisioning and deployment of applications on the Clouds. Moreover, they work at
the IaaS level and do not expect applications and services to be presented in terms
of models. To fill this gap, MODAClouds offers a complete set of model-based tools
from design to deployment and run-time control of the applications.

Recently, several frameworks formanagingmulti-Cloud services and applications
have been developed. They provide capabilities for the provisioning, deployment,
monitoring, and adaptation of applications without being language-dependent. We
mention here three of them: Cloudify,10 Scalr11 and CloudFoundry.12 For example,
the Cloudify model for deploying applications includes recipes for information like:
(i) required infrastructure and how it should be used, (ii) clusters of service instances
that make up an application tier, (iii) configuration (including provisioning and scal-
ing rules) of an application and the services it is made of, (iv) probes used to monitor
the status of the system. These frameworks are important to optimise performance,

3http://www.w3.org/TR/wsdl.
4http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.
5http://www.omg.org/spec/QFTP/.
6http://jclouds.apache.org.
7http://libcloud.apache.org.
8http://deltacloud.apache.org.
9http://fog.io.
10http://www.cloudify.org.
11http://scalr.com.
12http://www.cloudfoundry.org.

http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.omg.org/spec/QFTP/
http://jclouds.apache.org
http://libcloud.apache.org
http://deltacloud.apache.org
http://fog.io
http://www.cloudify.org
http://scalr.com
http://www.cloudfoundry.org

6 E. Di Nitto and D. Petcu

availability, and cost of multi-Cloud systems. However, they do not come with any
structured guideline/methodology, thus, developers and operators are typically left
hacking at code level rather than engineering multi-Cloud systems following a struc-
tured tool-supported methodology.

The models@runtime paradigm, often used in MDE, proposes to leverage mod-
els during the execution of adaptive software systems to monitor and control the
way they adapt. This approach enables the continuous evolution of the system with
no strict boundaries between design-time and runtime activities. Models@runtime
provides an abstract representation of the running system causally connected to the
underlying state of the system which facilitates reasoning, simulation and enactment
of adaptation actions. A change in the running system is automatically reflected in
a model of the current system. A modification applied to this model can be enacted
on the running system on demand. Thanks to the use of models, well-defined inter-
face are provided to monitor the system and adapt it. The models also provide a
way to measure the impact of changes in the system and analyse them before their
enactment on the running system. In MODAClouds we adopt the models@runtime
concept in order to tame the complexity of adaptation and ease the reasoning process
for self-adaptation.

MODAClouds was developed together with two siblings projects, PaaSage and
ARTIST. The scope of PaaSage13 was to extend application models with annota-
tions concerning platform and user’s goals and preference. The language used for
this is called Cloud Application Modelling and Execution Language (CAMEL).
CAMEL integrates various domain-specific languages using the Eclipse Modelling
Framework. Within this context, PaaSage has extend and adapt MODAClouds’
CloudML to support model-based provisioning and deployment of Cloud-based
systems. CloudML is used also by the ARTIST initiative,14 which offers a set of
methods and tools for an end-to-end assisted migration of legacy software to the
Cloud. ARTIST followed an earlier initiative, REMICS15 which proposed a leap
progress in legacy systems migration to Service Clouds by providing a model driven
methodology and tool following the Architecture Driven Modernization concept
(use knowledge discovery to recover application models and rebuild the applications
following the discovered models).

TheMONDOinitiative16 focusednot onMDEforClouds, but onClouds forMDE:
aiming to achieve scalability in MDE, MONDO provided an integrated open-source
andCloud-based platform for scalablemodel persistence, indexing and retrieval facil-
ities, support for collaborative modelling, and parallel execution of model queries
and transformations, and an Eclipse-based developer workbench that include tool-
ing for developing queries and transformations, for querying model indexes, and for
constructing large models and domain specific languages. The HEADS initiative.17

13http://www.passage.eu.
14http://www.artist-project.eu.
15http://www.remics.eu.
16http://www.mondo-project.org.
17http://www.heads-project.eu.

http://www.passage.eu
http://www.artist-project.eu
http://www.remics.eu
http://www.mondo-project.org
http://www.heads-project.eu

1 Introduction 7

leveraged MDE to provide an open-source Integrated Development Environment
(IDE) supporting the collaboration between platform experts (platform for mobile
devices, sensors, smart objects, etc.) and Cloud-based service developers and includ-
ing a domain specificmodeling language and amethodology for the specification, val-
idation, deployment and evolution of software-intensive services distributed across
the future computing continuum (composed of a wide set of heterogeneous plat-
forms).

1.4 The MODAClouds Approach

Figure1.2 shows an overview of theMODAClouds development approach. In partic-
ular, it shows how an application is designed and packaged for deployment according
to a Cloud-tailored model-driven approach. Software designers start from defining
the application structure and the corresponding Quality of Service (QoS) require-
ments at the Cloud Independent Model level (CIM). In the example shown in the
figure, the application is composed of three components, two of which are further
decomposed in sub-components. Availability and response time requirements are
defined and associated to two of the application components. At this level there is
no reference to specific Cloud services and resources as the focus is exclusively on
the high level design of the application itself.

From the CIM level description the designer moves then to focus on introducing
Cloud-specific aspects at the Cloud-Provider Independent Model level (CPIM). At
this level, he/she may decide, for instance, to select a certain class of database service
(e.g., key-value NoSQL) and certain kinds of computational and memory resources.
All these are then associated to the application logic elements they contribute to
realize. At this point the developer can start running the MODAClouds QoS analysis
tool that, based on the defined QoS requirements and on the typical characteristics
of the selected kinds of Cloud resources and services, can provide some feedback
about the realizability of the application on specific Clouds and can suggest possible
optimizations.

As soon as the designer is satisfied with the specified solution, he/she can move
to the Cloud-Provider Independent Model level (CPSM) from where he/she can
finalize the selection of specific providers and services/resources for the application,
run more precise QoS analyses and, finally, generate proper deployment, monitoring
and self-adaptation scripts to support the runtime phases.

In all analysis and design phases, the application designers as well as the decision
makers from the company can be supported in the definition of risks and benefits for
the application and in the identification of the candidate Cloud services and resources
based on these.

Finally, at runtime, the models defined at design time are exploited to monitor
and manage the application by enabling smart self-adaptation. Moreover, the val-
ues of specific metrics characteristic for the running applications are collected and
passed to the development team that can exploit them to fine-tune the application.

8 E. Di Nitto and D. Petcu

Fig. 1.2 Model-driven development in MODAClouds

As described in Chap.10, this enables the adoption of a DevOps approach [3] that
supports development and operation in a coherent manner.

1.5 The MODAClouds Toolbox

The MODAClouds model-driven approach is supported by the MODAClouds Tool-
box (see Fig. 1.3). The toolbox helps lowering existing barriers between Develop-
ment and Operations Teams and helps embracing DevOps practices within IT teams.

http://dx.doi.org/10.1007/978-3-319-46031-4_10

1 Introduction 9

Fig. 1.3 MODAClouds toolbox

Thanks to it, organizations of any size can Build and Run Cloud Applications driven
by business and technical needs and quality requirements. The toolbox is comprised
of the following elements: (1)Creator 4Clouds, an Integrated Development Environ-
ment (IDE) for high-level application design; (2) Venues 4Clouds, a decision support
system that helps decision makers identify and select the best execution venue for
Cloud applications, by considering technical and business requirements; (3) Ener-
gizer 4Clouds, a Multi-Cloud Run-time Environment energized to provide automatic
deployment and execution of applications with guaranteed Quality of Service (QoS)
on compatible Multi-Clouds.18

Creator 4Clouds, in turn, includes plugins focusing on (i) analysing the QoS/cost
trade-offs of various possible application configurations (Space 4CloudsDev), (ii)
mapping high level data models into less expressive but more scalable NoSQL,
(iii) deploying the resulting application on multi-Cloud by exploiting the CloudML
language. Overall, Creator 4Clouds is a unique tool supporting design, development,
deployment and resource provisioning for multi-Cloud applications. It limits lock-
in and provides features to assess the QoS guarantees required by the application.
Moreover, it offers support to the definition of the application SLA.

18All these tools are available as open source, see http://www.modaclouds.eu/software/.

http://www.modaclouds.eu/software/

10 E. Di Nitto and D. Petcu

Energizer 4Clouds includes the frameworks to support monitoring (Tower
4Clouds) and self-adaptation (Space 4CloudsOps), together with utilities that per-
form ancillary tasks in the platform (ADDapters 4Clouds). Energizer 4Clouds is one
of the few approaches that addresses, in a single framework, the needs of opera-
tors willing to run their applications in a multi-Cloud environment. Through Tower
4Clouds, operators are able to perform complex monitoring and data analyses from
multiple sources. Moreover, thanks to Space 4Clouds for Ops, it identifies and actu-
ates proper self-adaptation actions that take into account the current and foreseen
state of the system under control.

We have included in the design of the MODAClouds architecture what we call
Feed-Back Loop technologies that extend capabilities offered by Creator, Venues and
Energizer 4Clouds. Thanks to the Feed-Back Loop approach, Tower 4Clouds con-
nects with Creator 4Clouds and Venues 4Clouds, respectively. The first connector
is responsible for providing developers and the QoS engineers with the perspec-
tive of the application behavior at runtime to improve the development process and
incorporate DevOps techniques and tools into the process. The second connector
allows Venues 4Clouds to adapt its knowledge base according to real live data. This
helps in offering to users an updated vision of services quality for future recommen-
dations. The capability of the runtime to influence the design time is in line with
current research and is a very important feature to empower multi-Cloud application
developers.

1.6 Book Objectives

The objective of this book is to: (i) present the methods and tools composing the
MODAClouds solution as well as the business needs they address, and (ii) to show
their validity and utility through four industrial cases. The presentation will highlight
both development and operation aspects and the way they are integrated to support
a DevOps approach.

References

1. Gartner (2012) 2012 Cloud Computing Planning Guide
2. Forbes (2011) Cloud computing’s vendor lock-in problem: why the industry is taking a step

backward
3. Debois P (2011) DevOps: a software revolution in the making? J Inf Technol Manage

1 Introduction 11

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 2
Cloud Service Offer Selection

Smrati Gupta, Peter Matthews, Victor Muntés-Mulero
and Jacek Dominiak

2.1 Introduction: Selecting Services for Agile Application
Development

In the application economy, digital business initiatives are at the forefront of the
growth strategy of many companies. Cloud based solutions offer a significant com-
petitive advantage for both large companies and SMEs, leading to a rapid increase
in the number of Cloud Service Providers (CSP). An important CSP driver is the
improvement of consumers’ experience through digital platforms that allow users
to access data and services from any location and through multiple channels with
assured performance and availability. This is usually studied from a single provider
perspective, ignoring the growing number ofmulti-Cloud applications that use differ-
ent Cloud services from different Cloud service providers. Beyond the usual Cloud
services and providers, the interest in the Internet of Things (IoT) and fog computing
is growing very fast as it is seen as an opportunity to launch innovative new services in
the very near future. With the market growth and the increase in the number of com-
ponents and applications in modern systems, the complexity of software systems
implemented in multi-Cloud environments increases exponentially. Making deci-
sions in the new era of multi-Cloud applications becomes one of the next challenges.

S. Gupta · V. Muntés-Mulero · J. Dominiak
CA Technologies Spain, 08940 Cornellà de Llobregat, Barcelona, Spain
e-mail: smrati.gupta@ca.com

V. Muntés-Mulero
e-mail: victor.muntes@ca.com

J. Dominiak
e-mail: jacek.dominiak@ca.com

P. Matthews (B)
CA Technologies UK, Ditton Park, Riding Court Road, Datchet SL3 9LL, UK
e-mail: peter.matthews@ca.com

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_2

13

14 S. Gupta et al.

Software companies need to work through fast innovation cycles to be competitive in
a changing and dynamicmarket. Following continuous delivery approaches becomes
essential, increasing the need for agile decisions. Analogous to many other IT plat-
forms, multi-Cloud applications (see Part IV) face important challenges related to
security, availability, performance, compliance, integration, purchasing, automation
and insight. Selecting the best Cloud service for a particular application requires
an understanding of application requirements, and the interoperability between this
specific service and other services offered by other CSP used by the application.
This decision may have an important impact not only on the performance and user
experience of the application and through them the business support. As the role
of the CIO becomes that of an orchestrator of these increasingly complex systems,
decisions do not depend anymore on a single dimension or a single person. The best
service selection depends on multiple criteria including at least cost, risk and quality.
Fast iterations in continuous deliverymodels require involving different stakeholders
in the system, providing complementary perspectives, including for instance busi-
ness decision makers, architects and systems operators. One of the main challenges
is to find an efficient mechanism that allows translating these requirements into mea-
surable metrics that make it possible to evaluate the fitness of a particular set of
Cloud services and providers for a particular application. In this chapter, we dis-
cuss Decision Support Systems (DSS) for Cloud service selection. We discuss the
main challenges related to DSS and present the tools implemented for this purpose.
Afterward, we discuss the evolution of these DSS in the future and discuss next steps.

2.2 Decision Support System for Cloud Service Selection

The development of a recommendation system to assist the Cloud service selection
is an interesting challenge from both conceptual and technical point of view. In
this section, we highlight the major challenges that are required to be addressed
in development of a generic decision support system that assists the Cloud service
selection process fromheterogeneous nature of services inMulti-Cloud environment.

Cloud Service Selection for Continuous Delivery

Continuous delivery is a frequently mentioned goal for IT departments. The emer-
gence of apps on a smart phone has driven a move from the traditional waterfall
method of development to the agile development strategy. Agile development has
moved the application deployment bottleneck from development to operations and
DevOps is a process that will remove the bottleneck to continuous delivery. This has
been shown to deliver apps that are constantly refreshed with new features and fixes
at a decreased cost and higher velocity. Delivering new applications requires speed
and flexibility and is facilitated by creating applications from components such as
Cloud services. Composing services into new applications reduces the amount of
new developed code that needs to be written. As such there is little to check into a
configuration and source codemanagement environment beyond the links to services

2 Cloud Service Offer Selection 15

and workflow. The challenge is in selection of services that match the functionality
required without sacrifice of performance and availability.

Risk Analysis for Cloud Service Selection in Multi-Clouds

A decision support system for Cloud service selection requires a systematic mech-
anism to allow the translation of the requirements of the naÏve users into tangible
properties of the Cloud services that need to be assessed while making a selec-
tion. Furthermore, the mechanism needs to ensure provision of quality guarantees as
desired by the end users. Risk Analysis provides a solution for development of such
a mechanism. The existence of relevant risks poses a complex problem in selection
and adoption of appropriate Cloud services. Consequently, identification, definition
and quantification of these risks are important considerations in decision support
system development.

Another advantage of adopting risk based analysis in decision support design for
Cloud service selection is the integration of multiple stakeholders into the decision-
making process. Risk analysis provides a concrete method of translating the require-
ments from multiple stakeholders involved in the decision making process into the
properties of Cloud services in the desired domains.

Risk based analysis provides a mechanism to systematically analyze the quality
of Cloud services by assessing the risks they impose on the critical domains and the
Cloud service properties that can mitigate those risks, underpinning the satisfaction
of quality requirements.

The first step in risk based analysis involves identification of risks in Cloud service
selection. A commonmethod of identifying risks is to allow the users to present their
requirements in terms of the assets they intend to protect. Assets can be described
as business oriented or technical, tangible or intangible, etc. The risks that the user
entails by “cloudifying” its assets can be then be systematically determined. Some
typical risks in multiple Cloud domains are:

• Unauthorized Access from IaaS Provider
• Insufficient Isolation
• Insufficient Physical Security
• Data Exposure to Government Authorities
• Increase of infrastructure prices
• Expensive support services
• Change of Price models
• Storage System Corruption

Risks can be mitigated by using Cloud services that have properties that ensure
mitigation of those risks. For example, mitigating properties can be the existence
of sufficient support services, data location in desirable geographical boundaries,
sufficient certifications from the Cloud service providers, financial stability condi-
tions, etc. In general, these properties are treatments for risks such that they ensure
mitigation. The risk based analysis provides a mapping of user requirements defined
as assets into desirable Cloud properties described as treatments within a decision
support system.

16 S. Gupta et al.

There are additional risks associated with multi-Cloud environment service selec-
tion. Such risks can include vendor lock-in, complex data migration, interoperability,
security breaches, cost unpredictability etc. These risks require some additional prop-
erties to be satisfied in order to mitigate them. These properties are not essentially
associated with the Cloud service, but with the interaction between the services. For
example, as a user may select services from different providers, he faces the risk of
the interoperability between the services due to compatibility issues, SLA issues, or
simple change in price models of a certain service leveraging affect on other services.
Such risks are mitigated by imposing constraints on the selection of a set of services
rather than a single service.

Risk based analysis provides a means of communicating user requirements in
a decision support system development. It also provides a mechanism for quality
assessment and identification of comparative domains among the different services
in single Cloud and multi-Cloud environment.

2.3 Cloud Service Description Standardization

The standardisation activity relating to service description has been very patchy and
incomplete. A form of service description using common data types and structures is
a precursor to service matchmaking decisions. There have been a variety of service
descriptions and standardisation efforts over the years but few, it any have had any
lasting impact.

One of these efforts that had initial promise was the Service Measurement Index
(SMI) [1]. SMI was an initiative started by CA Technologies and later adopted by
Carnegie Mellon University who managed the Cloud Services Measurement Index
Consortium (CSMIC).1 SMIwas based on a theory of “relative goodness” which was
used to circumvent the more accurate but complex semantic solutions for compari-
son. SMI was finally abandoned when filling even a small portion of the database for
describing services proved problematical. The approach taken by MODAClouds has
been to use data that provides constraints or functional and non-functional require-
ments and pragmatically evaluating that data for gathering based on the method of
gathering and the availability of the data. The MODAClouds project felt that there
was little point in mandating a metric that could not be gathered or relied on the good
will and compliance of a wide number of CSPs. Data acquisition is an on-going
limitation to the description and comparison of Cloud services.

2.4 Data Gathering in Multi-Cloud Environments

The quality of recommendationsmade by theDSS is heavily dependent on the quality
of data used for comparison of Cloud services. Quality data enhances the possibility
of meeting requirements of the users more closely, but also provides the users more

1https://slate.adobe.com/a/PN39b/.

https://slate.adobe.com/a/PN39b/

2 Cloud Service Offer Selection 17

dimensions to compare the Cloud services in. Data gathering for comparison has a
number of obstacles:

• Lack of interest or business value: CSPs are the primary source of data about the
Cloud services. Small CSPs may enter data into a DSS database as a potential
dissemination strategy. Larger CSPs such as Amazon have no incentive to provide
comparison data and indeed expressly exclude the possibility in their terms and
conditions.

• Legal issues and accuracy from third party portals: There are multiple analytic
portals (e.g. CloudHarmony, Cloudymetrics etc.) that provide a comparative analy-
sis of different Cloud services. Data from these websites can be accessed through
APIs or simple parsing etc. However, this incurs a risk of data accuracy being
dependant on a the third party. Legal constraints such as copyright and terms and
conditions may also prevent the use of third party data.

• Crowdsourced data quality: Another mechanism to gather data regarding Cloud
services is via crowdsourcing. Data provision by individuals is subject to the same
accuracy and subjective opinions as travel recommendation and review sites.

• Procurement Complexity: Common complexity of the data gathering process from
the technical perspective is that parsed data may not follow any commonly known
structure. The most valuable data for comparison purposes is often described in
free hand fashion such as reviews or articles.

• Lack of standards: Another example of the problem within the data gathering
process is lack of clear JSON based standard or lack of validating structure, which
is the base of XML.

Data gathering is an integral component to decision support and the module must
provide a mechanism to automatically gather and update data ensuring its accuracy
and currency.

2.5 Coping with Complexity in SaaS

An important consideration in the development of a DSS is the clear identification of
the paradigms of comparison among the different Cloud services. Risk based analysis
provides a systematic procedure for defining the requirements for Cloud services,
but still creates a challenge to build a clear paradigm of comparison for Software
as a Service (SaaS). IaaS and PaaS domains are more simple due to the objective
nature of paradigms (comparison based on technical specifications, based on nature
of platforms etc.). SaaS domains implies a higher user interaction thereby providing
a more abstract quantification of paradigms to compare them with. In addition, the
types of SaaS is highly varied and lacks any bench-marking and standardization.
Therefore, for a DSS development, it is highly complex to provide recommendation
for SaaS domain. It is crucial to take into account this complexity for the design of
a multi-Cloud DSS.

18 S. Gupta et al.

2.6 Decision Support Tools for Cloud Service Selection

In order to address the challenges outlined in the previous section, theMODAClouds
DSS was developed as a generic recommendation system that provides assistance
in Cloud service selection taking into account the multi-Cloud environment and
heterogeneous domains of the services. TheDSS prototype is based on a risk analysis
based requirement generation allowingmultiple stakeholder participation along with
inherent data gathering mechanisms and provides recommendations by solving the
multi-criteria decision making problem. In this section, we outline the conceptual
backbone forming the DSS.

The basic building blocks ofDSS are comprised of threemain processes: first, data
gathering and evaluation from the end user; second, data gathering and evaluation
from the Cloud service providers, and third, service matchmaking (see Fig. 2.1). The
primary step is to assimilate data from end users and process it in order to identify
end user requirements. In addition, there is a requirement to gather the data about the
Cloud services and their providers (directly or using third party services e.g., web-
sites which provide comparative analysis of Cloud service provider), and evaluate
it. Finally, there is a need for service matchmaking, where the processed data from
Cloud service providers is fine-tuned or operated upon by the end-user requirements
to generate appropriate solutions. A major challenge identified in the decision mak-
ing process is the specification of the requirements from the end user. To overcome
this challenge, the proposed DSS assists users in specifying their requirements by
enabling them to define the assets-risk-treatments. The end user can be the business
decision maker, technical system architect, risk analyst and requirements engineer
in an enterprise. End users are required to specify assets that they intend to protect.
These assets can be intangible or tangible. Intangible assets are further subdivided
as business oriented or technical oriented assets. Typical examples of business ori-
ented intangible assets (BSOIA) include customer loyalty, product innovation, sales
rate, etc. Similarly, typical examples of technical oriented intangible assets (TOIA)
include data integrity, service availability, end user performance, etc. Furthermore,

Fig. 2.1 Basic Building Blocks of DSS

2 Cloud Service Offer Selection 19

the system architect is also allowed to specify the tangible assets which require to
be protected in order to protect the business and technical oriented intangible assets.
The tangible assets describe the architectural elements that are intended to be exter-
nalized using the Cloud services. Typical examples of such assets includes server
(IaaS), database (PaaS), Middleware (SaaS), etc. Along with this specification, the
end-user is expected to supply the ‘importance’ of an asset on a risk acceptability
scale which identifies how much risk can a tangible asset endure.

Each of the assets supplied by the end user, is susceptible to certain risks. There-
fore, the DSS allows the users to map the possible risks from which the asset needs
to be protected. The identification of these risks per asset is a progressive learning
process. The risks associated with different assets are identified with each use of
the DSS, and are stored in the database. As the number of DSS users increases, the
association of assets to risks becomes richer and more concrete.

Identifying the risks per asset, the user also identifies the likelihood and conse-
quence of each risk, communicating the impact that is associated with each risk on
the asset to the DSS. The scales of expressing these quantities are:

• Likelihood: rare (1), unlikely (2), possible (3), likely (4), certain (5)
• Consequence: insignificant (1), minor (2), moderate (3), major (4),
catastrophic (5)

A joint function quantifies the risk from the inputs above. This function is highly
flexible in nature: it may be discrete or continuous, variable or constant value. An
example of this function is the use of composite risk index, which is defined as
a product of likelihood and consequence value. For each asset, a risk acceptance
function specifies how much risk likelihood and consequence is acceptable for that
asset. Furthermore, when the user specifies the associated risks along with the like-
lihood and consequence of each of the risk, the acceptability of risk is based on the
pre-defined acceptable risk levels for each asset. Should the risk be acceptable the
treatment is not required. However, if the risk is unacceptable, treatment is required to
mitigate the risk. Hence, for all the risks to be mitigated, the treatments are required.
These treatments serve as requirements for the Cloud services which the user desires.
Typical examples of treatments are data location guaranteed in certain geographical
region, availability of customer support, guarantees of provider’s financial stability
etc.

Based on the treatments, the required properties of the Cloud services are iden-
tified. The data gathering module in DSS evaluates the Cloud services on the basis
of the user identified treatments. The DSS then performs service matchmaking. This
process involves providing an aggregate score on the basis of all the treatments chosen
by the user and a grading the Cloud services. The closest match to the user require-
ments forms the most eligible recommendation. In the next section, we provide the
technical implementation of these concepts for the development of DSS.

20 S. Gupta et al.

2.7 Technical Challenges and Implementation

Overview of Technology Supporting DSS

Implementation of the decision support systemdesignwithin the scopeof theMODA-
Clouds has been developed taking into consideration future data set needs and with
assumption that the data set needs to be easily exportable and adaptable to the ever
changing nature of the domain which it is exploring. Taking that into account, the
core of the data storage is modeled around the graph capable open source database
called ArangoDB.2 ArangoDB is a distributed free and open-source database with
flexible data model for documents, graphs, and key-values. For the DSS, documents
and graph capabilities of the database are most frequently used. The user interface
is developed as a single page web application in JavaScript with technologies like
AngularJS, used for all the user interactions and user feedback mechanisms and
NodeJS which used for xml validation against xsd plus additional end points to auto-
mate the collection of data from other parts of the project. DSS main automatic data
collection modules are designed as a standalone tools written in Scala programming
language. All the modules developed for the data collection can be easily extended
or embedded as libraries in the existing application to be adapted to the specific data
gathering process needs.

User Data Gathering Implementation

Aset of coherentUI elements have been used, including standard and enhanced selec-
tionsmechanisms. Thiswill gather the requirements in an organized, comprehensible
fashion and accommodate the fact that the selection requirements are incremental
sets specified by the multiple actors.

The primary selection tool is a searchable single selection list box. The list is
populated based on the previous steps or the internally specified connections. The
select menu is presented across all the selection steps. Other techniques such as a
slider represent the data type with predefined ranges, at times with legend. The slider
allows the user to see all the ranges at once and gives direct visual feedback on scale
construction.

The process by itself is constructed as a six step wizard that allows the user to see
the current context across the full selection.

Cloud Services Data Gathering Implementation

The automatic data gathering process of the decision support tool is composed of
two main modules; data import and data save. Those modules are design to work as
a part of the application as well as the standalone modules. The data import module
is responsible for the data extraction and data transformation from the structured
data sources. The module is able to consume the structured data from the flat file
local data sauces in JSON, XML and XLSX formats and respective over the network
representations of such structures, like REST, ODATA and WSDL http end points.
The output of this module is JSON, which can be invoke as an input for the data saved

2https://www.arangodb.com//.

https://www.arangodb.com//

2 Cloud Service Offer Selection 21

module. The data save module is designed to consume predefined modeled JSON
input in order to represent and build graph based data structures used by the process
service match making based on the user specified requirements. This module is able
to build up or enrich the data set based on the data specification.

• Sharing Process: In order to enable optimal requirement selection, theDSS allows
multiple actors to participate during the definition of the set of requirements the
service needs to provide. This approach for data gathering ensured the develop-
ment of the selection sharing process. This allows an actor to save the current set
of selected assets, risks and treatments along with the selected values and repre-
sentation selection. The export file allows the user to share the fulfilled selection
with other actors using preferred sharing medium. Multiple sets of predefined
selections can be saved and shared to more closely target parts of the process to
the appropriate actor.

• Visualization: The Decision Support system has been equipped with multiple
data visualizations in order to simplify the overview and understanding of the user
process, the mechanisms of understanding the selection criteria interaction and
data connections.

• Multi-Cloud specific features: The DSS also supports the mitigation of risks
particular to themulti-Cloud environment by assessing the risks related to selection
of a group of services. For example the DSS warns users in the case of a vendor
lock-in in a selection of services by evaluating the providers for all the services in
the selection. The DSS also provides an evaluation of ease of migration out of any
service by assessing the different dimensions that support migration capabilities
in a service. These properties provide a holistic vision of the solution matched to
a Multi-cloud environment.

2.8 Conclusion: Evolution of Cloud Services, Decision
Support and Future Work

This chapter discusses the use of a decision support system to simplify the choice of
services that match functional and non-functional requirements. This DSS uniquely
uses risk management techniques to compliment the requirements used to deliver a
qualified list of services for composition. Some of the decision criteria are subjec-
tive and the use of decision support to simplify choices removes the need for service
choices based onmulti-factor optimised expert systems. Cloud services evolving into
a wider architectural movement that includes containers and microservices. Cloud
services used in a multi-cloud environment linked with microservices and container
API are leading to a multi-service style of architecture, building applications based
on component oriented development. This is more suitable to agile and DevOps
development mapping services to agile user stories and components. The number
of internal and external services available for developers is already increasing and
there will be a need to identify, classify and describe services in a common way

22 S. Gupta et al.

to remove redundancy and improve development times. This evolution is increas-
ingly demanding service description, discovery and matchmaking capabilities that
can benefit from decision support of the type described in this chapter. Data gather-
ing remains a legally and technically difficult area, potentially preventing all but the
most simplistic of services choices being made. This is an area of future investiga-
tion, possibly in collaboration with some of the cloud standardisation initiatives and
organisations such as the Cloud Security Alliance and Cloud Industry Forum.

Reference

1. Siegel J, Perdue J (2012) Cloud services measures for global use: the service measurement
index (SMI). In: 2012 Annual SRRI global conference. Carnegie Mellon University, Silicon
Valley, Mountain View, CA, USA

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 3
The MODAClouds Model-Driven
Development

Nicolas Ferry, Marcos Almeida and Arnor Solberg

3.1 Introduction

The Cloud computing market encompasses an ever-growing number of providers
offering a multitude of infrastructure-as-a-service (IaaS) and platform-as-a-service
(PaaS) solutions. In order to exploit the peculiarities of each Cloud solution as well
as to optimize performances, availability, and cost, an emergent need is to run and
manage multi-Cloud applications [1] (i.e., applications that can execute on multiple
Cloud infrastructures and platforms). However, current stacks, libraries and frame-
works lack in software engineering methodologies and tools to design, deploy and
maintain multi-Cloud systems as stated in the CORDIS reports on Cloud comput-
ing [2, 3], “whilst a distributed data environment (IaaS) cannot be easily moved
to any platform provider (PaaS) […], it is also almost impossible to move a ser-
vice/image/environment between providers on the same level.”

Model-Driven Development (MDD) [4] techniques are particularly useful to
address these challenges. They allow shifting the paradigm from code-centric to
model-centric. Models are thus the main artefacts of the development process and
enable developers to work at a high level of abstraction, focusing on Cloud concerns
rather than implementation details. Model transformations help automating the work
of going from abstract concepts to implementation. This approach, which is com-
monly summarized as “model once, generate anywhere”, is thus particularly relevant
when it comes to design and management of applications across multiple Clouds,

N. Ferry · A. Solberg (B)
Stiftelsen SINTEF, Postbox 4760 Sluppen, 7465 Trondheim, Norway
e-mail: arnor.solberg@sintef.no

N. Ferry
e-mail: nicolas.ferry@sintef.no

M. Almeida
Softeam Cadextan, 21 Avenue Victor Hugo, 75016 Paris, France
e-mail: marcos.almeida@softeam.fr

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_3

23

24 N. Ferry et al.

as well as migrating them from one Cloud to another. Moreover, models can also
be used to reason about the application Quality of Service (QoS), and to support
design-time exploration methods that identify the Cloud deployment configuration
of minimum cost, while satisfying QoS constraints.

In this chapterwepresent theMODACloudsModel-DrivenDevelopment approach
to support the design of multi-Cloud applications with guaranteed QoS. The pro-
posed approach relies on a set of tool-supported domain-specific languages (DSLs)
collectively called MODACloudML. MODACloudML enables managing multi-
Cloud applications in a Cloud provider-independent way while still exploiting the
peculiarities of each IaaS and PaaS solution. By supporting both IaaS and PaaS,
MODACloudML enables several levels of control of multi-Cloud applications by the
Models@runtime engine (see Chap. 9): (i) in case of executing on IaaS or white box
PaaS solutions; full control with automatic provisioning and deployment of the entire
Cloud stack from the infrastructure to the application, or (ii) in case of executing on
black box PaaS solutions; partial control of the application (note that if parts of
the multi-Cloud application executes on IaaS or white box PaaS, MODACloudML
provides full control of those parts).

The remainder of this chapter is organized as follows. Section3.2 overviews the
typical design process using the MODAClouds design-time tools and
MODACloudML. Section3.3 presents the overall architecture of MODACloudML.
Section3.4 details the list of models that compose MODACloudML before provid-
ing examples of some of them. Finally Sect. 3.5 presents some related works and
Sect. 3.6 draws some conclusions.

3.2 The Design-Time Development Process

MODACloudML targets different profiles of users, from application developers and
providers, who are concerned about the actual deployment artifacts and scripts, to
QoS engineers, concerned with application performance and architectural costs. In
order to support such diverse profiles, the MODAClouds Integrated Development
Environment provides automation tools that facilitate the transition between different
models by means of model-to-model transformations. It also provides model-to-text
transformations that allow the developer to export/import models from/to specialized
tools such as the QoS modelling and analysis tools from MODAClouds.

Designing a Cloud application through the design-time environment is typically a
multi-stage process as depicted in Fig. 3.1. First, users specify, through the IDE, the
application architecture and all its functional aspects as well as QoS requirements. In
the next stage, designers may decide to refine these models, for instance, by selecting
a certain class of database services and certain kinds of computational resources. In
MODAClouds, this process is achieved by QoS engineers supported by the Line and
SPACE 4Clouds tools (see Chap. 4). Line can be used to estimate the performance of
the identified solution (e.g., response time and throughput), whilst SPACE 4Clouds
can be used to find the minimum-cost multi-Cloud deployment configuration. At this

http://dx.doi.org/10.1007/978-3-319-46031-4_9
http://dx.doi.org/10.1007/978-3-319-46031-4_4

3 The MODAClouds Model-Driven Development 25

Fig. 3.1 MODAClouds design-time approach workflow

stage, an iterative process may be started to tune the models of the application until a
suitable solution is identified. The output of this process is a CloudML deployment
model that can then be used by the application provider to automatically deploy the
multi-Cloud application.

All these tools rely and can be used to produce the models that compose MODA-
CloudML. In the next sections we present the overall architecture of MODAClouds
as well as the list of models it is made of.

3.3 Overall Language Architecture

The MODACloudML architecture is inspired by the OMG Model-Driven Architec-
ture (MDA) [5], which is a model-based approach for the development of software
systems. The MDA relies on three types of models for three layers of abstractions.
The closer to the system a layer is, the more technical the description. These three
MDA layers, from the more abstract to the more detailed, are:

• The Computational Independent Model (CIM), which describes what the system
is expected to do but hides all the technical details related to the implementation
of the system.

• The Platform Independent Model (PIM), which describes views of the systems in
a platform independent manner so that it can be mapped to several platforms at
the PSM levels.

• The Platform Specific Model (PSM), which refines the PIM with technical details
required for specifying how the system can use a specific platform.

Some of themain benefits of theMDA are to facilitate the portability, interoperability
and reusability of parts of the system which can be easily moved from one platform
to another, as well as the maintenance of the system through human readable and
reusable specifications at various levels of abstraction.

26 N. Ferry et al.

From theCloudperspective, the introduction of new layers of abstraction improves
the portability and reusability of Cloud related concerns amongst several Clouds.
Indeed, even if the system is designed for a specific platform including framework,
middleware, orCloud services, these entities often rely on similar concepts,which can
be abstracted from the specificities of each Cloud provider. Typically, the topology
of the system in the Cloud as well as the minimum hardware resources required to
run it (e.g., CPU, RAM) can be defined in a Cloud-agnostic way. Thanks to this
new abstraction layer, one can map a platform specific model to one or more Cloud
providers.

The MODACloudML architecture refines the PSM abstraction layer by dividing
it into two sub-levels: the Cloud Provider-Independent Models (CPIM) level and
the Cloud Provider-Specific Models (CPSM) level, whilst the CIM and PIM can be
grouped into a so called Cloud-enabled Computational Independent Model (CCIM)
level. MODACloudML thus relies on the following three layers of abstraction: (i) the
Cloud-enabled Computation Independent Model to describe an application and its
data, (ii) theCloud-Provider IndependentModel to describeCloud concerns related to
the application in a Cloud-agnostic way, and (iii) the Cloud-Provider Specific Model
to describe the Cloud concerns needed to deploy and provision the application on a
specific Cloud.

3.4 MODACloudML Sub Models

The models that compose MODACLoudML are presented and organised according
to the modelling level they belong in Fig. 3.2.

CIM

CPIM

CPSM

Usage
Model

Service
Defini on
Model

Service
Orchestra on

Model

Requirements
Model

Data
Model

Data
Model

Design
alterna ves and
deployment

Model

Data
Model

Design
alterna ves and
deployment

Model

Resources
models

Resources
models

Monitoring
Rules

Monitoring
Rules

QoS
Model

QoS
Model

Monitoring
Rules

QoS
Model

Fig. 3.2 The MODACloudML models

3 The MODAClouds Model-Driven Development 27

3.4.1 CCIM Models

The CCIM models, which define what the system is expected to do but hide the
Cloud-related concerns, are the following:

Service Definition Model: describes the software to be developed as a set of com-
ponents or services. It includes the typical constructs needed for describing the
structure of a software system.

Usage Model: specifies the way users are expected to exploit the functionality of
the software to be. It consider a 24h time-horizon. Each single point in time of
the usage model can be exploited by QoS tools regarding the search for optimal
solutions.

Service Orchestration: describes the behaviour of the glue between components
and services. It can be annotated with stochastic information used to express
the probability for some behavioural path to be followed which can in turn be
exploited by QoS analysis and optimisation tools.

Requirements Model: completes and formalizes the service functional description.
Business and QoS requirements can be associated to a Service or to a specific
service operation.

Data Model: describes the main data structures associated with the software to
be. It can be expressed in terms of typical Entity Relational (ER) diagrams and
enriched by a metamodel that specifies functional and non-functional data prop-
erties.

QoS Model: includes information concerning expected QoS characteristics (e.g.,
response time) at the application level. QoS contraints can be attached to specific
application component/services.

In the following we exemplify the usage of the Service Orchestration models to
specify the overall architecture of the SensApp case study.

3.4.2 Example

At theCCIM level, an application is described as a set of high level services following
a Service Oriented Architecture (SOA) [6]. The application is specified as a set of
business-aligned reusable services that can be combined into high-level business
processes and solutions within the context of an enterprise.

Figure3.3 depicts a simple functional architecture of the SensApp case study
specified with theMODAClouds IDE as a Service Orchestrationmodel. SensApp [7]
is a typical Cloud-based application that acts as a buffer between sensor networks
and Cloud-based systems. On the one hand, it facilitates sensors to continuously
push data while, on the other hand, it provides higher level services with notification
and query facilities.

28 N. Ferry et al.

Fig. 3.3 SensApp CCIM architecture

The overall architecture of SensApp consists of a core service called SensApp
to manage the sensors and their data coupled with a MongoDB1 database to store
sensor descriptions and meta-data as well as the measurements. The SensApp admin
uses the public REST API of SensApp and provides capabilities to manage sensors
and visualise data using a graphical user interface. For the sake of simplicity, other
concerns such as the detailed description of interfaces, or the behaviour of services
and users are not presented in this figure.

The models at the CCIM level are used to semi-automatically generate part of the
CPIM models. In particular, the Service Definition Models and the Service Orches-
trations Model, which can partially be generated through reverse engineering tech-
niques, are used to initiate the Design Alternatives and deployment models whilst
the CCIM data models are used to initiate the CPIM data models.

3.4.3 CPIM and CPSM Models

CPIM and CPSM levels are composed of the same set of models. CPIM models are
derived from CCIM models and are in turn refined into CPSM models. The set of
models that compose these two levels are the following:

Design Alternative and Deployment Model: at the CPIM level, it describes the
assignment of application components to underlying resources. This includes ser-
vices, platforms and infrastructural resources. At the CPSM level, it characterizes
Cloud resources of a specific Cloud provider.

Data Model: at theCPIM level, thismodel refines theCCIMdatamodel to describe
data model in terms of logical models as flat model, hierarchical model and rela-
tional model. Finally, at the CPSM level, it describes the data model based on the
specific data structures implemented by the Cloud providers.

Monitoring Rules: this model describes the monitoring rules aiming at control-
ling the execution of specific application components/data/connectors assigned
to specific resources. They are used to indicate to the run-time platform what
components/services to monitor.

1https://www.mongodb.org.

https://www.mongodb.org

3 The MODAClouds Model-Driven Development 29

QoS Model: this model includes information concerning QoS characteristics of
Cloud resources in both a provider-independent (CPIM level) and provider-
specific (CPSM level) way. It includes cost information, thus, offering the possi-
bility to estimate an upper-bound for application costs.

Resources Model: this model represents different Cloud environment and offer-
ings and can be used as a catalogue of available resources. This catalogue is
particularly useful as a basis for the specification of CPIM and CPSM models. It
is also used in order to evaluate performance and cost of applications, as proposed
by the decision making and analysis tools, as well as during the selection of the
resource to be used by a multi-Cloud application.

In the followingwe exemplify the usage of the deployment model to specify the com-
ponent deployment and orchestration in the Cloud. Deployment models are specified
using CloudML.

CloudML [8, 9] consists of: (i) a domain-specific language (DSL) for specifying
the provisioning anddeployment ofmulti-Cloud applications; and (ii) amodels@run-
time environment for enacting the provisioning, deployment, and adaptation of these
applications. While the CloudML language is part of MODACloudML, the mod-
els@runtime environment is integrated as part of the MODAClouds IDE. This way,
developers can take advantage of the CCIM models and of the optimization tools
in order to specify deployment models. CloudML allows developers to model the
provisioning and deployment of a multi-Cloud application at both the CPIM and
CPSM levels of abstractions. This two-level approach is agnostic to any develop-
ment paradigm and technology, meaning that the application developers can design
and implement their applications based on their preferred paradigms and technolo-
gies.

CloudML is inspired by component-based approaches [10] that facilitate separa-
tion of concerns and reusability. In this respect, deployment models can be regarded
as assemblies of components exposing ports (or interfaces), and bindings between
these ports. In a nutshell, CloudML enables to express the following concepts (we
refer the reader to [9] for details):

• Cloud: Represents a collection of VMs offered by a particular Cloud provider.
• External component: Represents a reusable type of VM or PaaS solution.
• Internal component: Represents a reusable type of application component to be
deployed on an external component.

• Port: Represents a required or provided interface to a feature of a component.
• Relationship: Represents a communication between ports of two application com-
ponents, they express dependencies between components.

• Hosting: Represents the fact that a component uses another as execution platform.

In addition, CloudML implements the type-instance pattern [11], which also
facilitates reusability. This pattern exploits two flavors of typing, namely ontological
and linguistic [12]. Figure3.4 illustrates these two flavors of typing. SL (for Small
Linux) represents a reusable type of VM. It is linguistically typed by the class VM
(for Virtual Machine). SL1 represents an instance of the VM SL. It is ontologically
typed by SL and linguistically typed by VMInstance.

30 N. Ferry et al.

Fig. 3.4 Linguistic and
ontological typing

The transformation from CPIM to CPSM consists in: (i) adding the actual data
resulting from the resolution of the constraints defined in the external component
types (e.g., actual number of cores, RAM size, storage size), and (ii) adding data
required for the deployment and management of the application that are Cloud
provider-specific. Thanks to this enrichment, it is possible to retrieve data about
the actual resources provisioned including how they can be accessed and how they
can be configured. Such data is particularly useful during the process of configuration
of the components and their bindings.

3.4.4 Example

Figure3.5 depicts the deployment model of SensApp at the CPIM level specified
with theMODAClouds IDE. The overall systemwill be deployed using two different
virtual machines (VMs), the first VMwill host SensApp and the second the SensApp
Admin. Both VMs (CloudNodeInstance andML) have differents characteristics and
are thus specified as instances of different types (SL and ML). Both SensApp and
its admin, in order to be executed properly, have to be hosted in a Servlet container.
In this case they are both hosted on the same type of Jetty container called JettySC.
This type of relationship is depicted in the figure by arrows between blue ports. In
addition, SensApp has to communicatewith the database in order to store and retrieve
sensors data. This type of relationship is depicted by arrows between purple ports.

3.5 Related Work

In the literature several efforts aimed to offer support for designing, optimizing
and managing multi-Cloud applications. In particular, several EU projects provide
methodologies and tools to support the design and management of Cloud-based
applications. However, to the best of our knowledge, none of them propose an inte-
grated approach offering models that can be used for performance and cost analysis
and optimisation, as well as deployment and runtime management of multi-Cloud
applications.

3 The MODAClouds Model-Driven Development 31

Fig. 3.5 Deployment model of SensApp at the CPIM level

The Cloud Application Modeling Language (CAML) [13] is being developed
within the ARTIST EU FP7 project2 and supports the provider-independent specifi-
cation of deployment topologies and their refinement into provider-specific deploy-
ment. Themain focus of theARTISTproject being themigration of legacy application
to the Cloud as well as the feasibility study of such migration, the language has been
defined as an UML internal modeling language based on amodel library and profiles.
This way, it can be directly applied on UML models, which is especially beneficial
for migration scenarios where reverse-engineered UML models are tailored towards
a selected Cloud environment. These CAML profiles also capture Cloud offerings
from a functional and non-functional perspectives including cost aspects.

In order to cover the necessary aspects of the specification and execution of multi-
Cloud applications, the PaaSage project3 adopts the Cloud Application Modelling
and Execution Language (CAMEL). CAMEL integrates and extends existing DSLs,
including Cloud Modelling Language (CloudML) [8, 9], Saloon [14, 15], and the
Organisation part of CERIF [16], for specifying multiple aspects of multi-Cloud
applications, such as provisioning, deployment, providers, organisations, users, and
roles. Moreover, CAMEL adds DSLs for specifying aspects such as metrics, require-
ments, goals, scalability rules [17, 18], security controls, execution contexts, execu-
tion histories, etc. CAMEL is designed and implemented with the Eclipse Modelling
Framework (EMF)4 on top of the Connected Data Objects (CDO)5 persistence solu-
tion. MODAClouds and PaaSage are collaborating on the research and development
of CloudML. However, PaaSage does not offer a specific approach for the design-
time optimization of multi-Cloud applications.

The Topology and Orchestration Specification for Cloud Applications (TOSCA)
[19, 20] is a specification developed by the OASIS consortium, which provides a

2http://www.artist-project.eu/.
3https://www.paasage.eu.
4https://www.eclipse.org/modeling/emf/.
5https://www.eclipse.org/cdo/.

http://www.artist-project.eu/
https://www.paasage.eu
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/cdo/

32 N. Ferry et al.

language for specifying the components comprising the topology of Cloud-based
applications along with the processes for their orchestration. TOSCA is comparable
to CloudML, however the language has been conceived for design-time modelling
only.

3.6 Conclusion

The MODAClouds Model-Driven Development approach relies on the so called
MODACloudML which integrates a set of domain-specific languages. These lan-
guages cover the specifications of both functional and non functional aspects of
multi-Cloud applications. Thanks to the three levels architecture, multi-Cloud appli-
cations can be designed in a Cloud provider-independent way thus reducing ven-
dor lock-in before being refined with provider-specific information thus allowing to
exploit the peculiarities of each provider.

References

1. Petcu D (2014) Consuming resources and services from multiple clouds. J Grid Comput 1–25
2. SSAI Expert Group (2010) The future of cloud computing. Technical report
3. SSAIExpertGroup (2012)A roadmap for advanced cloud technologies underH2020.Technical

report
4. Schmidt DC (2006) Guest editor’s introduction: model-driven engineering. IEEE Comput

39(2):25–31
5. OMG: OMG model-driven architecture. http://www.omg.org/mda/
6. MacKenzie M, Laskey K, McCabe F, Brown P, Metz R (2006) Reference model for service

oriented architecture 1.0. Technical report, OASIS
7. Mosser S, Fleurey F,Morin B, Chauvel F, Solberg A, Goutier I (2012) SENSAPP as a reference

platform to support cloud experiments: from the internet of things to the internet of services.
In: SYNASC 2012: 14th international symposium on symbolic and numeric algorithms for
scientific computing. IEEE Computer Society, pp 400–406

8. Ferry N, Rossini A, Chauvel F,Morin B, SolbergA (2013) Towardsmodel-driven provisioning,
deployment, monitoring, and adaptation of multi-cloud systems. In: O’Conner L (ed) Proceed-
ings of CLOUD 2013: 6th IEEE international conference on cloud computing. IEEE Computer
Society, pp 887–894

9. Ferry N, Song H, Rossini A, Chauvel F, Solberg A (2014) CloudMF: applying MDE to
tame the complexity of managing multi-cloud applications. In: Proceedings of UCC 2014:
7th IEEE/ACM international conference on utility and cloud computing

10. Szyperski C (2011) Component software: beyond object-oriented programming, 2nd edn.
Addison-Wesley Professional

11. Atkinson C, Kühne T (2002) Rearchitecting the UML infrastructure. ACM Trans Model Com-
put Simul 12(4):290–321

12. Kühne T (2006) Matters of (meta-)modeling. Softw Syst Model 5(4):369–385
13. Bergmayr A, Troya J, Neubauer P,WimmerM, Kappel G (2014) UML-based cloud application

modeling with libraries, profiles and templates. In: Proceedings of workshop on CloudMDE,
pp 56–65

http://www.omg.org/mda/

3 The MODAClouds Model-Driven Development 33

14. Quinton C, Rouvoy R, Duchien L (2012) Leveraging feature models to configure virtual appli-
ances. In: CloudCP 2012: 2nd international workshop on cloud computing platforms. ACM,
pp 2:1–2:6

15. Quinton C, Haderer N, Rouvoy R, Duchien L (2013) Towards multi-cloud configurations using
feature models and ontologies. In: MultiCloud 2013: international workshop on multi-cloud
applications and federated clouds. ACM, pp 21–26

16. Jeffery K, Houssos N, Jörg B, Asserson A (2014) Research information management: the
CERIF approach. IJMSO 9(1):5–14

17. Kritikos K, Domaschka J, Rossini A ((2014 (To Appear))) SRL: a scalability rule language
for multi-cloud environments. In: Proceedings of CloudCom 2014: 6th IEEE international
conference on cloud computing technology and science

18. Domaschka J, Kritikos K, Rossini A ((2014 (To Appear))) Towards a generic language for
scalability rules. In: Proceedings of CSB 2014: 2nd international workshop on cloud service
brokerage

19. Palma D, Spatzier T (2013) Topology and orchestration specification for cloud applications
(TOSCA). Technical report, Organization for theAdvancement of Structured Information Stan-
dards (OASIS) (June)

20. Kopp O, Binz T, Breitenbücher U, Leymann F (2013) Winery–a modeling tool for tosca-based
cloud applications. In: Service-oriented computing. Springer, pp 700–704

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 4
QoS Assessment and SLA Management

Danilo Ardagna, Michele Ciavotta, Giovanni Paolo Gibilisco,
Riccardo Benito Desantis, Giuliano Casale, Juan F Pérez,
Francesco D’Andria and Román Sosa González

4.1 Introduction

Verifying that a software system shows certain non-functional properties is a pri-
mary concern for Cloud applications.1 Given the heterogeneous technology offer
and the related pricing models currently available in the Cloud market it is extremely
complex to find the deployment that fits the application requirements, and pro-
vides the best Quality of Service (QoS) and cost trade-offs. This task can be very

1In this chapter non-functional properties, QoS and non-functional requirements will be used
interchangeably.

D. Ardagna (B) · M. Ciavotta · G.P. Gibilisco · R.B. Desantis
DEIB, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy
e-mail: danilo.ardagna@polimi.it

M. Ciavotta
e-mail: michele.ciavotta@polimi.it

G.P. Gibilisco
e-mail: giovannipaolo.gibilisco@polimi.it

R.B. Desantis
e-mail: riccardobenito.desantis@polimi.it

G. Casale · J.F. Pérez
Department of Computing, Imperial College, 180 Queens Gate, London SW7 2AZ, UK
e-mail: g.casale@imperial.ac.uk

J.F. Pérez
e-mail: j.perez-bernal@imperial.ac.uk

F. D’Andria · R. Sosa González
ATOS Spain SA, Subida al Mayorazgo 24B Planta 1, 38110 Santa Cruz de Tenerife, Spain
e-mail: francesco.dandria@atos.net

R. Sosa González
e-mail: roman.sosa@atos.net

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_4

35

36 D. Ardagna et al.

challenging, even infeasible if performed manually, since the number of solutions
may become extremely large depending on the number of possible providers and
available technology stacks. Furthermore, Cloud systems are inherently multi-tenant
and their performance can vary with the time of day, depending on the congestion
level, policies implemented by the Cloud provider, and the competition among run-
ning applications.

MODAClouds envisions design abstractions that help the QoS Engineer to spec-
ify non-functional requirements and tools to evaluate and compare multiple Cloud
architectures, evaluating cost and performance considering the distinctive traits of
the Cloud.

To better understand the scope of the MODAClouds QoS and SLA tools, referred
to as SPACE 4Clouds for Dev—QoS Modelling and Analysis tool, Fig. 4.1 pro-
vides a high-level overview of the architecture and main actors involved. Each of
these tools is the topic of the upcoming sections. In Figurewe depict how the Feasibil-
ity Study engineer, the Application Developer and the QoS engineer provide inputs
to this MODAClouds module. The Feasibility Study engineer provides a set of can-
didate providers for the application under development. The application developer
instead creates a consistent application model and a set of architectural constraints
using MODACloudML meta-models (see Chap.3). Ultimately, the QoS engineer is
in charge to define suitable QoS constraints. Simply put, the tool receives in input a
set of models describing an application both in terms of functionalities and resource
demands. At this point two possible scenarios are possible, in the first one the QoS
engineer uses the tool in assessment mode, namely she evaluates the performance
and cost based on a specific application deployment (which includes type and num-
ber of VMs and PaaS services). In the second scenario the QoS engineer provides

Fig. 4.1 SPACE 4Clouds for Dev—high-level architecture

http://dx.doi.org/10.1007/978-3-319-46031-4_3

4 QoS Assessment and SLA Management 37

only a partial configuration and lets the tool face the task of analysing the possible
alternatives to return a cost optimised solution that meets the constraints.

In this latter scenario, the module returns a complete deployment description (set
of providers, type of VM per tier, number of VMs per hour, type of other services),
and also reports useful information about the overall cost and performance. The
QoS engineer at that point may choose to accept the solution as it is, to modify the
constraints or to change the deployment and evaluate/force different configurations.

This MODAClouds module is composed of three main components:

• SPACE4Clouds has a twofold function. First, it keeps track of candidate solutions
and manages their creation, modification, evaluation, comparison and feasibility
check. Second, SPACE 4Clouds deals with the design-space exploration and opti-
misation process by means of a metaheuristic local-search-based approach.

• LINE is the component in charge of the evaluation of the performance models
(Layered Queuing Networks—LQN) enriched with information about the effi-
ciency and the dynamic behaviour that can affect the Cloud platform.

• SLA tool is the component responsible for generating a formal document describ-
ing a Service Level Agreement (SLA) among the involved parties in MODA-
Clouds: customers, application providers and cloud providers.

The rest of this chapter is organised as follows: in Sect. 4.2 the MiC case study
is presented, SPACE 4Clouds and LINE are described in Sect. 4.3 whereas the SLA
tool is detailed in Sect. 4.4.

4.2 Case Study: Meeting in the Cloud (MiC)

In this section, we introduce a web application called Meeting in the Cloud (MiC)
that will be used throughout this chapter as a case study. MiC is a web application
for social networking that lets the user to profile her topics of interest and to share
them with similar users. Moreover, MiC identifies the most similar users in the
network according to the registered users’ preferences. More specifically, during
the registration process, the new user selects her topics of interest from a set of
alternatives, providing a preference for each of them in the range 1–5. At the end of
the registration, MiC calculates the Pearson coefficient [1] based on the preferences
expressed, identifies the users in the system with the most similar interests, and
creates a list of contacts for the newcomer. After the registration process, the user
can log in into the MiC portal and interact with her Best Contacts by writing and
reading posts on the selected topics. Users can also change their interests refining
their profiles; in this case the system reacts re-evaluating the similarity and updating
the list of recommended contacts.

The application, whose main elements are depicted in Fig. 4.2, comprises a Fron-
tend to process the incoming http requests and a Backend developed using JSP and
Servlet technologies. A task queue [2, 3] is used to decouple Frontend and Backend

38 D. Ardagna et al.

Fig. 4.2 MiC registration steps

in order to make the system capable to evaluate the similarity value in an asyn-
chronous, non-blocking way. The overall application results in this way reactive and
responsive all the time. An SQL database stores users’ profiles, messages, and best
contacts lists. A Blob Service is used to store pictures, while a NoSQL database
stores users’ interests and preferences. Both are accessed directly by the Frontend.
Finally, a Memcache system is used to temporarily store the last retrieved profiles
and best contacts messages with the aim of improving the response time of the whole
application.

MiC is especially designed to exploit multi Cloud capabilities using a particular
Java library, called CPIM, which basically provides an abstraction from the PaaS
services provided by the main Cloud Providers, for more details please refer to [4].

4.3 QoS Assessment and Optimisation

SPACE 4Clouds (System PerformAnce and Cost Evaluation on Cloud) is a multi-
platform open source tool for the specification, assessment and optimisation of
QoS characteristics for Cloud applications. It allows users to describe a software
architecture by means of MODACloudML meta-models that express Cloud-specific
attributes. Among other things, suchmodels include a user-definedworkload in order
to assess both performance and cost of the application under different runtime con-
ditions. Users can specify the models defining the Cloud application using Creator
4Clouds graphical interface, while information about the performance of the con-
sidered Cloud resources is kept in a SQL database to decouple its evolution from

4 QoS Assessment and SLA Management 39

Fig. 4.3 SPACE 4Clouds—architecture

the one of the tool. SPACE 4Clouds can be used either to assess the cost of a com-
plete described solution (i.e. application and Cloud configuration) according to the
cost model defined in [5] or (providing only the application model) to find a suitable
(evenmulti-Cloud) configuration that minimises the running cost while meeting QoS
requirements.

Figure4.3 shows the internal structure of SPACE 4Clouds and the main compo-
nents are:

• GUI: consists of a main configuration window that allows loading the application
models to be analysed and configuration parameters for the analysis/optimisation
process. The GUI also provides some frames used to visualise the results of the
assessment and the progress of the optimisation;

• Solution: represents the set of classes that form the internal representation of the
application. Since a 24h horizon is considered, the solution stores 24 records with
information about configuration, performance, cost and constraint violations.

• LQN Handler: maps the internal representation of a solution on the LQN models
used by the solver LINE (see Sect. 4.3.3) for the evaluation; the transformation
process supports both IaaS and PaaS services and for multi-Cloud deployments.
This component is also responsible for the serialisation of the solution in this
format before the evaluation and the parsing of the output of LINE.

• Evaluation Server: the role of this component is to decouple the evolution of
the different phases of the evaluation between the 24h model instances for each
consideredprovider contained in each solution.This decoupling allows the solution
evaluation to happen in parallel.

• Data Handler: is the interface between the SQL database and other components
of the tool.

• Cost Assessment: is the component responsible for the cost evaluation of the solu-
tion.

• Constraint Handler: is the component responsible to assess the feasibility of the
solution with respect to Architectural and QoS constraints. Constraints are defined
via a Domain-Specific Language (DSL) for flexibility and extensibility reasons.

40 D. Ardagna et al.

• Optimisation Engine: It interacts with other components to evaluate the solutions
built with respect to cost, feasibility and performance, and it is responsible for
finding the optimal deployment configuration. Its core implements a metaheuristic
strategy based on a two-level local search with multiple neighbourhoods.

In the following the describe separately the assessment and optimisation scenarios
with the help the MiC use case.

4.3.1 Assessment

In this sectionwe consider the assessment scenario, the one inwhich theQoSengineer
uses SPACE 4Clouds to evaluate the cost and performance of the application under
development:

1. Through theGUI theQoS engineer loads themodels exported byCreator 4Clouds
including also a full deployment configuration (list of providers, type and number
of VMs and workload share for each hour), and a description of the incoming
workload and QoS constraints.

2. The models are translated into 24 LQN instances. Each instance is tailored to
model the application deployment in a particular hour of the day. These instances
are then used by theOptimisation andAssessment engine to initialise the structure
of a SPACE 4Clouds solution.

3. The set of LQN files is fed into the performance engine, usually LINE, which is
in charge of executing the performance analysis.

4. The output of the analysis performed by LINE, stored in an XML file, is read by
the LQN Handler and written back in the solution.

5. The solution can then be evaluated in terms of feasibility against user defined
constraints by the Constraint Handler component.

We consider the MiC use case presented in Sect. 4.2. For the sake of simplicity
only Frontend, Backend and a SQL database are considered, packed together and
deployed on a single VM. Let us suppose that all the modelling work has been
already done and the QoS engineer has to decide the type and the number of VMs
for each hour of the day to be allocated to satisfy a set of constraints. Two candidate
Cloud providers have been selected, namely Amazon and Microsoft, based upon
the pricing models available on the Internet and on the user’s experience. The QoS
engineer considers that the dailyworkload for the application under developmentwill
likely follow a bimodal distribution, which he can roughly estimate. She also has
to consider the non-functional requirements associated with the ongoing project. In
our example the CPU utilisation is imposed to be lower than 80% and the response
time of the register functionality to be less than 4s. Using such information, she
devises a preliminary Multi-Cloud configuration (5 medium instances allocated on
each provider per hour and 50–50% workload splitting) and loads it along with the
application functional model and the constraint set in SPACE 4Clouds; she chooses

4 QoS Assessment and SLA Management 41

Fig. 4.4 Average response time for MiC register functionality

the assessment feature and the solution is evaluated and returned. As the reader can
see from Fig. 4.4, the response time constraint is violated in the central hours of the
day, while the expected daily cost is $34.8.

The solution is clearly infeasible and the QoS engineer has to pull her sleeves
up and fine-tune the configuration, perhaps acting on the number of VMs and the
workload splitting between the selected Clouds per hour. This is a non-trivial task
since, for instance, varying the workload share directed to a certain provider affects
the response time and implies an adjustment of the number of VMs running at that
particular hour. A similar reasoning applies to the VM types involved. After long
fine tuning, the user identifies a feasible solution with the following cost: $39.4.
The solution in point has the same types of VMs of the original one and the same
workload percentage for each of two providers but uses a larger number of VMs in
the hours between 10 a.m. and 19 p.m.

At this point the user can be satisfied with her work but we will see in the next
section that there is still room for improvementwithout sacrificing feasibility, exploit-
ing the optimisation feature of SPACE 4Clouds.

4.3.2 Optimisation

The aim of this section is to provide a brief description of the optimisation strategy
implemented within SPACE 4Cloud. A two-step approach has been developed; in
the first step an initial valid configuration of the system is derived automatically
starting from a partially specified application description given by the QoS engineer.
In order to do so, a Mixed Integer Linear Problem (MILP) is built and efficiently
solved [6]. This solution is based on approximated performance models, in fact, the
QoS associated to a deployment solution is calculated bymeans of anM/G/1 queuing
model with processor sharing policy. Such performancemodel allows calculating the
average response time of a request in closed form. Our goal is to determine quickly

42 D. Ardagna et al.

an approximated initial solution (list of Cloud providers, types of VMs, number of
VMs and hourly load balancing) that is then further improved.

In the second step a local-search-basedoptimisation algorithm iteratively improves
the starting Cloud deployment exploring several configurations. A more expressive
performance model (LQN) is employed to derive more accurate estimates of the QoS
by means of the LINE solver. More specifically, the algorithm implemented exploits
the assessment feature to evaluate several, hopefully distinct Cloud configurations. It
has been designed to explore the solution space using a bi-level approach that divides
the problem into two levels delegating the assignment of the VM type to the first
(upper) level, and the load balancing and the definition of the number of replicas to
the second (lower) level. The first level implements a stochastic local search with
tabu memory; at each iteration the VM type used for a particular tier is changed
randomly from all the available VM types, according to the architectural constraints.
The tabu memory is used to store recent moves and avoid cycling of the candidate
solutions around the same configurations. Once the VM size is fixed the solution
is refined by gradually reducing the number of VMs until the optimal allocation is
found. Finally the workload is balanced among the Cloud providers by solving a
specific MILP model. This whole process is repeated for a pre-defined number of
iterations, updating the final solution each time a feasible and cheaper one is found.

Returning to the example begun in the previous section, let us imagine that the
QoS engineer has at her disposal only the functional and non-functional description
of the application and an indication on the possible shape and average value of the
workload. The user in point can leave to SPACE 4Clouds the task of choosing the
most suitable set of providers (limited to two providers for a fair comparison with the
scenario in the previous section), the type and number of VMs for each provider and
hour, and the hourly workload share for each provider. In this second case a feasible
and optimised solution is returned in around 20 min and the related cost is $19.33
that is 50% lower than the solution devised by trial and error in the previous section.
At this point one may wonder, how is the solution from SPACE 4Clouds different
from the one obtained by the QoS engineer? Fig. 4.5 depicts the number of VMs per
hour for the selected Cloud providers. We can see that Microsoft has been replaced

Fig. 4.5 VMs allocated per hour on Amazon and Flexiscale cloud providers

4 QoS Assessment and SLA Management 43

Fig. 4.6 CPU utilization per hour on Amazon and Flexiscale cloud providers

by Flexiscale and that the number of VMs allocated varies hourly from 1 through
20 differently for each provider. Moreover, distinct (more powerful) VM types have
been selected and the workload has been split in 80–20%, where the larger part has
been assigned to Flexiscale. Finally, Fig. 4.6 reports the average CPU utilization per
Cloud provider, that is clearly below the threshold of 80% imposed by the user.

4.3.3 LINE

LINE [7] is a tool for the performance analysis of cloud applications. LINE has
been designed to automatically build and solve performance models from high-level
descriptions of the application. This description can be in the form of a Layered
Queueing Network (LQN) model. From this description, LINE is able to provide
accurate estimates of relevant performance measures such as application response
time or server utilisation. LINE can also provide response times for specific compo-
nents of the application, enabling the pinpointing of components causing a degrada-
tion in the QoS. LINE can therefore be used at design time to diagnose whether the
deployment characteristics are adequate to attain the desired QoS levels.

Although other tools are available for performance modelling (such as Simu-
Com [8] and LQNS [9]), LINE stands apart for a number of reasons.

• In addition to provide average performancemeasures, LINE can compute response
time distributions, which can be directly used to assess percentile Service Level
Agreements (SLAs), e.g., that 95% of the requests for the register functionality
are processed in less than 6s.

• LINE features a reliability model, namely random environments [10], to capture a
number of conditions thatmay affect the application, including servers breakdowns
and repairs, slow start-up times, resource heterogeneity and contention in multi-
tenancy, a key property of cloud deployments.

44 D. Ardagna et al.

• LINE is able to model general request processing times, which can be used to
represent the resource demands posed by the very broad range of cloud applica-
tions.

• LINE offers a parallel execution mode for the efficient solution of a large number
of performance models.

4.4 SLA Management

As far as SLA management is concerned, in the MODAClouds context we consider
three possible actors, Cloud Service Providers (CSPs), which are responsible for
the efficient utilization of the physical resources and guarantees their availability
for the customers; Application Providers (APs) that are responsible for the efficient
utilization of their allocated resources in order to satisfy the SLA established with
their customers (end users) and achieve their business goals and customers, which
represent the legitimate users for the services offered by the application providers.
Usually, CSPs chargeAPs for renting Cloud resources to host their applications. APs,
in turn, may charge their Customers for the use of their services and need to guarantee
their customers’ SLA. SLA violations, indeed, have an impact on APs reputation
and revenue loss incurred in the case of Cloud-hosted business applications. In both
circumstances penalty-based policies have to be enforced.

MODAClouds therefore devises a two-level SLAsystem; thefirst level (Customer-
AP) describes the service offered by the Application Provider to its users. The guar-
antee terms in this SLA should only watch observable metrics by the end user. At
the other level, AP-CP SLA describes the QoS expected from the Cloud provider. In
this SLA level, there is one agreement per Virtual Machine or PaaS service.

The lifecycle of an SLA can be split up in several different phases:

1. preparation of the service offer as a template,
2. location and mediation of the agreement,
3. assessment of the agreement during execution and
4. termination and decommission of the agreement.

Within MODAClouds we designed and implemented a policy-driven SLA frame-
work that focus on the phase 1–3 of the described lifecycle. It comprises a REST
server (the SLA core) and a set of additional helper tools: the SLA Mediator and
the SLA Dashboard. The Mediator tool acts as a layer atop the core, to implement
some MODAClouds specific behaviour. The SLA Dashboard shows the violations
and penalties of agreements in a more user-friendly way.

Figure4.7 shows how the SLAComponents are organised and how they are related
to other MODAClouds components, in particular:

• SLA Repository: manages the persistence of SLA Templates, SLA Contracts and
the relation between Services/Contracts/Templates.

4 QoS Assessment and SLA Management 45

Fig. 4.7 SLA tool: architecture

• SLA Mediator: maps the QoS constraints defined by the QoS Engineer in SLA
Agreements of both SLA levels.

• Assessment: computes the possible business violations, notifying any observer
(like an external Accounting component) of raised penalties.

Finally, we want to remark that the tool has been implemented following to be fully
compliant (concepts, agreements and templates) with theWS-Agreement2 specifica-
tion. This choice made it a tool more flexible and potentially applicable to contexts
other than MODAClouds.

References

1. Pearson K (1895) Note on regression and inheritance in the case of two parents. Proc R Soc
Lond 58:240–242

2. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison-Wesley Longman Publishing Co. Inc

3. Schmidt D, Stal M, Rohnert H, Buschmann F (2001) Pattern-oriented software architecture
patterns for concurrent and networked objects. Wiley

4. Giove F, Longoni D, Yancheshmeh SM, Ardagna D, Di Nitto E (2013) An approach for the
development of portable applications on PaaS clouds. Closer 2013 Proc Aachen Ger 30:591–
601

5. Franceschelli D. and Ardagna D. and Ciavotta M. and Di Nitto E.: SPACE4CLOUD: a tool for
system performance and costevaluation of cloud systems. Proceedings of the 2013 international
workshop on multi-cloud applications and federated clouds, 2013, pp 27–34

6. Ardagna D, Gibilisco GP, Ciavotta M, Lavrentev A (2014) A multi-model optimization frame-
work for the model driven design of cloud applications. Search-Based Softw Eng 8636:61–76.
Springer

7. Pérez JF, Casale G,(2013) Assessing SLA compliance from Palladio component models. In:
Proceedings of the 2nd workshop on management of resources and services in cloud and sky
computing (MICAS). IEEE Press

2Web Services Agreement Specification (WS-Agreement) http://www.ogf.org/documents/GFD.
192.pdf.

http://www.ogf.org/documents/GFD.192.pdf
http://www.ogf.org/documents/GFD.192.pdf

46 D. Ardagna et al.

8. Becker S, Koziolek H, Reussner R (2009) The Palladio component model for model-driven
performance prediction. J Syst Softw 82(1):3–22

9. Franks G,Maly P,WoodsideM, Petriu DC, Hubbard A (2009) Layered queueing network solver
and simulator user manual. Real-Time and Distributed Systems Lab Carleton Univ Canada

10. Casale G, Tribastone M (2011) Fluid analysis of queueing in two-stage random environments.
In: Eighth international conference on quantitative evaluation of systems (QEST). IEEE, pp
21–30

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 5
Monitoring in a Multi-cloud Environment

Marco Miglierina and Elisabetta Di Nitto

5.1 Introduction

The Cloud brings velocity to the development and release process of applications,
however software systems become complex, distributed onmultiple clouds, dynamic
and heterogenous, leveraging both PaaS and IaaS resources. In this context, gathering
feedback on the health and usage of services becomes really hard with traditional
monitoring tools, since they were built for on-premise solutions offering uniform
monitoring APIs and under the assumption that the application configuration evolves
slowly over time. Still, visibility via monitoring is essential to understand how the
application is behaving and to enable automatic remediation features such as the
ones offered by MODAClouds.

Tower 4Clouds is a monitoring platform built with multi-cloud applications in
mind. It offers a model-based approach that helps the user to focus on abstract
concepts when configuring the monitoring activity of complex and heterogeneous
applications running on multiple clouds. Configuration is done via a powerful rule
language, which allows the user to instruct the platform once, predicating on the
model of the application. Within a single rule the user will be able to configure what
and how data should be collected, what aggregations should be performed, what
condition should be verified and what actions should be executed. Tower 4Clouds
is also highly composable. Custom metrics and third party monitoring tools can be
easily integrated.

M. Miglierina · E. Di Nitto (B)
Politecnico di Milano - DEIB, Piazza L. da Vinci 32, 20133 Milano, Italy
e-mail: elisabetta.dinitto@polimi.it

M. Miglierina
e-mail: marco.miglierina@polimi.it

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_5

47

48 M. Miglierina and E. Di Nitto

5.2 Tower 4Clouds Architecture

In order to address the multi-cloud requirement, we could not rely on the moni-
toring infrastructure provided by a specific cloud provider. We therefore developed
Tower 4Clouds as an open source modular platform. Figure5.1 depicts the general
architecture of the platform.

The core elements of the architecture are Data Analyzers which acquire data
described as RDF tuples and perform filtering, aggregation, and statistical analyses
on them. They receive data from multiple Data Collectors that can wrap preexisting
monitoring tools. Examples of preexisting tools we managed to integrate with our
platform are Sigar and Collectd.

Data Analyzers produce output metrics for Observers that subscribe for such
data. Observers can be other Data Analyzers or external tools that may support,
for instance, visualization of monitoring data or the execution of some application-
specific actions in response of the occurrence of some events.

The typical configuration we have experimented with includes a Deterministic
Data Analyzer (DDA), in charge of performing filtering and aggregation of data,
connected to Observers such as a Statistical Data Analyzer (SDA), which executes
prediction algorithms on data, Graphite or InfluxDB for storing time series data to be
then used by graphing tools such asGrafana. TheDDAcore is theC-SPARQLengine,
a general purpose RDF stream reasoner based on the C-SPARQL language [2], which
we exploited to monitor applications [3].

As we anticipated, we are not monitoring static and slowly changing systems.
Cloud applications are dynamic therefore we had to provide the platform with the
elasticity required to reconfigure and update its internal model according to applica-
tion changes. Such elasticity is obtained by giving data collectors the responsibility

Fig. 5.1 Tower 4Clouds architecture

5 Monitoring in a Multi-cloud Environment 49

of registering to the central server (i.e., the Manager in Fig. 5.1) and notifying about
resources they are monitoring, avoiding any central discovery mechanism. Collec-
tors are supposed to be available as long as they periodically contact the server. After
a predefined period of inactivity, the corresponding monitored resource is removed
from the server internal model and considered unavailable.

Finally, we implemented a mono-directional communication protocol used by
data collectors to register and to sendmonitoring data. Since the connection is always
from data collectors to the server, there is no need to implement routing strategies
and listen to ports at the client side. This allows to have fewer requirements on the
XaaS services in charge of hosting the monitored application services.

5.3 Application Configuration Model

Metrics per se are dumb numbers, in order to actually understand where data is
coming from and improve visibility, a model of the application is required to give
semantic meaning to all its components and relationships among them. Different
cloud providers, for example, are explicitly modeled so that per-cloud aggregations
of data can be computed. The model, which is stored by theManager component in
Fig. 5.1, is maintained in sync in a distributed fashion by data collectors which are
running on monitored hosts.

Figure5.2 shows an example of model of a simple e-commerce webapp deployed
on two different clouds (Flexiant and Amazon), providing 3 different methods (reg-
ister, login and checkout).

Fig. 5.2 Model example

50 M. Miglierina and E. Di Nitto

5.4 Monitoring Rules

The configuration of the monitoring system is obtained via monitoring rules, which
consist in recipes written by the QoS engineer describing the monitoring activity in
a cloud-independent way. Monitoring rules can be automatically derived from QoS
constraints specified during the design time and then customized according to users
needs. A rule is composed of 5 building blocks:

• monitoredTargets, where a list of monitored resources is identified by either class,
type or id;

• collectedMetric, where the metric to be collected is specified together with any
data collector-specific parameter;

• metricAggregation, where the aggregation among average, percentile, sum, count,
max, min of collected data is selected as well as whether the aggregation should
be over all data or grouped by a specific class of resources (e.g., by cloud provider,
or by vm);

• condition, where a condition to be verified can be expressed predicating on the
aggregated value;

• actions, the action to be executed given the condition is satisfied (if any).

Table 5.1 Examples of monitoring rules

5 Monitoring in a Multi-cloud Environment 51

Table5.1 provides two examples of rules that predicate over the example model
provided in Fig. 5.2. The first rule (i.e., RTConstraint_Rule) instructs the platform
to collect the response time of all three methods, compute the 99th percentile every
60 s, and check if it is lower than 10s. In case the computed metric is over 10 s,
the platform will produce a new metric named RTConstraint_Violation, which will
be available as input of other rules and for observers, and will enable a second
rule named DetailedRAMRule. This second rule is telling the platform to collect the
average RAM utilization on all Frontend machines and produce a new metric named
AverageRAMUtilization for each VM. DetailedRAMRule is not active in the initial
monitoring configuration (in fact, its enabled attribute is set to false). This means
that the data it needs are not collected. When the execution of RTConstraint_Rule
activates it (that is, when the response time of the methods under monitoring is
slow), data collectors are instructed to start sending the required metrics to the Data
Analyzer that can then execute the rule. Thanks to this mechanism it is possible to
increase or decrease the level of the monitoring, and the consequent overhead on the
execution of the whole system, depending on the status of the system itself.

5.5 Conclusion

Tower 4Clouds is available as open source software.1 It has been used as part of
MODAClouds by all case studies owners that have been able to customize it for
their purpose without a direct intervention of its main developers. Moreover, it is
being used also within the SeaClouds project [1] where it has become one of the
main infrastructural components. Thanks to its modularity, Tower 4Clouds has been
incorporated within SeaClouds as it is, and SeaClouds partners have built around
it the code needed to automatically derive monitoring rules and Data Collectors
configurations from their design time specification of SeaClouds applications.

References

1. Brogi A et al (2015) CLEI Electron J 18(1):1–14
2. Barbieri DF et al (2010) C-SPARQL: a continuous query language for RDF data streams Int J

Semantic Comput 4:3
3. Miglierina M et al (2013) Exploiting stream reasoning to monitor multi-cloud applications. In:

2013 ISWC 2nd international workshop on Ordering and Reasoning (OrdRing), 21–22 Oct 2013

1https://github.com/deib-polimi/tower4clouds.

https://github.com/deib-polimi/tower4clouds

52 M. Miglierina and E. Di Nitto

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 6
Load Balancing for Multi-cloud

Gabriel Iuhasz, Pooyan Jamshidi, Weikun Wang and Giuliano Casale

6.1 Introduction

Load balancing is an integral part of software systems that require to serve requests
with multiple concurrent computing resources such as servers, clusters, network
links, central processing units or disk drives. Load balancing aims to optimize
resource use, maximize throughput, minimize response time, and avoid overload
of any single resource. It can also lead to a higher reliability through redundant
resources. Load balancing typically involves two major components: (i) a controller,
a piece of software or hardware controlling the routing of requests to the backend
resources according to an specific routing policy; (ii) a reasoner that determines the
routing policy. The policy can be set at design-time based on the result of the reasoner
or at runtime based on periodic observation of response time and throughput.

The MODAClouds Load Balancer (Fig. 6.1) is a component for dispatching
requests from end users to application servers following certain load balancing poli-
cies. It consists of a load balancing controller and a reasoner. The controller extends

G. Iuhasz (B)
Institute E-Austria Timisoara and West University of TimiŞoara,
B-dul Vasile Pârvan 4, 300223 TimiŞoara, Romania
e-mail: iuhasz.gabriel@info.uvt.ro

P. Jamshidi · W. Wang · G. Casale
Department of Computing, Imperial College London,
180 Queens Gate, SW7 2AZ London, UK
e-mail: p.jamshidi@imperial.ac.uk

W. Wang
e-mail: weikun.wang11@imperial.ac.uk

G. Casale
e-mail: g.casale@imperial.ac.uk

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_6

53

54 G. Iuhasz et al.

Fig. 6.1 The MODAClouds Load Balancer

well known open source load balancing and proxying for TCP and HTTP-based
applications called HAProxy.1

6.2 Load Balancing Controller

In MODAClouds, we developed pyHrapi,2 a set of REST APIs to interact with the
coreHAProxy engine. pyHrapi essentially controls the behavior ofHAProxy through
easy to use APIs easing the way self-adapting components ofMODAClouds needs to
interact with load balancing component either for configuration update or controlling
its behavior at runtime.

6.3 Load Balancing Reasoner

MODAClouds Load Balancer uses the Weighted Round Robin policy, which dis-
patches requests to each server proportionally based on the assigned weights and in
circular order. At runtime, algorithms proposed in [1] are implemented [2] to change
the weights of the servers in order to optimize the revenue of the system. The revenue
is defined as weighted throughput of different classes of users. The support of multi-
class reasoning is useful in real applications when the users have different privileges,
e.g. golden, silver and bronze, which stand for different levels of services. Such lev-
els of service can be formalised by means of SLAs. In the reasoner component, the

1http://www.haproxy.org/.
2https://github.com/ieat/MODAClouds-loadbalancer-controller.

http://www.haproxy.org/
https://github.com/ieat/MODAClouds-loadbalancer-controller

6 Load Balancing for Multi-cloud 55

calculation of throughput and response time is based on log data analysis of the load
balancing controller. At runtime, the per request logs are accumulated in the load
balancing controller log file based on the requests hitting backend resources.
Data collector In order to observe the change of the system, we have developed a log
file collector for Haproxy. This log file collector continuously extracts information
from the log based on a predefined regular expression. Metrics like response time,
arrival and departure time-stamps, request type and session IDs are particularly useful
for the load balancing analysis to examine the processing requirement of each type
of request on different types of servers. This Haproxy log data collector is integrated
into Tower 4Clouds (see Chap.5) and sends data to the Deterministic Data Analyzer
(DDA) component.
Demand estimation The logs collected from the Haproxy log data collector are
sent to the Haproxy specific demand estimation SDA from the DDA for analysis.
We have developed two Haproxy specific demand estimation SDAs to obtain the
demands of different classes of users: Complete Information (CI) and Utilization-
based Regression (UBR). The CI method requires both the arrival time-stamps and
departure time-stamps of each requests. The UBR, on the other hand, needs CPU
utilization on the application server as well as the throughput of the requests. The
demands obtained from either SDA will be used by the Load balancing adaptor to
obtain the optimal weights for each backend resources.

In particular, we obtain the demand of different classes of users by evaluating
the requests they send during one session. Here, we assume users have a similar
behaviour for sending the requests. We achieve this by grouping the requests by the
session IDs and examine if there are common requests among different sessions.

6.4 Multi-cloud Load Balancing

Local Load Balancing (LLB), also called cluster-level load balancing or intra-Cloud
load balancing (see previous section), provides load balancing between VMs, which
are inside a Cloud service or a virtual network (VNet) within a regional zone. Howe-
ver, there are several motivations for multi-Cloud (inter-Cloud) load balancing:

• Failover: An organization intends to provide highly reliable services for its cus-
tomers. This can be realized by figuring out backup services in case their primary
service goes down. A common architectural pattern for service failover is to pro-
vide a set of identical interfaces and route service requests to a primary service
endpoint, with a list of one or more replicated ones. If the primary service goes
down for a reason, requesting clients are routed to the other Cloud.

• Gradual enhancement/graceful degradation: Allocate a percentage of traffic to
route to a new interface, and gradually shift the traffic over time.

• Application migration to another Cloud: A profile can be setup with both primary
and secondary interfaces, and a weight can be specified to route the requests to
each interface.

http://dx.doi.org/10.1007/978-3-319-46031-4_5

56 G. Iuhasz et al.

• Cloud bursting: A Cloud service can be expanded into another private or public
Cloud by putting it behind a multi-Cloud load balancer profile. Once there is a
need for extra resources, it can be added (or dynamically removed) and specify
what proportion of requests goes to newly provisioned resources.

• Internet scale services: In order to load balance endpoints that are located in
different Clouds across the world, one can direct incoming traffic to the closest
port in terms of the lowest latency, which typically corresponds to the shortest
geographic distance.

• Fault tolerance. A fault tolerant Cloud application detect failed components and
fail over to another Cloud until a failure is resolved. It not only depends on deploy-
ment strategies but also on application level design strategies, for example, a reli-
able application may degraded and partly route the request to another Cloud at the
same time.

6.4.1 Usage Scenario of Multi-cloud Load Balancing

Once a failure in a Cloud occurs, traffic can be redirected to VMs running in another
Cloud. Multi-Cloud load balancing can facilitate this task. It allows to automatically
manage the failover of traffic to another Cloud in case the primary Cloud fails.
When configuring multi-Cloud load balancing, we need to provide a new global load
balancer in front of the local ones in each Cloud. Global load balancer abstracts
load balancing one level up the local level. The global load balancer maps to all
the deployments it manages. Within global load balancer, the weights for the load
balancing policy determine the priority of the deployments that users will be routed
to a deployment. The global load balancer monitors the endpoints of the deployments
and notes when a deployment in specific Cloud fails. At failure, global load balancer
reasoner will change the weights and route users to other Cloud (Fig. 6.2).

6.5 Load Balancing and Failure Management

A requirement for the runtime platform is to be robust in case of failures of individual
components. In particular, a failure of the load balancer could cause a major loss of
connectivity for an entire cluster of machines. To prevent this situation, it is needed
to replicate the load balancer and initiate an automatic fail-over switch to the backup
load balancer in case the main load-balancer fails.

In MODAClouds, we use Trigger technology to handle load balancer failure.
Triggers are functions that allow an action in Cloud Orchestrator to initiate a second
action. A trigger is written as a block of code that run either before an event occurs (a
pre trigger) or after an event occurs (a post trigger). One advantage is that a pool of
images can be created and automatically started in the event of a fault. This reduces
the requirement for a System Administrator to be involved and as a result reduce

6 Load Balancing for Multi-cloud 57

Fig. 6.2 Overview of multi-Cloud load balancing in MODAClouds

the overhead cost as well as providing a fast automatic response. Also as a snapshot
of a disk is taken, if required a roll back in the event of changes or faults can be
quick using this taken snapshot and the provided tools. We also use triggers to add
the newly started VM into the load balancer, that would work in conjunction with
the previously created triggers. In the experiments we performed we exploited the
trigger implementation presented in Chap. 15.

6.6 Conclusion

The observations with our experimental study can be summarized as follows:

• Flexible load balancing. The approach enabled adaptive changes in the weights
according to the heterogeneity of the resources in each Cloud.

• Reduce application downtime. The approach improved the availability of Cloud-
based applications by automatically directing user access to a new location anytime
there is a congestion in a Cloud.

• Improved performance. The approachmade applicationmore responsive by direct-
ing access to an application according to the weights

Further details on implementation, experimental results, and the interconnectionwith
the other runtime components of MODAClouds can be found in [3].

http://dx.doi.org/10.1007/978-3-319-46031-4_15

58 G. Iuhasz et al.

References

1. Anselmi J, Casale G (2013) Heavy-traffic revenue maximization in parallel multiclass queues.
Perform Eval

2. WangW,CasaleG (2014)Evaluatingweighted round robin load balancing for cloudweb services
3. Iuhasz G et al (2015) Runtime environment final release. Modaclouds Deliverable D6.5.3

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 7
Fault-Tolerant Off-line Data Migration:
The Hegira4Clouds Approach

Elisabetta Di Nitto and Marco Scavuzzo

7.1 Introduction

The Cloud offers the potential to support high scalability of applications. An increase
in the application workload is typically handled by triggering the replication of its
components so as to increase the application computational capability offered to
users. Moreover, an increase in the amount of data to be handled can be easily
managed by exploiting scalable DBMSs supporting partitioning of data on different
nodes. These are the so called NoSQL databases that have been specifically built to
offer scalability, high availability of data and tolerance to network partitions [9].

Unfortunately, when looking more closely at how NoSQL databases work, one
realizes that they represent a good solution for scalability, but they do not offer
mechanisms to allowmigration amongdata stored inNoSQLs fromdifferent vendors.
More specifically, data migration is not a new problem per se. It is a well established
topic in relational databases world; this is mainly due to the standardization occurred
at the data model level (with DDL) and at query level (with DML and DQL). There
exist several tools (see, e.g., [2, 4, 6, 7]) which allow tomigrate data across relational
databases and, thanks to SQL, it is possible to preserve queries, compliant to the
standard, even after the migration. On the contrary, in the NoSQL database field
there exist no standard neither for interfaces nor for the data models and, as such, to
the best of our knowledge, there are no tools which allow to perform data migration
across different NoSQLs. Some databases provide tools to extract data from them
(e.g., Google Bulkloader [3]), but in the end, it is up to the programmer to actually
map those data to the target database data model and perform the migration.

E. Di Nitto (B) · M. Scavuzzo
Politecnico di Milano - DEIB, Piazza L. da Vinci 32, 20133 Milano, Italy
e-mail: elisabetta.dinitto@polimi.it

M. Scavuzzo
e-mail: marco.scavuzzo@polimi.it

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_7

59

60 E. Di Nitto and M. Scavuzzo

With our approach, that we call Hegira4Clouds,1 we aim at providing a solution to
the data migration problem in the context of NoSQL databases, trying to preserve, at
the same time, the specific properties characterizing each NoSQL database. For the
moment,we focus on column-family databases as they are among themost interesting
class of NoSQL for their high level of scalability. Hegira4Clouds migration approach
is based on the idea of extracting data from the source database, transforming them
into an intermediate format, and, finally, translate and store them into the target
database. Data transfer is fault tolerant as it enables the correct termination of the
migration even in the presence of a failure within the migration infrastructure.

In the following of this chapter, we briefly present Hegira4Clouds intermediate
format (Sect. 7.2) and its architecture, focusing, in particular, on the fault tolerance
features (Sect. 7.3). Finally, we evaluate the approach (Sect. 7.4) and discuss conclu-
sions and future work (Sect. 7.5).

7.2 Hegira4Clouds Intermediate Meta-Model

The Hegira4Clouds intermediate format is defined by an intermediate meta-model
described in detail in [13]. It takes into account the features of the most widely
used NoSQL and we have shown that it is sufficiently general for dealing with the
features of so-called columnar and key-value NoSQL databases [8, 15]. Thanks to
its definition, the adoption of a new NoSQL system in Hegira4Clouds requires only
the development of the translator from this new NoSQL into the intermediate format
and vice versa. Furthermore, thanks to this intermediate meta-model, Hegira4Clouds
is able to preserve the data types, read consistency policies, and secondary indexes
supported by the source database.

In particular, we preserve data types by keeping track of the type of each migrated
data explicitly, even though that type is not available in the destination database.
This is accomplished by performing the following procedure: data converted into the
intermediate format are always serialized into a property value field and the original
data type is stored as a string into a property type field. When data are converted from
the intermediate format into the target one, if the destination database supports that
particular data type, the value is deserialized. Otherwise, the value is kept serialized
and it is up to the application level to correctly interpret (deserialize) the value
according to the type field.

As extensively detailed in [10, 13], read consistency policies are handled through
the concept of Partition Group (Fig. 7.1). Entities that require strong consistency
on read operations will be assigned, in the intermediate format, to the same Par-
tition Group value. Entities managed according to an eventual consistency policy
will be assigned to different Partition Group values. When entities share the same
Partition Group, if the target database supports strongly consistent read operations,

1Repository: https://github.com/deib-polimi/hegira-components/.

https://github.com/deib-polimi/hegira-components/

7 Fault-Tolerant Off-line Data Migration: The Hegira4Clouds Approach 61

Fig. 7.1 Intermediate meta-model

then Hegira4Clouds adapts data accordingly (depending on the target database data-
model). Otherwise, Hegira4Clouds simply persists the data so as that they will be
read in an eventual consistent way, and creates an auxiliary data structure to preserve
the consistency information.

Finally, secondary indexes are preserved across different database by means of
the property indexable field. More specifically, during the conversion into the inter-
mediate format, if a certain property needs to be indexed, it is marked as indexable.
When converting into the target format, if the target database supports secondary
indexes, the property is mapped consequently according to the specific interfaces
provided by the target database. Otherwise, Hegira4Clouds creates an auxiliary data
structure on the target database which stores the references to the indexed properties,
so that, when migrating again these data to another database supporting secondary
indexes, they can be properly reconstructed.

7.3 Architecture and Fault Tolerance Features

The Hegira4Clouds architecture is shown in Fig. 7.2. To provide scalablity and relia-
bility, each component is decoupled from the other, and the interacting components
communicate by means of a distributed queue. A Source Reading Component (SRC)
extracts data from the source database, one entity at a time or in batch (if the source
database supports batch operations) translates data into the intermediate format, by
means of the respective direct translator, and puts the data in theMetamodel queue.

62 E. Di Nitto and M. Scavuzzo

Fig. 7.2 Hegira4Clouds data migration architecture

This queue temporarily stores the data produced by the SRC so that other compo-
nents can consume them at their own peace, thus allowing the system to cope with the
different throughputs of the source and target databases. In parallel, a Target Writing
Component (TWC) consumes the data from the queue and converts them into the
target database data-model, thanks to an inverse translator (specific for each sup-
ported database). After conversion the data is stored in the target database. Hence the
role of translators is that of mapping data back and forth between the source/target
database and the intermediate format, performing the (de)serializations, checking
for data types support, properly mapping indexes and adapting the data to preserve
different read consistency policies. Two examples of translators (Google Datastore
andAzure Tables) are extensively described in [10, 13]. SRC and TWCare organized
in threads called Source Reading Threads (SRT) and Target Writing Threads (TWT),
respectively to achieve the maximum possible throughput.

Hegira4Clouds fault tolerance focuses on tolerating both databases reading/wri-
ting errors and outages (i.e., external faults) as well as crashes in the components of
the migration system (i.e., internal faults).

Queue faults may be prevented by adopting a distributed, disk-persisted, queuing
mechanism, so by assuming that this queue is able to automatically recover from
faults of its replicas (that is the reason why we a adopt RabbitMQ, widely used in
production environments).

Writing errors on the target database are addressed by the Metamodel queue; in
particular, TWTs synchronously write data on the target database and send acknowl-
edgment messages to the queue if the data were persisted correctly; only at this point,
acknowledged data are removed from the queue. Thus, if an error occurs on the target
database, another TWT (or a new TWC) can take over the specific write operations.

Reacting to reading errors in presence of faults on the source database, instead, is
more difficult because of the heterogeneity of the different NoSQL databases; while
some databases guarantee an absolute pointer to the data even after an error or a
crash, thus enabling the possibility to restart the migration from the exact point in
which it has been interrupted, some others (e.g., Google Datastore) do not.

Our approach to avoid restarting the migration from scratch consists in virtually
partitioning the data in the source database, so that partitions containing a certain
amount of data to be migrated can be retrieved in an ordered and unambiguous way,
independently from the source NoSQL database that is being used. In this way, if
there is an unrecoverable database error (i.e.,m external fault) or if the SRC crashes
(i.e., internal fault), the migration can start from the last retrieved partition. This

7 Fault-Tolerant Off-line Data Migration: The Hegira4Clouds Approach 63

approach has been initially presented in [11] and is presented and evaluated in detail
in the rest of this chapter. Of course, such an approach implies that data are stored
in the databases according to a custom design. For this reason, Hegira4Clouds also
supports a design-agnostic approach (see [14]) that is compatible with any kind of
data design, but it is not able to react to unrecoverable source database faults or SRC
faults (i.e., an internal fault).

7.3.1 Virtual Data Partitioning

Since the source database may not support absolute pointers to the data, in order to
keep track of data that is beingmigrated, theremust be some sort of shared knowledge
between the application and Hegira4Clouds. For this reason, we define the concept
of Virtual Data Partition (VDP), which is a logical grouping of entities contained
in the source database. By making the assumption that the applications, using the
source database, insert entities according to a sequential incremented (primary) key,
it is possible to track the point where a data migration task was interrupted. In
fact, by applying this technique, and storing only the last generated sequential id
(lastSeqNr), it possible to unequivocally create VDPs and associate stored entities
with them; in fact, by using an approach similar to paged virtual memory (virtual
memory management) for operating systems, it is possible to map an ordered set of
entities to a VDP (i.e., Eq. 7.2) and viceversa (i.e., Eq. 7.3).

To determine, at migration-time, the exact number of VDPs based on the last
generated sequence number (lastSeqNr) and the user-defined partition size (PS) we
use Eq.7.1.

#partitions =
⌈
lastSeqNr/PS

⌉
(7.1)

VDPidk =
⌊
keyx,k/PS

⌋
(7.2)

We use Eq.7.2 to calculate the id of theVDP containing the given entity (identified
by its key, i.e., keyx,k). Finally, Eq. 7.3 can be used to calculate the first and last entity
keys belonging to a given VDP (i.e., VDPidk). Notice that:

key1,k = VDPidk × PS

...

keyn,k = [(VDPidk + 1)× PS] − 1

(7.3)

• Since entities are inserted into the source database according to a sequential incre-
mented key (generated in order to guarantee the global total order of the id), the
entities contained in each VDP are ordered.

64 E. Di Nitto and M. Scavuzzo

• The number of the VDPs is not fixed a priori, but it grows together with the inserted
entities, and it is a factor of the number of inserted entities (lastSeqNr) and the
maximum number of entities VDPs can contain (i.e., PS).

• The size of the VDPs, in terms of contained entities (and thus the number of VDPs,
Eq.7.1), can be determined at migration-time (by fixing a value for PS) and it can
change from one migration to another, without affecting stored data.

Hence, for migrating data according to this approach, it suffices to read the last
generated sequential number from a fault-tolerant, distributed storage, i.e., the status
log, and decide the VDPs proper size; once done so, for each VDP, the SRC extracts
the entities, from the source database, and executes the migration task.

If the source database supports range scan queries (e.g., HBase, Cassandra) it is
possible, for each database specific translator, to request all the range of entities
contained in a VDP, for example VDPid2 , with a single query, just by specifying its
first (i.e., key1,2) and last (i.e., keyn,2) entity keys. Otherwise, if the source database
does not support range queries, the specific database translator requests each entity,
contained in the VDP, one by one. In the first case, entities retrieval from the source
database, is much faster than in the second case, because only a request, towards
the database, is issued; while, in the second case, exactly PS requests are sent to the
source database.

The limit of the VDP approach is that VDPs might also contain the ids of pre-
viously erased entities; while on the first hand, in case of range scans, this does
not affect the performance of the migration task, since the source database handles
missing entities in a range; on the other hand, if the source database does not support
range scans, and the SRC has to issue a request per each entity contained in the VDP,
the source database will return an error when trying to retrieve a previously deleted
entity. The SRC skips the deleted entities that generate an error, but issuing queries
also for deleted entities slows down the migration task. In the worst case, i.e., when
all of the entities in a VDP have been erased, there may be a severe drop on the data
migration overall throughput.

In order to keep track of themigration status (i.e., the number of entities correctly
migrated towards the target database) and to allow for data synchronization (discussed
in [12]), Hegira4Clouds exploits the VDPs. In particular, when the SRC is instructed
to begin a migration task, it creates a snapshot of the source database, which is
stored in the status log. A snapshot consists of: (a) a list of all the VDPs at the time
the migration task was started (which depends on the value of PS, selected when
the migration command was issued); (b) the status of each VDP, which can be of
four types: “not migrated”, “under migration”, “migrated” and “synch”; (c) the last
sequence number issued at the time the migration task was started.

When creating the snapshot, every VDP status is set to “not migrated”. Once the
SRC starts to extract the entities relative to a given VDP, it sets the status of that
VDP to “under migration”. When a TWT determines it has processed all entities
relative to a given VDP, it sets that particular VDP status to “migrated”. The “synch”
VDP status is used when a partition is being synchronized, but this is out of the
scope of this chapter. A TWT is able to determine if a VDP has completely been

7 Fault-Tolerant Off-line Data Migration: The Hegira4Clouds Approach 65

processed by counting the effective number of processed entities for that VDP and
comparing it with the number of entities the VDP actually contains (piggybacked
on each metamodel entity and specific to different VDPs). Hence, each time a TWT
processes an entity relative to a given VDP, it increments an associated counter; if the
counter reaches the value piggybacked in those metamodel entities, then the TWT
changes the VDP status to “migrated”. In this way all Hegira4Clouds components
are aware of the migration status at any point in time, and can therefore take the
appropriate decisions in case of faults (and also of data synchronization, as described
in [12]). Additional details about the snapshot management are provided in [14].

7.3.2 Recovering from Faults

Hegira4Clouds recovery approach assumes that there exists an external orchestrator
(e.g., Mesosphere DCOS [5]) that acts as follows:

1. itmonitors the statuses ofHegira4Clouds components, i.e., the SRCand theTWC;
2. if it detects a fault on the SRC, it waits until the TWC finishes to process all the

messages in the Metamodel queue and starts a new SRC;
3. if it detects a fault on the TWC, it stops the SRC from reading data from the

source database and restarts both components.
4. Once the components have been restarted, the orchestrator calls Hegira4Clouds

recovery API.

Hegira4Clouds components, upon receiving a recovery command, in order to
avoid inconsistencies during data migration, empty the Metamodel queue. Then,
each components act as follows:

• the SRC

– downloads the migration status from the status log;
– for those VDPs whose status is “under migration”, the SRC changes it to “not
migrate” (this prevents inconsistencies from happening);

– finally, it starts to extract data from the source database starting from the first
VDP whose status is “not migrated”.

• the TWC, just waits for the Metamodel queue to be filled by the SRC.

7.4 Evaluation: Migrating Tweets

This section evaluates Hegira4Clouds using a large data set extracted from Twitter.
In particular, we stored into GAE Datastore 10,693,800 publicly available tweets [1]
and then we ran Hegira4Clouds to migrate them into Azure Tables. The purpose of
the experiment is to check if Hegira4Clouds is able to perform the partitioned data

66 E. Di Nitto and M. Scavuzzo

migration with an acceptable overhead (w.r.t. to the standard data migration [14])
and without introducing errors directly due to the migration process.
Experimental setupAsmentioned before, our data set was composed of 10,693,800
tweets. Each tweet, in addition to the 140 characters long message, contains also
details about the user, creation date, geospatial information, etc. Each tweet was
stored in GAEDatastore as a single entity, with an extra sequential identifier (accord-
ing to the specifics reported in Sect. 7.3.1) and a variable number of properties (with
different data types). On average, each tweet on GAE Datastore was 3.05KB. The
total entities size was 31.1GB. We tested Hegira4Clouds in two different scenarios:

1. Standalone environent: all of the migration system components, including the
queue (RabbitMQ 3.4.6) and the status log (Apache ZooKeeper 3.5.4), were
deployed inside an Azure VM.

2. Distributed environent: two equally-sized VMs in the same virtual network, one
hosting the SRC, the TWC and the web-server exposing the REST APIs, and
the other equipped with the queue and the status log.

In both scenarios the VMs were configured as follows: Ubuntu Server 12.04, located
in Microsoft WE data center, with 4 CPU cores and 7 GB RAM.
Scenario 1: Standalone environment This test migrated data described above and
used 32 TWTs to write data in parallel on Azure Tables and 8 SRTs to read data
in parallel from Google Datastore. The main measured system metrics were (a) the
total migration time and consequently themigration throughput (measured in entities
per second), (b) the time needed by the SRC to extract the entities from the source
database, convert and put them in the queue, and (c) the overall CPU utilization
relative to all Hegira4Clouds components. We performed three different runs and
computed the average of each metric. Moreover, in order to evaluate how predictable
each run was with this configuration, we also computed the standard deviation for
each metric (Table7.1).
Scenario 2: Distributed environment In this scenario the environment setup was
composed by two equally-sized VM, one, hegira1, executing an instance of Rab-
bitMQ and ZooKeeper, the other, hegira2, hosting the SRC and TWC components,
as well as the web-server exposing the REST APIs. The migrated data and the con-
figuration parameters were the same of the previous scenario, but, additionally, we
distinguished the CPU usages of the two VMs (Table 7.2).

Table 7.1 Partitioned data migration with standalone environment

Run Mig. time (s) Mig. throughput
(ent/s)

Ext. time (s) Ext. throughput
(ent/s)

%CPU used

1 13470 793.90 13469 793.96 49.4

2 16882 633.44 16880 633.52 49.02

3 17486 611.56 15248 701.32 38.46

Averages 15946 670.63 15199 703.58 45.63

Std. dev. 2165.44 99.56 1706.03 80.54 6.21

7 Fault-Tolerant Off-line Data Migration: The Hegira4Clouds Approach 67

Table 7.2 Partitioned data migration with distributed environment

Run Mig. time
(s)

Mig. throughput
(ent/s)

Ext. time
(s)

Ext. throughput
(ent/s)

%CPU
used
hegira 1

%CPU
used
hegira 2

1 12075 885.61 12073 885.76 11.1 26.99

2 12187 877.47 12183 877.76 13.05 25.7

3 13995 764.11 13993 764.22 10.06 25.11

Averages 12752.33 838.58 12749.67 838.75 11.40 25.93

Std. Dev 1077.64 67.92 1078.16 67.98 1.52 0.96

7.5 Discussion and Conclusion

From the analysis of results we can conclude that Hegira4Clouds is suitable to han-
dle and process huge quantities of data with a very high throughput. Deploying
Hegira4Clouds on a distributed environment grants higher throughput; in fact, in
scenario 2, the average migration time was almost 1 hour less and consequently the
migration throughput was almost 170 ent/s faster. Moreover, by looking at the stan-
dard deviations, we can conclude that distributing Hegira4Clouds components has
the benefit of providing more predictable migration performance. In fact, while in
the first scenario we observe an average standard deviation corresponding almost to
the 15%, in the second scenario the standard deviation is almost halved to the 8%.

Finally, by comparing the results obtained in Scenario 2 with those of the stan-
dard (i.e., non-partitioned) data migration [14] we can assert that the performance
are almost the same and the adoption of the virtual data partitioning mechanism
(together with the usage of a status log, i.e., ZooKeeper) has no tangible overhead
on Hegira4Clouds.

The work on Hegira4Clouds is now focusing on how to manage synchronization
between database replicas and on how to support datamigrationwhile the application
using such data is continuing its normal execution.

References

1. ArchiveTeam (2012) Twitter Stream https://ia601605.us.archive.org/10/items/archiveteam-
twitter-stream-2012-12/archiveteam-twitter-2012-12.tar

2. Flyway https://github.com/flyway/flyway
3. GoogleBulkloader, https://chromium.googlesource.com/external/googleappengine/python/+/

200fcb767bdc358a3acb5cf7cad1376fe69f12c5/google/appengine/tools/bulkloader.py
4. LiquiBase, http://www.liquibase.org
5. Mesosphere, https://mesosphere.com/
6. Mysql workbench: Database migration, http://www.mysql.it/products/workbench/migrate/
7. Oracle SQL Developer Migration, http://www.oracle.com/technetwork/database/migration/

index-084442.html

https://ia601605.us.archive.org/10/items/archiveteam-twitter-stream-2012-12/archiveteam-twitter-2012-12.tar
https://ia601605.us.archive.org/10/items/archiveteam-twitter-stream-2012-12/archiveteam-twitter-2012-12.tar
https://github.com/flyway/flyway
https://chromium.googlesource.com/external/googleappengine/python/+/200fcb767bdc358a3acb5cf7cad1376fe69f12c5/google/appengine/tools/bulkloader.py
https://chromium.googlesource.com/external/googleappengine/python/+/200fcb767bdc358a3acb5cf7cad1376fe69f12c5/google/appengine/tools/bulkloader.py
http://www.liquibase.org
https://mesosphere.com/
http://www.mysql.it/products/workbench/migrate/
http://www.oracle.com/technetwork/database/migration/index-084442.html
http://www.oracle.com/technetwork/database/migration/index-084442.html

68 E. Di Nitto and M. Scavuzzo

8. Popescu A (2010, 02) Nosql at codemash—an interesting nosql categorization. http://nosql.
mypopescu.com/post/396337069/presentation-nosql-codemash-an-interesting-nosql

9. Sadalage PJ, FowlerM (2012) NoSQLDistilled: a brief guide to the emergingworld of polyglot
persistence. Addison-Wesley Professional

10. Scavuzzo M (2013) Interoperable data migration between NoSQL columnar databases. Mas-
ter’s thesis, Politecnico di Milano

11. Scavuzzo M, Di Nitto E, Ardagna D Experiences and challenges in building a data intensive
system for data migration

12. Scavuzzo M, Di Nitto E, Dominiak J (2015) Data synchronisation layer. MODA-
Clouds deliverable D6.7, April 2015. http://www.modaclouds.eu/wp-content/uploads/2012/
09/MODAClouds_D6.7_DataSynchronizationLayer.pdf

13. Scavuzzo M, Nitto ED, Ceri S (2014) Interoperable data migration between nosql columnar
databases. In: Grossmann G, Hallé S, Karastoyanova D, Reichert M, Rinderle-Ma S (eds)
18th IEEE international enterprise distributed object computing conference workshops and
demonstrations, EDOC Workshops 2014, Ulm, Germany, 1–2 Sep 2014. IEEE, pp. 154–162.
http://dx.doi.org/10.1109/EDOCW.2014.32

14. ScavuzzoM,TamburriDA,DiNitto E (2016) Providing big data applicationswith fault-tolerant
datamigration across heterogeneousNoSQL databases. In:Proceedings of the 2nd international
workshop on BIG Data Software Engineering (BIGDSE ’16). ACM, New York, NY, USA, pp
26–32

15. Scoffield B (2014) Nosql—death to relational databases(?), January 2010, presentation at the
CodeMash conference in Sandusky (Ohio), 14 Jan 2014. http://www.slideshare.net/bscofield/
nosql-codemash-2010

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://nosql.mypopescu.com/post/396337069/presentation-nosql-codemash-an-interesting-nosql
http://nosql.mypopescu.com/post/396337069/presentation-nosql-codemash-an-interesting-nosql
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D6.7_DataSynchronizationLayer.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D6.7_DataSynchronizationLayer.pdf
http://dx.doi.org/10.1109/EDOCW.2014.32
http://www.slideshare.net/bscofield/nosql-codemash-2010
http://www.slideshare.net/bscofield/nosql-codemash-2010
http://creativecommons.org/licenses/by/4.0/

Chapter 8
Deployment of Cloud Supporting Services

Gabriel Iuhasz, Silviu Panica, Ciprian Crăciun and Dana Petcu

8.1 Introduction

The main emphasis in this chapter is on the various supporting services needed to
run an application. In the MODAClouds context, all services and resources involved
in running and managing an application on a given Cloud provider comprise the
runtime environment.

We give an overview of the Execution Platform (Energizer 4Clouds) and its main
components and services that have a direct role in deploying the supporting services.
In particular we will detail the mOS operating system and its main subsystems as
well as the supporting services. We briefly talk about how all services are packaged
and deployed after which we give an overview of and rational behind their design
and implementation. These supporting services are: Object Store, Artifact Repo-
sitory, Load-Balancer Controller and finally the Batch Engine. A brief overview
of how the supporting services are used in the MODAClouds project will be covered
at the end of this chapter. We also cover the runtime platform integration and inter-
dependencies of the supporting services and various other platforms that comprise
the runtime platform.

G. Iuhasz (B) · S. Panica · C. Crăciun · D. Petcu
Institute e-Austria Timisoara, West University of Timişoara,
B-dul Vasile Pârvan 4, 300223 Timişoara, Romania
e-mail: iuhasz.gabriel@info.uvt.ro

S. Panica
e-mail: silviu@info.uvt.ro

C. Crăciun
e-mail: ccraciun@info.uvt.ro

D. Petcu
e-mail: petcu@info.uvt.ro

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_8

69

70 G. Iuhasz et al.

8.2 MODAClouds Execution Platform

In this section we focus on the functionalities of the execution platform, and more
precisely on the supporting services which enable the deployment and execution of
various other services that are part of the runtime platform. In particular the runtime
platform is responsible for monitoring and self-adaptation.

Figure8.1 offers a general overview of the overall dependencies between the
executionplatform, themonitoring (Tower 4Clouds), adaptation (SpaceOps4Clouds)

Fig. 8.1 Energizer 4Clouds—Execution Platform

8 Deployment of Cloud Supporting Services 71

and the MODACloud IDE. The execution platform has three main sub-systems;
infrastructure, coordination, platform. The infrastructures sub-system handles low-
level management of Cloud resources, coordination sub-system enables services to
find one another and exchange messages and finally the platform sub-system handles
the MODAClouds-specific tasks. The supporting services which are the main focus
of this chapter can be found at the bottom of the above figure.

Discovery is an important functionality, required by all services from the execu-
tion platform. Each component consumes or provides various services, which are
accessed in almost all cases over established networks protocols (HTTP, AMQP, raw
TCP etc.). Thus, the developer is provided with API’s that abstracts and expose these
service endpoints and the way to resolve them.

8.2.1 mOS

The mOS operating system is based on existing open-source operating systems and
it is used to host the MODAClouds Platform. Currently there are two versions mOS
v0.x (based on Slitaz) and v1.X (based on OpenSUSE) [4]. It is designed to run
on any compatible Cloud infrastructure. The pre-compiled kernels are available to
support major Cloud providers such as Amazon EC2, Google Compute Engine and
Flexiscale to name but a few.

There are several important services that run inside mOS which are paramount to
its functioning. The mOS bootstrap service is tasked with customizing the execution
platform by starting required services at boot time. These services are in charge of
various actions that create the run-time environment. Other notable services are the
so-called ZeroConf services which are special services hosted by the Cloud providers
to enable the interaction between active VMs and a special service in order to obtain
information about specific resource. The information about the resources include:
user-data specified when the instance is configured at start-up, password-less SSH
public key, username and password pairs, network information.

VMresource registration is handled by the naming servicewhich generates unique
name randomly and registers it with the DNS. There are other services such as user-
data service, package daemon and logging service which are responsible for user
scripts, package installation and event logging. The implementation of mOS v1.X
using openSUSE 13.1 uses the default ramdisk for boot with slight modifications in
order to satisfies some requirements by the MODAClouds platform.

8.2.2 Platform Sub-systems

The run-time bootstrapper coordinates the deployment of the core packages as well
as the supporting service packages. This is achieved by delegating most of the jobs
to other subsystem. It serves as a kind of frontend for the operator and the service

72 G. Iuhasz et al.

deployment. It delegates most task to the resource allocator, node bootstrapper and
controller, service deployer and finally the application deployer.

All of the above mentioned systems are crucial to the runtime. However, the
main focus of this chapter is to detail the importance of supporting service for the
MODAClouds runtime. Keeping this in mind, only some of the components used in
the deployment of the supporting service are highlighted here. For example, the node
bootstrapper is in charge of the initial mOS customization for the MODAClouds
run-time environment. It runs as a local OS service, started at boot time or run time.
It also applies all customization needed to start the runtime environment. The node
controller is responsible with the management of the core services that runs mOS
and supports theMODAClouds platform. It will start/stop andmonitor the services to
ensure that every main component of the execution platform is working as expected.

8.3 Supporting Services

The auto-discovery of services, previously mentioned in Sect. 8.2, depends to a large
extent on the correct packaging and deployment of services. In order to run a service
on the platform there are certain requirements that need to be met by the software.
First, the software has to be packaged as an RPM which contains everything the
service needs in order to run. TheseRPMpackages can bemadeusing the JSONbased
MODAClouds mOS Packager [5] or using the standard RPMSPEC for OpenSUSE
13 for x86_64. Any non standard dependencies must be provided together with RPM
so that they can be published together in theMODAClouds repository. It is important
to note that although specially designed for MODAClouds each supporting service
is a standalone deployable tool outside the MODAClouds context.

In order to successfully deploy any service or component their runtime dependen-
cies in term of other servicesmust be specified. For example, theDDA (Deterministic
Data Analyzer) tool depends at runtime on C-SPARQL. In addition, all TCP or UDP
sockets on which the services listen must be specified. Finally, wrapper scripts are
configuring through environmental variables the socket addresses on which services
are allowed to listen and the remote service endpoints on which the service depends
on.

The next subsections detail the most important supporting services fromMODA-
Clouds. These are integral for the correct functioning of the MODAClouds solution.

8.3.1 Object Store

The classic approach in software configuration is through configuration files which
reside on the local disk, however such an approach is not very well suited for a Cloud
environment, where VM’s are started from identical templates (the VM images), and
in most cases unattended, thus the configuration files must be rewritten at startup.

8 Deployment of Cloud Supporting Services 73

Luckily, for such a scenario, there are existing solutions, such as Puppet1 or Chef.2

However they also require a central database where the actual configuration para-
meters are stored. Moreover some of the deployed services might also want to store
small state data, either for later retrieval, or for weak synchronization within a cluster.
In this case the simplest solution is to use either a kind of database, or a distributed
file system. This is the rational behind the development of the Object Store.

The Object Store provides an alternative to the more traditional locally stored
configurationfiles. In theObject Store an object is a keyed containerwhich aggregates
various attributes that refer to the same subject. For example one could have an object
to hold the configuration parameters of a given service (or class of services); or
perhaps to hold the end-point (and other protocol parameters) where a given service
can be contacted.

The object’s attributes are: data, indices, links, annotations, and attachments.
A collection serves no other purpose than to group similar objects together, either

based on purpose or type, or based on scope (such as all objects belonging to the
same service). Collections can be used without being created first, and there is no
option to destroy them (except removing one-by-one all the objects that belong to it).
Therefore there are no other implications (in terms of performance or functionality)
of placing an object in a collection or another, except perhaps easing operational
procedures (such as removing all objects belonging to a service).

The most basic usage of an object would be to store some useful information,
and have it available for later access. The stored data can be anything, from JSON
or XML to a binary file, and besides the actual data it is characterized by a content-
type. Later based on this declared content-type one can decide how to interpret the
data. Although there can be a single data item for an object, one could easily use
multipart/mixed to bundle together multiple data items; however it is advisable to
avoid such a scenario and use either links or attachments.

Access to the data is atomic and concurrent updates are permitted without any
locking or conflict resolutionmechanisms, the latest update overriding previous ones,
thus no isolationwith lost-updates beingpossible.Although the data canbe frequently
accessed or updated without high overhead, it is advisable to cache operations by
using thededicatedHTTPconditional requests.Because thedata is stored temporarily
in memory, it is advised to keep the amount of data small, well under a 100 kilo-
bytes. Data that is larger should be handled as an attachment. In addition to its data,
an object can be augmented with indices which enables efficiently selecting objects
on other criteria than just the object key. An object can have multiple indices, each
index being characterized by a label and a value, and it is allowed to have multiple
indices with the same label.

Themajor difference between indices presented by this solution and other NoSQL
or even SQL databases is that most other solutions build their indices based on the

1http://docs.puppetlabs.com/.
2http://docs.chef.io/.

http://docs.puppetlabs.com/
http://docs.chef.io/

74 G. Iuhasz et al.

actual data. In the case of the object store, the indices are built based onmeta-data that
is associated with the actual data (the indices attribute). By separating the indexing
from the actual data we have greater control over how the data is stored and retrieved.
We also optimize for those access patterns where the data changes frequently, but
the values used by the indexer stay the same.

Links are the feature which allows an object to reference another one, building
in essence a graph. For example one could have a service configuration object,
holding specific parameter values, and pointing to a global configuration object,
holding default parameter values. A link is characterized by a label and the referenced
object key, and it is allowed to have multiple links with the same label or the same
referenced object (therefore amany-to-many relation can be created). Unlike indices,
links are scoped under the object, are unidirectional, and are not usable in selection
criteria. Therefore one can not ascertain which objects reference a given target object
(without performing a full scan of the store). The only operation, besides creation
and destruction, that can be applied to a link is link-walking, where by starting
from an object, one can specify a label and gain access to the referenced object’s
attributes; link-walking can be applied recursively. Links can be destroyed or created
as frequently as necessary as they are not indexed.

Data that logically belongs to the object, but which is either too large to be used as
actual data or is static, can be placed within an attachment. Attachments are created
in two steps. First, the attachment is created by uploading its content, and obtaining
its fingerprint, so if the same data is uploaded twice the fingerprint remains the same
thus no extra storage space is consumed. Second, a reference to the attachment (i.e. its
fingerprint) is placed within the object with a given label, together with the content-
type and size which serves only for informative purposes. The same attachment can
be referenced from multiple objects without uploading its data, provided that the
fingerprint is known.

Similarly, accessing the attachment of an object is done in two steps: obtaining the
attachment reference, then accessing the actual attachment based on its fingerprint.
Like with links, attachments are scoped under an object, only their data being glob-
ally stored. In terms of efficiency, creating or updating attachments do not have high
overhead (except the initial data upload). This is because the various information
pertaining to a specific object such as the actual data, meta-data, links, annotations,
attachments are not lumped together. These are partitioned, just like vertically parti-
tioned SQL databases. Also, because attachments are identified based on their global
qualifier, duplicating or moving an attachments from one object to another doesn’t
require the re-upload of the entire attachment.

The annotations are meta-data which can be specified for objects or attachments,
and are characterized by a label (unique within the same object) and any JSON term
as a value. Annotations are those data which if erased do not impact the usage of the
object. In general annotations can be used to store ancillary data about the object,
especially those used by operational tools. For example, one can specify the creator,
tool and possibly the source, ACL’s or digital signatures, etc.

8 Deployment of Cloud Supporting Services 75

The object store has facilities for multi-Cloud deployment via replication. The
replication process has three phases: defining on the target (i.e. the server) a repli-
cation stream, which yields a token used to authenticate the replication; defining on
the initiator (i.e. the client) a matching replication stream; and the actual replication
which happens behind the scenes. It must be noted that the replication is one way,
namely the target (i.e. the server) continuously streams updates towards the initiator
(i.e. the client). If two-way replication is desired, the same process must be followed
on both sides.

Regarding conflicts, and because internally the object store exchanges “patches”
which only highlight the changes, any conflicting patch is currently ignored. It is
therefore highly recommended to confine updates to a certain object only to one
of the two replicas. However if multiple changes happen to the same object, and
multiple patches are sent, and say the first one yields a conflict, but the rest don’t,
only the conflicting patch will be discarded, the others being applied. It is possible
to obtain replication graphs or trees, including cycles, and the object store handles
these properly.
Service Configuration Use Cases
Let us suppose that an operator has several instances of the same service type (i.e.
application server or database) which he would like to configure during execution.
Moreover the user would like to change the configuration and have it dynamically
applied as easily as possible.

Single shared configuration is the most basic scenario. Themost simple solution
is to store the configuration parameters in an object created before execution is started,
preferably JSON term or plain text as the data, or alternatively as an attachment. Then
at execution the object’s reference is specified as an initialization argument to each
of the instantiated services, which retrieve the data and use it to properly configure
the service.

If each service continuously polls the object for updates, it can detect when the
operator has changed the configuration parameters, and apply the necessary changes
(possibly by restarting). This might seem to involve fetching the data over and over
again thus incurring large network overhead, such is not necessary true if one uses
HTTP conditional requests which is rather efficient.

In the case of Multiple shared configurations the services require multiple dif-
ferent configuration parameters grouped in multiple “files”, possibly because their
syntax is different, or perhaps for better maintenance by the operator. One solution
to this problem is to create a master object and using links to point to the other
needed configuration objects. As before polling can be applied to detect configu-
ration changes, but because now it involves multiple objects, after an update has
been detected a grace period should be used, after which another check should be
done, if no other updates have been detected the configurations are applied. This
prevents frequently restarting the service while the operator updates sequentially the
configuration objects.

76 G. Iuhasz et al.

8.3.2 Artifact Repository

The artifact repository is designed as archive of artifacts generated in various parts
of the MODAClouds Project. The project aims to be able to store information like
deployment recipes, maven artifacts, software packages or, basically, any other data.
The Artifact repository provides an API for managing the artifacts and for search-
ing the stored data based on their meta-data. The API is REST [1] compliant, and
consumable from all MODAClouds components and development tools.

It has to satisfy a set of fairly simple requirements. It has to enable the upload of
binary files (BLOB). An artifact may be composed of on or more files under 1 GB.
Each artifact has to be versioned as any modification done to an existing artifact has
to be identifiable. Also, each file associated with an artifact has to be downloadable
and it has to support a number of repositories.

The artifact are stored directly on the file system. The file hierarchy is directly
mirrored from the URL structure. This means that the folder structure will include
folders for repositories, artifacts, versions and the files. Thus making interrogation
extremely intuitive. Another bonus of using a simple file system based approach is
the ability to use rsync as the synchronization mechanism between artifact repository
deployments. In some ways it can be considered as a stripped down version of the
object store. It’s main design goal was to create a simple yet powerful mechanism to
store software artifact can handle much larger files than the object store.

8.3.3 Load Balancer Controller

The goal of the load balancer controller, is to provide a RESTful API that is able
to control and configure Haproxy.3 For this we used a micro-framework written in
python called flask.4 It is designed as an extensible framework with little dependen-
cies. The main two dependencies are the web server gateway interface subsystem
represented by Werkzeug and Jinja2 which provides template support. It is impor-
tant to note that flask does not natively support some required functionalities such
as accessing databases, however there are a significant number of extensions to the
framework that resolve these shortcomings [2]. During the project we developed a
python Haproxy RESTful API (modaclouds-loadbalancer-controller orMLC) which
based on the users input generates a configuration file for the load-balancer (Haproxy)
thus controlling its behavior. It exposes both frontend and backend settings as well as
limited support for ACL specifications. At this point it is important to note that MLC
doesn’t check if the ACL triggers are correct when first entered by the operator.

It stores all interactions in a sqlite database, which also serves as the basis of the
configuration file. The jinja2 template engine is used to generate the configuration

3http://www.haproxy.org/.
4http://flask.pocoo.org/docs/0.10/.

http://www.haproxy.org/
http://flask.pocoo.org/docs/0.10/

8 Deployment of Cloud Supporting Services 77

file which is then loaded into Haproxy. Currently each configuration file is saved into
the database and can be accessed by querying the database. The API is designed to:

• add, edit and delete resources—This means that pools, gateways, endpoints and
targets can be defined. These represent direct representations of resources present
in Haproxy. Each interaction is saved and versioned.

• set policy—Load-balancing policies and their associated parameters can be set of
each target. For example in the case of round-robin we can set the weights for each
target.

• start Haproxy service—First a configuration file is generated and used to start the
load-balancing service. Each time a new configuration is generated it is reloaded
into the already running service.

The MLC is designed to hide as much technical details of Haproxy as possible.
This is done in order to make the REST API as agnostic as possible. For example
in MLC we use the term gateway to define a frontend server and pool to define the
backend servers. This enables easy extension of the MLC and the REST resource
structure can be easily mapped onto other load-balancer solutions (such as ngnix)
besides Haproxy.

8.3.4 Batch Engine

The main goal of the Batch Engine (BE) is to support the computationally-intensive
routines that are to be executed as part of the Filling the Gap Analysis. As there are
no tight deadlines, these routines are executed offline, and therefore it is possible
to exploit the large datasets of monitoring information collected at runtime. We
therefore opt for a BE that exploits a pool of parallel resources. In particular, the
BE aims to provide on demand HTC/HPC clusters on top of existing computational
Cloud resources (e.g., Eucalyptus, EC2, Flexiant, PTC, etc.).

From a technical perspective, theBE integrates the services provided by the under-
lying scheduling middleware, particularly the HTCondor workload management
system [3]. The BE provides REST API’s that allow job execution management
(including submission and monitoring).

The API offered by BE is extensible, providing the ability to support new job-
scheduling engines or middleware. As the FG analysis techniques were implemented
in Matlab, we are making use of the Parallel Toolbox and the APIs offered by the
BE to submit and manage the parallel jobs, as well as to retrieve the results. The
execution of the FG analysis relies on the Matlab Compiler Runtime (MCR), a free
runtime platform to execute standalone applications developed in Matlab.

The main features of the BE are include automatic provisioning using specially-
designed Puppet modules, the ability to use existing infrastructure (ex: Amazon EC2,
Flexiant) and anAPImiddleware for job control. There are several important features
in the BE. First, a REST API (based on JSONRPC2) for controlling the deployment.

78 G. Iuhasz et al.

ThisAPI allows todynamically specify the architecture of theprovisioned cluster, and
to reuse predefined models. It allows customizing the cluster based on the required
resources (CPU, memory, GPUs, etc.). This API abstracts the cluster deployment
operations, including: machine deployment; software provisioning, configuration,
monitoring. The API resorts to specially-defined Puppet modules that handle the
deployment of all the software components.

It also uses a REST API for job management and monitoring. This REST API
abstracts the job management operations and interacts with the back-end HTCon-
dor service. The API provides common operations offered by HTCondor as REST-
compliant services. These operations include job submission, data staging, job state
notifications, etc.

Lastly a flexible core that allows the addition of various schedulers, each with a
different feature set, as required by applications.

From an architectural point of view the BE is composed of four main subsys-
tems: Batch Engine API: This subsystem is responsible for interacting with the
client applications or users. It handles the requests and delegates them to the other
subsystems.

Batch Engine Cluster Manager API: Based on SCT,it uses the Configuration
Management subsystem (mainly Puppet) and theCloud interface for deploying nodes
and provisioning the job scheduler (e.g., HTCondor).

Batch Engine Execution Manager: Is responsible with the effective job exe-
cution and corresponding event handling (interaction with external components). It
dispatches job execution requests to the deployedHTCondor workloadmanager. The
workload manager permits the management of both serial and parallel jobs, feature
that will be exploited by applications that use MPI like technologies.

Scheduler: Represents the effective job-scheduling system, responsible for exe-
cuting the submitted jobs. It also provides the wrapping mechanism needed for
offering integration facilities like the job notification API.

Finally, the FG Analyzer calls the Batch Engine periodically and executes several
jobs on multiple nodes performing different analyses. For instance, the FG Analyzer
can execute several demand estimation procedures in parallel using the Batch Engine
to compare the accuracy of them during design time. It also executes the analysis
corresponding to different datasets in parallel, thus speeding up the analysis phase.

8.4 Conclusions

As we saw in the previous sections, there are a wide array of tools and platforms
that make up the complete MODAClouds solution. TheMODAClouds platform core
components are comprised of more than 70 RPM packages. Some of these packages
are custom repackages of components such as the Java Virtual Machine, Go runtime,
python interpreter, Haproxy etc. These are packages on which MODAClouds plat-
form services depend upon. For the sake of completeness we will list the components
that comprise each MODAClouds platform:

8 Deployment of Cloud Supporting Services 79

• Creator 4Clouds—Filling the Gap (FG) Analyzier, Functional Modelling Tool,
Space 4Cloud, LINE, CloudML, DATA Mapping

• Venues 4Clouds—Decision Support System
• Tower 4Clouds—Monitoring Manager, DDA, Data Collector, QoSModels, Met-
rics Observer, Metrics Explorer, Knowledge Base, Matlab SDA, Weka SDA

• SpaceOps 4Clouds—Self-Adaptation Stress tester, Load-Balancer reasoner
• Energizer 4Clouds—Load Balancing Controller, Object Store, Artifact Reposi-
tory, Data Migration, mOS image, mOS package builder

Most components from Tower 4Clouds [7], SpaceOps 4Clouds [6] and Energizer4
Clouds [5] are packaged and deployed on top of mOS. Even more significant is the
fact that most tools use the supporting services in order to fulfill their function. For
example the Load Balancer Reasoner uses the Load Balancer controller supporting
service in order to adjust the weights of server backends in Haproxy. Without this
REST interface based controller the reasoner would not be able to function. This
controller is also used by the Models@Runtime component and can be used by any
other application that needs a load balancer. Similarly the object store and artifact
repository are used by the Tower 4Clouds components and Load Balancer reasoner,
while the Batch engine is used by the Filling the Gap tools.

This chapter has provided an overview of the deployment and architecture of the
supporting services and runtime platform. It has highlighted the importance of these
types of serviceswhich play an important role in theMODACloudsRuntime platform
(Energizer 4Cloud). We have also covered how services from Tower 4Clouds and
SpaceOps 4Clouds are packaged and later deployed on top of mOS. We have also
described the fact that each supporting service is a self contained software package
meaning that they can be easily reused and modified. The four supporting services,
Object Store, Artifact Repository, Load-Balancer Controller and Batch Engine have
been described and rationale behind their design has been covered. Lastly these
services are put into context of the MODAClouds runtime platform (with details
how each supporting service is integrated into sub-system of the runtime platform).

References

1. Fielding RT, Taylor RN (2002) Principled design of the modern web architecture. ACM Trans
Internet Technol 2(2) ISSN 1533-5399

2. Grinberg M (2014) Flask web development: developing web applications with python. O’Reilly
Media Inc. ISBN 1449372627

3. Thain D, Tannenbaum T, Livny M (2005) Distributed computing in practice: the condor expe-
rience. Concurr Pract Exp 17

4. Petcu D, Macariu G, Panica S, Crăciun (2013) Portable cloud applications—from theory to
practice. Future Gener Comput Syst 29. ISSN 0167-739X

5. Iuhasz G, Panica S, Casale G, Wang W, Jamshidi P, Ardagna D, Ciavotta M, Whigham D, Ferry
N, González R (2015) MODAClouds D6.5.3—runtime environment final release. http://www.
modaclouds.eu

http://www.modaclouds.eu
http://www.modaclouds.eu

80 G. Iuhasz et al.

6. Fortiş F, Iuhasz G, Neagul M, Casale G, Perez J, Wang W (2015) MODAClouds D5.3.2—
techniques for filling the gap between design time and runtime. http://www.modaclouds.eu

7. Casale G, Weikun W, Miglierina M, Munteanu V (2014) MODAClouds D6.3.2—monitoring
platform final release. http://www.modaclouds.eu

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://www.modaclouds.eu
http://www.modaclouds.eu
http://creativecommons.org/licenses/by/4.0/

Chapter 9
Models@Runtime for Continuous Design
and Deployment

Nicolas Ferry and Arnor Solberg

9.1 Introduction

Nowadays, software systems are leveraging upon an aggregation of dedicated
infrastructures and platforms, which leads to the design of large scale, distributed,
and dynamic systems. The need to evolve and update such systems after delivery
is often inevitable, for example, due to changes in the requirements, maintenance,
or needs for advancing the quality of services such as scalability and performances.
The demands to evolve and update the systems typically increase with Cloud-based
systems, since the Cloud enable to dynamically adjust and evolve the platforms and
infrastructures, while previously these were very much rigid and more or less fixed.
This implies on the one hand more opportunities and flexibility to better evolve and
adjust the systems to various needs and requirements, on the other hand the com-
plexity of designing, delivering, managing and maintaining such systems challenges
current software engineering techniques.

As stated in [1], in order to reduce delivery time and fostering continuous evolution
of these systems, there is a need to close the gap between development and operation
activities. However, developers and operators are often working in separate teams
with specific roles, and thus, prefer to use the specific languages they feel comfortable
with. This hinders the knowledge sharing between these teams, thereby, on the one
hand making it difficult for designers to obtain and understand feedback on the
status of the operated system that could be useful to evolve it, and on the other hand
making it difficult for operators to analyse and comment on the impact of proposed
or implemented design changes. As promoted by the DevOps movement [2]. This
issue can be better handled by facilitating collaboration between developers and

N. Ferry · A. Solberg (B)
Stiftelsen SINTEF, Postboks 4760 Sluppen, 7465 Trondheim, Norway
e-mail: Arnor.Solberg@sintef.no

N. Ferry
e-mail: Nicolas.Ferry@sintef.no

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_9

81

82 N. Ferry and A. Solberg

operators for example through aligning concepts and languages used in development
and operation, and supporting them with automated tools that help reducing the gap
and improving the flexibility and efficiency of the delivery life-cycle (e.g., resource
provisioning and deployment).

In particular, continuous integration [3] tools play a key role, for example, through
the significant increase of the frequency of integration it ensures immediate feedback
to developers. Continuous integration also enable frequent releases, more control in
terms of predictability (as opposed to integration surprises in less frequent and more
heavy integration cycles) as well as productivity and communication. Continuous
deployment can be seen as a part of the continuous integration practice and is defined
as: “Continuous deployment is the practice of continuously deploying good software
builds automatically to some environment, but not necessarily to actual users” [3].

In the context of Cloud applications and multi-Cloud applications [4] (i.e., appli-
cations that can be deployed across multiple Cloud infrastructures and platforms),
designers and operators typically seek to exploit the peculiarities of themany existing
Cloud solutions and to optimise performance, availability, and cost. In such context,
there is a pressing need for tools supporting automated and continuous deployment
to reduce time-to-market but also to facilitate testing and validation of the design
choices. However, current approaches are not sufficient to properly manage the com-
plexity of the development and administration of multi-Cloud systems [5].

In this chapter we present the mechanism and tooling within the MODAClouds
approach to reduce the gap between developers and operators by supporting contin-
uous deployment of multi-Cloud applications. In order to reduce the gap between
developers and operators we apply the same concepts and language for deploy-
ment and resource provisioning at development time and at operation time (the
CloudMLpresented inChap.3). To automate the continous deployment and resource
provisioning we have developed a deployment and resource provisioning engine
based on the principles of theModels@Runtime approach [6]. This engine is respon-
sible for enacting the continuous deployment of multi-Cloud applications as well as
the dynamic adaptation of their deployment and resource provisioning including
operations such as scaling out and bursting of parts of an application. The engine
“speaks” the language of CloudML, thus, it provides the same concepts and abstrac-
tions for the operators as applied by the developers.

The remainder of the paper is organised as follows. Section9.2 presents our
model-based approach. Section9.3 provides an overview of theMODACloudsMod-
els@Runtime engine. Sections9.3.1 and 9.3.2 details how the engine can be used to
continuously adapt the deployment of an application in a declarative and imperative
way, respectively. Section9.3.3 presents the mechanism to monitor the status of the
running system. Section9.3.4 details the mechanisms enabling remote interaction
with the engine. Finally, Sect. 9.4 presents some related work and Sect. 9.5 draws
some conclusions.

http://dx.doi.org/10.1007/978-3-319-46031-4_3

9 Models@Runtime for Continuous Design and Deployment 83

9.2 The Models@Runtime Approach

Model-Driven Engineering (MDE) techniques have shown to be effective in sup-
porting design activities [7]. MDE is a branch of software engineering which aims at
improving the productivity, quality and cost-effectiveness of software development
by shifting the paradigm from code-centric to model-centric. Models and modelling
languages, as the main artefacts of the development process, enable developers to
work at a higher level of abstraction rather than at the level of implementation details.
However, as stated in [6], applying the classical MDE approach for software evolu-
tion would be impractical. Indeed, this would typically result in generating the new
solution, stopping the running system before replacing it by the new one, this in
contrast with common expectations for Cloud services to have more or less 100%
up-time. In order to address this issue, the Models@Runtime approach has emerged.

Models@Runtime [6, 8] is an architectural pattern for dynamic adaptive systems
that leverage models as executable artefacts supporting the execution of the system.
This way, Models@Runtime promotes the DevOps method, by providing a unique
model-based representation of the applications for both design- and run-time activ-
ities (i.e., for developers and operators). As depicted in Fig. 9.1, Models@Runtime
provides an abstract representation of the underlying running system, which facil-
itates reasoning, simulation, and enactment of adaptation actions. A change in the
running system is automatically reflected in the model of the current system. Sim-
ilarly, a modification to this model is enacted on the running system on demand.
This causal connection enables the continuous evolution of the system with no strict
boundaries between design-time and run-time activities.

Developer Operator

Running
System

Test Environment

Running
System

Operation Environment

Model
(of the running system)

Causal
Link

Model
(of the running system)

Causal
Link

Metamodel

conforms

Update,
validate, test

Update,
Maintain,
ManageSharing models

Fig. 9.1 Continuous deployment using Models@Runtime

84 N. Ferry and A. Solberg

Exploiting Models@Runtime for the continuous deployment of Cloud-based
applications would thus result in the process depicted in Fig. 9.1. A developer team
can specify a model of the deployment of its application (typically exploiting a
domain-specific language such as CloudML) and thus automatically enact this
deployment into a test environment. The team can therefore benefit from this test
environment to tune its development and redeploy it automatically. Any changemade
to the deployment model will be enacted on demand on the running system whilst its
status will be reflected in the model providing useful feedback. Once the new release
is validated, it can be provided together with the associated deployment model to the
operation team. The latter can in turn exploit the model to deploy the new release
in a production environment. The operators can thus tune this model to maintain
and manage the running system. Because the models shared by the developers and
operators conform to the same metamodel, at any time they can share and exchange
information.

9.3 The MODAClouds Models@Runtime Engine

The MODAClouds Models@Runtime environment relies on the Cloud Modelling
Language [9] (CloudML) in order to provide a deployment model causally con-
nected to the running system. As a result, the Models@Runtime maintains deploy-
ment models at two levels of abstraction: Cloud provider-independent models
(CPIM) and Cloud provider-specific models (CPSM) as advocated by MODA-
CloudML. On the one hand, any modification to the CPIM will be reflected in the
CPSM and, in turn, propagated on-demand onto the running system. On the other
hand, any change in the running system will be reflected in the CPSM, which, in
turn, can be assessed with respect to the CPIM. This way, by exploiting the MODA-
CloudMLdeploymentmodel, theModels@Runtime environment seamlessly bridges
the gap between the runtime and design-time activities. Figure9.2 shows the CPSM
of the Constellation case study (see Chap. 13) defined using the MODAClouds IDE
and managed by the Models@Runtime engine.

Figure9.3 depicts the architecture of theMODACloudsModels@Runtime engine.
A reasoning system can read the current CPSM (step 1), which describes the actual
running system, and produces a target CPSM (step 2). Then, the runtime environment
calculates the difference between the current CPSM and the target CPSM (step 3).
Finally, the adaptation engine enacts the adaptation modifying only the parts of the
system necessary to account for the difference, and the target CPSM becomes the
current CPSM (step 4). For each modification of the running system, the synchro-
nization engine propagate notifications describing the change to third party entities.

Once the application is deployed, the Models@Runtime engine interacts with the
Cloud providers API in order to observe the status of the Cloud services used. This
mechanism is based on a pulling approach for which the frequency of the requests
to the providers API can be parameterized.

http://dx.doi.org/10.1007/978-3-319-46031-4_13

9 Models@Runtime for Continuous Design and Deployment 85

Fig. 9.2 CPSM of the Constellation case study

Fig. 9.3 The CloudML Models@Runtime architecture

Using the Models@Runtime engine, the deployment of an application can be
adapted in both imperative and declarative ways. The imperative approach requires
the explicit definition through a set of predefined instructions of how to reach the
desired deployment. In contrast, the declarative approach requires the specification
of the desired deployment and then the plan on how to reach that deployment is
derived automatically. Both approaches result in a target CPSM that is consumed
by a comparison engine, which computes the difference between the target model
and the model of the running system. The result of this process is thus exploited
to manipulate and adapt only the parts of the system necessary to account for the
difference. In the following subsections we detail first the comparison engine and
then the main adaptation commands.

86 N. Ferry and A. Solberg

9.3.1 The Comparison Engine

The inputs to the Comparison engine (also called Diff) are the current and
target deployment models. The output is a list of actions representing the required
changes to transform the current model into the target model. The types of potential
actions are listed in Table9.1 and result in: (i) modification of the deployment and
resource provisioning topology, (ii) modifications of the components’ properties, or
(iii) modifications of their status on the basis of their life-cycle. In particular, the
status of an external component (i.e., representing a VM or a PaaS solution) can
be: running, stopped or in error, whilst the status of an internal component
(i.e., representing the software to be deployed on an enternal component) can be:
uninstalled, installed, configured, running or in error.

The comparison engine processes the entities composing the deployment models
in the following order: external components, internal components,
execution binding, to relationships, on the basis of the logical depen-
dencies between these concepts. In this way, all the components required by another
component are deployed first. For each of these concepts, the engine compare the two
sets of instances from the current and target models. This comparison is achieved

Table 9.1 Types of output actions generated by the Comparison engine

Action Parameter Effect

addExternalComponent ExternalComponent Provision a new virtual
machine or prepare a PaaS
service

removeExternalComponent ExternalComponent Terminate a virtual machine or
stop a PaaS service

addInternalComponent InternalComponent Deploy the internal component
on the target virtual machine

removeInternalComponent InternalComponent Remove the internal
component instance from its
current host

addCommunication Communication Configure the endpoints of the
communication

removeCommunication Communication Disconnect the endpoints of
the communication

addHosting Hosting Configure the endpoints of the
hosting

removeHosting Hosting Disconnect the endpoints of
the hosting

setStatus Status Change the status of a
component

setProperty Property Change a property of a
component

9 Models@Runtime for Continuous Design and Deployment 87

Fig. 9.4 An example of target CPSM of the Constellation case study

on the matching of both the properties of the instances and their types as well as
on the basis of their dependencies (e.g., if the host of a component has changed
the component might be redeployed). For each unmatched instance from the cur-
rent model a remove action with the instance as argument is created. Similarly, for
each unmatched instance from the target model an add action with the instance as
argument is generated.

As an example, the comparison between the models depicted in Figs. 9.2 and 9.4
results in the following modifications in the deployment of the Constellation server:
a new VM is provisioned on Flexiscale, Agent 1 is migrated from the on-demand
medium instance to the new VM, and finally a new Agent is also installed on the
same VM.

We always give a higher priority to the targetmodel, which for examplemeans that
any virtual machine instance in the target model that does exist in the current model
will be regarded as one that need to be created. Conversely, any virtual machine in
the current model that does not exist in the target model will be removed. Coping
with changes that happens during reasoning could be handled in various ways, for
instance as part of a third step of the adaptation process (model checking). Currently,
the Models@Runtime engine does not handle changes that might occur during the
time of reasoning.

9.3.2 Adaptation Commands

As stated before, the deployment of an application can be dynamically adapted by
exploiting the set of commands exposed by the engine. In particular, within the
MODAClouds runtime environment, the Models@Runtime engine is responsible
for enacting adaptation actions such as the scaling and bursting of an application.

88 N. Ferry and A. Solberg

These actions can be achieved by directly providing a deployment model to the
Models@Runtime engine. For instance, the simplest way to perform a bursting at
the IaaS level consists in updating themodel of the running system by either updating
the provider associated to the type of the VM instance or by simply changing the
type of a VM instance with one associated to the desired provider. This approach
allows fine grained tuning of the deployment of an application to the needs of new
contexts or requirements, however, it can be a complex task for a third party to be
responsible for evolving to the new deployment model.

Therefore, the Models@Runtime engine also provides high level commands that
avoid direct manipulation of the models. In particular, the scale command enable
scaling out a VM in the same Cloud and the burst command enable scaling out
a VM in another Cloud. Currently, in both these cases the first task of the engine
consists in modifying the current deployment model as follow:

1. Create a new instance of VM with unique name and port names of the same type
as the VM to be scaled. In case of bursting, the provider associated to the new
instance is the one specified in the bursting command.

2. For each internal component instance running on the VM to be scaled, create an
instance of the same type and add an execution binding between each of them
and the newly created VM. All new instances are created with unique names and
port names.

3. Identify all the relationship instances involving the internal component running
on the VM to be scaled and for each of them, create an instance of the same type
with unique names. The endpoints of these new relationship instances are: the
newly created internal component instance and the same component as the one
involved in the original relationship.

Once the deployment model is updated, the engine acts differently depending of
the type of command. In case of bursting to a new provider, the engine simply exploit
the Models@Runtime comparison mechanism and trigger a classical deployment,
whilst in the case of scaling within the same Cloud it operates as follows:

1. If not existing, create an image of the VM to be scaled.
2. Provision a VM using this image.
3. Reconfigure all components on the basis of the newly created relationship.
4. Restart the new components.

In case a set of VM instances cannot be further scaled (e.g., in case there are no
more resources available on a private Cloud), the Models@Runtime engine acts as
follows: The target model generated by the scale out command is considered as the
current model of the system and the status of the newly created VM is set to error
whilst the status of its hosted internal components is set to unrecognized.

In order to reduce the time needed to scale a VM, another provided feature is
to provision VMs in advance with all the required software component deployed
on it, and thus making them ready to be started or stopped on demand. In order to
support such an approach, the Models@Runtime engine offers commands to start
and stop components. These commands can be applied to both external and internal

9 Models@Runtime for Continuous Design and Deployment 89

components. In the case of external components, this is achieved by exploiting the
various Cloud provider APIs, whilst in the case of internal components it consists in
calling the start and stop commands of the resources associated to the component.
In both cases, the components have to be provisioned and installed upfront.

9.3.3 State Tracking

The Models@Runtime engine allows tracking the status of a deployment or adap-
tation as well as the status of Cloud resources once a multi-Cloud application is
deployed. In order to track the state of Cloud resources, a simple monitoring agent is
started in a parallel thread. Modules (one for each provider) can then be attached to
the agent which are then responsible for interacting with the providers API in order
to monitor the status of the Cloud resources being used. The frequency at which
these status checks are performed can be configured manually or programmatically.
Once performed and in case the status of a Cloud resource has changed, the agent
exploits the Models@Runtime synchronization mechanism in order to reflect this
change into the CPSM of the running system. As a result, all the registered clients
of the Models@Runtime engine are notified of the update. Similarly, the status of
the internal component is changed during the deployment process depending on the
result of each deployment command.

The Models@Runtime engine is also synchronized with the MODAClouds mon-
itoring platform (see Chap. 5) so that it can subscribe to receive some of the metrics
collected by the monitoring platform.

In addition, this synchronization enable the co-evolution of the monitoring plat-
form with the Cloud-application (e.g., when a service bursts from one provider to
another, themonitoring activity has to be adapted accordingly). By synchronizing the
Models@Runtime engine and the monitoring platform, the latter can dynamically
and automatically be adapted to best fit with the actual deployment of the application.

In case the deployment of an application is adapted, theModels@Runtime engine,
can communicate the changes to the monitoring platform and update the deployment
of the data collectors. Themonitoring platform can in turn adapt its own configuration
accordingly, exploiting the Monitoring Manager which is the main coordinator of
the monitoring activity. It manages and configures all the monitoring components
including the model used by the Data Collectors (DCs) so that the retrieving of data
can be adapted accordingly.

The deployment or un-deployment of Data Collectors can be done for example, to
free resources, to replace aDataCollectorwith a newone thatmay offer slightly some
different features, or when amonitored component is migrated. In addition, when the
deployment of the running system is modified (e.g., bursting or migration from one
provider to another), the monitoring activity will restart on the new machine using
the same settings and rules used on the old one. Since the Models@Runtime engine
can manage multi-Cloud applications and because the DCs are provider-agnostic,
the migration can be performed from one provider to another.

http://dx.doi.org/10.1007/978-3-319-46031-4_5

90 N. Ferry and A. Solberg

Fig. 9.5 Adaptation of the monitoring platform during the bursting process

Figure9.5 details the interactions between the reasoning engine, the monitoring
platform and the Models@Runtime engine during the migration of an application.

First, the Models@Runtime engine instantiates a new machine and deploys the
application on it. Then it deploys the Data Collectors on the VM and finally removes
the old instantiation of the application. At this stage, the Models@Runtime engine
notifies to the Monitoring Manager the changes in the deployment (e.g., status of
the new machine, address of the Data Collector), and the Monitoring Manager uses
these information to autonomously update the KB from which the Data Collector
retrieve its own configuration.

The communication from the model@runtime engine to the monitoring platform
is performed through the REST APIs offered by the Monitoring Manager which is
the main coordinator of the monitoring activity.

9.3.4 Interaction with the Models@Runtime Engine

The Models@Runtime environment also provides synchronisation mechanisms for
remote third-party entities (e.g., such as the MODAClouds reasoning engines) to
adapt the system. This synchronisation is implemented by the propagation of changes
in both directions, namely notification and command. A notification allows
the Models@Runtime engine to propagate its change to third-parties, whilst a com-
mand enables modifications on the current CPSM. This mechanism is exploited by
various MODAClouds runtime components such as the MODAClouds reasoning
engine to be informed of the changes occurring in the deployment of the running
system and then adapt it accordingly. Because the two models used by two players
can be isolated from each other andmight not be aware of the wholemodel state, only
the sequence of modifications is propagated, without carrying the start state of each
change. Therefore, either notification or command is a sequence of modifications.

9 Models@Runtime for Continuous Design and Deployment 91

Fig. 9.6 Models@Runtime notification mechanism

Figure9.6 presents a typical usage of the notification mechanism. First a client
use an asynchronous command to register for being notified when a change occur
on a specific VM. Then she exploits another asynchronous command to initiate a
deployment. As a result, the Models@Runtime engine (i) changes the status of the
object in the model that represents this VM to pending and sends a message that
depicts this change to the client, and (ii) initiates the actual provisioning of the VM.
Once terminated, the status of theVM is changed torunning and the corresponding
notification is sent. In addition, the Models@Runtime engine retrieves from the
provider and populate the model with a set of runtime information such as the IP of
the VM. For each of these changes in the model a notification is sent.

Currently, the communication with third-parties is achieved using the WebSocket
protocol1 in order to enable light-weight communications. Events are encoded as
plain text and we provide a domain-specific language to define them, including
the text format, the query and criteria to locate the relevant model element, the
modification or change on the element, and the combination of other events. We
defined the standard MOF (Meta-Object Facility) reflection modifications as the
primitive events, and allow developers to further define higher level events as the
composition of primitive ones. Using this language, one can also define the model
changes on an abstract model as the composition of events on a concrete model, and

1http://www.websocket.org/.

http://www.websocket.org/

92 N. Ferry and A. Solberg

in thisway, it can be used as an event-based transformation. After each adaptation, the
engine wraps the modification events into one message and send it to the WebSocket
port.

In order to handle concurrency (i.e., adaptation actions coming from several third-
parties), the Models@Runtime uses a simple transaction-based mechanism. The
WebSocket component creates a single transaction which contains all the modifica-
tions from a third-party, and passes it to a concurrency handler. The handler queues
the transactions, and executes them one after another without overlapping. Since
all the modifications are simply assignments or object instantiation commands on
the model in the form of Java objects, the time to finish a transaction of events is
significantly shorter than the adaptation process.

9.4 Related Work

In the Cloud community, several solutions support the deployment, management and
adaptation of Cloud-based application. However, to the best of our knowledge, none
of them provides the same concepts and abstractions at runtime for the operators as
applied by the developers.

Advanced frameworks such as Cloudify,2 Puppet3 or Chef4 provide capabilities
for the automatic provisioning, deployment,monitoring, and adaptation ofCloud sys-
tems without being language-dependent. Such solutions provide DSL to capture and
enact Cloud-based system management. The Topology and Orchestration Specifica-
tion for Cloud Applications (TOSCA) [10] standard is a specification developed by
the OASIS. TOSCA provides a language for specifying the components comprising
the topology of Cloud applications along with the processes for their orchestration.

In addition, several approaches focus on the management of application based
on PaaS solutions. Sellami et al. [11] propose an model-driven approach for PaaS-
independent provisioning and management of Cloud applications. This approach
includes a way to model the PaaS application to be deployed as well as a REST API
to provision and manage the described application. The Cloud4SOA EU project [12]
provides a framework for facilitating the matchmaking, management, monitoring
and migration of application on PaaS platforms.

By constrastwith theModels@Runtime engine, in all these approaches, the result-
ing models are not causally connected to the running system, and may become irrel-
evant as maintenance operations are carried out. The approaches proposed in the
CloudScale [13] and Reservoir [14] projects suffer similar limitations.

2http://www.cloudifysource.org/.
3https://puppetlabs.com/.
4http://www.opscode.com/chef/.

http://www.cloudifysource.org/
https://puppetlabs.com/
http://www.opscode.com/chef/

9 Models@Runtime for Continuous Design and Deployment 93

On the other hand, the work of Shao et al. [15] was a first attempt to build a mod-
els@runtime platform for the cloud, but remains restricted to monitoring, without
providing support for configuration enactment. To the best of our knowledge, the
CloudMLModels@Runtime engine is thus the first attempt to reconcile cloud man-
agement solutions with modelling practices through the use of models@run-time.

9.5 Conclusion

In this chapter we presented how the MODAClouds Models@Runtime approach
leverage upon MDE techniques and methods at runtime to support the continuous
design and deployment of multi-Cloud applications. This includes support for their
dynamic provisioning, deployment and adaptation by third party entities. Thanks to
the proposed approach it is possible to exploit the same concepts and language for
deployment and resource provisioning at both development and operation time. This
facilitates interaction between developer and operation teams and helps reducing the
gap between the two related activities as advocated by the DevOps movement.

References

1. Httermann M (2012) DevOps for developers. Apress
2. Humble J, Farley D (2010) Continuous delivery: reliable software releases through build, test,

and deployment automation. Addison-Wesley Professional
3. Fitzgerald B, Stol KJ (2014) Continuous software engineering and beyond: trends and chal-

lenges. In: Proceedings of the 1st international workshop on rapid continuous software engi-
neering. ACM, pp 1–9

4. Petcu D (2014) Consuming resources and services from multiple clouds. J Grid Comput 1–25
5. Ardagna D, Di Nitto E, Casale G, Petcu D, Mohagheghi P, Mosser S, Matthews P, Gericke A,

Balligny C, D’Andria F, Nechifor CS, Sheridan C (2012) MODACLOUDS, a model-driven
approach for the design and execution of applications on multiple clouds. In: ICSE MiSE:
international workshop on modelling in software engineering. IEEE/ACM, pp 50–56

6. Blair G, Bencomo N, France R (2009) Models@run.time. IEEE Comput 42(10):22–27
7. Ruscio DD, Paige RF, Pierantonio A (eds) Special issue on success stories in model driven

engineering 89(Part B) Elsevier (2014)
8. Morin B, Barais O, Jézéquel JM, Fleurey F, Solberg A (2009) Models@Run.time to support

dynamic adaptation. IEEE Comput 42(10):44–51
9. Ferry N, Song H, Rossini A, Chauvel F, Solberg A (2014) CloudMF: applying MDE to

tame the complexity of managing multi-cloud applications. In: Proceedings of UCC 2014:
7th IEEE/ACM international conference on utility and cloud computing

10. Palma D, Spatzier T (2013) Topology and orchestration specification for cloud applications
(TOSCA). Technical report, Organization for theAdvancement of Structured Information Stan-
dards (OASIS)

11. SellamiM, Yangui S,MohamedM, Tata S (2013) PaaS-independent provisioning andmanage-
ment of applications in the cloud. In O’Conner L (ed) CLOUD 2013: 6th IEEE international
conference on cloud computing. IEEE Computer Society, pp 693–700

12. Cloud4SOA EU project. http://www.cloud4soa.com

http://www.cloud4soa.com

94 N. Ferry and A. Solberg

13. Brataas G, Stav E, Lehrig S, Becker S, Kopčak G, Huljenic D (2013) CloudScale: scalability
management for cloud systems. In: ICPE 2013: 4th ACM/SPEC international conference on
performance engineering. ACM, pp 335–338

14. Rochwerger B, Breitgand D, Levy E, Galis A, Nagin K, Llorente IM, Montero R, Wolfsthal Y,
Elmroth E, Cáceres J, Ben-Yehuda M, Emmerich W, Galán F (2009) The reservoir model and
architecture for open federated cloud computing. IBM J Res Dev 53(4):535–545

15. Shao J, Wei H, Wang Q, Mei H (2010) A runtime model based monitoring approach for cloud.
In: CLOUD 2010: 3rd IEEE international conference on cloud computing. IEEE Computer
Society, pp 313–320

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 10
Closing the Loop Between Ops and Dev

Weikun Wang, Giuliano Casale and Gabriel Iuhasz

10.1 Introduction

DevOps [1] is a recent trend in software engineering that bridges the gap between
software development and operations, putting the developer in greater control of the
operational environment inwhich the application runs. To supportQuality-of-Service
(QoS) analysis, the developer may rely on software performance models. However,
to provide reliable estimates, the input parameters must be continuously updated and
accurately estimated. Accurate estimation is challenging because some parameters
are not explicitly tracked by log files requiring deep monitoring instrumentation that
poses large overheads, unacceptable in production environments.

The MODAClouds Filling-the-Gap (FG) tool is a component for parametrization
of performance models designed in MODAClouds continuously at run time. The
FG tool implements a set of statistical estimation algorithms to parameterize per-
formance models from runtime monitoring data. Multiple algorithms are included,
allowing for alternative ways to obtain estimates for different metrics, but with an
emphasis on resource demand estimation. A distinguishing feature of FG tool is that
it supports advanced algorithms to estimate parameters based on response times and
queue-length data, which makes the tool useful in particular for applications running

W. Wang · G. Casale (B)
Department of Computing, Imperial College London, 180 Queens Gate,
London SW7 2AZ, UK
e-mail: g.casale@imperial.ac.uk

W. Wang
e-mail: weikun.wang11@imperial.ac.uk

G. Iuhasz
Institute E-Austria Timişoara, West University of Timişoara, B-dul Vasile Pârvan 4,
300223 Timişoara, Romania
e-mail: iuhasz.gabriel@info.uvt.ro

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_10

95

96 W. Wang et al.

in virtualized environments where utilization readings are not always available. In
addition, the FG tool offers support for parallel computations, integrates monitoring
data acquisition, and generates performance reports.

10.2 FG Architecture

The FG tool is consisted of four sub-components: the Local DB, the FG Analyzer,
the FG Reporter and the FG Actuator. Figure10.1 descries the relation between each
component.

We show here a brief introduction of each component:

• The Local DB is a local database, which is built upon the Fuseki1 database. The
Local DB is in charge of periodically obtaining runtime monitoring data that will
be used by the FG Analyzer from the Monitoring History DB. Due to the nature
of Fuseki database, the monitoring data will be stored in RDF format in the local
DB.

• The FG Analyzer is the main component of the FG and will be described in
Sect. 10.2.1. After receiving runtime data stored in the Local DB, the FGAnalyzer
provides accurate estimates to parametrise the design-time Quality-of-Service
(QoS) models developed inMODAClouds. These parameters include the resource
demand, the think time and the total number of jobs running in the system.

• The FG Reporter, illustrated in Sect. 10.2.3, periodically generates reports on the
application behavior at run time. The reports shows the performance of the applica-
tion by presenting performance metrics such as the response time and the through-
put of the jobs.

• The FGActuator (see Sect. 10.2.2) is responsible for updating the IDEmodels and
the QoS models based on the result from the FG Analyzer.

10.2.1 FG Analyzer

One of the ultimate objectives of the Filling the Gap (FG) component is to provide
accurate estimates to the parameters in the design-time QoS models. These QoS
models are key in the what-if analysis performed at design time, and in the decision
of the optimal resource provisioning for the Cloud application. These models are ini-
tially parameterised using expert-knowledge or data collected in small deployments.
Once the application has been deployed on the Cloud, possibly in a production envi-
ronment, the FG analysis is deployed to obtain estimates based on monitoring data
collected at run time.

1http://jena.apache.org/documentation/serving_data/.

http://jena.apache.org/documentation/serving_data/

10 Closing the Loop Between Ops and Dev 97

Fig. 10.1 FG architecture

FG Analyzer

Monitoring
History DB

ObjectStore

FG Report FG Actuator

Batch EngineLocal DB

The QoS models developed in MODAClouds are based on layered queueing net-
work models, which capture the contention between users for the available hardware
and software resources, and the interaction between them. In particular, we make use
of closed models that are well-suited for software systems, as real applications are
layered, and the interactions between layers are typically due to admission control
or finite threading limits [2]. To parameterise these models, it is essential to estimate
the inter-request times, modeled as think times, as well as the resource consumption
exerted by each request. Inter-request times can be extracted from the information
and the data that is typically tracked by application- or container-level logs. As to the
gathering of the run time configuration, the FG Analyzer obtains the configuration
file from the Object Store which is kept by the QoS engineer.

Resource consumptions, also referred to as demands, are however harder to obtain
as this is not tracked by logs, and the deep monitoring instrumentations typically
required pose unacceptably large overheads, especially at high resolutions. Since
requests typically complete in a few milliseconds, individual monitoring becomes
cost-expensive to perform in a production system. To address this problem, our
approach is to take coarse-grained measurements and apply statistical inference
to estimate mean resource demands. Most of existing mean demand estimation
approaches rely on the regression against utilization data [3–13], however, utilization
measurements are not always available, for instance in Platform-as-a-Service (PaaS)
deployments where the resource layer is hidden to the application and thus protected
from external monitoring.

In the FG Analyzers, two demand estimation algorithms, GQL (Gibbs sampling
method with Queue Length data) and MINPS, have been proposed as an original
contribution within the MODAClouds research [14]. The fact that utilization mea-
surements are not required makes these methods suitable for applications deployed
on both IaaS and PaaS. In addition to these two methods, the FG Analysis compo-
nent implements existing demand estimation methods. In particular, the component
supports the methods implemented for the Statistical Data Analyzers (SDA) in the
Monitoring Platform.

98 W. Wang et al.

Since the methods supported by the FG Analysis are computationally efficient,
large sample set can be utilized for the analysis. The FG component thus supports
the following three demand estimation methods: the utilization-based optimization
(UBO) method from [15], the utilization-based regression (UBR) method from [12],
and the Extended RPS method from [16]. A short description of these methods is
provided in Sect. 10.4.

Finally, the FG Analyzer calls the Batch Engine periodically and executes several
jobs on multiple nodes performing different analyses. For instance, the FG Analyzer
can execute several demand estimation procedures in parallel using the Batch Engine
to compare the accuracy of them during design time. It also executes the analysis
corresponding to different datasets in parallel, thus speeding up the analysis phase.

10.2.2 FG Actuator

In order to improve the accuracy of the design-time QoS models developed in WP5,
the FG tool estimates the parameters of the models with the monitoring information
collected at runtime. Then the task of updating the actual model is fulfilled by FG
Actuator, which updates the resource demand, think time, number of users circulating
in the system in both the QoS models and PCM models given the input from the FG
Analyzer.

Since the QoS models and PCM models may have inconsistent names for the
deployed resources, the FG actuator requires a properties file indicating the mapping
of the resource names between the twomodels. In addition, the nameof the job classes
could be different from the data analyzers and the models. A job class mapping file
should also be provided.

Given the path to the model files, the FG Actuator first updates the resource
demands in the QoS models by matching the resource and job class names. Then it
obtains an id for the particular resource and class of job. This id is identical to the
one defined in the PCM model. Therefore the FG Actuator uses this id to update the
resource demand in the PCM model. Updating the think time and number of jobs in
the system is straightforward by just changing the corresponding fields in the XML
file.

10.2.3 FG Reporter

In order to provide the developer with runtime information of the application behav-
ior at runtime, the FG periodically generates a report. The report is a PDF document
containing tables and figures of performance metrics such as response time, resource
demands and throughput, which helps the developer to identify periods of high and
low load, as well as to understand the application behavior under the different sce-
narios.

10 Closing the Loop Between Ops and Dev 99

The automatically report generation relies on the DynamicReports,2 which is an
open-source library based on JasperReports3 for generating reports based on complex
datasets. The DynamicReports supports a wide range of data formats, including
relational databases, XML, XLS, and CVS files, among others. In particular, we
utilized its ability to integrate JSON (JavaScript Object Notation) format, as this
format is expressive and easily understandable.

The FG Reporter periodically receives JSON files generated from the FG Ana-
lyzer, which contains necessary information regarding the application such as the
think time, response time, resource demands, etc. Based on these information, the
FG Reporter generates a different report for each physical resource.

10.3 Workflow

In the previous sections we have described the essential components of the FG tool,
here we present the workflow for the FG tool. The operation of the FG can be
categorized into three main stages, which are:

1. Configuration: this is a design-time procedure for the QoS engineer to preconfig-
ure the FG Analyzer through the MODAClouds IDE.

2. Analysis: this is a runtime step performed by the FGAnalyzer with the Local DB.
3. Reporting/Updating: this is a step where the FG Reporter provides the developer

with a report regarding the behavior of the application at runtime. TheFGActuator
will also update the parameters of the QoS models given the output from FG
Analyzer. This steps is performed after the application has already been running
as it requires the results from the FG Analyzer.

The FG workflow is demonstrated in Fig. 10.2, which contains all the above three
main stages. As mentioned in the previous section, the developer configures with
the FG Analzyer through the MODAClouds IDE according to a configuration file,
which is saved in the Object Store. The configuration file includes parameters such
as the frequency to execute the FG Analyzer or the time period of the monitoring
data to use. This configuration file is retrieved at deployment by the FG Analyzer.
Then the Local DB periodically queries the Monitoring History DB to obtain the
necessary information for the FG Analyzer. This data is passed to the FG Analzyer
for the parameter estimation.With the estimation result, the FGReporterwill produce
reports to the developer while the FG Actuator updates the QoS PCM models.

2http://www.dynamicreports.org/.
3https://community.jaspersoft.com/project/jasperreports-library.

http://www.dynamicreports.org/
https://community.jaspersoft.com/project/jasperreports-library

100 W. Wang et al.

F
ig
.1
0.
2

Fi
lli
ng

th
e
ga
p
w
or
kfl

ow

10 Closing the Loop Between Ops and Dev 101

10.4 Estimation Techniques for FG Analysis

10.4.1 A Bayesian Approach Based on Queue-Lengths

Closed queueing networks have been used for analyzing web applications [12,
17]. They are popular for example in software system modelling since complex
applications are layered and the interactions between layers typically happen under
admission control or finite threading limits.

The proposed GQL estimation method sets out to estimate the service demand
placed by requests on the resources excluding contention due to other concurrently
running requests. The service demand is normally difficult to obtain directly and
requires inference. To provide these estimates, out method uses observations of the
number of requests in each of the queueing stations, which makes it more applicable
than utilization-based and response-based methods as the latter information may not
be available in certain environments, such as PaaS deployments, or require deep
instrumentation of the system.

Our method uses a Bayesian approach to estimate the mean demands, of which
there has already been some attention in the recent literature [8, 18]. Still, with the
exception of [18], classic Bayesian methods such as Markov-Chain Monte Carlo
(MCMC) have not been applied before to the problem of queueing model parameter
estimation. Even though the method in [18] is promising, it currently only applies
to open queueing networks and single class systems. Our method, instead, is based
on MCMC estimation with Gibbs sampling, and has the advantage of applying to
closed multi-class models.

Figure10.3 presents the experiment result for the GQL method with different
number of classes of requests and queueing stations. The estimation error is computed
as the mean relative difference between the estimated and the exact (known) value
of the resource demand. From the figure, it can be noticed that the estimation error is
under 10%, showing the good accuracy of the GQL method. The execution time of

Fig. 10.3 Mean estimation error for GQL

102 W. Wang et al.

the GQL method depends on the input parameters of the developed algorithm. The
running time for the presented case is 15min, which shows that the algorithm is able
to handle systems with a larger number of processing stations and request classes.

A detailed description of this method can be found in [19].

10.4.2 A Maximum-Likelihood Approach Based on
Queue-Lengths and Response Times

Another proposed method, MINPS, is similar to the GQL presented in the previous
section as MINPS also attempts to estimate the mean service demands placed by
requests on the physical resources.

The performance model for MINPS is based on a multi-class queueing network
with a single service station. It also considers the limit in the number of concurrent
request in a station, which enables the analyzing of multi-threaded applications with
limits on the number of threads in execution. A typical example is for applications
running on a multi-threaded server, such as an application server or a servlet con-
tainer with a preconfigured set of worker threads. Arriving requests to the application
will stay in an admission buffer until a worker thread is available. We assume the
admission control policy is first-come first-served and no workers are idle if there is a
request staying in the admission buffer. Therefore the described performance model
is indeed a closed queueing network similar as described in the previous section.
Further, a request is able to change its class randomly after leaving the queueing sta-
tion before entering the think time. This class-switching behavior represents systems
where users may change the type of requests they generate.

The proposed MINPS estimation method is built on top of two new estimation
approaches, RPS and MLPS. RPS is a regression based algorithm, which provides
accurate estimation of mean service demand for multi-threaded application running
on a single processor. For the multi-processor case, the proposed MLPS is able to
solve this problem relying on a maximum likelihood demand estimation algorithm.
MINPS integrates RPS and MLPS to produce accurate estimates at all loads of the
multi-threaded applications.

MINPS differs from existing approaches in that, to the best of our knowledge, it
is the first one to apply probabilistic descriptions in estimation problems for multi-
threaded applications. For example, maximum likelihood estimations have been
attempted only for simpler first-come first-served queues [8].

MINPS requires both queue lengths and response times as input metrics. These
metrics can be obtained in several ways, e.g., the MODAClouds application-level
data collectors, application server logs, internal application logs, etc.

Figure10.4 demonstrates the mean estimation error of the MINPS method, com-
pared with a baseline method CI with same sample size. As in the previous section,
the estimation error is computed as the mean relative difference between the esti-
mated and the exact (known) value of the resource demand. The CI method is an
estimation method that requires the complete sample path of the requests, i.e. given

10 Closing the Loop Between Ops and Dev 103

Fig. 10.4 Mean estimation error for MINPS

a time window it knows all the points in time when a request is admitted and when
it completes service. This information is difficult to collect, but it is useful to set
a baseline for comparison, as both methods are assumed to make use of the same
number of samples.

From Fig. 10.4, it can be noticed that the error of the MINPS and CI is similar,
which reveals the accurate performance of MINPS. Although MINPS generates a
larger estimation error, it is still under 15%.

The execution time of MINPS depends on the model and obtained samples size
and varies from 1 to 40min for small models to large models. In light of this, the
technique can be run periodically as part of the FG analysis.

A detailed description of these methods and additional validation results are pro-
vided in [16].

10.5 Conclusion

In this chapter we presented the MODAClouds Filling-the-Gap tool, which is a
DevOps approach aiming to fulfill the gap development and operations. The FG
tool supports a set of advanced algorithms for estimating the parameters of perfor-
mance models at application runtime. Algorithms differ in the way that they take
into consideration of different input monitoring metrics, which makes the tool useful
particularly for application deployed in Cloud. It also features generating reports
regarding the behavior of the application to give developers timely feedback of the
system.

References

1. Roche J (2013) Adopting DevOps practices in quality assurance. Commun ACM 56:38–43

104 W. Wang et al.

2. Rolia JA, Sevcik KC (1995) The method of layers. IEEE Trans Softw Eng 21(8):689–700
3. Kalbasi A, Krishnamurthy D, Rolia J, Dawson S (2012) Dec: service demand estimation with

confidence. IEEE Trans Softw Eng 38:561–578
4. Kalbasi A, Krishnamurthy D, Rolia J, Richter M (2011) MODE: mix driven on-line resource

demand estimation. In: Proceedings of IEEE CNSM
5. Wang W, Huang X, Qin X, Zhang W, Wei J, Zhong H (2012) Application-level CPU con-

sumption estimation: towards performance isolation of multi-tenancy web applications. In:
Proceedings of the 5th IEEE CLOUD

6. Cremonesi P, Dhyani K, Sansottera A (2010) Service time estimation with a refinement
enhanced hybrid clustering algorithm. In: Analytical and stochastic modeling techniques and
applications, ser. Lecture notes in computer science. Springer, Berlin

7. Cremonesi P, Sansottera A (2012) Indirect estimation of service demands in the presence of
structural changes. In: QEST

8. Kraft S, Pacheco-Sanchez S, Casale G, Dawson S (2009) Estimating service resource con-
sumption from response time measurements. In: Proceedings of the 4th VALUETOOLS

9. Kumar D, Zhang L, Tantawi A (2009) Enhanced inferencing: estimation of a workload depen-
dent performance model. In: Proceeding of the 4th VALUETOOLS

10. Menascé D (2008) Computing missing service demand parameters for performance models.
In: CMG 2008, pp 241–248

11. Pacifici G, Segmuller W, Spreitzer M, Tantawi A (2008) CPU demand for web serving: mea-
surement analysis and dynamic estimation. Perform Eval 65:531–553

12. Zhang Q, Cherkasova L, Smirni E (2007) A regression-based analytic model for dynamic
resource provisioning of multi-tier applications. In: Proceedings of the 4th ICAC.Washington,
DC, USA. IEEE Computer Society, p 27ff

13. Zheng T, Woodside C, Litoiu M (2008) Performance model estimation and tracking using
optimal filters. IEEE Trans Softw Eng 34:391–406

14. Ardagna D, Nitto ED, Casale G, Petcu D, Mohagheghi P, Mosser S, Matthews P, Gericke
A, Ballagny C, D’Andria F (2012) Modaclouds: a model-driven approach for the design and
execution of applications on multiple clouds. In: Proceedings of the 4th international workshop
on modeling in software engineering

15. Liu Z, Wynter L, Xia CH, Zhang F (2006) Parameter inference of queueing models for IT
systems using end-to-end measurements. Perform Eval 63(1):36–60

16. Pérez JF, Pacheco-Sanchez S, Casale G (2013) An offline demand estimationmethod for multi-
threaded applications. In: MASCOTS, pp 21–30

17. Urgaonkar B, Pacifici G, Shenoy PJ, Spreitzer M, Tantawi AN (2005) An analytical model for
multi-tier internet services and its applications. In: Proceedings of ACM SIGMETRICS. ACM
Press, pp 291–302

18. Sutton C, JordanMI (2011) Bayesian inference for queueing networks andmodeling of internet
services. Ann Appl Stat 5(1):254–282

19. Wang W, Casale G (2013) Bayesian service demand estimation using gibbs sampling. In:
MASCOTS, pp 567–576

10 Closing the Loop Between Ops and Dev 105

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 11
Cloud Patterns

Teodor-Florin Fortiş and Nicolas Ferry

11.1 Introduction

A large number of design and architecture patterns have been identified during the
last years, as theCloud technologieswere finding their path tomaturity. In [1] Fehling
et al., the authors expose a basic pattern-oriented view on Cloud computing, together
with relevant patterns, view which is also applicable in the case of multi-Cloud
applications.

Another set of more than forty patterns are included in the AWS Cloud Design
patterns (CDP) [2], offering “a collection of solutions and design ideas for using
AWS Cloud technology to solve common systems design problems”.

In addition to the core set of Cloud design patterns, Erl et al. [3] propose a set of
compound patterns, which, for most of them, are related to the essential characteris-
tics of Cloud computing, such as Cloud bursting, elastic environment, multi-tenancy,
Cloud deployment models, and others.

The IBMRedPaper [4] offers some insights on Pure Application Systems patterns
and virtual application patterns (VAPs) which are “a new Cloud deployment model
that represents an evolution of the traditional topology patterns that are supported
in virtual system patterns”. Finally, the Microsoft point of view on development of
Cloud-hosted applications is covered by Homer et al. [5].

Complementary to the numerous design and architecture patterns that have already
been described in the literature, a set of design heuristics or success factors was fully

T.-F. Fortiş (B)
Institute e-Austria Timişoara and West University of Timişoara,
B-dul Vasile Pârvan 4, 300223 Timişoara, Romania
e-mail: fortis@info.uvt.ro

N. Ferry
Stiftelsen SINTEF, Postboks 4760, Sluppen, 7465 Trondheim, Norway
e-mail: nicolas.ferry@sintef.no

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_11

107

108 T.-F. Fortiş and N. Ferry

described in the context of the MODAClouds approach. This set will help mitigate
various pitfalls when designing multi-Cloud applications.

11.2 Motivational Guidance

Important design heuristics and guidances have been identified as highly relevant for
multi-Cloud applications, and especially in the context of MODAClouds.

Compute Partitioning

Compute partitioning is a design heuristic that helps building systems that can easily
be maintained and deployed on Cloud platforms and infrastructures and advocates
the utilization of patterns such as loose coupling, compute partitioning, distributed
applications or integration provider. It allows application developers to efficiently
exploit resources that can be provisioned with minimal effort. Particularly, as Cloud
applications usually rely on multiple distributed resources, modularity and loose
coupling become central for efficient exploitation of Cloud properties.

Thus, the separation of concern principle is essential in order to achieve the dis-
tribution of resources, as multi-Cloud application usually rely on resources possibly
offered by multiple providers with their own specificities. This principle advocates
decomposing and encapsulating the features of an application into modular and
reusable blocks.

Basedon the computingpartitioningguidance [5] andusing the loose coupling and
distribution application patterns [1], the MODACloudML proposal is to decompose
applications into logical components and help the user in allocating and reusing these
components on Cloud resources.

Multiple Datacentre Deployment

Multiple datacentre deployment is one of the key factors that ensures successful
deployments across multiple Cloud providers. This design heuristic relies on the
loose coupling and multiple datacentre deployment patterns.

In the case of multi-Cloud applications, the providers of these applications will
attempt to identify and exploit particularities of the underlying Cloud solutions in
order to achieve an optimization of various characteristics (e.g., performance, avail-
ability, cost, etc.). Developers of such applications may therefore need novel design
approaches in order to fully benefit from the varying sets of services that are supported
by the different Cloud providers.

The approach considered in the case of MODAClouds consists in a separation
of the design of the application from the technical specification of the underlying
infrastructure as suggested by the MDA architecture. To achieve this separation,
Cloud provider-independent models (CPIM) and Cloud provider-specific models
(CPSM) are considered. The first ones enable the specification of Cloud provider-
independent deployment scenarios in a Cloud agnostic way whilst the second allows
selecting Cloud provider specific resources. CPIM should provide an appropriate

11 Cloud Patterns 109

level of abstraction to allow the generation of CPSM, targeting various providers
and being aware of their specificity at the same time. The identification of the right
level of abstraction, as well as of the concepts that are relevant at the level of each
of these models generates specific challenges in this scenario.

Instrumentation and Telemetry

Instrumentation and telemetry are key success factors in building feedback about the
runtime performance of the system and its underlying platform and infrastructure.
Instrumentation and telemetry, loose coupling, and multiple datacentre deployment
are the most important patterns involved.

While in the case of a simple Cloud-application collecting some metrics related
to the Cloud resources through provider’s platform APIs may provide the right per-
spective on the behaviour of the application, this is not necessarily the case for
multi-Cloud applications. Monitoring interfaces are likely to be incompatible and
provider-specific, and therefore the monitoring activities could be subject to vendor
lock-in. Moreover, it might not be enough to only monitor Cloud resource’s usage in
order tomeasure application’s resource consumption and to provide efficient resource
management activities.

Consequently, the MODAClouds approach supports this guidance and offer the
means, at the level of the design-time platform and of the monitoring platform, to
(i) allow the definition of monitoring rules at both the infrastructure and application
levels in a provider-independent way, and (ii) enable the design of monitoring rules
describing how incoming streamof data have to be processed, andwhat output should
be produced when certain conditions have been verified.

11.3 MODAClouds-Specific Patterns

The guidance and design heuristics that were briefly described in Sect. 11.2 relate
to an important number of Cloud design and architecture patterns, of which some
can be adopted without major changes in a multi-Cloud context. However, a subset
was specifically extended and adapted in the MODAClouds context to better support
the design of multi-Cloud applications. We briefly describe these patterns in the
following subsections.

External Configuration Store

The external configuration store pattern propose to outsource configuration and
deployment information for any component or services of the system into separate
services thus improving reusability and flexibility in the deployment and/or config-
uration process of application components. This pattern, as depicted in Fig.11.1,
extends the configuration store pattern [5] and it partially involves other patterns
and mechanisms, like the resource management system mechanism [3].

In the case of MODAClouds, the configuration of a multi-Cloud application does
not only include properties associated to the functional behavior of the application,

110 T.-F. Fortiş and N. Ferry

Fig. 11.1 The external
configuration store pattern

but also provisioning and deployment information for the underlying infrastructure.
Accordingly, the configuration store pattern was extended to include the overall
information required for the deployment and configuration process of the multi-
Cloud application. Therefore, one can achieve an externalization of the configuration
and deployment information for any particular components or services into a separate
service.

The use of this pattern could be relevant in various situations, like: (i) when the
application contains several instances of the same component (or group of com-
ponents), whose configuration must be synchronized; (ii) the configuration of the
various components will have to be dynamically adjusted to accommodate various
load and/or usage patterns; (iii) when similar reconfigurations need to be triggered
on several parts of the application.

Leader-Followers

The aim of the leaders-followers pattern (or leader election pattern, see also [5]) is
to dynamically delegate the management of subparts of the architecture to a separate
component that has been elected. Such a feature is particularly relevant when Cloud
applications aggregate several subsystems, with an appropriate level of complexity,
such that the total complexity exceeds the capacity of a single management entity.

In amulti-Cloud context, the leader-followers pattern enables the election for each
Cloud of a single component responsible for configuring and managing subparts of
the execution environment. Thus, the leader (a master node) will have the necessary
knowledge of its peers, managing their configurations accordingly.

This pattern is relevant especially (i) when the application contains numerous
instances of the same component (or group of components), whose configuration
and deployment must be synchronized, as in Fig. 11.2; (ii) when massive and simul-
taneous updates are necessary for instances of the same group of components.

Runtime Reconfiguration

The intent behind the runtime reconfiguration pattern is to dynamically reconfigure
application components and frameworks as well as their execution environments
to minimize the downtime in a production setting. This pattern is extended from
the pattern with the same name from [5] to the dynamic adaptation of the applica-
tion deployment using the models@runtime architecture. The use of this pattern
together with the models@runtime architecture enables third-parties to adapt

11 Cloud Patterns 111

only selected parts of the deployment whilst minimizing the downtime for the rest
of the application.

Specific interest exists around this pattern especially when an application or the
deployment of an application needs to be reconfigured dynamically at runtime, such
as adapting logging policies, updating database connections, deploying new services,
and others.

Particularly, in the case of MODAClouds, the models@runtime engine main-
tains a MODACloudML deployment model causally connected to the running sys-
tem, and: (i) any modification to the CPIM will be reflected in the CPSM and prop-
agated on-demand onto the running system; (ii) any change in the running sys-
tem will be reflected in the CPSM, which, in turn, can be assessed with respect
to the CPIM. Furthermore, by using the aforementioned deployment model, the
models@runtime environment enables reducing the gap between the runtime
and design-time activities.

Provider Adapter

In the case of multi-Cloud application it is highly important that the implementation
of various components remain unmodified to the specificities of different Cloud
environments. The provider adapter pattern offers the means for a smooth transition
of applications and components from one Cloud provider to another.

The provider adapter pattern is highly relevant in the context of multi-Cloud
applications, and it has been applied to the MODACloudML supporting tools and
extended to the language itself through the concept of Cloud provider-independent

Fig. 11.2 The
leader-followers pattern

Fig. 11.3 The
provider-adapter pattern

112 T.-F. Fortiş and N. Ferry

models that can be automatically or semi-automatically refined into Cloud provider-
specific models.

This pattern is especially relevant when application components are not written
for a specific single Cloud provider, and may move to or across other providers for
maintenance reasons for instance (see also Fig. 11.3).

11.4 Conclusions

In this chapter we provided an overview of the set of guidances and patterns that
have been defined or extended during the MODAClouds project on the basis of the
experience gained in designing and managing multi-Cloud applications. All of them
have been successfully applied during the project to support the design of both the
MODAClouds tools and case studies. These patterns complement well the large set
of existing pattern already available in the literature.

References

1. Fehling C, Leymann F, Retter R, Schupeck W, Arbitter P (2014) Cloud computing patterns—
fundamentals to design, build, and manage cloud applications. Springer

2. AWS cloud design patterns. http://en.clouddesignpattern.org/index.php
3. Erl T, Cope R, Naserpour A (2015) Cloud computing design patterns. Prentice Hall/Pearson

PTR. http://cloudpatterns.org/
4. Brandle C, Grose V, Hong MY, Imholz J, Kaggali P, Mantegazza M (2014) Cloud computing

patterns of expertise. IBM RedPaper. http://www.redbooks.ibm.com/redpapers/pdfs/redp5040.
pdf

5. HomerA, Sharp J, Brader L,NarumotoM, SwansonT (2014) Cloud design patterns: prescriptive
architecture guidance for cloud applications (Microsoft patterns & practices). MSDN Library.
https://msdn.microsoft.com/en-us/library/dn568099.aspx

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://en.clouddesignpattern.org/index.php
http://cloudpatterns.org/
http://www.redbooks.ibm.com/redpapers/pdfs/redp5040.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5040.pdf
https://msdn.microsoft.com/en-us/library/dn568099.aspx
http://creativecommons.org/licenses/by/4.0/

Chapter 12
Modelio Project Management Server
Constellation

Antonin Abhervé and Marcos Almeida

12.1 Introduction

SOFTEAM is a French middle-sized company that provides the Modelio modelling
tool.Modelio.1 is an enterprise-level open sourcemodelling solution delivering func-
tionality for business, software and infrastructure architects. It is a comprehensive
MDE workbench tool supporting the UML2.x standard. Modelio provides a csentral
IDE which allows various languages (represented as UML profiles) to be combined
in the same model. Modelio proposes various extension modules, enabling the cus-
tomization of this MDE environment for different purposes and stakeholders.

The Team Work Manager is SOFTEAM’s solution to team collaboration in
Modelio. It allows Modelio users, after a minimal software and hardware invest-
ment, to efficiently share and work together on models stored in a central repository
accessible in a local network or in the Internet. It automates version control and con-
figuration management, making sure every developer has access to the last version
of the shared model and works on a uniform configuration. From the point of view of
the developer, a repository is divided into Projects, which contain: Model elements,
Extension modules used by the user and Configuration information. A repository
needs to be installed, configured and maintained by the users in private machines.
A SVN repository may store different projects and different teams may work in
the same repository. Developers use the Modelio desktop client to access a central
repository on a SVN like workflow: committing modifications to model elements,

1http://www.modelio.org.

A. Abhervé (B) · M. Almeida
Softeam Cadextan, 21 Avenue Victor Hugo, 75016 Paris, France
e-mail: antonin.abherve@softeam.fr

M. Almeida
e-mail: marcos.almeida@softeam.fr

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_12

113

http://www.modelio.org

114 A. Abhervé and M. Almeida

receiving updates from other users and using merges/locks to deal with concurrent
work.

By its participation on the MODAClouds project, SOFTEAM intended to move
its modelling services to the Cloud in order to relieve the burden for our clients
in supporting the necessary infrastructure. During the MODAClouds project, we
developed a new version of this tool called Constellation [1, 2]. This service is
based on a Service-Oriented Architecture under which the TeamWork Manager is
provided as a service on the Cloud. By the beginning of the third year of the project
we started providing commercial services based on Constellation.

We hope that the “potentially infinite” resources available on the Cloud will make
tasks such as scaling the servers of a project up and out andmoving between different
Cloud providers very easy to our customers. Additionally, activities such as mon-
itoring and adapting the installation hopefully will be able to be executed without
specialized knowledge in systems administration.

The MODAClouds provided features have an important role in fulfilling these
objectives. As we are going to present in the following sections, the role of MODA-
Clouds in Constellation is two-fold. At design time, MODAClouds should support
design and implementation in a Cloud provider independent way, reducing develop-
ment costs, and increasing its flexibility. At run time, it should support themonitoring
and adaptation of the application to support its desired QoS levels.

This chapter is organised as follows. Section12.2 presents the proposed architec-
ture of Constellation. Section12.3 presents how we usedMODAClouds components
in building our case study. Finally, Sect. 12.4 presents our conclusions.

12.2 Proposed Architecture

In order to simplify this migration, the architecture of our Cloud solution relies
on the implementation of a component called Administration Server (Fig. 12.1).
The Administration Server allows clients to create and manage user accounts, define
roles, and create modelling projects and associate users and roles to specific projects.
The Administration Server is designed as a JEE application which provides a web
accessible user interface support implemented with Java Server Faces 2 and service
behaviour supported by Entity Java Beans components. This application is linked
with an relational database to ensure persistency of application data.

TheAdministrationServer can provision computing resources in order tomaintain
the established level of quality of service. Cloud Services managed by a Adminis-
tration Server are delivered as Cloud-enabled applications. These applications are
deployed on the provisioned Cloud resource. Once deployed in Cloud resources,
services usually need to be configured and accessed by clients. The Administration
Server needs to make sure that the necessary projects, users and permissions have
been created and set up once a Cloud agent has been installed. Standard protocols are
used for both activities. Web Services enable the deployed agents to be configured.
Moreover, TCP/IP protocols will allow Modelio desktop based clients to connect to
an agent, independently from which Cloud it has been deployed.

12 Modelio Project Management Server Constellation 115

Fig. 12.1 The architecture of the administration server

External agents are independent applications that provide specific high resource
consuming services toPrototype ofConstellation.Agents can be deployedondemand
on specific Cloud instances (IaaS or PaaS depending on their implementation). The
number of deployed agents may change in real time depending on the application
workload. Each agent implements a variable number of services called Workers,
which are executed when an agent receives a command from the Administration
server.

The only dependency of this design to the specific Cloud provider is the com-
munication between the Administration Server and the Cloud provider in order to
deploy, monitor and eventually migrate services. The actual code to interact with
the Cloud provider is however encapsulated in a Web Service usually installed on
the Administration Server. This Web Service translates actual requests from the user
into specific requests to MODAClouds runtime components.

12.3 Use of MODAClouds Design and Runtime
Components

12.3.1 Modelling with Creator 4Clouds

We used MODAClouds Creator 4Clouds Functional Modelling tool to describe the
architecture of Constellarion’s Administration Server along with its modelling ser-
vices.We have also used thismodel as input to other design and runtime tools. During
the first MODAClouds phase we considered two kinds of services: SVN and HTTP

116 A. Abhervé and M. Almeida

Fig. 12.2 Case study CCIM modelling on the IDE

fragments. The first one provides a read-write model that is edited collaboratively,
while the second one provides read-only models that are shared among different
teams.

Figure12.2 depicts the functional architecture of Constellation specified with the
MODAClouds IDE as a Cloud Computation Independent Model.

At the highest level, the CCIM shows the services that compose Constellation: the
Administration Server and the Administration Database connected by an interface
provided by the Administration Database and required by the Administration Server.

Still at the CCIM level, Fig. 12.3 shows the QoS constraints associated with the
most important operations provided by the Constellation modelling services. For

Fig. 12.3 CCIM QoS constraints on MODAClouds IDE

12 Modelio Project Management Server Constellation 117

SVN fragments, 15 s is the target average time for reading model modifications,
and 60s is the target average time for writes. This considers that users make large
commits (i.e., containing a great number of model changes, and therefore expect to
obtain large change sets when they update). For HTTP models, 5 s is the average
time for reading parts of the model, considering that users make infrequent accesses
to subparts of shared read-only models. Constraints on the 85th percentile are used
to define acceptable upper bounds for response times. These are set to 12s for HTTP
reads, and to 30s and 5min for SVN reads and writes, respectively.

CPIM and CPSM models describe the deployment of the application at different
levels of abstraction, first in a Cloud provider independent way, and then in a Cloud
provider specific way. Figure12.4 presents excerpts of the Constellation application
model described in MODACloudML at the three levels of abstraction in order to
illustrate the correspondence between the CCIM and the CPIM and CPSM models.

12.3.2 Multi-cloud Deployment with CloudML 4Clouds

The deployment model at CPIM level allows us to model the deployment of our
application by identifying the various components of our application deployment.

Fig. 12.4 Three levels in IDE

118 A. Abhervé and M. Almeida

In this experiment, our efforts focused on better use of Cloud platforms through
the integration of PaaS services and the migration to a multi-Cloud deployment
solution. In a second step, we sought to take advantage of the support of multi-Cloud
environments allowed by theMODAClouds project. We studied the best deployment
configuration for our application and selected three Cloud providers: Amazon EC2,
Flexiant and Amazon RDS.

Figure12.5 describes the deployment of Constellation in a multi-Cloud context.
It shows an Administration Server and two agents, both of them in IaaS Cloud nodes.
The former in Amazon, the later in Flexiant. The database that stores administration
data is stored on a PaaS database, provided by Amazon RDS.

This development brings the following benefits:

• Allows us to scale the compute and storage resources available to our database to
meet Constellation needs.

• Provides the best reliability to our application with automated backups, DB snap-
shots and automatic host replacement capabilities.

• Provides predictable and consistent performance for I/O intensive transactional
database workloads.

12.3.3 Cost and Performance Analysis with SPACE 4Clouds

As part of MODACloudsML CCIMmodels, we provided models of how users inter-
act with Constellation, and of the performance of Constellation services when actu-
ally deployed on a virtual machines. We used SPACE4 Clouds to assess the costs and

Fig. 12.5 Constellation deployment in multi-cloud environments

12 Modelio Project Management Server Constellation 119

QoS the current architecture is able to provide on different Clouds, and in particular,
the maximum number of clients we can serve with the modelled architecture.

In addition, we devised a trial architecture for a new modelling service called
Conference Service to be implemented during the last year of the project, and com-
pared its QoS characteristics with the one implemented in the first two years of the
project. Differently fromaSVNservice, the conference service decouples the reading
and writing load on the system in different VMs that can be load balanced and Cloud
bursted independently. This is a typical example of advanced deployment configu-
rations Constellation needs to support. Our experiments showed that the Conference
Service is more scalable than the current solution.

The Fig. 12.6 presents the usage model of our users, obtained through observa-
tion of typical users. It considers users that connect to modelling through their full
workday. Five percent of the time they interact with Constellation, they connect to an
existing project, which is translated onto the sequence of calls we see on the top of the
figure. Ten percent of the time, they read updates from an SVN model, seventy-five
percent of the time they get data from HTTP fragments and ten percent of the time
they perform SVN commits.

In addition to usage models, we provided models of user workload throughout
the day (see the Fig. 12.7). We represented a typical business office workload, with
most of it concentrated around commercial working hours (8–12h and 13–17h).

SPACE4Clouds allowed us to discover the peak number of users supported by this
architecture. Figure12.8 shows the result of this analysis. We can see that the SVN
service supports around 250–300 users without breaking QoS constraints, while the
Conference service scales to almost the double number of users without breaking
constraints.

Fig. 12.6 Modelling constellation user’s behavior

120 A. Abhervé and M. Almeida

Fig. 12.7 Modelling constellation user’s workload

Fig. 12.8 Response time bottleneck estimations for SVN and conference services

12.3.4 Multi-cloud Monitoring and Management with
Energizer 4Clouds

Energizer 4Clouds provides valuable services for our case study, such as the man-
agement of the execution, intended as the set of operations to instantiate; run and
stop services on the Cloud; the monitoring of the running application and the self-
adaptation of the application, to ensure the fulfilment of the QoS goals.

When defining the final design of the Constellation case study, we were interested
in the best way to integrate the features provided by the platform into our application.
In the context of the Constellation case study, we are interested in the integration
of three aspects of Energizer 4Clouds: the monitoring platform, the self-adaptation
platform and the execution platform. Figure12.9 presents the deployment model of
the Constellation case study including runtime platform components.

The Monitoring Platform allows us to monitor specific metrics collected from
business components of our case study deployed on different Cloud platforms. To
achieve this goal, we integrated five components into our architecture: three com-
ponentsfrom the monitoring platform and two components developed using the API

12 Modelio Project Management Server Constellation 121

Fig. 12.9 MODAClouds runtime platform integration

provided by platform components. The role of these is to exploit monitoring data in
our application.

To exploit the monitoring platform, we have integrated two components based on
the API provided by the monitoring platform. These components ensure the interme-
diation between themonitoring platforms and business components of Constellation.
They allowed us to implement a Cloud vendor independent agent monitoring user
interface, and to integrate it to our commercial offering.

• Constellation Data Collector: To collect business metrics from Constellation
agents, we integrated into our architecture this extension of the monitoring plat-
form. Based on MODAClouds Data Collector API, this programme will collect
data about CPU, RAMS and Access Disk of each process managed by agents.

• Constellation Data Analyzer: Based on the REST API of MODAClouds Moni-
toring Manage, Constellation will incorporate a component to analyse, store and
display monitoring data according to a business point of view. This service will
be integrated into the Administration Server.

122 A. Abhervé and M. Almeida

12.4 Conclusion

Constellation can be presented as an advanced repository which stores the models
defined using theModelio CASE tool and which provides several high-time consum-
ing services on the Cloud. Among its services, we find the creation of collaborative
projects, the hosting of model fragments allowing teamwork, the management of a
Model Library catalogue or monitoring services applied to all these elements.

In this chapter, we presented the final version of the Project Management Server,
renamed, for commercial reasons to Constellation. The development of Constellation
started with the beginning of the MODAClouds project and by the end of it we have
a first version that started to be commercialized. The current commercial version of
Constellation is restricted to deployment on customer premises. We are confident
that, thanks to MODAClouds, its architecture is ready to the Cloud.

The Constellation case study integrated both design time and runtime components
fromMODAClouds in its design.At design time,MODAClouds supported the design
of the architecture of the application, and its early QoS analysis, in order to iden-
tify bottlenecks. At runtime, MODAClouds supported the multi-Cloud deployment,
management and monitoring of Constellation.

References

1. Almeida Da SilvaMA, Abhervé A, Sadovykh A (2013) From the desktop to the multiclouds: the
case of ModelioSaaS. In: 15th international symposium on symbolic and numeric algorithms
for scientific computing (SYNASC), 23–26 Sep 2013, pp 462–472

2. Desfray P (2015) Model repositories at the enterprises and systems scale the Modelio constella-
tion solution. In: 2015 3rd international conference on model-driven engineering and software
development (MODELSWARD), Feb 2015, pp IS–15

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 13
BPM in the Cloud: The BOC Case

Alexander Gunka, Harald Kuehn and Stepan Seycek

13.1 Introduction

To move an existing application to a Cloud-based operating model is a challenging
task. This chapter presents a real life case in this domain. It is based on a case study
from BOC which uses MODAClouds technology to enact four major use cases for
the Cloud deployment of the BPM tool ADONIS. The first use case describes the
provider selection in amulti-Cloud environment based on the decision support system
Venues 4Clouds. In the second use case CloudML4Clouds is used to implement a
model-based Cloud deployment procedure. The third use case shows the usage of
Tower 4Clouds for real-time monitoring spanning various system levels to enable
DevOps engineers to gather their custom monitoring metrics. The fourth use case
describes theCloud-to-Cloudmigration process including the implemented approach
for data migration aspects.

13.2 Context and Motivation

BOC group is a medium-sized software and consultancy company providing prod-
ucts and services for Business Process Management (BPM), Enterprise Architecture
Management (EAM) and Governance, Risk, Compliance (GRC). BOC originated

A. Gunka · H. Kuehn · S. Seycek (B)
BOC Information Technologies Consulting GmbH, Operngasse 20b,
1040 Vienna, Austria
e-mail: stepan.seycek@boc-group.com

A. Gunka
e-mail: alexander.gunka@boc-group.com

H. Kuehn
e-mail: harald.kuehn@boc-group.com

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_13

123

124 A. Gunka et al.

1995 as a spin-off company from the University of Vienna, Department Knowledge
Engineering. Since then, BOC has grown to one of the leading companies within
these domains, established operations in various European countries and maintains
a world-wide customer base. In all their activities, BOC follows a model-driven
approach.

ADOxx is BOC’smeta-modelling platform for implementing themodelling prod-
ucts of the BOC Management Office by defining domain specific meta-models,
by configuring specific behavior and adding functionality to complement a given
methodology. Business users of the products can manage their model and object
repositories in a collaborativeway leveraging highly adaptable versioning and release
workflows. They can create analytical views, define custom queries, and generate
various reports interacting via web-based graphical editors and dashboards.

While most enterprise software is still deployed on-premises, Software-as-a-
Service is expected to grow rapidly over the next years. According to IDC the total
Cloud software market will grow to surpass $100 billion by 2018 at a compound
annual growth rate of 21.3%. In order to be able to benefit from these new oppor-
tunities and from the advantages in terms of resilience, agility and cost efficiency
the Cloud promises, BOC committed to a strategy for providing their applications as
SaaS in addition to their existing sales and operation models. In order to minimize
risks BOC decided to apply an iterative process to achieve this target [1]). Technol-
ogy developed within the MODAClouds project plays an important role in achieving
this step of business model extension.

As one of the first steps implementing this strategy, a prototypical instantiation
of a process modelling language using the ADOxx meta-modelling platform has
been ported to the Cloud with the help of tools and methodologies developed within
MODAClouds. Based on the results of this evaluation, BOC has recently moved the
solution to production environment by launching ADONIS:cloud [2].

13.3 Application Scenario

During the process of defining requirements to be supported by MODAClouds, four
main use cases (depicted in Fig. 13.1) were identified with regard to BOC’s appli-
cation scenario. First, the selection of Cloud providers should be simplified with
the help of decision support tools and methodologies. After this step MODAClouds
should provide assistance to deploy a given application stack to selected Clouds in
an automated, Cloud provider independent way. Advanced monitoring techniques
should then be used to track system health and quality of service. In case of detected
violations another cloud provider would be selected and the application should be
re-deployed to the new provider. In addition, data would be migrated and traffic
would be switched to the new deployment.

13 BPM in the Cloud: The BOC Case 125

Fig. 13.1 BOC’s main use cases to be supported by MODAClouds to offer ADONIS as SaaS

13.3.1 Cloud Provider Selection

Soon after the decision to offer the BPM solution ADONIS as SaaS, BOCwas facing
the challenge of selecting an appropriate IaaS provider. They started the decision
making process by collecting various decision criteria taking into account operations,
legal, cost, and sales related aspects. They assigned relative weights to these criteria
and marked some of them as must-have features. As a next step around 20 candidate
providers were considered and rated first only considering the must-have criteria
which helped reducing efforts in data collection by ruling out a large portion of the
initial candidates list. For the remaining candidates the rest of the data was collected
and the three providers with the highest rankings were presented to the decision team
for discussion.

Retrospectively some of the weaknesses of this intuitive approach soon became
obvious [3]:

• The cost of re-evaluating the providers on a regular basis in order to improve
quality of service and cost efficiency would be very high.

• The goal of covering different markets will require addressing strict data location
policies and therefore the ability to deploy to multiple Clouds. These aspects are
hard to address using the initial approach since it would require a much larger
number of providers to be analysed resulting in very high efforts in data gathering
and analysis.

• The criteria chosen intuitively based on BOC’s own experience were not compre-
hensive enough to cover all relevant aspects.

• In particular, the ease of migration from one provider to another, which should
have been considered as one of the most important criteria, was ignored.

BOC contributed these experiences during the requirements elicitation process for
Venues 4Clouds, MODAClouds Decision Making System for Cloud Service Offer
Selection which is described in detail in Chap. 2 [add reference]. In particular, BOC
contributed a number of functional requirements, an initial set of decision criteria,
and general success criteria for a Decision Support System to be developed [4].

Based on the requirements gathered, a risk-driven framework for decision sup-
port [3], a methodology for eliciting risk, cost and quality aspects in multi-Cloud
environments [5, 6], and a prototype of a Decision Support System (DSS) have

http://dx.doi.org/10.1007/978-3-319-46031-4_2

126 A. Gunka et al.

Table 13.1 Stakeholders and assets considered in the DSS

Stakeholders Type of intangible asset Assets considered

Business representatives Business oriented intangible
assets

Customer loyalty, legislation
compliance, internal efficiency
and performance, sales rate,
market awareness, improve
product innovation and quality

Technical (DevOps)
representatives

Technology oriented intangible
assets

Data privacy, data integrity,
maintainability, end user
performance, service
availability, cost stability

been developed. BOC used this methodology and the prototypical DSS to perform
a light weight risk analysis by first defining a set of relevant business-oriented and
technology oriented assets, determining risks related to these assets, and treatments
mitigating these risks [4]). During this assessment process both business and tech-
nical stakeholders were involved. Table13.1 lists the assets considered by either of
these stakeholders.

In that way, for example customer loyalty, which was identified as an important
asset by business representatives, has been related to the technical oriented assets
data privacy, data integrity, end user performance, and service availability. Data
privacy, in turn, has been related to the risks unauthorized access from IaaS provider,
insufficient isolation, insufficient physical security, and data exposure to government
authorities. As possible mitigations for these risks the availability of certificates
guaranteeing information security and the possibility to select a specific data location
were selected. A complete mapping of all identified assets, risks and mitigations can
be found in the appendix of MODAClouds public deliverable 2.3.2 [7].

The fact that the user is guided through a structured process, starting with high
level assets helped to identify a larger set of risks and, consequently, treatments to be
considered, that would not have been detected using the original intuitive approach.
At the same time the process turned out to be simple enough and well-guided by the
tool to be usable for a small or medium enterprise (SME) such as BOC.

Since the current version of the DSS (Venues 4Clouds) is at prototype stage only,
both the data gathered about Cloud providers and the pool of assets and risks already
predefined in the tool are in no way complete at the time of writing. Provided that
the systems knowledgebase will grow over time and that the data available can be
maintained up to date and accurate, e.g. by employing self-learning mechanisms and
being able to extract data from multiple online sources, it will be able to assist SMEs
such as BOC in continuously keeping track of a large number of potential providers
and in analysing them in a cost efficient way.

13 BPM in the Cloud: The BOC Case 127

13.3.2 Application Deployment to Multiple Clouds

Before the start of the MODAClouds project BOC already had gathered some expe-
rience with deployment automation by employing the configuration management
system Puppet to automate software installation in their application hosting envi-
ronment. However, when it came to deployment to the Cloud and, in particular, to
multiple Clouds, they soon realized some shortcomings of their approach:

• Even though Puppet provides configuration modules for different Cloud stacks
like e.g. OpenStack, provisioning of IaaS instances in a totally Cloud-stack-
independent, transparent way was hard to accomplish.

• Deploying parts of the application (e.g. the database tier) to PaaS would be even
harder since it would require the use of another configuration to deploy the appli-
cation stack to PaaS.

As soon as a first version ofMODAClouds design time component CloudML4Clouds
which is responsible for deploying the modelled application was available, BOC
started evaluating the component and found the following potential benefits:

• It would enable them to automatically deploy to any of the Cloud systems previ-
ously selected by Venues 4Clouds including the provisioning of Cloud instances
in a transparent way, resulting in a higher degree of automation and consequently
less manual operation efforts.

• Themodel-based nature of the approach was expected to enable BOC to document
individual deployments in a traceable and comprehensible way and support them
in explaining deployment decisions to their customers.

However, it also turned out that using CloudML4Clouds to deploy on Windows
Virtual Machines—one of the application components to be deployed in BOCs case
is a Windows application—had some disadvantages compared to the use of Linux
based VMs. In particular, the tool is relying on the Windows Remote Management
protocol to execute remote commands and to deploy to a Windows VM which in
turn requires CloudML4Clouds to be executed on a Windows machine. BOC had
already invested in developing scripts for Puppet deploying parts of their application
toWindows and preferred to capitalize on these investments rather than having to re-
implement these scripts usingWindows PowerShell commands. Hence, they decided
together with the partners involved in developing the component to start an initiative
to integrate CloudML4Clouds with Puppet modules.

At the time of writing all required extensions needed for deploying software
components through Puppet on Windows VMs are available and BOC currently
evaluates the usability of the Puppet extension to CloudML [8].

SincePuppet and similar tools likeChef arewidely used in theDevOps community
BOC expects the possibility to integrate themwith CloudML4Clouds to be beneficial
for a large number of potential users.

128 A. Gunka et al.

13.3.3 Cloud Application Monitoring

Before deciding to push the SaaS business, BOC already had a basicmonitoring solu-
tion in place for several hosting projects. It was based on infrastructure performance
indicators like CPU load and RAM consumption as well as the basic availability of
the customer facing frontends and central backend components. When going larger
scale with a full-fledged SaaS platform, the system health and performance need to
be tracked more in detail in order to be able to mitigate issues at an early stage. Such
a monitoring solution needs to collect application specific data and in some cases
combine metrics from various sources in order to provide the comprehensive view
of the whole system required by the operations engineers.

This is where MODAClouds’ monitoring technology Tower 4Clouds (Chap.5)
has been introduced with great success. Its Resource Description Framework (RDF)
based streaming technology together with a flexible approach to configure data col-
lectors and data analysers provide a solid framework for the challenges of a reliable
and extensible monitoring platform.

Tower 4Clouds canbeused as part of the completeMODAClouds toolset including
design time quality constraint modelling, CloudML deployment and runtime self-
adaptation. However, theMODAClouds monitoring components can as well become
building blocks for tailored environments, even if the other parts ofEnergizer 4Clouds
are not being used. In the case of BOC’s SaaS platform it has been integrated with
the existing solution based on the open source tool Icinga.1 This solution allows the
operations team to continue working with the well-established Icinga frontend and
its service recovery mechanisms while obtaining more details about the state of the
platform. Furthermore,MODAClouds’ concept for data collectors makes it very easy
for the DevOps engineers to extend the number and the types of metrics collected.

The integration of the stream based monitoring framework with the Icinga poll-
based metrics acquisition has been implemented by leveraging the observer interface
for Tower 4Clouds and providing a generic Icinga plugin for retrieving the collected
data from the observer. With such a toolset adding a new metric that can be acquired
with an existing data collector is just a matter of extending the data collector’s
configuration accordingly and defining a corresponding service within Icinga.

An additional benefit from the usage ofMODAClouds’ technology formonitoring
is that all streams that represent numeric time-series data can be also directed into
the Metrics Explorer (see Chap. 5), a web based graphing tool. This can be very
useful for the operations engineers when a retrospective view at system performance
indicators is needed and trends are to be interpolated.

The monitoring solution architecture for BOC’s SaaS platform based on Tower
4Clouds, Icinga and the Metrics Explorer is depicted in Fig. 13.2.

1https://www.icinga.org/icinga/icinga-2/distributed-monitoring/.

http://dx.doi.org/10.1007/978-3-319-46031-4_5
http://dx.doi.org/10.1007/978-3-319-46031-4_5
https://www.icinga.org/icinga/icinga-2/distributed-monitoring/

13 BPM in the Cloud: The BOC Case 129

Fig. 13.2 Monitoring solution architecture for BOC’s SaaS platform

13.3.4 Cloud to Cloud Migration

One of the key motivations for choosing IaaS technology over other models such as
housing is the shift from capital expenditure (CAPEX) to operational expenditure
(OPEX). This enables service providers to relocate their services among multiple
infrastructures without losing investments. For BOC’s Cloud services this capability
is an essential asset as it allows for cost optimisation and it also can be the right
approach for dealing with availability or performance issues encountered within a
specific infrastructure. In addition there is another valid use case for Cloud-to-Cloud
migration: customers especially in the public administration sector are confronted
with changing regulatory policies related to location of services and data they use
for their work. Such policies may at some point in time prohibit usage of services
and storage of data outside the respective country.

BOC’s SaaS platform has been designedwith the objective to be extensible to sites
located in different countries if customers have the need to have their data stored and
services deployed in specific geographical locations. This is achieved by relying on
basic IaaS for compute, storage and network resources managed through CloudML
which in turn triggers Puppet [9] for deploying and configuring the BOC services.
This Cloud vendor independent toolchain enables BOC tomove their services among
IaaS platforms from various providers.

The Cloud-to-Cloud migration approach chosen by BOC is one that relies on data
replication mechanisms of the used database management system (MS SQL Server
or Oracle Database), CloudML for deploying application stacks in multiple sites and
the REST-enabled MODAClouds load balancer for switching the traffic from one
site to the other. The complete procedure that needs to be executed to perform the
switch from site A to site B consists of the following steps.

130 A. Gunka et al.

1. Create a deployment model for site B including a load balancer instance pointing
at site A and B application stacks as well as a DBMS instance. Update the
deployment model for site A adding the application stack of site B to the load
balancer.

2. Enact the deployment one both sites with CloudML, them create a full database
backup on site A and restore it on site B.

3. Update the deployment model of site A to remove the application stack. Enact
the change of site A with CloudML (start of downtime). Create a differential
database backup on site A and restore it on site B.

4. Update the deployment model for site B adding the application stack. Enact the
deployment change on site B with CloudML (end of downtime). Trigger the
DNS switch for the publicly accessible domain so that the user traffic is routed
to the load balancer on site B.

5. Once all traffic is on site B update the deployment model on site A removing the
DBMS and the load balancer as well as all underlying IaaS resources. Release
all resources on site A by enacting the deployment model with CloudML.

The main steps of the relocation are depicted in Fig. 13.3.
As all of the involved steps are scriptable, automation is possible if the frequency

of the migration use case justifies the effort for implementing the automated solution
based on the procedure described above.

Fig. 13.3 Main steps of the Cloud-to-Cloud relocation

13 BPM in the Cloud: The BOC Case 131

13.4 Conclusion and General Recommendations

Even though some of the experiences and observations made are specific to the case
described in this chapter, the authors believe that some general recommendations
can be derived for companies or, more specifically, SMEs that are either planning to
cloudify some of their business critical software or, being a software provider such
as BOC, to extend their business model with an SaaS offering.

As mentioned earlier there are several good reasons to think about Cloud applica-
tion monitoring as well as a strategy to migrate from one Cloud provider to another
from the very beginning of the Cloud migration process. This should encompass the
following aspects:

• When selecting a particular Cloud service, the ease of migration to another equiv-
alent service should be considered. This implies on one hand the existence of such
services and on the other hand the ability to migrate software components and data
to these other services easily.

• In order to increase cost efficiency and quality of service theCloud service provider
market should be analysed on a regular basis. The selection of Cloud services and
Cloud providers might become a reoccurring task. A common knowledge base and
a tool based approach for decision making as planned for MODAClouds Venues
4Clouds tool will help saving efforts for data acquisition and analysis and making
decisions in a traceable, comprehensible way.

• In order to be able to easily deploy to different providers deployment automation
or even self-adaptation should be considered to save operation efforts. Automated
deployment should ideally work on different Cloud stacks (i.e. on different Cloud
services) with as little adaptations as possible.

• Monitoring should be considered an integral part of the Cloud service as it is
the only reliable way to track SLA adherence. The solution should be easy to
use, maintain, extend and at best it shall be managed together with the business
application by means of the configuration management system. The combination
of an established product such as Icinga with the sophisticated Tower 4Clouds
RDF stream processing toolkit is a good candidate for this challenge.

References

1. Alexander Gunka SS (2013). Moving an application to the cloud—an evolutionary approach.
In: MultiCloud’13. Prague, Czech Republic

2. BOC (2014) BOCGroup:ADONIS:cloud Landing page. RetrievedMay 2015, from http://www.
boc-group.com/at/adoniscloud (2015). Retrieved May 2015, from https://www.icinga.org/

3. Smrati Gupta VMM (2015, May 5–7). Risk-driven Framework for Decision Support in Cloud
Service Selection. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CC-GRID (2015) Shenzhen. Guangdong, China

4. MODAClouds (2013) Deliverable 2.3.1: decision making toolkit requirements and architecture,
and update on business methodology. Retrieved May 2015, from MODAClouds: http://www.
modaclouds.eu/publications/public-deliverables/

http://www.boc-group.com/at/adoniscloud
http://www.boc-group.com/at/adoniscloud
https://www.icinga.org/
http://www.modaclouds.eu/publications/public-deliverables/
http://www.modaclouds.eu/publications/public-deliverables/

132 A. Gunka et al.

5. Omerovic A, Muntes MV (2013) Towards a method for decision support in multi-cloud envi-
ronments. In: Proceedings Fourth International Conference on Cloud Computing, Grids, and
Virtualization (CLOUD COMPUTING 2013) pp 162–180

6. Muntes Mulero VPM (n.d.) Eliciting risk, quality and cost aspects in multi-cloud environments.
In: Proceedings Fourth International Conference on Cloud Computing, Grids, and Virtualization
(CLOUD COMPUTING 2013) pp 238–243

7. MODAClouds (2014) Deliverable 2.3.2: decision making toolkit requirements and architecture,
and update on business methodology. Appendix A. Retrieved May 2015, from MODA-
Clouds: http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds/_D2.3.2/_-
DecisionMakingToolkitRequirementsAndArchitectureAndUpdateOnBusinessMethodology.
pdf

8. MODAClouds (2015) D4.3.3 MODACloudML IDE—final version. Retrieved May
2015, from http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D4.3.3_
MODACloudMLIDEFinalVersion.pdf

9. Puppet (2015) Puppet. Retrieved May 2015, from https://puppetlabs.com

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds/_D2.3.2/_-DecisionMakingToolkitRequirementsAnd ArchitectureAndUpdateOnBusinessMethodology.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds/_D2.3.2/_-DecisionMakingToolkitRequirementsAnd ArchitectureAndUpdateOnBusinessMethodology.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds/_D2.3.2/_-DecisionMakingToolkitRequirementsAnd ArchitectureAndUpdateOnBusinessMethodology.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/ MODAClouds_D4.3.3_MODACloudMLIDEFinalVersion.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/ MODAClouds_D4.3.3_MODACloudMLIDEFinalVersion.pdf
https://puppetlabs.com
http://creativecommons.org/licenses/by/4.0/

Chapter 14
Healthcare Application

Francesco D’andria and Roi Sucasas Font

14.1 Introduction

This chapter presents a real life case based on a case study from Atos which uses
the MODAClouds framework to manage the design, deployment and governance of
a telemedicine solution in a hybrid multi-Cloud environment.

The Atos eHealth telemedicine solution is a software application, based on the
state-of-the-art in ICT that aims at developing an innovative and integrated solution
for the general management of patients suffering from dementia. It provides an inte-
grated online clinical, educational, and social network to support dementia sufferers
and also their caregivers. Based on a set of monitoring parameters and measuring
scales, this solution aims to early detect symptoms that predict decline, avoid emer-
gencies and secondary effects and, ultimately, prolong the period that patients can
remain safely cared at home, no matter where it is located. There are various stake-
holders involved in this scenario that would benefit from the system capabilities
offered by the eHealth application:

Patients and their caregivers:

• Access to services, like videos or games, recommended by clinicians or experts.
• Collect and register data andmeasurements (blood pressure,weight, activity levels,
questionnaires, etc.).

• Management of warnings or requests sent to the clinicians.

R.S. Font (B)
ATOS Spain SA, Subida al Mayorazgo, 24B Planta 1, 38110 Santa Cruz de Tenerife, Spain
e-mail: roi.sucasas@atos.net

F. D’andria
ATOS Spain SA, Av. Diagonal, 200, 08011 Barcelona, Spain
e-mail: francesco.dandria@atos.net

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_14

133

134 F. D’andria and R.S. Font

• Improve awareness on the use of their sensitive data, like the patients monitoring
parameters and the patients medication follow-up and drug adverse events.

Clinicians and Health System (organization of people, institutions and resources
to deliver health care)

• Continuous monitoring and follow-up of the patients
• Management and assignment of tasks and questionnaires
• Services to meet the health needs of target populations
• Improve workload of assistance teams:
• Institutions/specialists dynamically added and removed on demand
• Allocation/De-allocation of Cloud resources depending on the workload.
• Rapid elasticity, i.e., the network can respond rapidly and automatically to changes
in demand from particular doctor/specialist

• Improve access to and participation in the Knowledge and Information Society for
citizens

• help monitoring of risks like: data breaches/inappropriate access, disruption of
service and data)

Originally a monolithic web application, this new telemedicine solution has been
re-designed for a multi-Cloud environment. This software solution that consists of
two main software blocks: a multi-Cloud server-side block and a client-side block.
The server-side block consists of a database and two server applications. All of
them can be deployed in different multi-Cloud scenarios alternatives, like private
Clouds, public Clouds or hybrid scenarios. The client-side block consists of a desktop
application (used by the patients and their caregivers) that connects to one of the
server applications.

14.2 EHealth Cloud Solution: Why to Deploy
It in a Multi-Cloud Environment?

There are many real and potential benefits of a multi-Cloud based telemedicine
solution. This section describes these benefits (also the cons and risks associated to
this approach) from twodifferent points of view: the application (including designers,
developers, and administrators), and the final users (the patients and their caregivers,
and the doctors).

Because of the number of users of this application, the amount of database transac-
tions, and also the load and traffic conditions that can vary significantly, it is not trivial
to accurately estimate the resources required by this solution. To be able to scale the
resources on demand is one of the main advantages of a multi-Cloud approach. The
Cloud providers allow us to administer these challenges in an easyway, also reducing
costs and management times. This reduced technical maintenance (that also applies
to the deployment and the backup and recovery tasks) is also a feature that will be
very useful in this case study.Another important characteristic of the eHealth solution
is the capability of integrating and connecting multiple third party tools or services.

14 Healthcare Application 135

This will allow us to scale the functionalities and features offered at a much lower
cost compared with an own development and a later deployment in a private / public
infrastructure. For example the eHealth GUI component could be deployed in a pub-
lic PaaS or IaaS, making use of third party services offered by these providers, like
email delivery services, monitoring services etc. This approach would safe us money
and time, and would also allow an easier growth of the application’s functionalities
and capabilities in the future. The developers wont need to create new applications
from scratch with the same functionalities offered by these third party services. A
multi-Cloud environment also offers us flexibility, for example it will allow us to
easily move components from one provider to another when needed. Also the final
users of this solution can benefit from it. The deployment of the eHealth solution
in a multi-Cloud environment will make it possible to access it from everywhere.
Patients and caregivers will connect from home with clinicians. This will facilitate
the home health monitoring and follow-up of these users by the clinicians. Patients
and their caregivers will send them different kind of measurements (activity, weight,
blood pressure, etc.) and tests results, so that doctors can make a diagnostic with
all these data. Also the eHealth solution will analyze these data in order to detect
early deterioration symptoms. Patients with dementia wont need to go to hospital
so frequently, and doctors can make a better and individualized follow up of them.
It is expected that this set of tools and features will reduce the workload of these
clinicians, and will also reduce the costs of the health system. And from the point of
view of the patients and caregivers, its also expected that with this direct and frequent
connection (and monitoring) with clinicians, their quality of life will be better.

14.3 Risks and Problems

There are some risks associated with this approach. The most important of these
risks may be the data and privacy protection and the different legislations of each
country associatedwith themanagement of this data. The preservation of thismedical
information and the confidentiality is a major challenge in all telemedicine systems.
Another very common risk in Cloud computing is the vendor lock-in. PaaS and IaaS
providers are heterogeneous and the provided features are often incompatible. This
can be a serious inconvenience in such a multi-Cloud approach. These providers
present another problem: which ones are the best for our case study? Not only may
the prices of the different providers vary, but also their availability and the offered
services. In order to deploy all the eHealth components in amulti-Cloud environment,
a great knowledge of the available Cloud providers will be needed. Other risks
associated to this kind of telemedicine solutions are the availability and reliability
of their services. In emergency cases, the access to these services can mean the
difference between life and death. In particular, in those emergencies where a fast
medical response time is needed, the availability of these services can be critical. The
database and other components of the eHealth solution shall be accessible without
interruption 24 × 7. This could become a problem because its very important to
continuemonitoring not only the health of these business-critical applications but also

136 F. D’andria and R.S. Font

their performance. In order to monitor these properties and also the performance of
each of the components, it will be needed to use some kind of monitoring application
that could react to issues related to them.Moreover, to define a set of rules, constraints
or SLAs for the eHealth application components should be amandatory requirement.

14.4 EHealth and MODAClouds: The Story

At this point, Juan, the responsible (administrator, designer and developer) of the
eHealth solution,wants to use theMODAClouds platform tobe able to design, deploy,
monitor and manage this telemedicine application on a hybrid PaaS environment.
WhyMODAClouds? He expects to take advantage of all the Cloud environment ben-
efits described before and at the same time he expects to solve most of the problems
and risks of such approach. MODAClouds offers a set of tools for the design and run
time. On one hand the design-time tools offer the capability of designing a Cloud
agnostic model of the solution, the capability of defining the QoS/SLA rules that will
be used during the run-time, and also the capability of avoiding the vendor lock-in by
providing a list of all available Cloud providers, that match the eHealth technical and
business requirements, where this solution could be deployed. On the other hand the
run-time tools will monitor the different solution components and will react properly
to these monitoring values by scaling the components up or down, or by migrating
the components from one provider to another. This is the theory. Juan will prove it
soon. Juan will use two different PaaS providers accounts: one in Pivotal (a public
PaaS provider based on Cloud Foundry) and another in a private Cloud Foundry
server with few resources available. He thinks that hosting the database and the web
services application in this private PaaS will make it possible to handle some of the
data and privacy protection risks mentioned before. It will allow him to restrict and
control in an efficient way the access to the data that is stored there. Only the web
services application (the application that handles the connections with the database)
will be able to access the content of this database. But because he thinks that this is
not enough, the critical data will also be encrypted by this web service application.
This way the same application that handles the access to the database will be the
responsible of encrypting the data. This application is also responsible of managing
the roles and permissions of the users that want to access the content of the database
by accepting or refusing the requests depending on the users roles. He also thinks that
deploying the other eHealth component (Web GUI application) in the private server
could be the best option for a first moment, where only a limited set of users will
make use of the eHealth solution. Once the application starts to grow in number of
users and starts to have difficulties in handling the incoming traffic, he could migrate
some components from the private Cloud to a public Cloud. But instead of migrating
the components manually, Juan will use MODAClouds to define a set of rules and
SLAs so that the MODAClouds run-time components can do that in an automatic
way. In order to achieve all this, Juan will follow the steps described below.

14 Healthcare Application 137

Cloud agnostic solution design and Cloud provider selection

First, Juan uses Creator4Clouds to do a Cloud agnostic model of the eHealth solu-
tion. This is the model of the components that will be deployed in the Cloud without
specifying where and how they will be deployed. These components are the follow-
ing: the main database, the web services application and the Web GUI application.
For each of these components he defines the provided and required interfaces, which
are needed to define the connections between each component and are also needed
to define the methods or components that will be monitored. After refining all these
models, the next step is to get a list of all available PaaS providers that match the
functional and business requirements. Juan wants to know which the best options
for this solution are. On one hand he needs to host in a private Cloud the database
and the web services application. This way he can preserve the data and privacy
protection. The other component, the web GUI application (called eHealth-gui in
the models), can be deployed either in a private or in a public Cloud. Juan uses the
Venues 4Clouds tool in order to get all the providers that match his business and
functional requirements. As a result of this he gets Pivotal / Cloud Foundry as the
best choice (in terms of costs, services offered, etc.).

Now Juan wants to define how the MODAClouds run-time tools will behave once
the application components are deployed in the selected provider.

Modelling of the QoS and SLAs

In order to do that, Juan continues using theCreator 4Clouds tool to define theQuality
of Service constraints and penalties that will be used by the MODAClouds run-time
tools. He wants to monitor the performance of the application components. To do
that he defines two constraints: Response Time (to check the response time of some
operations) and Throughput (to check requests per second). These two constraints
will be used to monitor the traffic and performance of the deployed web applications.

He uses the interfaces defined before to associate these constraints to the interface
or to some of its methods. He decides that if theres too much traffic (by specifying
a value in the Throughput constraint), the SLA tool should migrate the Web GUI
application to a public PaaS. To define this behavior, he associates this constraint
to a penalty (called Migrate Penalty). This way, once the number of users grows,
both applications will have more resources to be scaled up. Also the SLA tool would
send events (i.e. emails) to Juan if some other SLA violation occurs. This migration
penalty or behavior could also be defined by using otherMODAClouds tools. Creator
4Clouds will then transform these constraints and penalties models to generate the
monitoring rules and penalties used by the Tower 4Clouds and the SLA tool during
the run-time.

The data collector library

Juan will need to connect the deployed eHealth components with Tower 4Clouds,
the MODAClouds monitoring tool. First Juan imports the data collector library (a
remote component of the Tower 4Clouds tool) in the application, then he configures
it, and finally he generates the packed files that will be deployed (.war files). But
before deploying them, Juan needs to finish the models.

138 F. D’andria and R.S. Font

Refining the models

Before deploying the eHealth application, Juan needs to do a few more things. On
one hand he associates the model components with the ‘physical’ applications. In
the case of the eHealth cloud components, the ‘physical’ applications are packed in
two .war files: one for each of the java web server applications. And on the other
hand he specifies the cloud providers where these components will be deployed. At
this point the eHealth application components are ready to be deployed.

EHealth deployment

Once Juan has modelled all the components, including all the QoS constraints and
SLAs, its time to deploy them in the private Cloud Foundry server. The Creator
4Clouds tool offers the option of generating different models for different providers.
But for now, Juan only creates one model for deploying the application compo-
nents in the private Cloud Foundry. To do that, Creator 4Clouds connects with
CloudML4Clouds, which is the responsible of deploying the application compo-
nents in the selected providers. Juan selects the deploy option and waits until the
application is deployed and ready. Then it starts the application execution and makes
it available to his customers.

Run-time tools: Check the status of the application components

Juan accesses the private Cloud Foundry to see that the applications are deployed and
running as expected. Then he connects with the Tower 4Clouds and SLA web tools
to see if they are correctly connected with the application components. He does a few
tests with the eHealth component and checks that all of them are working fine. After
Juan checks that the eHealth solution cloud components are deployed and running
in the private Cloud Foundry server, he tells his bosses that the application is ready
to be used.

14.5 Conclusions

Aswecould see in this chapter, amulti-cloud approachoffers several newpossibilities
and advantages for telemedicine applications, but it also presents some risks and
disadvantages. As was shown in the “real life case”, by using the MODAClouds
ecosystem, our main character was able of taken benefit of the advantages of such
approach, and at the same time, he could avoid most of the risks and disadvantages
associated to a multi-cloud deployment.

14 Healthcare Application 139

References

1. Deliverable 4.3.3 MODACloudML IDE final version
2. Deliverable 2.3.2 decision making toolkit requirements and architecture, and update on business

methodology
3. Deliverable 7.1.2 case studies requirements—Final version
4. Deliverable 8.1 case study design analysis
5. Deliverable 8.4.2 Healthcare application design—Final prototype design
6. Deliverable 9.3.2 prototype of healthcare application final release

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 15
Operation Control Interfaces

Craig Sheridan and Darren Whigham

15.1 Introduction

An interesting commercial use-case for Flexiant of the MODAClouds solution is
based upon adding extra functionality to Flexiant Cloud Orchestrator (FCO) [1]
Triggers [2]. Triggers are functions that allow an action in FCO to initiate a second
action, which can either be internal or even external to Flexiant Cloud Orchestrator.

A trigger is simply a block of Flexiant Development Language (FDL) [3] code,
which is a Lua [4] based language, that is used to extend Flexiant Cloud Orchestra-
tor.Triggers will run either before an event occurs (a pre trigger) or after an event
occurs (a post trigger) which can be used to perform a variety of actions such as auto-
matically starting servers at creation time or mailing and alerting based on customer
actions.

15.2 Language for Triggers Description

A trigger is written as a block of Flexiant Development Language (FDL) code, which
is a Lua based language used to extend Flexiant Cloud Orchestrator. FDL is written
as a code block and run within the platform itself. Within FDL there are multiple
APIs [5] that can be called such as billing, trigger, and payment. For this chapter we
will focus on the trigger API. Triggers can be used to perform any of the following
actions:

C. Sheridan · D. Whigham (B)
Flexiant, London, UK
e-mail: dwhigham@flexiant.com

C. Sheridan
e-mail: csheridan@flexiant.com

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_15

141

142 C. Sheridan and D. Whigham

• Sending email as a result of an action or state change
• Making an HTTP call and processing the result
• Making user API or admin API calls from within FCO.
• Writing an entry in the syslog
• Running a local executable file
• Reading or writing to a file
• Manipulating XML documents, objects, and nodes

To achieve these different actions, various trigger types are utilised. The following
table lists these different ‘triggerTypes’, as well as whether the trigger is initiated
before (PRE) or after (POST) the initiating event.

15.3 Architecture of the Trigger Support

The FDL Trigger API, named “TRIGGER”, is activated when the user returns from
an entry point with the API set to TRIGGER. This makes the entry point a trigger.
Once an entry point has been set to act as a trigger, it will return three pieces of
additional data when describing themselves; triggerType, triggerOptions, and value
object.

The triggerType is the type of event that will initiate the trigger, for example an
API call or a change in resource state. This can be refined using the triggerOption
object, which is a list stating the specific events that can initiate the trigger. For
example, if the triggerType indicates that the trigger can be initiated by a server state
change, the triggerOptions determine which server states initiate the trigger.

The value object has the same layout as in the API (See SOAP Value). Each value
object specifies a configurable value, together with its validator, thus setting out the
permissible values for it.

With all FDL APIs, including TRIGGER, anything which a user prints (to STD-
OUT or STDERR) will go to the Jade sysout log. The user can log any string to the
normal log with logger (which takes a string). If the Lua throws an exception, Jade
will catch it. However, the user should aim not to throw exceptions but instead return
something appropriate depending on the API.

The entry point will always be called with a single parameter p dependent on the
API being called, or a value of nil. If a value other than nil is passed, the return value
of the function depends upon the API. In this case, the function is expected to return
a table that describes itself. This table will contain the following keys:

• api: the name of the API as a string (for instance “BILLING”)
• version: the version of the API as a number.
• ref: a unique identifier for the function. Do not use identifiers starting with an
underscore; these are reserved for Flexiant.

• name: a string containing the name of the entry point (max 50 characters)
• description: a string containing a description of the entry point (maximum 250
characters)

15 Operation Control Interfaces 143

• execution function: a reference to a LUA function which is the function to call
with values of p other than nil. If this is not specified or is specified as nil, then
the same function will be called.

15.4 Usage of Triggers to Enable Load Balancing

Triggers are most commonly used to access all the functionality that is offered by
FCO, but they can also be used to make external API calls. Trigger functionality
has been added as part of the MODAClouds project to extend the platform and tools
capabilities. Within theMODAClouds project a number of unique triggers have been
developed.

The first of these triggers is called the Auto Server Failover trigger, which is called
should a server be shutdown or killed within a certain customers account.

Upon being called this trigger looks for a Live Server tag attached to the server,
and if found, replaces it with a Backup server tag. This new tag can be anything, such
as Faulty Server, but for this example Backup server will be used. The trigger then
looks in the FCO account for a VM tagged Backup server that is in a stopped state
and starts it. Finally, once the new server is started, the Backup server tag is removed
and a Live server tag is added.

Another trigger that has been created for the MODAClouds project is the Auto
Alert Mail trigger. This will send an email to the account owner to alert them that a
server has stopped or been killed. The Auto Alert Mail trigger works by looking for
an “Auto Mail” tag assigned to the relevant account whenever FCO registers that a
server has been shutdown or killed. This tag contains the recipient address to send
an email to, and once found, the trigger sends a message to the address to inform the
account holder that a server has been shut down. The message includes the UUID [6]
of the server and the Date/time stamp for when this server was shutdown. This useful
trigger therefore allows account owners to be notified of any issues with their servers,
as well as recording a date/timestamp within the syslog to allow for troubleshooting.

Both of theAuto Server Failover andAutoMailAlert triggers have been combined
and included within the MODAclouds solution as detailed in the following section.

Within the Modacloud project, these triggers have been implemented to work in
conjunction with load balancers. As detailed in Fig. 15.1.

The Load Balancer will be set up within the FCO Cloud platform. Behind this
will be a number of VM’s that will serve load balancers. These VMs will be tagged
within FCO as either a Live Server or a Backup Server In the event of an error with
these servers that cannot be resolved internally, the server is then shutdown. When
this shutdown occurs then the triggers created.

144 C. Sheridan and D. Whigham

Fig. 15.1 MODAcloud triggers

15 Operation Control Interfaces 145

15.5 Related Work

To be able to monitor and provide similar solutions that are presented here with
other Cloud providers external tools/programs using the Cloud providers APIs must
be used. To be able to match this functionality providers such as OnApp, VMWare
and OpenStack would have to look at using external API calls.

Within FCO and with the use of Triggers and FDL, FCO allows the ability to
run and monitor from within the platform rather than using external applications to
query using the API. The key benefit of this from a Cloud provider is the reduction
in the number of external API calls and the functionality works regardless of the
hypervisor/storage/network model underneath.

15.6 Conclusions

This chapter has provided an overview of the trigger technology developed by Flexi-
ant for use within theMODAClouds project. It has showcased the practical use of this
service within a real world example and the importance of such technology within
the MODAClouds solution. Detailed is the technology underpinning the triggers
technology and example triggers created that are freely available and open sourced.

References

1. Flexiant (2015) Software Features Tour. https://www.flexiant.com/flexiant-cloud-orchestrator/
2. Flexiant (2015) 3rd Party Plugins. https://www.flexiant.com/plugins/about-plugins/
3. Flexiant (2016) Flexiant Cloud Orchestrator Developer Guide. http://docs.flexiant.com/display/

DOCS/Flexiant+Cloud+Orchestrator+Developer+Guide
4. Ierusalimschy R, de Figueiredo LH, Celes W (2006) Lua 5.1 Reference Manual. http://www.

lua.org/manual/5.1/
5. Flexiant (2016) Introduction to Jade APIs. http://docs.flexiant.com/display/DOCS/

Introduction+to+Jade+APIs
6. IETF (2005) A Universally Unique IDentifier (UUID) URN Namespace. https://www.ietf.org/

rfc/rfc4122.txt

https://www.flexiant.com/flexiant-cloud-orchestrator/
https://www.flexiant.com/plugins/about-plugins/
http://docs.flexiant.com/display/DOCS/Flexiant+Cloud+Orchestrator+Developer+Guide
http://docs.flexiant.com/display/DOCS/Flexiant+Cloud+Orchestrator+Developer+Guide
http://www.lua.org/manual/5.1/
http://www.lua.org/manual/5.1/
http://docs.flexiant.com/display/DOCS/Introduction+to+Jade+APIs
http://docs.flexiant.com/display/DOCS/Introduction+to+Jade+APIs
https://www.ietf.org/rfc/rfc4122.txt
https://www.ietf.org/rfc/rfc4122.txt

146 C. Sheridan and D. Whigham

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 16
Conclusion and Future Research

Arnor Solberg and Peter Matthews

16.1 Summary

The MODAClouds approach offers a set of innovative techniques for development
and runtime operation management of multicloud applications. In particular it deliv-
ers an open source integrated development environment for the high-level design,
cloud service selection, early prototyping, QoS assessments, semi-automatic code
generation, and automatic deployment of multicloud applications, as presented in
Part I Dev. Secondly it delivers a run-time environment for monitoring, dynamic
adaptation, and data migration to optimize multicloud application execution with
respect to quality of service concerns, as presented in Part II Ops. Thirdly it deliv-
ers DevOps enabling features supporting continuous design, deployment and QoS
analysis for performance optimization, as presented in Part III DevOps. Finally to
demonstrate the technology the book discusses a set of applications from various
domains ranging from more classical information systems with the model manage-
ment and business processmodelling applications to the Internet of Things andCyber
Physical Systems domains with e-health and smart city applications. Part IV Appli-
cations discusses the demonstration of the general applicability the MODAClouds
approach and the main MODAClouds techniques and features, as presented in Part
IV Applications.

A. Solberg (B)
Stiftelsen SINTEF, Postboks 4760 Sluppen, 7465 Trondheim, Norway
e-mail: Arnor.Solberg@sintef.nopleaseaddhere

P. Matthews (B)
CA Technologies UK, Ditton Park, Riding Court Road, Datchet SL3 9LL, UK
e-mail: peter.matthews@ca.com

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_16

147

148 A. Solberg and P. Matthews

16.2 Outlook and Further Research

While the MODACLouds approach addresses a set of concerns for multicloud appli-
cation development and operation, many challenging concerns remain, and new con-
cern arise as newopportunities are discovered in the pace of the continuously evolving
digitalized world.

A trend is that increasingly large and complex systems and systems of systems
need to be executed, managed and evolved on hybrid infrastructures consisting of a
continuum of cloud, fog, Cyber Physical Systems and Internet of Things resources
and devices. Coping with this continuum represent daunting challenges. These chal-
lenges also embrace dealing with "old" concerns but in an even larger scale and in
new contexts, for example, seamless management of vast heterogeneity, QoS guar-
antees and optimization of such complex systems, security, privacy and vulnerability
control etc.

A recent trend related to multicloud is federated clouds, where the cloud feder-
ation can consist of multiple clouds. MODAClouds provides baseline technologies
to support this. Moreover, there is an acknowledgement that the centralized cloud
model (all the data are computed and processed centrally in the cloud) that have
been the dominating cloud application model until now, does not meet significant
requirements such as response time and efficient resource exploitation. A decentral-
ized cloud model where computation and processing are also performed at the edges
(i.e., fog computing) and the optimal utilization of tiny devices, e.g., for real time
response, require new methods and techniques for development and operation.

Preparing the cloud to improve the management of big data and machine learning
are challenges that will require cloud architectures to evolve in the areas of cloud
networking, deployment practices and run-time management as well as managing
security and privacy needs. Networking and deployment practices will support an
agile and DevOps approach to application requirements fulfillment.

DevOps is part of a strategy that will lead to continuous delivery, the frequent
updates and bug fixes that are characteristic of the best apps in the mobile arena. This
project has shown that creating applications from previously composed services will
shorten the delivery time. The use of SLA monitoring and automated deployment
also embrace a DevOps strategy. Cloud services that have to be unit tested after
change and composed into an application that can have automated or semi-automated
integration testing again shortens the application supply chain. All of these support
a DevOps approach, however, there needs to be more work done on increasing the
automated supply chain to include integration testing, requirementsmanagement and
composition.

An additional area that will require further work is in the security domain. When-
ever cloud computing adoption is discussed there are many commentators and users
who claim that the cloud is insecure. This is now being countered by the realization
that most of the security and vulnerability issues are the same issues for IT in general.
There are no authentication issues that are present in cloud computing architectures
such as SaaS and PaaS that are not there in general non-cloud applications. The addi-

16 Conclusion and Future Research 149

tion of multi cloud applications where federations of cloud services, containers and
microservices are orchestrated or tightly bound into applications brings some inter-
esting challenges. Since many of these services are not fully under the developers
control, being accessed only by APIs there is an increased risk to an application. A
composed or orchestrated application is only as secure as the least secure component.
It is important in an increasingly agile development world that the security metrics of
a service are well understood and reported. Making note of liability exclusions in an
SLA, even if its not in small print, is of no comfort to an organization who has been
penetrated via an insecure service. This is well recognised and is being addressed in
a number of research programs, not the least the MUSA project. This project is tar-
getted at the above security issues and will extend the MODAClouds DSS to enable
the selection and runtime monitoring of service security performance as well as risk,
cost etc., that are part of the MODAClouds project. There are other proposals as
well as funded research in the area of regulatory compliance, assurance etc. that are
addressing the security gaps in cloud and particularly multicloud applications. This
area will become increasingly important as more public services become available,
delivering government, finance and healthcare data to the application developers and
user.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

	Preface
	Contents
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Related Work
	1.4 The MODAClouds Approach
	1.5 The MODAClouds Toolbox
	1.6 Book Objectives
	References

	2 Cloud Service Offer Selection
	2.1 Introduction: Selecting Services for Agile Application Development
	2.2 Decision Support System for Cloud Service Selection
	2.3 Cloud Service Description Standardization
	2.4 Data Gathering in Multi-Cloud Environments
	2.5 Coping with Complexity in SaaS
	2.6 Decision Support Tools for Cloud Service Selection
	2.7 Technical Challenges and Implementation
	2.8 Conclusion: Evolution of Cloud Services, Decision Support and Future Work
	Reference

	3 The MODAClouds Model-Driven Development
	3.1 Introduction
	3.2 The Design-Time Development Process
	3.3 Overall Language Architecture
	3.4 MODACloudML Sub Models
	3.4.1 CCIM Models
	3.4.2 Example
	3.4.3 CPIM and CPSM Models
	3.4.4 Example

	3.5 Related Work
	3.6 Conclusion
	References

	4 QoS Assessment and SLA Management
	4.1 Introduction
	4.2 Case Study: Meeting in the Cloud (MiC)
	4.3 QoS Assessment and Optimisation
	4.3.1 Assessment
	4.3.2 Optimisation
	4.3.3 LINE

	4.4 SLA Management
	References

	5 Monitoring in a Multi-cloud Environment
	5.1 Introduction
	5.2 Tower 4Clouds Architecture
	5.3 Application Configuration Model
	5.4 Monitoring Rules
	5.5 Conclusion
	References

	6 Load Balancing for Multi-cloud
	6.1 Introduction
	6.2 Load Balancing Controller
	6.3 Load Balancing Reasoner
	6.4 Multi-cloud Load Balancing
	6.4.1 Usage Scenario of Multi-cloud Load Balancing

	6.5 Load Balancing and Failure Management
	6.6 Conclusion
	References

	7 Fault-Tolerant Off-line Data Migration: The Hegira4Clouds Approach
	7.1 Introduction
	7.2 Hegira4Clouds Intermediate Meta-Model
	7.3 Architecture and Fault Tolerance Features
	7.3.1 Virtual Data Partitioning
	7.3.2 Recovering from Faults

	7.4 Evaluation: Migrating Tweets
	7.5 Discussion and Conclusion
	References

	8 Deployment of Cloud Supporting Services
	8.1 Introduction
	8.2 MODAClouds Execution Platform
	8.2.1 mOS
	8.2.2 Platform Sub-systems

	8.3 Supporting Services
	8.3.1 Object Store
	8.3.2 Artifact Repository
	8.3.3 Load Balancer Controller
	8.3.4 Batch Engine

	8.4 Conclusions
	References

	9 Models@Runtime for Continuous Design and Deployment
	9.1 Introduction
	9.2 The Models@Runtime Approach
	9.3 The MODAClouds Models@Runtime Engine
	9.3.1 The Comparison Engine
	9.3.2 Adaptation Commands
	9.3.3 State Tracking
	9.3.4 Interaction with the Models@Runtime Engine

	9.4 Related Work
	9.5 Conclusion
	References

	10 Closing the Loop Between Ops and Dev
	10.1 Introduction
	10.2 FG Architecture
	10.2.1 FG Analyzer
	10.2.2 FG Actuator
	10.2.3 FG Reporter

	10.3 Workflow
	10.4 Estimation Techniques for FG Analysis
	10.4.1 A Bayesian Approach Based on Queue-Lengths
	10.4.2 A Maximum-Likelihood Approach Based on Queue-Lengths and Response Times

	10.5 Conclusion
	References

	11 Cloud Patterns
	11.1 Introduction
	11.2 Motivational Guidance
	11.3 MODAClouds-Specific Patterns
	11.4 Conclusions
	References

	12 Modelio Project Management Server Constellation
	12.1 Introduction
	12.2 Proposed Architecture
	12.3 Use of MODAClouds Design and Runtime Components
	12.3.1 Modelling with Creator 4Clouds
	12.3.2 Multi-cloud Deployment with CloudML 4Clouds
	12.3.3 Cost and Performance Analysis with SPACE 4Clouds
	12.3.4 Multi-cloud Monitoring and Management with Energizer 4Clouds

	12.4 Conclusion
	References

	13 BPM in the Cloud: The BOC Case
	13.1 Introduction
	13.2 Context and Motivation
	13.3 Application Scenario
	13.3.1 Cloud Provider Selection
	13.3.2 Application Deployment to Multiple Clouds
	13.3.3 Cloud Application Monitoring
	13.3.4 Cloud to Cloud Migration

	13.4 Conclusion and General Recommendations
	References

	14 Healthcare Application
	14.1 Introduction
	14.2 EHealth Cloud Solution: Why to Deploy It in a Multi-Cloud Environment?
	14.3 Risks and Problems
	14.4 EHealth and MODAClouds: The Story
	14.5 Conclusions
	References

	15 Operation Control Interfaces
	15.1 Introduction
	15.2 Language for Triggers Description
	15.3 Architecture of the Trigger Support
	15.4 Usage of Triggers to Enable Load Balancing
	15.5 Related Work
	15.6 Conclusions
	References

	16 Conclusion and Future Research
	16.1 Summary
	16.2 Outlook and Further Research

