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Nanoconnectomics

Terrence J. Sejnowski

Abstract The neuropil is a complicated 3D tangle of neural and glial processes.

Recent advances in microconnectomics has made it possible to reconstruct neural

circuits from serial-section electron microscopy at the micron scale. Electron

microscopy allows even higher resolution reconstructions on the nanometer scale.

Nanoconnectomic reconstructions approaching molecular resolution allow us to

explore the topology of extracellular space and the precision with which synapses

are modified by patterns of neural activity.

The reconstruction of a neural circuit is an essential step in understanding how

signals are processed in the circuit; without this ‘wiring diagram,’ it is difficult to
interpret the signals recorded from elements in the circuit. Connectomics attempts

to reconstruct complete circuits, which can be accomplished at many spatial scales,

as illustrated in Fig. 1. At the microconnectomic level, recent studies have focused

on the retina (Kim et al., Nature 509:331–336, 2014) and the visual cortex (Bock

et al., Nature 471:177–182, 2011). At the macroconnectomic level, the long-range

cortical connections can be trace with diffusion tensor imaging (Van Essen, Neuron

80:775–790, 2013). This chapter will focus on nanoconnectomics, whose goal is to

produce an accurate reconstruction of the neuropil at the nanometer scale.

Nanoconnectomics

At the level of nanometers, the neuropil is a tangled mass of synapses, dendrites,

axons and glial cells surrounded by extracellular space. Each of these compartments

contains specialized molecular structures for specialized functions and, in particu-

lar, those related to the processing of neural signals over a wide range of time
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scales. We seek to reconstruct these compartments to understand the functions that

are being implemented at the molecular level. Biochemistry is as important as

electricity at these small spatial scales; at longer temporal scales beyond the second,

biochemistry reigns supreme.

Fig. 1 Levels of investigation in the brain span 10 orders of spatial scale, from the molecular level

to the entire central nervous system (CNS). Important structures and functions are found at each of

these levels. Macroconnectomics provides the long-range connections between neurons in maps

and systems, microconnectomics focuses on the network level, and nanoconnectomics extends

down to synapses and molecules [adapted from Churchland and Sejnowski (1988)]
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Biochemists typically carry out chemical reactions in test tubes, where the

molecular reactants are well mixed and often in equilibrium. This approach

makes spatial scales irrelevant, which is an advantage in measuring reaction rates

and dissociation constants. In cells, however, strong concentration gradients exist

on the nanoscale, and many important signaling pathways are not in equilibrium.

Molecular signaling, such as the release of neurotransmitter at synapses or the entry

of calcium into a dendritic spine, depends on changes in the concentration of the

signaling molecules and is often transient, which may be on the microsecond time

scale in nanovolumes and on much longer time scales in larger volumes.

Extracellular Space

To explore the consequences of transient neural signals in small volumes, a 3D

6� 6� 5 μm3 reconstruction of hippocampal neuropil was created via serial section

transmission electron microscopy of tissue obtained from the middle of stratum

radiatum in CA1 of hippocampus in an adult male rat (Mishchenko et al. 2010;

Kinney et al. 2013). Although this was a relatively small volume of neuropil, within

it there were 446 axons, 449 synapses, 149 dendritic branches and a small part of a

single astrocyte. In addition, we took special care to reconstruct the extracellular

space, which is an important compartment that is often neglected in reconstructions.

Our goals were accuracy and completeness in order to serve as a test-bed for Monte-

Carlo simulations of molecular cell signaling. However, there is much to be learned

by just looking at the anatomy.

Imagine that the extracellular space was itself a compartment with its own

geometry. What would it look like? Despite its importance for brain function, the

morphology of the extracellular space (ECS) on the submicron scale is largely

unknown. The ECS is tens of nanometers in width based on electron microscopy

(EM) images (Thorne and Nicholson 2006), below the resolution of light micros-

copy. However, in vivo measurements of the ECS are available for the extracellular

volume fraction, which captures the fraction of total tissue volume that lies outside

of cells and the total tortuosity that accounts for the observed reduction in rate of

diffusion of small molecules through the ECS compared to free diffusion due to

geometric inhomogeneities and interactions with the extracellular matrix (Sykova

and Nicholson 2008). In early development, the extracellular volume fraction is

40 % and decreases with age (Fiala et al. 1998) and during periods of anoxia

(Sykova and Nicholson 2008). The extracellular volume fraction in the adult rat

hippocampus is 20 % and total tortuosity is 1.45, based on the diffusion of small

probe molecules in the ECS (Nicholson and Phillips 1981).

The processing of tissue for EM involves dehydration that results in tissue

shrinkage, which reduces the extracellular space. To compensate for a range of

possible volume shrinkages and in vivo variations, we explored quantitatively the

range of physiological geometries of the ECS by rescaling the reconstruction (along

three orthogonal dimensions), and we varied its lacunarity or ratio of the largest to

the smallest membrane separations (Kinney et al. 2013). The reconstruction

Nanoconnectomics 3



revealed an interconnected network of 40–80-nm diameter tunnels, formed at the

junction of three or more cellular processes and spanned by sheets between pairs of

cell surfaces with 10–40 nm width. The tunnels tended to occur around synapses

and axons, and the sheets were enriched around astrocytes. The intricate complexity

of the ECS is shown in Fig. 2, which illustrates the geometry linking the sheets and

Fig. 2 Structure of the extracellular space between cells in the neuropil of the rat. In the

reconstructed neuropil, 20–40-nm thick sheets (blue dots) separated pairs of cells and 40–80-nm

tunnels occurred where three or more cells met (yellow dots). The topology of the extracellular

space resembles that of soap bubbles [Justin Kinney]

4 T.J. Sejnowski



the tunnels. The non-uniformity found in the ECS may have specialized functions

for signaling (sheets) and volume transmission (tunnels).

The ECS is a dynamic compartment and Fig. 2 should be considered a single

snapshot. During sleep, for example, the extracellular volume increases by 60 %,

allowing convective streaming to clear debris from the ECS (Xie et al. 2013).

Simulating Signaling in Small Spaces

Microdomains inside cells are small volumes, such as the femtoliter volumes of

dendritic spines, in which concentrations of molecules can increase transiently and

drive chemical reactions. We have simulated the transient release of neurotrans-

mitters in the ECS and the entry of calcium into postsynaptic spines using MCell

(mcell.org), a powerful and highly successful open source modeling tool for

realistic simulation of cellular signaling in microdomains (Coggan et al. 2005;

Nadkarni et al. 2012). At such small subcellular scales, macroscopic continuum

assumptions do not apply and stochastic behavior dominates. MCell uses highly

optimized Monte Carlo algorithms to track the stochastic behavior of discrete

molecules in space and time as they diffuse and interact with other discrete effector

molecules (e.g., ion channels, enzymes, transporters) heterogeneously distributed

within the 3D geometry and on the 2D membrane surfaces of the subcellular

environment. Monte Carlo methods are the best choice for reaction/diffusion

simulation when the total number of interacting particles in a spatial domain is

small, and/or when spatial particle gradients are steep. A further advantage of these

methods is that, because individual particles are treated as reactive agents, reaction

networks that exhibit combinatorial complexity can be described and simulated

without simplification.

The postsynaptic density (PSD) in the active zone of a spine head contains

hundreds of types of proteins in a large macromolecular complex. Because the PSD

contains neurotransmitter receptors, the concentrations of ions in the PSD can

transiently reach high concentrations briefly after receptor activation. For example,

the volumes around voltage-dependent calcium channels are nanodomains, where

calcium levels can reach concentrations that are several orders of magnitude higher

than inside the spine (Tour et al. 2007). When calcium enters the spine head through

NMDA receptors in the PSD, the calcium binds to calcium-binding proteins (Keller

et al. 2008), which creates a strong gradient across the volume of the spine (Fig. 3).

When calcium binds to calmodulin, one of the calcium-binding proteins, calmod-

ulin can in turn bind to and activate calcium/calmodulin-dependent protein kinase II

(CAMKII), which can lead to long-term potentiation of the synapse (Kennedy

et al. 2005).

Nanoconnectomics 5



Fig. 3 Simulations of calcium entry into a spine and calcium gradients across the spine in the

presence of 45 mM calbindin-D28k. Schematic (upper left) shows the spine subdivided into three

distinct sampling regions: the postsynaptic density (PSD, red), the middle (MID, green), and the

base (blue) of the spine. The volume averages are depicted below (black). (a) Instantaneous

calcium current through voltage-dependent calcium channels in the spine during a back-

propagating action potential (BAP). The time of somatic current injections is indicated by the

arrow. (b) Calcium concentration in each of the three sampling regions is shown during the action

potential. The colors of traces correspond to the three sampling regions shown in the schematic.

Action potentials did not result in calcium gradients across the spine. The black trace at the bottom
of the figure shows the volume-averaged [Ca2+]i in the entire spine. (c) Instantaneous calcium

current through NMDARs during an excitatory postsynaptic potential. (d) Calcium concentration

in each of the three subregions of the spine during an excitatory postsynaptic potential as well as

the volume average. Excitatory postsynaptic potentials resulted in large calcium gradients across

the spine. (e) Open voltage-dependent calcium channels during an action potential simulation in

which voltage-dependent calcium channels were clustered at the postsynaptic density. (f) Input-

dependent calcium gradients across the spine during the BAP when the calcium channels were

clustered in the PSD [adapted from Keller et al. (2008)]
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Precision of Synaptic Plasticity

Excitatory synapses on dendritic spines of hippocampal pyramidal neurons have a

wide range of sizes that are highly correlated with their synapse strengths (Harris

and Stevens 1989). Pairs of spines on the same dendrite that received input from the

same axon were of the same size and had nearly identical head volumes (Fig. 4).

When plotted against one another, the paired head volumes were highly correlated

with slope 0.91 and, despite the small sample size, were significantly different from

random pairings of spines. In contrast, the spine neck volumes of the pairs were not

well correlated, suggesting a different function.

Spine heads ranged in size over a factor of 60 from smallest to largest, allowing

approximately 24 different strengths to be reliably distinguished across this range,

Fig. 4 Pairs of spines from the same axon on the same dendritic branch have highly correlated

volumes. (A) Volumes of pairs of axonally coupled spines on the same dendritic branch plotted

against one another (larger volumes on X axis, blue and green points, error bars show SEM).

Labels a–m correspond to spine pairings in (B). Regression line of blue points is shown in red.
Green points correspond to outlier pairings k, l, and m in (b). Dashed diagonal line represents line
of perfect correlation. (B) Corresponding pairs of spines, isolated for visualization. (C) Example of

a pair of axonally coupled spines on the same dendritic branch in situ. White arrows point to the

spine heads [adapted from Bartol et al. (2015)]

Nanoconnectomics 7



assuming CV¼ 0.083 and a 75 % discrimination threshold. This corresponds to 4.6

bits of information that can be stored at each synapse (Bartol et al. 2015). The

precision of the majority of smaller spines is as good as that of the minority larger

spines (Fig. 4), suggesting that accurately maintaining the size of every synapse,

regardless of size and strength, could be important for the function, flexibility and

computational power of the hippocampus.

How can the high precision in spine head volume be achieved despite the many

sources of stochastic variability observed in synaptic responses? Time-window

averaging could smooth out fluctuations due to plasticity and other sources of

variability. To set a lower bound on averaging time, we chose to examine neuro-

transmitter release probability as a single source of variability. Release can be

analyzed using a binomial model in which n presynaptic action potentials, each

with a probability pr of releasing one or more vesicles, leads to a mean number of

releases m¼ n pr having variance σ2¼ n pr (1�pr). The coefficient of variation

around the mean is CV¼ sqrt(σ2)/m¼ sqrt [(1�pr)/(n pr)] and can be compared

with the measured values. Therefore, the number of spikes that are needed to reduce

the variability to achieve a given CV is n¼ (1�pr)/(pr CV
2). Table 1 gives averag-

ing time windows for representative values of pr and a range of spiking rates of the

presynaptic axon, which extends to many minutes for the smaller synapses.

Accounting for other known sources of variability at dendritic spines would require

even longer time windows.

Phosphorylation of CaMKII, which is required for some forms of synaptic

plasticity, integrates calcium signals over 10–20 min and is a critical step in enzyme

cascades leading to structural changes induced by long-term potentiation (LTP) and

long-term depression (LTD; Kennedy et al. 2005), including rearrangements of the

cytoskeleton (Kramár et al. 2012). The time course over which CaMKII integrates

calcium signals is within the range of time windows that we predict would be

needed for averaging (Table 1). Similar time windows occur in synaptic tagging

and capture: inputs that are too weak to trigger LTP or LTD can be “rescued” by a

stronger input to neighboring synapses if it occurs within an hour (Frey and Morris

1997; O’Donnell and Sejnowski 2014), which also requires CaMKII (Redondo and

Morris 2011; de Carvalho Myskiw et al. 2014).

The reconstruction that we have analyzed is a tiny part of the hippocampus, but

if it is representative, then the precision with which the spatial organization of the

brain is constructed is at the nanolevel. Thus, evolution has optimized many of the

structures at synapses that are essential for the long-term storage of information.

Table 1 Lower bounds on time window for averaging binomially distributed synaptic input to

achieve CV¼ 0.083

Release probability

(pr)

Presynaptic spikes

(n)

Averaging time

(Rate¼ 1 Hz)

Averaging time

(Rate¼ 25 Hz)

0.1 1306 21.8 min 52.2 s

0.2 581 9.68 min 23.2 s

0.5 145 2.42 min 5.8 s

8 T.J. Sejnowski



In conclusion, nanoconnectomics is revealing the extraordinary precision of

synaptic plasticity and, together with Monte Carlo simulations of biochemical

interaction and physiological responses, we can begin to see how the reactions

between relatively small numbers of molecules in small volumes can accurately and

efficiently create memories of past experiences.
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Inhibitory Cell Types, Circuits and Receptive

Fields in Mouse Visual Cortex

Edward M. Callaway

Abstract The diversity and the specialized connectivity and function of inhibitory

cortical neurons have been the focus of intense research for many decades (Fishell

and Rudy, Ann Rev Neurosci 34:535–567, 2011). Until recently, technical limita-

tions have restricted the power of experiments that could be conducted in vivo.

Nevertheless, in vitro studies identified dozens of distinct cortical inhibitory neuron

types, each with unique chemical properties, intrinsic firing properties and connec-

tion specificity. And at the same time, post-mortem studies from human patients

have demonstrated defects of inhibitory circuit markers in diseases such as schizo-

phrenia (Curley and Lewis, J Physiol 590:715–724, 2012; Stan and Lewis, Curr

Pharm Biotech 13:1557–1562, 2012; Lewis, Curr Opin Neurobiol 26:22–26, 2014).

Together, these observations have led to the hypothesis that distinct types of

inhibitory neurons play distinct functional roles in the dynamic regulation of

brain states and in the context-dependent extraction of sensory information, cogni-

tive function, and behavioral output—functions thought to be disrupted in disorders

such as schizophrenia and autism.

Despite the wealth of evidence in support of this hypothesis, tools have only

recently emerged to allow detailed studies of neural circuit mechanisms underlying

in vivo dynamics and to implicate specific inhibitory cell types and connections in

specific functions (Luo et al., Neuron 57:634–660, 2008). Now, rather than broadly

surveying inhibitory neuron properties and connections in vitro, studies have begun

to focus more deeply on the in vivo contributions of those inhibitory cell types that

are genetically accessible and can therefore be interrogated with modern genetic

tools for manipulating and monitoring activity of specific cell types.

Mouse lines that express Cre-recombinase selectively in three major,

non-overlapping groups of inhibitory cortical neurons—Parvalbumin-expressing

(PV), somatostatin-expressing (SST), and vasoactive intestinal peptide-expressing

(VIP; Lee et al., J Neurosci 30:16796–16808, 2010; Xu et al. J Comp Neurol

518:389–404, 2010; Rudy et al., J Comp Neurol 518:389–404, 2011; Taniguchi

et al., J Comp Neurol 518:389–404, 2011)—have allowed detailed studies of the

connectivity and in vivo functional roles of these cell groups. Such studies have
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implicated PV inhibitory neurons in gain control (Atallah et al., Neuron 73:159–170,

2012; Lee et al., Nature 488:379–383, 2012; Nienborg et al., J Neurosci

33:11145–11154, 2013), SST interneurons in the suppression of lateral and feedback

(top-down) interactions (Adesnik and Scanziani, Nature 464:1155–1160, 2010;

Nienborg et al., J Neurosci 33:11145–11154, 2013), and VIP interneurons in the

dynamic regulation of SST cells under the control of brain state-dependent

neuromodulators (Kawaguchi, J Neurophysiol 78:1743–1747, 1997; Alitto and

Dan, Front Syst Neurosci 6:79, 2012; Lee et al., Nat Neurosci 16:1662–1670,

2013; Pi et al., Nature 503:521–524, 2013; Polack et al., Nat Neurosci

16:1331–1339, 2013; Fu et al., Cell 156:1139–1152, 2014; Stryker, Cold Spring

Harbor Symp Quant Biol 79:1–9, 2014; Zhang et al., Science 345:660–665, 2014).

Differences in Connectivity, Visual Responses

and Functional Impact of PV Versus SST Interneurons

The in vivo functional role of any given neuron type is dictated by it sources of

inputs, the way that it integrates those inputs, and the other neurons in the network

to which it provides outputs. These differences result in measurable differences in

visual receptive fields and differences in functional impact that can be assayed to

understand how networks of neurons work together to generate perception and

behavior.

Differential Outputs and Inputs Among the first differences observed between SST

and PV interneurons were morphological differences related to the locations of

their synaptic contacts onto excitatory pyramidal neurons. The great majority of PV

neurons are basket cells, so named because their axon terminals have the appear-

ance of baskets. Basket cells make multiple, large synapses on the proximal

dendrites and cell bodies of pyramidal neurons (Jones and Hendry 1984) and,

therefore, even the connections originating from a single neuron may profoundly

influence the activity of a recipient pyramid (Tamas et al. 2000, 2004). The typical

basket cell expresses PV and is fast-spiking (FS; Cauli et al. 1997; Gonchar and

Burkhalter 1997; Kawaguchi and Kubota 1997). FS basket cells are the most

common inhibitory cell type and comprise about half of all cortical inhibitory

neurons. In contrast, SST interneurons are dendrite targeting and most are

“Martinotti cells” (Kawaguchi and Kubota 1997; Wang et al. 2004; Xu and

Callaway 2009). Martinotti cells are regular spiking and have axons that typically

extend to layer 1, where they make connections onto the apical dendrites of

pyramidal cells. This observation led to the suggestion that Martinotti cells selec-

tively inhibit excitatory inputs that impinge on the apical tufts of pyramids. This

hypothesis was first suggested with respect to Martinotti cells in the hippocampus

(Somogyi et al. 1998) where they might selectively influence input from the

perforant path versus the Schaeffer collaterals that selectively target the

corresponding regions of CA1 pyramidal neurons. In the cortex, however, there is
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a much more diverse population of excitatory neurons of both pyramidal and spiny

stellate morphology, situated across multiple cortical layers. There are also diverse

sources of excitatory input onto apical dendritic tufts. Nevertheless, prominent

sources of input to the apical tufts of neocortical pyramidal neurons include

feedback connections from other cortical areas as well as local lateral axonal arbors

of other pyramidal neurons. These observations contributed to early hypotheses that

SST-expressing Martinotti cells might preferentially regulate feedback and lateral

influences, as tested in experiments described below. Taken together, even the

earliest observations of differences in the outputs of PV versus SST interneurons

suggested that PV-expressing basket cells have a global influence on pyramidal

neurons whereas SST-expressing Martinotti cells have a more selective influence

on inputs to apical dendrites.

PV and SST cells also differ in their sources of input. While PV cells in

superficial cortical layers receive strong feedforward excitatory input from layer

4, as well as recurrent connections from within layer 2/3, excitatory inputs to SST

neurons are dominated by layer 2/3 (Dantzker and Callaway 2000; Xu and

Callaway 2009; Adesnik et al. 2012). Further exploration of the excitatory inputs

to SST neurons shows that they collect local input over a longer lateral extent than

pyramidal neurons, but PV neurons were not explored (Adesnik et al. 2012).

Inhibitory inputs to PV neurons arise predominantly from layer 2/3 whereas SST

cells receive more balanced inhibition from layers 2/3 and 4 as well as layer

5 (Xu and Callaway 2009).

Visual Responses Because PV neurons are FS cells, they can be identified during

extracellular recordings in vivo. This ability has allowed their visual responses to be

measured in diverse species, including ferrets, cats, and monkeys and mice. How-

ever, observations of the visual responses of SST neurons have only been described

in mice, where they can be targeted genetically. In general, both PV and SST

neurons appear to have visual responses that reflect the combined responses of their

surrounding excitatory neurons. Thus, in species that have orientation columns, PV

neurons have orientation-selective visual receptive fields. However, in mice, which

lack orientation columns, PV and SST neurons are generally not orientation selec-

tive (Kerlin et al. 2010), apparently due to the indiscriminate collection of exci-

tatory inputs from orientation-selective excitatory neurons that are tuned to a

diversity of orientations. This connectional scheme fits with the functional role of

PV neurons in providing gain control (see below). By monitoring the activity of its

neighboring excitatory neurons, a PV neuron will increase its activity when the

local network is most active and then provide feedback inhibition to keep activity

levels under control. An important visual response feature that appears to be unique

to SST cells, however, is that their visual responses increase in magnitude as the

radius of a drifting grating stimulus increases (surround summation; Adesnik

et al. 2012). More typical cells, including PV cells and excitatory neurons, instead

display surround suppression (Adesnik et al. 2012). This feature of SST cells

appears to be a consequence of the prominent lateral inputs that these neurons

receive (see above) and has led to the hypothesis that they are the neurons
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responsible for generating surround suppression in other cell types (see further

details below; Adesnik et al. 2012).

Functional Impact The advent or Cre-driver mice combined with optogenetic tools

has allowed direct tests of the functional impact of SST and PV neurons on visual

responses. These experiments have demonstrated the importance of PV neurons in

gain control and SST neurons in mediating surround influences. As expected,

optogenetic activation of either inhibitory cell type results in decreased activity

within the local cortical network, and such decreases are most prominent when PV

cells are activated. For PV neurons, optogenetic activation decreases visual

responses of excitatory neurons without altering their orientation tuning (Atallah

et al. 2012; Lee et al. 2012). And when neurons are tested with visual stimuli of

increasing radius, PV neuron activation mimics the effects of reducing the contrast

of the visual stimulus; surround summation is observed rather than surround

suppression (Nienborg et al. 2013). All of these effects indicate linear influences

of PV cells and point to their role in controlling gain.

The functional influence of SST neurons, on the other hand, is non-linear. The

classic feature of “end-stopping” in cortical neurons (Hubel and Wiesel 1968) is

now better known as surround suppression. Here a visual stimulus presented in a

zone that does not by itself generate any visual response in the subject neuron

(outside the classical receptive field) can suppress the response to a stimulus within

the classical receptive field. This interaction is clearly non-linear in that the

response to the combined stimuli does not reflect the sum of the responses to the

stimuli when they are presented separately. Optogenetic activation of SST neurons

increases surround suppression in anesthetized animals where suppression is typi-

cally weak (Nienborg et al. 2013), and optogenetic inactivation of SST cells reduces

surround suppression (Adesnik et al. 2012). Therefore, SST cells clearly contribute

to the generation of surround suppression. It should be noted, however, that

surround suppression is also present in the input to the cortex and this suppression

is not prevented by cortical inactivation (Sceniak et al. 2006). Furthermore, inacti-

vation of SST cells does not completely eliminate surround suppression of

cortical neurons (Adesnik et al. 2012). Thus SST cells are likely responsible for

cortical contributions to surround suppression but cannot be responsible for the

suppression observed in the LGN input.

Calretinin (CR) and VIP-Expressing Interneurons Target

SST Interneurons

Historically, the first study to implicate a specific type of cortical inhibitory neuron

in local dis-inhibition was published by Meskenaite in 1997. This manuscript

combined electron microscopy (EM) and antibody staining to show that

CR-positive axon terminals in layer 2/3 of monkey V1 made 81 % of their contacts

onto GABAergic neurons, but in layer 5 only 20 % of the contacts were onto
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GABAergic neurons. The remaining 80 % of contacts in layer 5 were onto pyra-

midal neurons, where they formed strong basket-like synapses. Furthermore, these

contacts appeared to be biased toward large layer 5 pyramids (that project

sub-cortically and lack local projections to layer 2/3) rather than small pyramids

(that make dense recurrent projections to layer 2/3 and lack extrinsic projections in

primate V1; Callaway and Wiser 1996). Meskenaite suggested that “the

CR-immunoreactive neurons appear to have a dual function of disinhibiting super-

ficial layer neurons and inhibiting pyramidal output neurons in the deep layers.”

Meskenaite’s findings were closely followed by analogous EM experiments in the

rat visual cortex, showing a similar trend for CR+ axon terminals targeting inhib-

itory neurons in layer 2/3 and pyramids in layer 5 (Gonchar and Burkhalter 1999).

In view of this evidence, why is it that recent studies of disinhibition in layer 2/3

of mouse cortex have focused on VIP inhibitory neurons rather than CR neurons?

Prior to the emergence of the mouse as the most prevalent rodent model, studies in

rats had shown that PV, SST, and CR neurons make up three distinct and

non-overlapping cell groups in that species (Kawaguchi and Kondo 2002). Similar

antibody-labeling studies conducted in mice revealed that there was substantial

overlap between CR and SST expression (Xu et al. 2006), but that there was no

comparable overlap between VIP and SST (Xu et al. 2010). Thus, when Cre driver

lines became available to separately target gene expression to PV, SST, VIP, or CR

neurons (Taniguchi et al. 2011), VIP was favored over CR because of the ability to

target a population that was separate from PV or SST neurons. Studies of VIP

neurons have so far proceeded without concern for the known diversity of VIP cell

types, and the grouping of these cells into a monolithic population has appeared to

be justified by the striking differences in the connectivity and functional impact of

these cells when compared to PV or SST cells (Lee et al. 2013; Pfeffer et al. 2013).

However, it was already predictable from the published literature (Xu et al. 2006;

Caputi et al. 2009) that the CR-expressing subpopulation of VIP neurons preferen-

tially targets SST cells in layer 2/3 of mouse. Caputi et al. (2009) produced and

studied a mouse line in which GFP was expressed in CR neurons. They conducted

extensive paired recordings to evaluate the rate of connectivity between numerous

cell types, primarily focusing on the GFP-positive CR neurons. They noted that there

were two types of CR/GFP neurons in their material, bipolar and multipolar.

Remarkably, they found that the bipolar neurons had an astounding 76.4 % rate of

connectivity (13/17 pairs) onto the multipolar neurons in layer 2/3 but made con-

nections far less frequently onto layer 2/3 pyramids (11.6 %, 7 of 60). Connections

from layer 2/3 to layer 5 were not assessed in this study.While Caputi et al. appeared

not to appreciate it at the time, reporting the most salient observations only in a table,

the published literature clearly showed that their multipolar GFP neurons are

SST-expressing Martinotti cells, whereas their bipolar cells are CR positive and

SST negative (Xu et al. 2006). Thus, it is apparent that mouse CR bipolar cells

preferentially target SST neurons in layer 2/3. In this context, it is not entirely

surprising that later studies systematically investigating the connectivity of PV,

SST and VIP neurons found strong connections fromVIP neurons onto SST neurons

in layer 2/3 and not in layer 5 (Lee et al. 2013; Pfeffer et al. 2013). It remains unclear
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whether this is a feature of all VIP interneurons or only of the CR-expressing

subpopulation. Nevertheless, it would be surprising if there were not differences in

the connectivity and function of CR-positive versus CR-negative VIP interneurons.

Functional Impact of VIP Interneurons

Based on the preferential connections of VIP neurons onto SST neurons, it is

natural to predict that VIP neurons selectively regulate the impact of SST cells.

For example, conditions that increase VIP neuron activity might be expected to

inhibit SST cells, allowing greater influence from the lateral and feedback exci-

tatory connections that target the apical tufts of pyramidal neurons. On the

other hand, if the population of VIP neurons is diverse, the effects of manipulating

these cells might be less predictable.

Recent studies have demonstrated that VIP neurons in mouse visual cortex are

engaged during locomotion, apparently through a mechanism involving

locomotion-induced increases in cholinergic input to the cortex (Fu et al. 2014;

Reimer et al. 2014; Stryker 2014). However, rather than simply decreasing the

activity of SST neurons, locomotion appears to have diverse effects (Polack

et al. 2013; Reimer et al. 2014). These discrepancies might be related to the

diversity of VIP neurons or could be attributable to other unknown differences

in experimental methods. It is likely, however, that further dissection of the

VIP neuron population using intersectional genetic methods will help to resolve

these issues.
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Form Meets Function in the Brain:

Observing the Activity and Structure

of Specific Neural Connections

Karl Deisseroth

Abstract Recent advances in neuroscience have enabled increasingly detailed

insight into the activity and structure of brain circuitry. In previous work, we

have developed and applied methods for precisely controlling the activity of

specific cells and projections within neural systems during behavior (optogenetics).

Here I review distinct complementary technological approaches for observing

natural activity patterns in these cells and projections during behavior (fiber pho-

tometry) and for obtaining anatomical insights into the wiring and molecular

phenotype of these circuit elements within the intact mammalian brain

(CLARITY-optimized lightsheet microscopy). Together these approaches may

help further advance understanding of the circuit dynamics and wiring patterns

that underlie adaptive and maladaptive behavior.

Introduction

As we and others have noted (Tomer et al. 2014), a goal of modern neuroscience is

to map neural circuits with wiring-level resolution, with brainwide perspective, and

with knowledge of the natural and causal activity patterns occurring in these

circuits in the context of behavior. Principles fundamental to the understanding of

neural systems could result from such an integrative approach, but while progress

has been made, many challenges and opportunities remain. Here I review our recent

efforts to develop a recording technique sensitive enough to track the real-time

dynamics of genetically and topologically specified subsets of neuronal projections

in freely moving mice for direct in vivo measurement of a previously inaccessible

variable: the coordinated activity of neuronal afferents projecting to a particular

downstream target in the brain of a behaving animal (Gunaydin et al. 2014).

Complementing this technology for the observation of natural behaviorally evoked
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activity patterns, I review rapid light-sheet microscopy methods for the efficient

collection of high-resolution anatomical information within mammalian brains that

have been made transparent to light (and permeable to macromolecular labels) with

the CLARITY technology (Tomer et al. 2014). These two technologies can be

employed alongside optogenetic tools that, in turn, can define the causal roles of

these same projections in modulating behavior.

CLARITY

As we have described (Tomer et al. 2014), circuit wiring questions have attracted

attention from generations of scientists, beginning with Cajal’s detailed represen-

tations of neurons visualized at high resolution with the Golgi staining technique

while still embedded within semi-intact brain tissue. Over the last few decades,

electron microscopy (EM) has emerged as a foundational method for deciphering

details of neuronal circuit structure (Bock et al. 2011; Briggman et al. 2011). The

key advantage of EM in this regard (relative to light microscopy) is identification of

the presynaptic active zones containing neurotransmitter vesicles apposed to post-

synaptic structures. In addition, EM facilitates visualization of some of the very

finest branches of axons. However, EM tissue mapping requires relatively slow

steps involving ultrathin sectioning/ablation and reconstruction; most importantly,

the sample contrast preparation is largely incompatible with rich molecular

phenotyping that could provide critical information on cell and synapse type.

Ideally, datasets resulting from intact-brain mapping should be linkable to molec-

ular information on the types of cells and synapses that are imaged structurally and

even to dynamical information on natural activity pattern history (in these same

circuits) known to be causally relevant to animal behavior. Suitable light-based

imaging approaches, combined with specific genetic or histochemical molecular

labeling methods, have emerged as important tools to visualize the structural,

molecular and functional architecture of biological tissues, with a particularly

vital role to play in emerging brainwide, high-resolution neuroanatomy.

Confocal methods revolutionized light microscopy by enabling optical section-

ing in thick (tens of micrometers) fluorescently labeled samples, thereby allowing

3D reconstruction without the need for ultrathin physical sectioning (Conchello and

Lichtman 2005). Two-photon microscopy further increased the accessible imaging

depth (to hundreds of micrometers) even in living tissue samples (Helmchen and

Denk 2005), and adaptive-optics approaches have improved imaging depth further

(Tang et al. 2012). However, light microscopy remains limited for imaging

throughout intact vertebrate nervous systems (for example, mouse brains span

many millimeters even in the shortest spatial dimension and are opaque on this

scale, due chiefly to light scattering). A common work-around to this limitation has

been to slice brains into thin sections, in manual or automated fashion, followed by

confocal or two-photon imaging (Micheva et al. 2010; Ragan et al. 2012); however,

detailed labeling and reconstruction from thin sections have been (so far) limited to
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small volumes of tissue. An ideal integrative approach would be to label and image

entirely intact vertebrate brains at high resolution.

As a step in this direction, new methods have emerged to increase tissue

transparency (Dodt et al. 2007; Hama et al. 2011; Ke et al. 2013) by chemically

reducing the scattering of light travelling through the tissue sample. While intrigu-

ing and effective, these approaches are not generally suitable for detailed molecular

phenotyping, since most tissues (such as the intact mature brain) remain largely

impenetrable to macromolecular antibody or oligonucleotide labels (Kim

et al. 2013). In cases where pieces of soft tissue such as mammary glands can be

stained using hydrophobic clearing solutions that reduce lipid barriers to antibody

labeling (Ertürk et al. 2012), fluorophores become highly unstable or quenched in

the clearing process (a step that nevertheless must follow the antibody-staining

phase, as transparency is otherwise lost; Ertürk et al. 2012). These limitations

motivated the recent development of CLARITY (Chung et al. 2013; Kim

et al. 2013), which involves removal of lipids in a stable hydrophilic chemical

environment to achieve transparency of intact tissue, preservation of ultrastructure

and fluorescence, and accessibility of native biomolecular content to antibody and

nucleic acid probes. Subsequent screens for diverse hydrophilic lipid solubilization

compounds have been productive and can be integrated with CLARITY (Susaki

et al. 2014). The CLARITY technical platform enables multiple rounds of molec-

ular, structural and activity-history interrogation throughout intact adult mamma-

lian brains, which is relevant not only for neuroscience but also for research into

any intact biological system.

Clarifying Large Tissue Volumes

CLARITY (Chung et al. 2013) builds upon chemical principles to grow hydrogel

polymers from inside the tissue to provide a support framework for structural and

biomolecular content (Fig. 1). This is achieved first by infusing a cold (4 �C)
cocktail of hydrogel monomers (for example, acrylamide with bisacrylamide, but

other types of monomers may also be used; Chung et al. 2013), formaldehyde, and

thermally triggered initiators into the tissue, followed by polymerization of the

hydrogel at 37 �C. Formaldehyde serves the dual purposes of cross-linking amine-

containing tissue components to each other and covalently binding the hydrogel

monomers to these native biomolecules, which include proteins, nucleic acids and

other small molecules but not the vast majority of cellular membrane phospho-

lipids. After the hydrogel polymerization is triggered, lipids (responsible for

preventing access of both photons and molecular labels to deep structures) can

then be readily removed without destroying or losing native tissue components

using strong ionic detergent-based clearing solution (borate-buffered 4 % sodium-

dodecyl-sulfate) at 37 �C, either passively with gentle recirculation or with active

electrophoretic forcing (the latter greatly accelerates clearing but introduces some

experimental complexity and risk). The resulting lipid-extracted and structurally
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stable tissue-hydrogel hybrid is immersed in a refractive index homogenization

solution to render the intact brain transparent to light (Chung et al. 2013).

An additional feature of the stable hydrogel-tissue hybrid is that it can be

subjected to multiple rounds of molecular interrogation (Chung et al. 2013). Typ-

ically, immunohistochemistry methods only allow investigation of two to three

biomarkers at once in a tissue sample, but more simultaneous labels are required to

define cells in terms of precise molecular/genetic identity, wiring, and activity

history. This limitation is traditionally approached by combining information

from multiple samples into a standard reference atlas. However, this strategy fails

to fully phenotype individual cells, cannot capture the joint statistics among the

different kinds of labels within a single preparation, and suffers from 3D alignment

artefacts and variability among different individual tissue samples. By allowing

multiple rounds of histochemical labeling and elution in the same tissue, CLARITY

provides unusually rich access to molecular and structural information (Chung

et al. 2013).

This extensive lipid removal intrinsic to CLARITY appears to be essential not

only for transparency but also for achieving efficient antibody penetration through-

out intact brains; this stringent de-lipidation would normally be a destructive

process causing extensive loss of biological molecules (Chung et al. 2013), but it

Fig. 1 CLARITY pipeline overview. The tissue sample, e.g. an intact mouse brain, is perfused

with cold hydrogel monomer solution that contains a cocktail of acrylamide, bisacrylamide,

formaldehyde and thermal initiator. Formaldehyde mediates crosslinking of biomolecules to

acrylamide monomers via amine groups; the presumptive chemistry of this process is shown.

Hydrogel polymerization is initiated by incubating the perfused tissue at 37 �C, resulting in a

meshwork of fibers that preserves biomolecules and the structural integrity of the tissue. Lipid

membranes are removed by passive thermal clearing in SBC solution at 37 �C or by electropho-

retic tissue clearing (ETC). The resulting intact tissue-hydrogel hybrid can undergo multiple

rounds of molecular and structural interrogation using immunohistochemistry and light micros-

copy. A dedicated computational infrastructure is needed to analyze and store the data. Figure and

text adapted from Tomer et al. (2014)
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is enabled by the hydrophilic hydrogel-tissue hybrid in a way that also preserves

fine processes and ultrastructure even over multiple rounds of staining and elution

(Chung et al. 2013). Many variations are possible and will continue to be explored;

the “CUBIC” screen (Susaki et al. 2014) recently provided an intriguing diversity

of additional hydrophilic lipid solubilization reagents, including aminoalcohols that

can be used in CLARITY protocols (Susaki et al. 2014), though it was noted that the

aminoalcohol incubation leaves behind significant lipid content in the tissue (Susaki

et al. 2014), such that lipid-rich structures including white matter remain partially

opaque. Also, the approach may not allow antibody penetration for molecular

labeling and resolution of fine processes deeper than 0.5–0.8 mm into mature

brain tissue (Susaki et al. 2014). The ETC process (though not essential even for

whole-mouse-brain CLARITY, as in a typical 3-week passive-CLARITY approach

that achieves full transparency and antibody access) still accelerates de-lipidation

and might, therefore, help enhance an aminoalcohol approach to CLARITY, though

this remains to be seen and will depend on the size and charge of the resulting lipid-

containing particles.

CLARITY-Optimized Light Sheet Microscopy

Not only the speed of de-lipidation but also the speed of imaging is crucial for

CLARITY. While confocal and two-photon microscopes have been the workhorse

systems in volumetric imaging for the reasons described above, over the past two

decades light sheet fluorescence microscopy has emerged as a powerful approach

for high-speed volumetric imaging. Confocal and two-photon microscopies are

point-scanning techniques, detecting optical signals point-by-point to construct an

image. Confocal achieves optical sectioning by the use of a pinhole at the detection

focal plane to reject out-of-focus light, whereas two-photon utilizes the fact that

only simultaneous absorption of two photons results in fluorescence emission, an

event much more likely to occur at the point of highest light intensity in the sample

(the focal plane). Light sheet microscopy, in contrast, builds upon a 100-year-old

idea to illuminate the sample from the side with a thin sheet of light and detect the

emitted fluorescence signal with an in-focus orthogonally arranged objective

(Siedentopf and Zsigmondy 1903; Huisken and Stainier 2009). The optical section-

ing is achieved by the confinement of illumination to a selective plane, which

allows use of fast CCD or sCMOS cameras to capture the whole image simulta-

neously, and results in an increase of 2–3 orders of magnitude in imaging speed

compared to confocal and two-photon microscopy. Moreover, light sheet micros-

copy minimizes photo-bleaching by confining illumination to the plane of interest.

Taken together, these properties of light sheet microscopy may be well suited for

the imaging of large clarified samples, consistent with its previously demonstrated

utility for minimizing unnecessary illumination.

For high-speed collection of imaging data from large clarified volumes, COLM

is 100–1000 times faster than conventional scanning methods, leading to vastly
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decreased photo-bleaching (Tomer et al. 2014). The properties of COLM are not

only useful for mouse brains but also will be particularly relevant for maintaining

this high cellular and subcellular resolution at practical speeds in brains from

larger-brained organisms. The fast COLM approach described here for clarified

intact mouse brains maintains high resolution even 5–6 mm deep in tissue using the

0.95 NA objective; ultimate resolution in any light microscope, of course, remains

limited by the laws of diffraction (λ/2NA¼ ~180 nm), but the emergence of super-

resolution (or “diffraction unlimited”) imaging methods, such as STED/RESOLFT

and PALM/STORM, could in the future allow a further four- to fivefold improve-

ment in achievable resolution.

We assess the compatibility of clarified samples with light sheet, observing

greater than two orders of magnitude faster imaging speed (Tomer et al. 2014)

with minimal photo-bleaching results (Fig. 2). For example, it was possible to

image an entire mouse brain in about 4 h using a 10� magnification objective

and in about 1.5 days using a 25� objective, as opposed to many days and months,

respectively, with a confocal microscope. COLM is especially well suited for

interrogation of large tissue samples labeled with transgenic or histochemical

Fig. 2 Fast high-resolution imagingof clarifiedbrain usingCOLM.A3.15mm� 3.15mm� 5.3mm

volume acquired from an intact clarified Thy1-eYFP mouse brain using COLM with �25 magnifi-

cation; the brain had been perfused with 0.5 % acrylamide monomer solution. The complete image

dataset was acquired in ~1.5 h; for optimal contrast, the LUT of zoomed-in images was linearly

adjusted between panels (a) and (b), magnified views from the panel (c) region defined by yellow
squares (d–i), maximum-intensity projections of over a 50 μm-thick volume, as shown by the

progression of cyan and yellow boxes and arrows. A camera exposure time of 20 ms was used;

refractive index liquid 1.454 was used as the immersion medium. All scale bars: 100 μm. Figure and

text adapted from Tomer et al. (2014)
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approaches. The increased speed of acquisition and higher quality of data generated

via CLARITY using new microscopy methods, combined with high-speed CLAR-

ITY processing itself enabled by efficient tissue transformation protocols, define a

versatile and efficient platform for structural and molecular interrogation of large

and fully assembled tissues (Tomer et al. 2014).

As a final comment for future work, we note that very large datasets result from

this new capability for high-speed imaging of large tissue volumes at high resolu-

tion, and extensive innovation will be needed in image analysis and data manage-

ment (for example, if the intact 0.3 cm3 mouse brain is represented by

0.5� 0.5� 0.5 cubic-micron 16-bit voxels, at least 4.8 terabytes of raw data result).

Fortunately, big-data and high-performance computing have led to advanced

image-compression technologies such as JPEG 2000 3D, increased computational

capacity with GPU parallel computation technology, and cloud infrastructures

(such as Amazon S3) for data storage and sharing. We expect that the integration

and application of these methods to CLARITY (Tomer et al. 2014) will allow

increasingly complete access to, and understanding of, the molecular and structural

organization of large intact tissues.

Tracking Activity in Deep Genetically Targeted Neurons

of Behaving Animals

To observe not only the structure but also the real-time activity of specified neural

cells and projections, we developed a method termed fiber photometry, with a

simple design (only a single multimode optical fiber), suitable for recording from

deep brain structures and sensitive enough to detect activity changes not only in cell

bodies but also in axons during behavior, where signals are considerably smaller

(Gunaydin et al. 2014). This fiber photometry (light measurement with a single-

fiberoptic device sensitive enough to detect activity in axonal fibers) relies on a

lock-in amplifier and a high-sensitivity photoreceiver along with custom software

to record (through an implanted 400 μm optical fiber) the population activity of

neural circuit elements expressing a genetically encoded Ca2+ indicator (Fig. 3).

The single fiber allows chronic, stable, minimally disruptive access to deep brain

regions and interfaces with a flexible patchcord on the skull surface (Gunaydin

et al. 2014).

For cell type-specific recording of Ca2+ transients—a proxy for certain neural

activity—we injected a Cre-dependent adeno-associated virus (AAV) carrying the

GCaMP5g gene into VTA of transgenic TH::Cre mice and implanted an optical

fiber in VTA for simultaneous delivery of 473 nm excitation light and collection of

GCaMP5g fluorescence emission (Gunaydin et al. 2014). Activity-dependent fluo-

rescence emitted by cells in the volume was collected simultaneously; after prop-

agating back through the same patchcord used to deliver excitation light, this

fluorescence was spectrally separated using a dichroic, passed through a single
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band filter, and focused onto a photodetector. To first test if this system would be

capable of detecting VTA activity in a temporally precise manner, we recorded

Ca2+ signals in VTA neurons of TH-GCaMP mice given access to sucrose solution,

an established natural reward. Sucrose consumption was assessed using a contact

“lickometer,” which registered an event every time the mouse completed a circuit

from a metal spout to a metal operant chamber floor, time-locked to the Ca2+

recording. This setup enabled readout of the VTA response with temporal precision

on the order of milliseconds. VTA signals were tightly correlated in time with onset

of licking bouts and habituated over recording epochs (Gunaydin et al. 2014).

Neural Activity that Encodes and Predicts Social Interaction

Next we applied fiber photometry during same-sex social interaction. We recorded

from the VTA of female mice during home-cage social interaction, in which a novel

social target mouse was introduced into the test mouse cage for a 5-min epoch, and

video time-locked to the VTA GCaMP signal was collected (Gunaydin et al. 2014).

Upon introduction of the social target, we observed a marked increase in activity of

the targeted VTA neurons during interaction with this novel mouse. Such activity

was absent in the eYFP control, indicating that observed transients were Ca2+

Fig. 3 VTA-NAc projection activity encodes social interaction. Area plots, smoothed behavioral

score: %total Ca2+ peaks representing specific social target-related and novel-object behaviors

during VTA cell body (top) and VTA-NAc projection (bottom) fiber photometry (5 min; n¼ 10

and n¼ 11 mice, respectively). Arrows: target introduction. Note encoding of social interaction by
VTA cell body and VTA-NAc projection activity. Figure and text adapted from Gunaydin

et al. (2014)
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signals and not motion artifacts (Gunaydin et al. 2014). In separate trials, we

exposed test mice to a novel object placed in the home cage (counterbalanced

with novel-mouse exposure). Nevertheless, VTA activity in response to the novel

object resembled peak VTA activity during social interaction, with similar ampli-

tude (mean peak dF/F during interaction: 16.4 %� 2.1 % SEM for social, 13.7 %

� 1.4 % SEM for novel object, n¼ 10; Wilcoxon signed-rank test, p¼ 0.5).

While these data were consistent with hypothesized importance of the

VTA-NAc projection in social behavior, direct observation of endogeneous activity

in the projection during social behavior remained lacking. This would require

measuring a previously inaccessible but fundamental neural circuit quantity: native

activity in a specific projection during behavior. Fiber photometry was designed for

this technical challenge, and we next tested real-time tracking of Ca2+ transients in

genetically specified VTA inputs to NAc. Using TH-GCaMP mice, we implanted

an optical fiber in medial NAc to detect activity specifically in axon fibers

corresponding to the projection in question during home cage social interaction

and novel object investigation (Gunaydin et al. 2014).

We observed robust GCaMP signals across many social interaction bouts, demon-

strating that fiber photometry could be used to selectively record from neuronal

projections during behavior (Gunaydin et al. 2014). We observed smaller projection

activation to novel object (n¼ 11, Wilcoxon signed rank test, mean peak dF/F: 6.9 %

� 1.4 % for social, 3.5 %� 0.7 % for novel object, p¼ 0.016). Stronger encoding of

social than of object interactions by the VTA-NAc projection (not seen at the cell

bodies) supports the hypothesis that there are distinctly wired relevant subpopulations

of VTA neurons. We sought to capitalize on this ability to track projection activity

during behavior by probing in greater detail the encoding of specific behaviors by the

VTA projection to NAc (in comparison with activity in VTA cell bodies) using

multifactorial high-resolution quantitative behavioral assessment. We first employed

an automated peak-finding algorithm to detect all Ca2+ peaks throughout the 5-min

testing period, blind to mouse behaviors, for social and novel object conditions during

both VTA cell body and VTA-NAc projection recordings. Next we automatically

segmented video clips centered (�1 s) around the time of each Ca2+ peak and scored

video segments for interaction, approach, withdrawal, ambulation, grooming, rest,

burrowing, rearing, and head extension (Gunaydin et al. 2014).

Area plots of all VTA-DA Ca2+ peak times subdivided by behavioral category

(Fig. 3) allowed direct comparison of total peak activity over time attributable to

each category, including as a percent of total overall Ca2+ peak activity (Gunaydin

et al. 2014). In the social case, a larger proportion of total Ca2+ peak activity

occurred during interaction for VTA-to-NAc projections than for cell bodies,

supporting the conclusion that this projection more selectively encodes social

interaction than does the cell body signal. For novel object behavior, both cell

bodies and projections poorly encoded approach or interaction; interestingly, while

the VTA cell bodies seemed to strongly encode withdrawal from the object, the

VTA-NAc projection only weakly encoded this specific behavior (Fig. 3). Across

the entire 5-min testing period, VTA-NAc projections showed a decreased propor-

tion of Ca2+ peak activity (compared with VTA cell-body data) occurring during
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target-relevant behavior (accounted for by withdrawal) in the case of novel object

but not social behavior (Fig. 3). These data together support the conclusion that

VTA-NAc projection activity represents a signal with specific importance to social

behavior relative to object interactions (Gunaydin et al. 2014). Not only is this

projection-specific activity parameter especially predictive in behavior (Fig. 3) but

projection-specific activity is also in general particularly important for causal

elicitation of complex behaviors (Deisseroth 2014). Therefore, this new ability to

directly measure the activity of projections between brain regions provides a

potentially relevant source of data on the behaviorally significant dynamics of

information flow (Deisseroth 2014).

Outlook

We have developed and applied two new methods, fiber photometry and COLM,

for direct measurement of the activity and structure of specified neuronal afferents

projecting to a particular downstream target. Together, these results demonstrate

the integrative value of complementary optical techniques in causally mapping

specific projections and postsynaptic targets within neural circuitry. Projection-

specific optogenetic manipulations complement the specificity of fiber photometry

and COLM by enabling control of the corresponding projection dynamics. This

approach may suggest circuit-based targets for further research into physiological

or neuropsychiatric disease-related symptoms and may be generally applicable for

investigation of specific circuit elements in mammalian behavior.
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Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, Yokoyama C, Onoe H,

Eguchi M, Yamaguchi S, Abe T, Kiyonari H, Shimizu Y, Miyawaki A, Yokota H, Ueda HR

(2014) Whole-brain imaging with single-cell resolution using chemical cocktails and compu-

tational analysis. Cell 157:726–739

Tang J, Germain RN, Cui M (2012) Superpenetration optical microscopy by iterative multiphoton

adaptive compensation technique. Proc Natl Acad Sci USA 109:8434–8439. doi:10.1073/pnas.

1119590109

Tomer R, Ye L, Hsueh B, Deisseroth K (2014) Advanced CLARITY methods for rapid and high-

resolution imaging of large intact tissues. Nat Protoc 9:1682–1697

Form Meets Function in the Brain: Observing the Activity and Structure of. . . 29

http://dx.doi.org/10.1038/nature09802
http://dx.doi.org/10.1038/nature09818
http://dx.doi.org/10.1038/nature12107
http://dx.doi.org/10.1038/nmeth815
http://dx.doi.org/10.1038/nmeth1036
http://dx.doi.org/10.1038/nprot.2012.119
http://dx.doi.org/10.1038/nn.2928
http://dx.doi.org/10.1038/nmeth818
http://dx.doi.org/10.1242/dev.022426
http://dx.doi.org/10.1038/nn.3447
http://dx.doi.org/10.1016/j.tics.2013.10.005
http://dx.doi.org/10.1016/j.neuron.2010.09.024
http://dx.doi.org/10.1038/nmeth.1854
http://dx.doi.org/10.1073/pnas.1119590109
http://dx.doi.org/10.1073/pnas.1119590109


The Network for Intracortical

Communication in Mouse Visual Cortex

Andreas Burkhalter

Abstract New techniques for identifying cell types, tracing their synaptic partners,

imaging and manipulating their activity in behaving organisms have made mice a

widely used model for linking brain circuits to behavior. Most behaviors are tied to

vision: identifying objects, guiding movements of body parts, navigating through

the environment, and even social interactions. Reason enough to focus on the

mouse visual cortex. To find our way around in the occipital cortex, we needed a

map. We took a classic approach and traced in the same animal the outputs from

multiple retinotopic sites of primary visual cortex (V1) and compared the relative

location of projections in the extrastriate cortex. We found nine extrastriate maps

and showed by single unit recordings that each of the connectional maps contained

visually responsive neurons whose receptive fields were mapped in orderly fashion

and completely covered the visual field. Remarkably, a tiny region of one sixth of a

dime contained a two- to three-times larger number of areas than the highly

developed somatosensory and auditory cortices. By tracing the connections, we

found that each of the ten visual areas projected to 25–35 cortical targets and

interconnected virtually all of the areas reciprocally with one another. Although

the binary graph density of the connection matrix was nearly complete, the con-

nection strengths between areas within the ventral and dorsal cortex differed,

indicating that the information from V1 flowed into distinct but interconnected

streams. Unit recordings and calcium imaging studies showed that the ventral and

dorsal streams processed different spatiotemporal information, which aligned with

known properties of streams in primates. Analyses of the laminar patterns of

interareal projections showed that areas were organized at multiple levels,

suggesting that each stream represented a processing hierarchy.
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Introduction

Over the past decades, neuroscience research has shown that sensory inputs are

processed at multiple locations distributed across the brain. These regions do not

encode specific mental faculties but are responsible for specific unitary operations

(Kandel and Hudspeth 2013). Cognition arises in a network of serial and parallel

pathways between functionally discrete units, each responsible for elements—but

not all aspects—of a given function. Although the tenet of functional localization

holds that neural processing is modular, the structure of the underlying network and

the rules of interareal communication are not well understood. Thanks to the

development of powerful new tools for recording, labeling and genetically manip-

ulating brain circuits, the mouse visual system has emerged as a tractable system in

which these questions can be addressed with unprecedented precision (Luo

et al. 2008; Huberman and Niell 2011; Oh et al. 2014; Zingg et al. 2014).

Mice are most active at night and rely heavily on their whiskers for recognizing

objects and their ears and noses for hearing and social communication (Holy and

Guo 2005; Jadhav and Feldman 2010; Stowers et al. 2013). When starved for food,

mice are diurnal and use dichromatic vision for guiding their actions in the field

(Jacobs et al. 2004; Daan et al. 2011; Baden et al. 2013). Through their small eyes

with afoveate retinas, the world looks blurred and lacks the rich detail experienced

by humans, whose vision is 100 times sharper. At close range, however, the acuity

of 0.5 cycles/deg is sufficient to resolve landmark features that can be used for

referencing locomotion-dependent path integration signals during spatial naviga-

tion (Prusky et al. 2000; Prusky and Douglas 2005; Chen et al. 2013). In fact,

experiments on visual object recognition have shown that rats, and presumably

mice, can use invariant shape information to identify landmarks from a variety of

different viewing angles (Alemi-Neissi et al. 2013). These studies demonstrate that

mice process multiple complex visual cues and associate them with motor actions.

Many of these computations are performed in interconnected cortical and subcor-

tical networks, bringing up the questions of what the architecture of these networks

is and how do functionally distinct areas communicate with each other.

Thalamocortical Projections to Mouse Visual Cortex

The visual cortex receives thalamic input from the lateral geniculate (LGN) and the

lateral posterior (LP) nuclei. LGN inputs to V1 terminate most densely in layers

3 and 4, and more sparsely in layer 1 and at the layer 5/6 border (Dräger 1974;

Antonini et al. 1999). In addition, sparse projections from the LGN terminate in the

lateral extrastriate areas but avoid medial extrastriate cortex (Antonini et al. 1999).

V1 also receives thalamocortical inputs from LP, which terminate in layers 1 and

5. LP inputs to surrounding extrastriate cortex terminate in layers 1, 3, 4 and

6 (Hughes 1977; Herkenham 1980). Although the extrastriate target areas of
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these connections were not positively identified, the results show that

thalamocortical inputs from thalamic relays are deployed to V1 as well as to

surrounding extrastriate cortex (Sanderson et al. 1991). With this thalamocortical

input in place, it is not surprising that expression of the activity-dependent imme-

diate early gene, Arc, shows that much of the thalamorecipient cortex is driven by

visual input (Burkhalter et al. 2013).

Cortical Cartography

Inspired by the emerging field of genetics of the mouse brain (Sidman et al. 1965),

Caviness (1975) rang in the modern era of mouse cartography. Refining the surface-

based maps of lissencepahlic mouse cortex constructed by the classic

‘cytoarchitects’ (Woolsey 1967), Caviness introduced the flatmap format that

displayed the cortex in a single map that preserved the natural topology of parcels

(Van Essen 2013). In this map, 26 neocortical parcels were identified and, for the

first time, clearly showed the shape and extent of V1, including the surrounding

extrastriate areas 18a and 18b. A more detailed surface-based map based on the

Allen Reference Atlas identified 34 cytoarchitectonic parcels (Dong 2008; Ng

et al. 2010), which is similar to the 37 parcels identified in a widely used slice-

based atlas by Franklin and Paxinos (2007). Using a variety of histochemical and

immunological markers in tangential sections of physically flattened cortex, we

were able to identify only 23 parcels, but many with much greater confidence than

possible with the classic Nissl stain (Wang et al. 2011, 2012). Notably, our

parcellation scheme falls short in the auditory, posterior parietal and visual cortices,

which are at the very locations in which we found multiple topographic maps

(Wang and Burkhalter 2007). Thus, it appears that some of the areas annotated in

the atlases are inspired by our area map, but in reality their borders are too subtle to

be identified with confidence by cytoarchitectonic criteria.

Areal Organization of Visual Cortex

Early topographic mapping studies using microelectrodes showed that extrastriate

cortex surrounding V1 contains multiple orderly maps of the visual field (Dräger

1975; Wagor et al. 1980). The conclusion from the layout of the visuotopic maps

was that V1 is adjoined on the lateral side by area V2, which is flanked by V3. On

the medial side, V1 is adjoined by two additional maps, a rostral area Vm-r and a

caudal area Vm-c (Wagor et al. 1980). This primate-inspired areal layout was soon

challenged by the discovery that V1 projection targets vastly outnumbered the

reported visuotopic areas (Olavarria and Montero 1989). In the eyes of some

investigators, the mismatch argued against an organization in which V1 was

surrounded by a string of areas and favored a scheme in which the projection
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patches represented inputs to distinct modules within a single area (Kaas

et al. 1989). With rodents rapidly taking center stage in neuroscience, the time

was ripe to revisit the issue. By labeling the connections of two to three distinct

visuotopic locations of V1 with different tracers in the same animal, making side-

by-side comparisons of projections in extrastriate cortex and mapping receptive

fields, we produced maps of rat and mouse visual cortex (Coogan and Burkhalter

1993; Wang and Burkhalter 2007; Fig. 1). In both species we found maps that

strongly argued against the primate-inspired scheme proposed by Wagor

et al. (1980), in which a single large area surrounded lateral and rostral V1. Instead,

Fig. 1 Area map of mouse visual cortex. Tangential section through flatmounted left cortical

hemisphere stained with an antibody against the muscarinic type 2 acetylcholine receptor. The

different colors indicate different quadrants of the right visual field. Abbreviations: A anterior area,

AL anterolateral area, AM anteromedial area, LI laterointermediate area, LM lateromedial area, V1
primary visual cortex, P posterior area, PM posteromedial area, POR postrhinal area, RL
rostrolateral area, A Anterior, L lateral, M medial, P posterior
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the results showed an organization in which V1 was surrounded by a string of small

areas that each contained a complete map of the visual field. This finding suggested

that ancestral cortex had a complex organization and that select areas identified in

primates might be homologous to primordial extrastriate areas in rodents (Rosa and

Krubitzer 1999). One of these may be the lateromedial area (LM), which is the only

area that shares the vertical meridian with V1 and, for that reason, resembles V2 in

primates (Allman and Kaas 1971). But, unlike V2, which has a split horizontal

meridian representation, the map in LM is topologically equivalent to the visual

field. In fact, this is true for every visuotopic map we have identified, which all

show that the margins of the visual field are mapped along the areal borders. To

minimize the length of the connections between areas, matching topographic

locations in different maps are aligned across shared borders. One of the lessons

from these studies is that extrastriate cortex surrounding V1 contains a larger

number of areas than annotated in widely used atlases (Franklin and Paxinos

2007; Dong 2008) and employed as references for the mesoscale connectome

(Oh et al. 2014; Zingg et al. 2014). It is important to note that, except for the V1

border, which is readily detected in Nissl-stained sections, the cytoarchitecture of

the surrounding extrastriate cortex is remarkably uniform. The single exception is

the LM/anterolateral area (AL) border, which can be identified by Nissl staining but

only when the eyes are keyed to the cytoarchitectonic transition, highlighted by the

expression of the muscarinic type 2 acetylcholine receptor (Wang et al. 2011).

However, perhaps the most surprising result is that the mouse visual cortex, which

is one third the size of barrel cortex, contains at least ten areas, seven more than the

somatosensory cortex. One interpretation of the unexpected multitude of visuotopic

maps is that vision for perception and for guiding motor actions arises from a larger

number of unitary operations than somatosensation and that these elementary

processes are represented in different visual areas.

Interareal Connections

To study the interareal network of visual cortex, we injected the anterograde tracer

biotinylated dextran amine (BDA) into ten areas, which we identified by their

location relative to callosal landmarks (Wang et al. 2012). Projections to 40 targets

were identified based on a combination of cytoarchitectonics and the expression of

various molecular markers. The projection strength of each pathway was deter-

mined by the optical density of labeled axon branches and terminals in the target

zone relative to the total output. Earlier studies have shown that optical density is

tightly correlated with bouton density (Wang et al. 2011). The results of the 10� 40

connectivity matrix show 307 of 390 possible linkages (79 %), which accounts for a

13 % higher graph density than in the macaque cortex (Markov et al. 2013). The

connection density within the visual cortex proper is even higher, showing that

virtually all of the ten visuotopically organized areas are interconnected recipro-

cally with one another (Wang et al. 2012). The connection strengths span at least
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three orders of magnitude, showing a long-tailed distribution with small numbers of

strong and a large numbers of weak connections. Although the connection strength

in mouse cortex varies over a narrower range than in macaque (Markov et al. 2011),

the lognormal distribution found in both species indicates that the fundamental

principles of cortical connectivity are evolutionarily conserved.

In primates, visual information is processed in dorsal and ventral cortical

streams specialized for ‘where’ an object is located or for guiding actions and

‘what’ an object is (Ungerleider and Mishkin 1982; Goodale and Milner 1992). If

such streams exist in mice, how do they arise from a network with seemingly low

binary specificity? One way this might be achieved is by routing the flow of

information through pathways with different connection strengths. Consistent

with this notion, we found that each source area of visual cortex had a unique

profile of connection strengths. We assessed between-area similarities and found

that the projection strengths among dorsal and ventral networks were distinct. The

dorsal network consisted of areas AL, rostrolateral area (RL), anteromedial area

(AM), posteromedial area (PM) and anterior area (A), whereas V1, LM, lateroin-

termediate area (LI), postrhinal area (POR) and posterior area (P) were grouped in

the ventral network (Wang et al. 2012). Although streams were revealed in the

graph of cortex-wide connections, we wondered whether they were present in the

10� 10 connectivity graph of visuotopically organized areas. The graph of projec-

tion strengths clearly grouped areas into dorsal (i.e., AL, RL, AM, PM, A) and

ventral (i.e., V1, LM, LI, POR, P) communities in which connections within

modules were twice as strong as those between modules. Within modules, the

shortest pathways were always direct. By contrast, the shortest pathways between

modules were often indirect, which means that the combined strength of the indirect

path was stronger that the direct path. Thus, for communication between modules,

the most effective path may be indirect. Interestingly, not a single short path linking

the two modules travels through V1, indicating that, similar to cat and monkey

(Sporns et al. 2007), V1 is not a network hub for interareal communication. Instead,

judged by the number of connections, this role belongs to area LM. Although lower

in the hierarchy than monkey V4, which has a similar status in the network, LM

may play a critical role in integrative processing of visual information.

Cortical Hierarchy

The idea that hierarchical relationships between areas of mouse visual cortex can be

derived from the laminar organization of connections goes back to analyses of

primate cerebral cortex (Felleman and Van Essen 1991; Markov et al. 2014). In

monkey, it was noticed that many reciprocal connections consisted of feedforward

projections terminating in layer 4 and feedback projections terminating outside of

layer 4. Such asymmetrical linkages are present between most reciprocally

connected pairs of cortical areas. In rat and mouse, reciprocal interareal connections

share many of the features found in primate (Coogan and Burkhalter 1990, 1993;
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Dong et al. 2004a). However, unlike in primates, feedforward axonal projections

from V1 are not restricted to layer 4. Instead, the projections terminate in a column

across all layers. Importantly, however, feedforward connections always include

layer 4. In contrast, feedback projections from surrounding extrastriate cortex to

layer 4 of V1 are extremely sparse and preferentially terminate in layers 1, 2, 3, 5

and 6. Thus, the asymmetry in the innervation strength of layer 4 is the hallmark

feature of reciprocal interareal connections. While these are striking similarities to

feedforward and feedback connections in monkey, it is important to note that the

columnar pattern of feedforward connections in rodents differs from that in mon-

key, which is restricted to layer 4. In fact, rodent feedforward connections resemble

more closely the lateral connections in monkey (Felleman and Van Essen 1991). A

likely reason for this difference is that feedforward connections in rodents originate

from layers 2–6 (Coogan and Burkhalter 1988), whereas, in monkey, layers 2 and

3 are the main sources of these connections (Felleman and Van Essen 1991). From a

developmental perspective, Dehay and Kennedy (2007) have argued that layers

2 and 3 in primates are different from layers 2 and 3 in mice, which lack the

computational components of primate cortex. Abandoning input from deep layers

in feedforward connections and increasingly relying on inputs from layers 2 and

3 may be a structural manifestation of the superior sophistication in interareal

communication in primates.

In primates, different hierarchical levels are associated with different stages of

visual processing (Felleman and Van Essen 1991). One way stimulus complexity is

expressed is by the convergence of input reflected in the size of receptive fields.

Recordings in mouse visual cortex show that receptive fields in V1 are small

(10 deg) and increase across different extrastriate visual areas to reach a size that

covers most of the visual field (Wang and Burkhalter 2007). Indirect support for an

areal hierarchy also comes from the pattern of subcortical connections. For exam-

ple, only areas V1 and LM receive input from the main afferent LGN nucleus

(Oh et al. 2014). Thalamocortical inputs to all other visual areas originate from the

LP nucleus (Oh et al. 2014). In addition, projections from V1 to the superior

colliculus terminate in the most superficial sensory layers, whereas the outputs

from higher areas are sent to deeper visuomotor layers (Coogan and Burkhalter

1993; Wang and Burkhalter 2013).

Synaptic Organization of Feedforward and Feedback

Connections

Signatures for a cortical hierarchy are also observed in the distinct synaptic

connectivity of feedforward and feedback connections. Both types of interareal

connections are made by excitatory, glutamatergic pyramidal cells (Johnson and

Burkhalter 1994; Domenici et al. 1995; Dong et al. 2004b), whereas long-range

projections of GABAergic neurons are negligible (McDonald and Burkhalter 1993;
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but see Caputi et al. 2013). In rat and mouse, feedforward and feedback connections

to higher (i.e., LM) and lower visual areas (i.e., V1) provide monosynaptic input to

pyramidal cells and GABAergic neurons (Dong et al. 2004b). Among the targets in

layers 2 and 3, we found a handful of somatostatin- and calretinin-expressing

interneurons but the vast majority of GABAergic cells expressed parvalbumin

(Gonchar and Burkhalter 1999, 2003). Thus, in the target region, responses of

pyramidal cells to excitatory feedforward and feedback inputs are influenced by

disynaptic feedforward inhibition from parvalbumin neurons. Although the laminar

projection pattern of feedforward and feedback circuits are distinct (Dong

et al. 2004a), structurally the circuits for feedforward inhibition are similar in

both pathways (Gonchar and Burkhalter 1999). Physiologically, however, the

responses of pyramidal cells to feedforward inputs are opposed by stronger inhibi-

tion than the responses to feedback inputs (Shao and Burkhalter 1996; Dong

et al. 2004b). The reasons for the pathway-specific excitatory/inhibitory balance

are that feedforward inputs to parvalbumin-expressing neurons are relatively stron-

ger than to pyramidal cells whereas feedback inputs to both types of cells are

similar (Yang et al. 2013). The stronger excitation of parvalbumin neurons is

probably due to signaling via calcium-permeable GluR2-lacking AMPA receptors

that elicit large quantal amplitude responses with fast kinetics (Hull et al. 2009). By

contrast, feedforward inputs to pyramidal cells are mediated by slow, small-

amplitude AMPA receptors (Hull et al. 2009). The result of the fast/large amplitude

AMPA-mediated currents at feedforward inputs onto parvalbumin-expressing neu-

rons is that feedforward inhibition is initiated reliably and in a precisely timed

manner. In contrast, small amplitude and slower AMPA-mediated currents at

feedback synapses facilitate integration of convergent inputs onto pyramidal neu-

rons. The motif of feedforward inhibition not only balances excitation but influ-

ences circuit gain and dynamics (Kepecs and Fishell 2014). We can only speculate

what effects diverse feedforward inhibition might have on the processing of visual

signals in feedforward and feedback circuits. In the static mode, feedforward

circuits are good for selecting correlated inputs. Computational modelling has

shown that this enhances stimulus detection and improves the accuracy of stimulus

representation, whereas, in the default mode, the feedback circuit may improve

response probability to sensory input (Kremkow et al. 2010). However, when

top-down attention is focused on a stimulus, the excitatory/inhibitory balance

may change and improve the accuracy of stimulus detection (Wang et al. 2013).

Dorsal and Ventral Processing Streams

Motivated by the perplexing number of visual areas and their striking connectivity

within hierarchically organized dorsal and ventral streams, it was natural to search

for analogies to the distributed processing within ‘where’ and ‘what/action’ streams

of primates (Ungerleider and Mishkin 1982; Goodale and Milner 1992). The

proposal that rat cortex contains distinct streams that are specialized for visual
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guidance and object recognition was made almost 25 years ago (Kolb 1990). Since

then, numerous studies have shown that deficits in pattern discrimination were

associated with lesions in lateral extrastriate visual cortex, whereas damage to

cortex anterior and medial to V1 affected polysensory integration and spatial

navigation (Kolb and Walkey 1987; Wong and Brown 2006; Torrealba and Valdes

2008; Zhang et al. 2010). But the lesioning techniques used in these studies did not

afford the spatial resolution for linking the behavioral deficit unequivocally to

specific areas, a problem that will likely be overcome by optogenetic approaches

(Lien and Scanziani 2013). Recently, significant progress was made by two-photon

imaging of calcium transients in upper layer neurons of multiple areas in mouse

visual cortex (Andermann et al. 2011; Marshel et al. 2011; Roth et al. 2012). These

recordings showed that tuning to high spatial frequency was more common in LI

than in AL, RL and AM, which are more selective for high temporal frequency and

the direction of motion. Although these findings are broadly consistent with the

concept that ventral stream areas are specialized for image detail and dorsal stream

areas preferentially respond to transient inputs (Van Essen and Gallant 1994), the

results show inconsistencies. For example, neurons of the ventral stream area, LM,

have low spatial acuity and are tuned to high temporal frequencies. It is possible

that, similar to V2 of primates (Nassi and Callaway 2009), LM consists of func-

tionally distinct compartments and the true response properties were masked by

averaging across modules. Further, counter to the prediction, neurons in the dorsal

stream area, PM, have high spatial acuity and prefer longer-lasting, slow moving

objects. One way to explain these inconsistencies is that high spatial acuity and

sensitivity to slow visual motion recorded in PM provides landmark information,

which is used to calibrate distance and direction signals from locomotion used for

path integration (Harvey et al. 2012; Saleem et al. 2013).

Although distinct streams are observed in the cortex, functionally distinct

channels emerge from the retina, are present in the LGN and can be traced

throughout the afferent visual pathway to V1 (Piscopo et al. 2013; Cruz-Matin

et al. 2014; Dhande and Huberman 2014). In V1, neural responses represent a

weighted combination of inputs from parallel afferent geniculocortical pathways

and feedback inputs from higher cortical areas with distinct spatiotemporal prop-

erties (Gao et al. 2010). From V1, impulses are sent to different areal streams. The

question then is whether the functional differences arise in V1 or are generated in

the dorsal or ventral areas to which V1 sends its output. To address this question,

Glickfeld et al. (2013) labeled striate cortical inputs from V1 with the calcium

indicator GCaMP3.3 and imaged calcium transients in axon terminals projecting to

LM, AL and PM. The results show that the visual preferences of each projection are

different and matched those of neurons in the target area, suggesting that each area

inherits the response properties from functionally specialized neurons in V1. The

important conclusion of this work is that different V1 neurons transmit information

tailored to its projection target. This organization is consistent with our observation

that individual V1 neurons largely lack collateral projections and project to single

area of extrastriate cortex (Wang and Burkhalter 2005). More recently, similar

results have been reported in the connectivity between V1, LM and AL, supporting
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the idea that interareal transmission relies on dedicated neuronal connections

(Berezovskii et al. 2011). The overall conclusion of these studies is that the binary

specificity of the network of interareal connection might be much greater than

indicated by pathway tracing of connections with tracers that lack cellular

specificity.
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Kenneth Knoblauch, Mária Ercsey-Ravasz, Henry Kennedy,

and Zoltán Toroczkai

Abstract Recent connectomic tract tracing reveals that, contrary to what was

previously thought, the cortical inter-areal network has high density. This finding

leads to a necessary revision of the relevance of some of the graph theoretical

notions, such as the small-world property, hubs and rich-clubs that have been

claimed to characterize the inter-areal cortical network. Weight and projection

distance relationships of inter-areal connections inferred from consistent tract

tracing data have recently led to the definition of a novel network model, the

exponential distance rule (EDR) model, that predicts many observed local and

global features of the cortex. The EDR model is a spatially embedded network

whose properties are determined by the physical constraints on wiring and geom-

etry, in sharp contrast with the purely topological graph models used heretofore in

the description of the cortex. We speculate that, when diving down to finer levels of

the embedded cortical network, similar, physically constrained descriptions of

connectivity may prove to be equally important for understanding cortical function.

Introduction

There has been a recent upsurge of interest in the connectome, leading to three

major tract-tracing studies of cortical connectivity in the mouse and macaque that

have important implications for understanding the human brain (Markov

et al. 2014b; Oh et al. 2014; Zingg et al. 2014). These studies are unique as they
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provide weighted and directed matrices of the cortex. They differ from previous

anatomical work in that they are specifically aimed at providing spatial and

strength/weight characteristics of the connections between areas, as well as pro-

viding a complete picture of connectivity based on consistent data bases rather than

the fragmented investigations of earlier studies (Kennedy et al. 2013). The novel

approach of these studies leads to capturing many weaker but consistent, long-range

connections, resulting in a larger number of inputs to a given area and consequently

a much denser cortical graph (i.e., density in terms of connections expressed as a

percentage of the maximum possible connections). Such high-density graphs have

important implications for the models that can be considered representative of the

cortex. These studies collectively reinforce an emerging viewpoint of cortical

connectivity in which principles of organization are constrained by distance and

weight and which deeply contrasts with prevailing models that are purely topolog-

ical and binary (i.e., connections expressed as existing or not) in nature. The high-

density graph suggests that the specificity of the connectivity of cortical areas will

be found in differences in the weights of individual links, or within sparse subsets

(subgraphs) of the network distinguished by specific properties such as projection

lengths. Indeed, it has been recently shown that weight heterogeneity is a salient

feature of cortical connectivity and that it ranges over five orders of magnitude in

strength (Markov et al. 2011b, 2014b; Oh et al. 2014). Earlier studies suggested that

the functionality of an area was defined by a characteristic connectivity profile or

fingerprint (Felleman and Van Essen 1991). This intuition proved to be correct but,

given that cortical areas project to or receive input from between 30 and 90 % of all

areas (Markov et al. 2014b; Oh et al. 2014; Zingg et al. 2014), it turns out that the

specificity of the connectivity profile largely depends on the differences in weight

values (Markov et al. 2011b).

The Promise of Network Theory

Over the last 15 years, advances in our characterization of connectivity across the

cerebral cortex have greatly benefitted from exploiting developments in network

science, an application of the mathematical theory of graphs to complex real world,

natural and man-made networks (Newman 2010), permitting us to consider cortical

structure in the light of canonical network (graph) theoretical models.

Although graph theory can be dated back to the solution of the K€onigsberg
Bridges puzzle by Leonhard Euler in 1736, its applications to real-world phenom-

ena started to take off only about two decades ago, mainly due to advancements in

digital data recording and computation. A graph is a mathematical representation of

the relationships/interactions within a set of objects (of any nature) called “nodes”

(drawn as points), with the relationship between two nodes symbolized by a line

segment called an “edge” or “link” connecting the nodes. If two nodes are not in

interaction, the edge between them is missing. Prior to the “big data” revolution in

networks, graph theory evolved on purely mathematical grounds, focusing on either
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small or regular graphs, or purely random graphs, such as binomial random graphs,

often referred to as Erdős-Rényi (ER) random graphs. In an ER random graph,

every pair of nodes is connected with a given constant probability p, independently
of other connections, and thus it is a homogeneous random structure. In the late

1990s, scientists started looking at graph representations of real-world networks

and found that, in general, these did not conform to the types of graphs studied

earlier by mathematicians, which were primarily introduced for reasons of mathe-

matical tractability rather than in an effort to describe real-world systems. It is

important to mention, however, that the language of graph theory, its mathematical

tools and methods are still applicable; only the models have to be changed to

describe real-world networks. There have been thousands of real-world networks

studied with graph theory methods, such as various social networks, communica-

tion networks, including networks of computers (Internet) and of linked web pages

(www), and networks in biology, including gene transcription, cell signaling,

metabolism, neuronal networks and networks of trophic interactions. These have

led to two main and influential schools of observations regarding real-world

networks and the subsequent surge of graph theoretical models conforming to

those observations. One of them, originating from social networks, is the

so-called small-world (SW) property, introduced by Watts and Strogatz (1998);

the other, mainly originating from technological and biological networks, is the

so-called scale-free (SF) property introduced by Barabasi and Albert (1999).

The SW Property A network or graph is said to have the SW property if it has high

clustering and a small average path length. Path length between two nodes in the

graph is measured as the smallest number of edges (number of hops) necessary to

go from one node to the other, and the average shortest path length is simply an

average of such shortest paths over all node pairs that can be reached from one

another in the graph. It is a purely topological measure in a given graph; it is

independent of physical characteristics (such as physical distances or actual spatial

positioning). The word “small” in the SW property comes from the fact that the

average shortest path length is scaling only logarithmically with the number of

nodes, i.e., almost all pairs of nodes are separated by a very small number of hops

along edges (inspiring the “six degrees of separation” phrase in popular parlance).

This short-path length property also holds for ER random graphs. What is drasti-

cally different from the ER graph, however, is that the SW property implies high

clustering (which is vanishingly small in large ER graphs). Clustering refers to the

level of incidence of connectivity among the members of a node’s network neigh-

borhood (measured by the frequency of triangles). A typical network with the SW

property is the social network, where paths are short and clustering is high, simply

because the acquaintances of a person tend to also become acquainted over time.

Note that the SW property is only a property; it does not define a graph or a model.

Watts and Strogatz (1998) introduced a simple method to test whether a network

has the SW property: given a real-world network, one randomly rewires its edges

(i.e., the total number of edges is held constant, only the connectivity is random-

ized) and measures the average path length and the clustering coefficient in the
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randomized network. If the average path length does not change significantly, but

the clustering coefficient drops significantly in the randomized network (which is

essentially an ER graph), the original network has the SW property.

The SW property provides a potentially attractive feature of how the brain may

support high modularity for functionally specialized computations while

maintaining efficient communication across the brain for global integration. Interest

in the SW property has led to the search for other features in the cortical circuitry

that could be present in other real-world network models, such as the SF property,

the presence of hubs (areas with significantly many more incident connections than

others) and, more recently, preferential connectivity among hubs, referred to as a

rich-club.

The SF Property A network is said to have the SF property if the histogram of the

number of connections (called degree) of its nodes is heavily skewed (has a heavy

right tail), well approximated by a power law. Such networks are characterized by

the existence of a small number of hubs, which are nodes that connect to a

significant fraction of all the other nodes (they are high degree nodes). Networks

with SF property have been found in communications (Internet, www), citation

networks, sexual interactions, metabolism, electronic circuits, and subroutine calls

in large software packages. Network hubs channel many pathways between the

nodes and thus they have a heightened importance and control over the rest of the

network. It then becomes an interesting question whether these hubs are preferen-

tially interconnected (more than just by random chance), forming a so-called rich-

club, or, on the contrary, whether hubs are separated by lower degree nodes.

It is important to note that the SW and the SF properties are independent. There

are networks in which one is present but not the other, or both, or none. While

networks with the SF property have short (or ultra-short) average path length, they

may have very low clustering (even zero), thus not qualifying as SW, and networks

with the SW property can have arbitrary degree distributions, thus not qualifying as

SF. One common feature for all the networks in which these properties were studied

is that they were all sparse networks. A network is sparse when its density is very

low. The density of a graph is measured as the ratio ρ between the number of edges

M found in the network and the maximum number of edges it could have, which in

directed networks is N(N�1), where N is the number of nodes. In a sparse but

connected network,M is on the order of N and thus ρ is on the order of a very small

number for large networks. For the whole social network, this is 10�7 or 10�5 %

density! For dense networks, however, their graph theoretical properties are entirely

different from those in sparse graphs and they need other approaches for their study,

as discussed below.

Finally, while properties such as SW, SF, and the presence of hubs or a rich-club

have functional implications for the networks, they do not constitute network

models, i.e., they do not provide falsifiable predictions about other properties

(as discussed just above, the SW character says nothing about the SF character,

etc.). Moreover, these features are at the binary/topological level, but we should not

forget that brain networks are physical networks embedded in space and obeying
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physical and physiological constraints needed for functioning. While there is a

natural temptation to believe that brains may follow the same design principles as

other functional complex networks in nature, or man-made networks, such claims

need to be firmly rooted in empirical evidence. Unfortunately, the existence or

absence of binary properties, as those discussed above, does not uniquely select for

such principles, as these properties may occur as a result of many different

mechanisms. Further, we believe that network models based on first principles

invoking physical and geometrical constraints have a better chance of describing

cortical networks than a small set of inferred binary features based on apparent

similarity to other complex networks.

Empirical Evidence for a Principled Model of Cortical

Connectivity: The EDR Model

Initially, the principle data sets from which the binary features of SW, hubs and

rich-clubs were derived came from tract tracing experiments collated from the

literature, using a variety of biological markers, and in which connectivity is

indicated by the presence/absence of connections, i.e., binary connectivity. Never-

theless, connection strengths vary enormously depending on the projection, and it

would seem probable that bringing on board this characteristic would importantly

inform our understanding of the cortical network. More recently, these data sets

have been supplemented by results from cerebral imaging experiments, using

diffusion tensor imaging techniques (dMRI) or functional association through

correlation measures from resting state MRI (rMRI). Currently, however, such

techniques provide no information on the directionality of connections and yield

only probabilistic, and as yet unvalidated, evidence for connections.

Interestingly, two landmark studies that predate the formulation of the SW

property of the cortex stressed two important features of cortical organization not

inherent in that framework. First, Van Essen et al. (1990) and Felleman and Van

Essen (1991) built an extensive network of the visual system based on known

principles of cortical hierarchy. The hierarchical relationship of two areas was

derived from the laminar distribution of the projections between cortical areas.

The projection from area A to B defines a feedforward projection if it originates

from the upper cortical layers (supragranular layers 1–3) and targets the granular

layer 4; conversely, if the projection originates from the deeper, infragranular layers

and avoids layer 4, it is termed feedback. This system defines a binary order relation

on cortical projections that can be used to define a hierarchy among cortical areas

(Markov et al. 2014a). Second, using multidimensional scaling, Young (1992)

showed that the spatial layout of cortical areas was consistent with their binary

connectivity. Importantly, this finding also implied that spatial relations between

areas might play an important role in cortical connectivity. In fact, the high

clustering that occurs in the cortical network is dependent on the spatial separation
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between areas (Markov et al. 2013b), suggesting that physical separation distance

and clustering are tightly interconnected features. This finding shows that, for the

brain, its binary connectivity may be rooted in physical and geometrical properties.

Network models that are based on purely topological connectivity rules, such as

many simple SW graph models, do not necessarily take into account such empirical

facts.

Our initial work focused on quantifying laminar relations between cortical areas

in the macaque (Barone et al. 2000; Markov et al. 2014a) to address the claim that

the Felleman and Van Essen hierarchy is indeterminate (Hilgetag et al. 1996). This

led us to invest a considerable effort in creating a consistent and weighted database

of inter-areal connectivity in the macaque cortex. To obtain these data, we injected

retrograde tracers in cortical areas and counted the number of labeled cell bodies in

each area (from a segmented atlas of 91 areas) projecting onto the injection site. We

exploited two measures of connectivity: the fraction of labeled neurons (FLN) in an

area with respect to the total labeled in the cortex and the proportion of

supragranular labelled neurons (SLN) in an area with respect to the total number

of neurons marked in the area. The FLN is taken as a measure of projection strength

whereas the SLN characterizes the laminar order relations between two areas.

Currently, our published database consists of the results from injections in

29 areas distributed across the macaque cortex (Markov et al. 2011b, 2014b).

These data provide a weighted and directed graph, termed G29� 91 to indicate the

dimensions of the adjacency matrix, that is a subset of the full graph G91� 91 that

would be obtained if we had data from injections in all 91 areas of our atlas. In

addition, from the G29� 91 graph, we obtain the edge-complete subset, G29� 29, in

which the status of connectivity among all pairs of injection sites is known. As the

29 areas sampled are distributed across the whole cortex, it is to be expected that

many of the properties of this edge-complete graph will generalize to the full

cortical graph.

One of our first observations on this data set was its high density. Sixty-six

percent of all the possible connections were present (at 100 % each area would be

connected to all other areas), which is considerably higher than that of the collated

data sets used in previous analyses (Fig. 1a). In our exhaustive enumeration of

neurons across the cortex, we uncovered many (36 %) projections that had not been

previously described. While some of these connections were weak, they neverthe-

less overlapped in terms of weight with many known connections and were found to

be largely consistent across individuals (Markov et al. 2014b). It is this large

number of newly found projections that leads to the very high density of the cortical

matrix.

The density of the matrix has a powerful influence on the properties of the

network, and its increase with respect to earlier reports has far-reaching conse-

quences, as we shall later demonstrate when discussing the SW property and rich-

clubs. To explore how our results compare to earlier claims, we have sequentially

removed connections, starting with the weakest (Fig. 1a). This process predictably

leads to an increase in the average (shortest) path length, which is shown as a 95 %

confidence interval (gray shading). As shown, the data from earlier reports fall on or
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near the 95 % confidence interval but at much smaller densities, consistent with the

fact that the earlier studies were missing the weak connections. The original

database found its origin in the seminal work of Felleman and Van Essen (1991).

These authors reported a density of 32 % but remarked that, if those connections

that had not been tested were to be investigated, they would expect a density of

45 %. Subsequently, Jouve and colleagues (1998) updated the database with

connections reported between 1991 and 1998, leading to a density of 37 %. This

Fig. 1 Effects of density and network properties. (a) High density of the cortical graph. Compar-

ison of the average shortest path length and density of the G29� 29 subgraph with the graphs of

previous studies. Sequential removal of weak connections causes an increase in the characteristic

path length. Black triangle: G29� 29; gray area: 95 % confidence interval following random

removal of connections from G29� 29. Dotted horizontal lines indicate the 5–95 % interval with

at least one unreachable node (following repeated and graded, random edge removal). Note that

the three least dense graphs are near their 5 % unreachability levels. Data incompleteness meant

that some of the initial networks have unreachable nodes; the latter are removed and not

considered here, 14 unreachable nodes from Modha and Singh (2010), one unreachable node

from Young (1993) and two unreachable nodes from Felleman and Van Essen (1991). Modha and

Singh 2010: (Modha and Singh 2010); Young 1993: (Young 1993); Honey et al. 2007: (Honey

et al. 2007); Felleman and Van Essen 1991: (Felleman and Van Essen 1991); Jouve et al. 1998:

(Jouve et al. 1998); Markov et al. 2014b: (Markov et al. 2014b). “Jouve et al. (1998) predicted”

indicates values of the graph inferred using the published algorithm (Jouve et al. 1998). (b) Effect

of density on Watts and Strogatz’s formalization of the SW. Clustering and average path-length

variations generated by edge rewiring with probability range indicated on the “x” axis applied to

regular lattices [of 1000 nodes in a 1D ring, as in Watts and Strogatz (1998)] of increasingly higher

densities. The pie charts show graph density encoded via colors for path length (L) and clustering

(C). On the y axis, we indicate the average path length ratio (Lp/Lo) and clustering ratio (Cp/Co) of

the randomly rewired network, where Lo and Co are the path length (Lo) and clustering (Co) of the

regular lattice, respectively. Lp and Cp are the same quantities measured for the network rewired

with probability (p). Hence, for each density value indicated in the L and C pie charts, the

corresponding Lp/Lo and Cp/Co curves can be identified. Three diagrams below the x axis indicate

the lattice (left), sparsely rewired (middle) and randomized (right) networks. Dashed lines in (b)

indicate 42 % and 48 % density levels
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study then used second order connections to infer the connectivity of untested

connections, leading to a prediction of 58 % [in Fig. 1a, indicated as Jouve

et al. (1998) predicted], which is not very different from the 66 % we reported

(Markov et al. 2014b). All of the other studies appear in Fig. 1 to the left of the

Felleman and Van Essen study, and they report densities significantly lower than

that of these authors, ranging from 25 % (Honey et al. 2007), to 15 % (Young 1993)

to 7 % (Modha and Singh 2010). These three modeling studies arrived at such low

densities because they deemed that untested connections were absent and because

they added additional areas to the original Felleman and Van Essen data set from

the CoCoMac public source. Besides their artificially low density, these unreliable

databases have two other consequences. Firstly, they contain variable unreachable

nodes, as many as 14 in the case of Modha and Singh (2010). Secondly, repeated,

graded and random removal of edges very rapidly leads to the break-up of these

graphs into several components, as indicated by the 90 % confidence shown as

dotted lines. In contrast, the graphs of Markov et al. (2014b) Jouve et al. (1998) and

Felleman and Van Essen (1991) do not begin to break up until the removal of a large

number of connections.

The high density raises difficulties for claiming that the inter-areal network at

this level has the SW property. Recall that SW graphs are characterized by high

clustering with low average path length between graph nodes, contrasting with the

simplest model of random graphs, namely the ER random graphs, that, while

having low average path length, have low clustering. High-density graphs, how-

ever, trivially, are highly clustered with low average path length (Humphries and

Gurney 2008; Markov et al. 2013a). This is simply a consequence of the fact that,

due to the large number of edges, there will be short paths between any two nodes,

and triangles will occur frequently (high clustering). This is not an independent

feature of the network (as it is in other, sparse real-world networks) but simply a

consequence of density. As we show next, a simple calculation demonstrates that

the cortical inter-areal network does not have the SW property. The procedure for

determining whether the SW property is present was introduced by Watts and

Strogatz (1998; Fig. 1b). First we determine the average path length and the

clustering coefficient in the network of interest. Then we perform a rewiring of

the edges so as to keep the average degree (thus the network density) constant. This

produces an ER random graph as a null model, in which we measure again the

average path length and the clustering coefficient. If the original network has the

SW property, then rewiring causes the clustering coefficient to drop drastically, by

as many as several orders of magnitude. Usually, the average path length changes as

well, but only slightly. For example, in the Watts-Strogatz paper, for the network of

film actors (a social network) the clustering coefficient drops from 0.79 to 0.00027,

almost 3000-fold! For the power-grid the clustering coefficient drops 16-fold,

whereas for the C. elegans neuronal network it drops 5.6-fold. In the G29� 29

graph, there are 322 node pairs with connections (ignoring directionality) between

them. The average degree of this undirected network is kh i ¼ 2� 322
29

¼ 22:2. In the

corresponding ER random graph with the same number of nodes and edges (thus
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average degree as well), the clustering coefficient is C ¼ kh i
N�1

¼ 22:2
28

¼ 0:79 (New-

man 2010). In the undirected form of the G29� 29 we measured C¼ 0.84, a change

of only 1.06-fold!

Figure 1b shows for the Watts-Strogatz model with the SW property (a ring

lattice with partially rewired edges) a comparison of clustering coefficients and path

lengths specified relative to those expected from a random graph plotted as a

function of the percentage of randomly rewired lattice edges for increasing graph

density (Markov et al. 2013a). By about 45 % density, there is very little wiggle

room between the model graph and the rewired random graphs, which means that

topological models like the Watts-Strogatz SW model (Watts and Strogatz 1998)

cannot provide a good description of the inter-areal network.

Another regularity that we observed in our database is that the distribution of

FLN values follows a log normal distribution (Markov et al. 2011b, 2014b). Similar

behavior has since been reported in the mouse cortex as well (Wang et al. 2012; Oh

et al. 2014), and a log normal distribution appears to be a characteristic at multiple

physiological and anatomical levels in the brain (Buzsaki and Mizuseki 2014). Log

normal distributions are positively (right) skewed and long-tailed, so that they

contain many weak connections as well as a few very strong ones. It is important

to note that, in evaluating a power law fit to cortical network data, in many instances

the weakest connections are thresholded. In fact, if the weak connections were

ignored, then our data might be attributed to a power law distribution. Ironically,

extrapolation of such a truncated power law would imply an even larger number of

weak connections than we actually observe. Note that these are weight distributions

(fraction of node pairs connected by links with given weights), not degree distri-

butions (number of neighbors). The few strong connections are always the nearest

neighbors, implying a relation of distance to connectivity strength. In fact, we

observe that the FLN is exponentially related to distance, as has also been recently

confirmed in the mouse (Oh et al. 2014).

The observed weight-distance relations are described by an EDR that accounts

for a surprising number of characteristics of the cortical network (Ercsey-Ravasz

et al. 2013). First, given that the observed inter-areal distances are normally

distributed, the EDR predicts that FLN will follow a log normal distribution.

Second, random graphs of the same density as our edge-complete graph generated

from the EDR model match our data in the numbers of bi-directional and

uni-directional projections and in the distributions of triadic motifs of connectivity.

This is not true for random graphs in which the probability of connection is constant

as a function of distance (CDR graphs) and, in fact, the good agreement that we

observe in the EDR-generated networks is sensitive to the value of the exponential

space constant. This finding warrants defining both the generated graphs and the

observed cortical graph as an EDR graph or network.

The above findings show that the EDR model captures local features of the

cortical network. However, we found that this graph category also captures global

properties. Firstly, the average distribution of eigenvalues of random EDR graphs

(the graph spectrum) matches more closely the spectrum of our edge-complete
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graph than does the CDR (note, graphs with the same eigenvalue spectra share

many structural properties). Secondly, our cortical data show a large number (13 of

them) of cliques of size 10 (complete subgraphs) that are highly inter-connected,

forming a dense core (92 % connectivity). EDR graphs display this structure

whereas CDR graphs do not. This behavior is reminiscent of the rich-club behavior

observed in low-density networks but, in fact, on our dense graph, the rich-club

index is barely significant (demonstrated below). Thirdly, EDR graphs display local

and global communication efficiencies (measured as network conductances; see

Ercsey-Ravasz et al. 2013) similar to those computed on our edge-complete graph

G29� 29. We computed these efficiencies for our G29� 29 and evaluated their

evolution as a function of the removal of weak and strong edges, respectively.

The behavior observed was qualitatively similar to that obtained from EDR graphs

but not CDR graphs. Fourthly, we found that the EDR model positions areas in a

way that minimize total wire length whereas CDR graphs do not (Ercsey-Ravasz

et al. 2013). Thus, the EDR and the spatial positioning of the areas appear to

represent two fundamental constraints on cortical connectivity.

To emphasize that the EDR and binary graph models with SW property (such as

the Watts-Strogatz model) are fundamentally different models of cortical organi-

zation, we summarize here some of the differences that we developed above.

(1) Firstly, the node relations in the definition of the SW property are fundamentally

topological, meaning that they are not spatially constrained. Secondly, these graphs

are based on binary connectivity (connected/not connected), meaning that they are

not weighted. Such networks are highly abstract and thus are far removed from real

world networks (Boccaletti et al. 2006). In sharp contrast, the EDR graph is

spatially embedded (i.e., laid out in space with distance values) and weighted,

meaning that the connections have different strengths or weights. (2) In the SW

property, clustering results because of the friend-of-my friend-is-my friend effect.

In the modern world, friends are not confined to a specific location and can be

scattered around the globe; thus clustering does not imply spatial proximity.

Clustering is very high in the EDR model but is mediated by physical distance,

so an analogous social network would correspond to a primitive tribal society where

social groups are spatially located (Markov et al. 2011a). In the EDR graph, if a pair

of areas are close in distance, then they are more likely to be connected and will

have similar connectivity profiles (Markov et al. 2013b). Thus, clustering is inher-

ently linked to space, as we have observed empirically. (3) The EDR has a heavy-

tail log normal distribution, whereas binary SW models have constant weights on

edges (of unity). (4) While many complex networks have the SF property with

several orders for the range of variation for nodal degrees, the degree distributions

in the G29� 29, or EDR vary less than threefold and do not conform to a power law.

(5) Instead, the dense EDR graph exhibits a significant number of cliques, sets of

areas that are completely inter-connected. Our edge-complete cortical graph con-

tains 13 cliques of size 10, a remarkably improbable event if connectivity were

independent of distance. (6) In several complex networks (and primarily those with

the SF property), hubs are statistically more highly interconnected than expected,

leading to a rich-club phenomenon. The EDR graph shows only weak evidence for
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a rich-club organization in terms of the indices used to measure this tendency in SF

networks. Instead, the cliques are highly connected, forming a dense core

surrounded by a less dense periphery.

The EDR is a network model, not a property, and it is derived by the analysis of

FLN values that characterize the strength of projection. Nevertheless, analysis of

the distribution of SLN values reveals additional structure in the cortex, similar to a

bowtie, based on the feedback/feedforward nature of the connections between the

nodes in the periphery and the core. Below, we develop some of these ideas in more

detail.

The Cortical Core-Periphery Structure

Complex networks that occur in nature as part of functional systems (natural or

man-made) have been observed to have heterogeneous structure and behavior.

Signatures of structural heterogeneity may appear as non-Poisson degree distribu-

tions, in deviations of motifs distributions from those in random graphs and in many

cases in core-periphery structures. The latter observation, namely the existence of a

denser interconnected core of nodes surrounded by a less dense periphery, is a

hallmark of many information-processing networks (Csermely et al. 2013), and

they have received considerable attention in the analysis of cortical networks as

well. They were introduced for the first time by Zhou and Mondragon (2004) to test

for the core-periphery properties of sparse SF networks such as the internet and the

worldwide web. The existence of a rich-club has been defined informally as the

tendency of hub nodes (nodes with the highest degrees) to form tightly

interconnected communities. Its quantitative definition was later refined by Colizza

et al. (2006) and applied to many real-world SF network datasets. For completeness,

here we provide the standard definition by Colizza et al. (2006) and then discuss its

applications by other authors to cortical inter-areal networks. We will then show

that this definition is not suited for the detection of core-periphery structures in

dense networks.

For now, let us consider undirected networks. We rank order the nodes by their

degrees and consider the set of nodes with degrees larger than some given value k.
Let us denote their number by N>k and byM>k the number of edges found between

theseN>k nodes only. The topological (based on binary connections only) rich-club

coefficient for a degree value k is defined by the ratio:

φ kð Þ ¼ 2M>k

N>k N>k � 1ð Þ ð1Þ

This ratio expresses the fraction of existing edges between nodes of degree larger

than a given minimum degree and the maximum number of edges that could exist

among them, i.e., the density of the subgraph between all nodes with degree larger

than k. However, there is also the effect that higher degree nodes will be more likely
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to be connected to one another by chance only, because they have many more edges

incident on them than an average node. To remove this degree-induced bias, φ(k) is
compared to a properly defined null model. Typically, the null model is generated

from the studied network by random rewiring of its edges, preserving its degree

sequence (which can be done by edge swaps). Let us denote the corresponding

quantity (1) for this randomized null-model network by φrand(k). Then the

corresponding normalized rich-club measure of Colizza et al. is defined via:

φnorm kð Þ ¼ φ kð Þ
φrand kð Þ ¼

M>k

Mrand
>k

ð2Þ

whereMrand
>k is the number of edges found among all nodes with degree higher than

k after randomizing. Accordingly, the set of nodes for whichφnorm kð Þ > 1over some

range of k values is called a rich-club, and it expresses the fact that these hub nodes

have more connections between themselves than by pure chance. The extension of

the above expressions is straightforward for directed networks, in which case we

may also talk about an out-degree kout based rich-club measure φout(k) and an

in-degree kin based rich-club measure φin(k) and their normalized versions.

The above rich-club detection method has been defined with sparse graphs and

heterogeneous degree distributions in mind and, in particular, for SF networks. This

measure, works well, indeed, for these types of networks. However, as we show

next, it fails for dense networks, in spite of the fact that they may have a clear-cut

core-periphery structure, as indeed is the case for our cortical network G29� 29.

Figure 2 shows the rich-club measures φ(k) and φnorm(k) for the G29� 29 graph. The

first observation is that, although there is a range of degree values for which the

normalized coefficient φnorm(k) is larger than unity, it is only slightly larger (less

than 1.06), for the directed versions and less than 1.1 for the total degree based

measure. In other words, the rich-club measure is not strongly selective for the core-

periphery structure.

Fig. 2 Rich-club coefficients as function of degree. In (a), the green symbols show the normalized

coefficient as function of in-degree, whereas blue shows the normalized coefficient as function of

out-degree. In (b), we show the same as in (a), but for the total degree ktot ¼ kin þ koutð Þ. Neither
of the curves climbs significantly above unity to indicate a rich-club structure
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The G29� 29 graph has a density of 66 % and it does not have a SF (power law)

degree distribution, neither for the in- nor the out-degrees (see Fig. 3; a SF degree

distribution falls as a power law as a function of the degree). Thus, for dense

networks, alternative methods are needed to detect their core-periphery structure.

We introduced a novel method to detect core-periphery structures in dense

graphs based on a clique distribution analysis (Ercsey-Ravasz et al. 2013). A clique

is a subset of nodes that have all the possible connections between them. The largest

clique in the G29� 29 has ten nodes, and there are 13 such cliques of 10 in G29� 29,

all involving only 17 nodes, forming the core of G29� 29 with a very high density of

92 %. The rest of the nodes form the periphery with a 49 % density of connections

and a density of 54 % of connections between core and periphery nodes (Ercsey-

Ravasz et al. 2013). This is a clear-cut core-periphery structure with a core of 92 %

density surrounded by the rest of the graph having roughly 50 % density. The

probability for seeing such a core-periphery structure in a random graph with the

same number of nodes and edges is 10�17, infinitesimally small. So why doesn’t the
rich-club measure (2) pick out this structure? The explanation lies with the second

expression in Eq. (2), which shows that the normalized measure is simply the

fraction of edges between the larger-than-k degree nodes and the same quantity

for the randomly rewired network. Thus, this rich-club coefficient will be large only

if the randomized network has a significantly reduced density between the same set

of nodes. That can only happen in a sparse network and if the degree distribution is

heterogeneous as well. In our network, due to its high density, even by random

rewiring we cannot reduce significantly the density of connections between these

particular nodes. Additionally, the network’s degree distribution is not very het-

erogeneous; Table 1 and Figs. 3 and 4 show that most of the nodes are high-degree

nodes. In particular, area 8l has an in-degree of 28, thus receiving connections from

all the others within G29� 29. There are 12 nodes with in-degree 20 or larger,

meaning that 41.3 % of all nodes receive connections from at least 20/29ffi 69 %

Fig. 3 Degree distributions. For theG29� 29 cortical graph, expressed as the number of nodes with

a given degree. (a), in-degree distribution and (b), out-degree distribution. In scale-free

(SF) networks, this histogram would be a power law decay as function of degree
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of all nodes. When randomizing such networks, it is impossible to disconnect high

degree nodes from one another.

In an earlier publication, Harriger et al. (2012) presented a rich-club analysis of

the macaque cortical network using data extracted by Modha and Singh (2010)

from the CoCoMac data base, which is an online collation of tract tracing studies

from various sources. This inter-cortical connectivity matrix included 242 regions

(nodes) and 4090 directed links, providing a directed binary graph of 7 % density.

As discussed above, unfortunately, this database does not report the status of all the

connections between the nodes and it is, therefore, largely incomplete. The

corresponding matrix contains links, non-links and entries that are simply unknown

(i.e., it is not known if the connection is present or absent between the two nodes).

The Harriger et al. study (and several others) treated the unknown connections as

absent (non-existing), resulting in a sparse network. Unfortunately, this incom-

pleteness strongly biases the graph theoretical conclusions drawn from such graphs,

as seen previously in the case of the SW analysis. Harriger et al. (2012) reported on

the existence of a rich-club structure, formed by several nested layers of node

groups; however, no rich-club coefficient curves were shown (normalized or

otherwise) to help assess the degree to which the rich-clubs emerged.

Failure of the Rich-Club One of the arguments one could bring into the rich-club

study of G29� 29 is that the binary level analysis misses the fact that the cortical

graph is weighted, showing strong heterogeneity in link-strength values spanning

five orders of magnitude. However, once we have weights on links, the notion of the

Table 1 Degrees of nodes in the 17-node core of the edge-complete inter-areal network G29� 29

Areas of the core In-degree Out-degree Total degree

Total degree inside

the 17-core

kin kout ktot ¼ kin þ kout
7A 24 25 49 28

8l 28 21 49 31

8m 26 22 48 32

STPc 23 25 48 30

9/46d 26 21 47 32

F5 24 22 46 29

STPr 21 24 45 30

46d 23 21 44 31

7m 25 17 42 28

9/46v 22 20 42 29

F7 22 20 42 32

24c 20 20 40 30

F2 19 20 39 27

8B 19 19 38 32

STPi 12 25 37 26

PBr 17 17 34 27

10 19 13 32 28
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rich-club becomes more elusive as it can be defined in many different ways,

providing answers that sometimes are in stark contrast with one another, as we

show below. Here we use the variants introduced by Opsahl et al. (2008), which

were also adopted for cortical network analysis by van den Heuvel et al. (2012). In

this definition, first we choose a quantity, the so-called “richness-parameter” r, by
which we rank-order all the nodes. This parameter could be node degree, node

in-degree, out-degree, total incoming weight of links to a node, average of incom-

ing link weights, etc. We denote byM>r the number of edges found between all the

nodes that have a richness parameter larger than r. Let W>r denote the sum of

weights on these edges. For example, if this richness parameter is the in-degree of

the nodes, we then sum the FLN weights of the edges that are incident on all the

nodes with an in-degree larger than a given value (kin). Next we rank-order all the
links in the network by their weight (FLN) and then we sum the weights for the

edges with the top weights, i.e.,
XM>r

l¼1
wrank
l . We then form the weighted rich-club

parameter φw(r), via:

φw rð Þ ¼ W>rXM>r

l¼1
wrank
l

: ð3Þ

To eliminate effects coming from heterogeneity of weights or the richness param-

eter, we normalize (3) by the corresponding quantity in a null-model network. This

is typically taken as a randomized version of the original network. However, here

too, there are several choices. One can randomly rewire the edges along with their

weights or keep the edges where they are and shuffle around randomly only the

weights associated with them, etc. Here we randomly reshuffle the edges along with

their weights. In Fig. 5 we show the resulting weighted rich-club coefficients.

In Fig. 5a, the ranking is done by r ¼ kin (blue) and r ¼ kout (red). The weights
in both cases are the FLN weights of the edges. In Fig. 5b, the ranking of the nodes

is done by the sum of the FLN weights for the incoming edges to that node. Since

Fig. 4 Degree distribution

of nodes in the 17-node core

of G29� 29. kcore is the total
(tot) degree (the in-degree

plus the out-degree) within
the core
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there is now a large heterogeneity between the link weights, φw
norm(k) can take

significantly larger values. Accordingly, all nodes with degrees (in- or out-) of 19 or

larger are part of the corresponding (in- or out-) rich-club. For out-degrees based

ranking, we obtain a nested structure with the largest out-degrees being the most

interconnected among them. Based on in-degrees, it is a bit more difficult to make

conclusive statements. When looking at ranking based on total incoming weight to

a node (Fig. 5b), it shows a very different picture from what is presented in Fig. 5a.

It shows rich-club ordering for the visual areas (which are mostly in the periphery,

not core), because there is a lot of FLN concentrated among the neighboring visual

areas, with strong connections between them.

Why the apparent arbitrariness in the identified rich-clubs using weighted

measures? The weighted rich-club definition tries to detect correlations between a

richness measure/parameter r and the weights on the links. The idea behind this is

as follows. Weights on links usually represent strength of interaction/relationship.

For example, in a social network, a large number of phone-calls going back-and-

forth regularly between two people is a proxy for a strong social-tie, or

interdependence. Given an empirical network, the strongest weights show the

strongest interactions present in that network. Now let us assume we are interested

in finding out if there is a correlation between tie strength and some other nodal

property, such as personal wealth. We may look at the top 100 wealthiest people,

find the connections between them, and sum the strengths of the connections

running between them, representing the overall communication strength within

this group. Is this communication strength as large as it could be, that is, would

Fig. 5 Weighted rich-club measures. (a), Ranking is based on degrees. By out-degree, the

weighted rich-club is formed by six nodes (group 3): 7A, STPc, STPi, STPr, 8m, F5. This can

be decomposed into groups 2 and 1 of increasing rich-club measures. Group 2: 7A, STPc, STPi,

STPr and Group 1: 7A, STPc, STPi. By in-degree, the weighted rich-club is formed by the six areas

(group 3): 8l, 8m, 9/46d, 7m, 7A, F5. Group 2: 8l, 8m, 9/46d, 7m, and Group 1: 8l, 8m, 9/46d. (b),

Ranking is based on FLN weights (within the 29� 29 matrix). Based on total incoming weight

(blue), the weighted rich-club in this case is formed by 11 areas (group 3): V1, V2, V4, 46d, DP,

9/46d, 5, F1, 8m, 8l, STPi. Within this are nested Group 2: V1, V2, V4, 46d, DP, 9/46d, 5, F1 and

Group 1: V1, V2, V4, 46d, DP. By total outgoing weight (red), the weighted rich-club is formed by

9 areas: V2, V4, STPi, 8m, 9/46d, 7A, V1, F2, 46d (Group 2). Within this is nested Group 1: V2,

V4, STPi, 8m, 9/46d, 7A, V1, F2
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this sum equal the sum of the 100 largest edge strength found in the network,

irrespective of any other property? This ratio is the weighted, but non-normalized

rich-club measure. The larger this ratio, the more there seems to be a connection

between tie/link weight and the richness parameter r. However, such observations

need to be interpreted carefully. In any finite, and relatively small, dataset, such

apparent correlations might also be the result of variability and signal neither

correlations nor causations. A large richness value r might be the result of an

extraneous factor that is not contained in the analyzed data but happens to correlate

with tie strength. For example, the incidence of hair loss/baldness among congres-

sional members (the richness parameter r) might appear correlated by this method

with the number of times two members have publicly supported one-another on

some issue. This can certainly appear so, because hair loss has a tendency to

increase with age, and more senior members have a tendency to share similar/

perhaps more conservative views on issues. However, clearly the two variables

(number of agreements and amount of hair) are not causally related in any

significant way.

The Promise of the Bowtie Complex networks with directed edges may have a

core-periphery organization that resembles a bowtie structure. In this case, the links

between periphery nodes and nodes in the core can be divided into two classes

forming the “wings” of a bowtie: a fan-in (left) wing and a fan-out (right) wing

(Fig. 6). The nodes in the fan-in wing are sources of flow into the core, whereas the

nodes in the fan-out wing, also called sinks, receive flow from the core. Bowtie

topologies have been observed to occur both in man-made networks such as the

Fig. 6 Bowtie organization of the core-periphery. This organization is obtained from taking into

account both the laminar asymmetry (SLN index) of the projections between the core and

periphery nodes and their strength [FLN; see Markov et al. (2013a) for derivation details]. FF
feedforward, FB feedback
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worldwide web (Broder et al. 2000; Kleinberg and Lawrence 2001), the Internet

(Tauro et al. 2001; Siganos et al. 2006), manufacturing processes (Csete and Doyle

2004) and biological systems (Csete and Doyle 2004; Kitano 2004), including

metabolism (Ma and Zeng 2003; Ma et al. 2007), the immune system (Kitano and

Oda 2006) and cell signaling (Natarajan et al. 2006; Supper et al. 2009). The reason

for the widespread occurrence of this type of structural organization is possibly due

to the fact that highly functional systems are also non-equilibrium systems (in a

thermodynamic sense) and, as such, they have to maintain energy and matter flow

through the system to optimize their functionality. In Markov et al. (2013a), we

have shown that the cortical G29� 29 network exhibits a bowtie core-periphery

organization. However, a naive interpretation of the links between the core and

periphery will not lead to a bowtie organization, as almost all areas in the periphery

have both incoming and outgoing pathways to the core. This organization emerges

very clearly once we take into account the counter-stream hierarchical organization

of the directed pathways between the core and periphery. Long-range inter-areal

projections were observed to present a strong laminar asymmetry, which in turn can

be used to define a hierarchical distance and reveal cortical hierarchies. As

discussed in the introduction, pathways that originate mainly from supragranular

layers and terminate in layer 4 qualify as feedforward (FF) pathways whereas

pathways that originate mainly from infragranular layers and avoid layer 4 in

lower areas qualify as feedback (FB) pathways. The corresponding SLN index

provides a continuous measure that can be used to quantify hierarchical distances

through the cortical network. In Markov et al. (2013a), we classified the links

between the periphery and core into four classes corresponding to whether they

fed into or from the core and were FF or FB. Using their SLN values and the FLN

strengths of the connections, the periphery nodes clearly separate into a fan-in and

fan-out wing surrounding the core of the bowtie (see Fig. 6). It is important to

emphasize that this bowtie was not inferred from analogies with other networks. It

was derived from empirical data.

Perhaps the most relevant finding to come out of the network analysis with

respect to cortical function is the heterogeneity of the cortical graph. Here the

bowtie topology (Markov et al. 2013a) is particularly interesting because it is based

on cortical hierarchy and therefore is relevant to predictive coding theory (Clark

2013). Predictive coding, arguably a general computational theory of brain func-

tion, finds its roots in statistical physics and machine learning and proposes that

hierarchical processing leads to ascending prediction errors and descending pre-

dictions in perception, motor control and learning networks. The integration of

local and global processes involves interactions of the long-distance inter-areal

pathways in to the local circuitry that makes up 80 % of the cortical machinery

(Markov et al. 2011b; Bastos et al. 2012). This means that the bowtie structure

implies definable functional roles in terms of predictive coding but also cognitive

function. The distributed nature of the core of the bowtie, spanning prefrontal,

frontal and parietal areas, corresponds to the requirements for the global neuronal

work space, a cognitive architecture that, along with divergence convergence
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zones, could play an important role in consciousness and multimodal convergence

(Man et al. 2013; Dehaene et al. 2014).

Biology, Clustering and the Importance of Weak Links

In this short review of the cortical network, we have emphasized the distinction to

be made between topological networks with the SW property and the spatially

embedded EDR network. The first sums up the properties of a category of sparse

complex graphs that are commonly found but which, we find, are not descriptive of

the inter-areal network. While the SW property has been claimed by numerous

studies, they have invariably employed data seemingly indicating a low density

cortical network (see Bullmore and Sporns (2012)).

In contrast to the topological SW network, the EDR graph is anchored in the high

spatial clustering and geometrical positioning of the nodes of the inter-areal

network. Because the EDR predicts so many of the observed properties of the

cortical network, we believe that it is likely to be a characteristic feature of the

cortical networks found throughout all mammals. A strong argument in support of

this position is the importance of spatial clustering of functionally related cortical

areas. The layout of primary cortical areas across placental mammals is highly

conserved, as shown in Fig. 7. In this figure the primary visual (dark blue), auditory

(yellow), and somatosensory areas (red) exhibit stereotypic locations in all mam-

mals. Surrounding the primary areas are the higher order association areas, which

integrate information from the primary areas and generate complex behavior. In

this figure, the association cortex is mostly shown in white, with the exception of

two high-order visual areas (area V2 light blue; area MT green). Figure 7 shows

that, during phylogenesis, there is an expansion of the cortical mantle and the

association cortex so that, in the highly evolved primate brains, the association

cortex is the major component, in contrast to the more primitive brains where the

primary areas dominate. Van Essen and colleagues identified homologous areas in

macaque and human, enabling them to quantify differential regional expansion in

the two species (Van Essen and Dierker 2007; Hill et al. 2010). This shows an

expansion of the association cortex located in temporal, parietal and frontal lobes.

Comparison between human and chimp shows that the near threefold increase in

size of the human brain is almost entirely due to a disproportional increase in

human association cortex (Preuss 2011; Sherwood et al. 2012). The expansion of

the association cortex during phylogenesis is speculated to be genetically driven by

duplication of cortical areas, leading, for example, in the visual cortex to topo-

graphically defined areas sharing common borders defined with respect to the visual

field (Allman and Kaas 1971). This is partially illustrated in Fig. 7, where the

primary visual area, area V1 is bordered by area V2, indicated in light blue. This

duplication leads to areas V1 and V2 sharing a common border that represents the

vertical meridian. Rosa and Tweedale (2005) speculated that this duplication

process led to the observed mosaic of extrastriate visual areas sharing well-defined
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Fig. 7 Phylogeny of the neocortical sheet. Schema showing the layout of cortical areas in

different classes of mammals. This figure shows that, during phylogenesis, the positions and

dimensions of conserved primary areas (colored) are conserved, which contrasts with the progres-
sive increase of the surrounding association cortex, indicated in white. The expansion of the

association cortex is thought to accommodate the increase in the number of areas, possibly via a

process of genetically driven duplication of areas. This can be seen for area V2 (light blue), a
second-order visual area that surrounds the primary visual area, area V1 (dark blue). Note the

highly consistent location in primates of MT (green), a higher-order visual area, with respect to

areas V1 and V2. Throughout the phylogenetic tree, there is a remarkable consistency between the

positions of the visual areas and the primary auditory area (yellow), somatosensory area (red) and
secondary somatosensory cortex (orange). Top left, representation of common mammalian ances-

tor; lower right, common primate ancestor (Buckner and Krienen 2013)
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maps of the visual field, where the primary visual area V1 and the higher order area

MT act as anchors, a concept that has been generalized recently to a tethering

hypothesis where conserved, regionally localized patterning centers ensure the

observed stereotypic localization of primary areas during the massive cortical

expansion that accompanies phylogenesis (Buckner and Krienen 2013). The teth-

ering hypothesis speculates that the primary cortical areas would be integrated into

the cortical network in a very different fashion from the association cortex, the

latter being characterized by a greater abundance of long-distance connections. Our

results do not support this speculation, but they do suggest a major difference.

Whereas the primary cortical areas are located in the fans of the bowtie, the

association cortex is part of the high-density cortical core and is part of the knot

of the bowtie (Ercsey-Ravasz et al. 2013).

The above considerations go some way in explaining the developmental and

phylogenetic basis of the high functional clustering of areas, thereby forming

distinct constellations of areas centered on visual, auditory, somatosensory, motor

and cognitive functions. The recent tract tracing data in both macaque and mouse

and the network analysis of inter-areal connectivity begin to provide a coherent

picture of the high-density cortical network. The anatomy tells us that there are

many more connections than previously suspected, including numerous low-weight

long-distance connections that can only be detected by connectomic approaches

(Markov et al. 2014b; Oh et al. 2014; Zingg et al. 2014). It would be wise to resist

the temptation to ignore such connections. The variables of functional and struc-

tural parameters, including synaptic weights and transmission probability, EPSPs,

spine sizes, firing rates, correlations of population synchrony and axon diameters,

show skewed log normal distributions (Buzsaki and Mizuseki 2014). Hence, at

multiple levels, assemblies of many weak and few strong elements seem to be a

characteristic feature of what makes brains work. With regards to the weak inter-

areal connections, while their band-width will exclude dense information transfer,

there is ample possibility for them to play a role in contraction dynamics of

oscillatory coherence (Wang and Slotine 2005) and hence in shaping communica-

tion across the cortex (Fries 2005). The potential importance of the long-distance

weak connection in the cortex, at least superficially, echoes that of the strength of

weak ties in social networks, reputed to be important in integrating the individual

into the social fabric (Granovetter 1973).

Conclusion and Perspectives

Structural heterogeneity in a network is thought to be a necessary condition for high

functionality. In the inter-areal cortical network there are two propositions

concerning heterogeneity: one is the linking of high-degree nodes or hubs to form

a rich-club topology (van den Heuvel et al. 2012) and the other is the existence of

maximally interconnected subgraphs or cliques (Ercsey-Ravasz et al. 2013).
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The rich-club is solidly based on the concepts of hubs forming a means of

efficient routing of information through the cortex. But to what extent is the notion

of a hub allowing dynamic switching and relaying messages relevant to present-day

understanding of brain function? While there are instances where neurons have

been thought to play the role of a relay, careful scrutiny of such claims show that

this is rarely or never the case. A case in point is the so-called relay neurons of the

lateral geniculate nucleus (LGN), which receive input from the retinal ganglion

cells and project to layer 4 of the primary visual cortex, area V1. It was the

similarity of the receptive field of the LGN neuron and the retinal ganglion cell

that partially fueled the notion of a relay function. However, even in this system it

turns out that the LGN relay neurons receive large number of inputs from the

thalamic reticular formation as well as feedback projections from the cortex, such

feedback connectivity being characteristic of the visual pathway (Gilbert and Li

2013). Recent evidence shows that the layer 6 cortico-thalamic neurons of area V1

and extrastriate cortex projections to LGN relay neurons and via their interactions

with the thalamic reticular nucleus ensure a complex spatial and cross-modal

attentional modulation of LGN neurons (McAlonan et al. 2006, 2008; Jones

et al. 2013) requiring a sophisticated alignment of the receptive fields of the cortical

and thalamic neurons (Wang et al. 2006). The point we want to make here is that

neurons do not passively relay messages and the cortical network should not be

viewed as an elaborate system of switches. Instead, signals undergo an extensive

integration, and this is particularly true in the cortex, where single neurons receive

the inputs from hundreds of afferent neurons.

In the present review, we have argued that the topological SW property is not

relevant to the inter-areal network. This contrasts with the EDR network, which is

embedded in space and therefore considerably less abstract. Whereas the SW is

only a property, the EDR model is a full-blown network model with the power to

predict many features of network organization. While the predictability of the EDR

graph speaks strongly in its favor, would a much lower density change our outlook?

What would the cortical graph look like at a much finer granularity, such as the

level of voxels? This indeed would cause a drop in density, so that the SW property

might hold for the cortical network. But, more importantly, would the EDR network

still be valid after the drop in density? Would it continue to predict global and local

properties? We are at present addressing this issue by creating a fine-grained 2D

surface map of inter-areal connection density. However, this will not address the

question at the single neuron level. In the EDR network, connection weight is a

proxy for probability, so that at a single neuron level this would amount to looking

at the decrease in probability of interconnections between pairs of neurons at

increasing distances. The probability of finding a connected pair is so low, even

at short distances (Braitenberg and Schüz 1998), that existing electrophysiological

techniques would seem to be inappropriate for searching for interconnected pairs at

larger distances. One possibility is the recently proposed BOINC barcoding of

individual neuron connectivity (Zador et al. 2012). Going down these avenues

may be worth the effort in order to understand the brain in space at multiple scales.
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Box 1—Glossary

Bowtie a core-periphery organization of nodes and edges in a

directed graph, as defined in the main text.

Clique a subgraph (subset of nodes) of a graph for which all

possible edges between the nodes are present.

Clustering an index representing the fraction of edges present among

the neighbors of a node and the maximum number of edges

that could exist between these nodes.

Degree the number of edges to which a node is connected. In a

directed graph, the in-degree refers to the number of

incoming edges and the out-degree to the number of

outgoing edges.

Edge a connected pair of points or nodes. The edge denotes a

connection between the nodes. For example, a projection

between two cortical areas constitutes an edge between the

two areas, each considered as a node.

Edge-complete

subgraph

a subgraph that has exactly the same connections between

its nodes as the connections between the same nodes in the

larger graph that this subgraph is part of (in mathematics

this is called a vertex-induced subgraph).

EDR network a category of random graphs constrained by the observed

exponential decrease in weight, which represents

probability of connection with physical distance. Because

the graphs generated in this manner capture numerous

features of the cortical network, the EDR graph is also

representative of the cortical network.

Graph mathematical structure consisting of two sets, a set of

objects/entities represented as points that are termed nodes

and a set of pairs of points that constitute the edges of the

graph. If the points of an edge are ordered, i.e., the edge (a,

b) between points a and b is considered to be different from

the edge (b, a), the graph is termed directed. If a third set of
values taken as weights are associated with the edges, then

the graph is termed weighted.
Graph theory the mathematical treatment of graphs as abstract objects,

i.e., the sets of nodes and edges.

Hub nodes of the highest degrees that are connected to a

significant fraction of other nodes.

Log normal law here used as a probability law for which the frequency of an

event is distributed normally as a function of the log of its

size. In the cortex, the log normal distribution describes the

distribution of strengths of connections of areas projecting

onto a given area. The plots below (Fig. 8) display examples

of log normal (solid) and power law (dashed) distributions
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as a function of a linear variable (left) and the same variable

scaled logarithmically (right).

Neighborhood the set of nodes to which a node is connected by an edge.

Node a point used to identify an object/entity in a graph. For

example, we could consider individual areas of the brain as

nodes. On a finer scale, we could consider individual

neurons as nodes.

Path length the number of connected edges that must be traversed to

travel between two nodes in a graph.

Power law used here as a probability law for which the frequency of an

event declines as a power of its size. In graph theory, a

power law may be used to define the degree distribution of a

graph in which the frequency of nodes with a given degree

falls off as a power function of the degree. This results in

many nodes with a small degree and a few nodes with a very

large degree (hubs).

Rich-club a higher-than-expected incidence of edges between hubs

than between other nodes.

Small world graph a topological graph with high clustering and low average

path length.

Spatially embedded

graph

a graph in which the spatial positions of the nodes (and,

thus, the distances between them) are defined.

Topological or

binary graph

a graph defined solely in terms of the relations implied by its

nodes and edges but with no additional attributes, such as a

metric distance or spatial position, weights or any other

measures. It can be represented by a simple connectivity

matrix, with 0’s and 1’s for its entries, indicating
non-connections or connections, respectively.

Fig. 8 Log normal and power laws
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Box 2—Network Structure: Topological Versus Spatial Clustering

We distinguish between network properties that are purely topological, i.e.,

expressed only in terms of whether and what nodes are connected and perhaps

their strength of connection, and those that depend also on other attributes, such as

physical distance. To make the distinction clear, in the simple four node graph in

Fig. 9, node b is equidistant topologically from nodes a and c since it is connected to

each through a single edge. It is spatially closer to nodes c and d, however, even

though d is further topologically from b (two edges distant). It is important to

distinguish whether the connections between nodes in a graph depend only on

topological considerations or whether spatial factors come into play, as well.

Whether or not spatial or simply topological distance is related to the probability

of a connection between nodes in a graph is an interesting question, because the

answer can be informative as to the processes that generated the connections and

thereby created the graph or variants with similar properties.

Spatial clustering is a notion expressing the fact that objects tend to bunch

together in a limited region of space (and are perhaps also connected to one

another), whereas network (or topological clustering) refers to the density of tri-

angles in a network, without any reference to spatial embedding or positioning. In

the definition of the SW, clustering is meant exclusively as network clustering, that

is, as the density of the triangles, and has no relation to spatial clustering. Next we

illustrate using simple examples that the two notions are entirely disconnected, i.e.,

high spatial clustering does not imply high network clustering and vice-versa. In

Fig. 10a, we show a regular network embedded in space, which in this case is a

simple ring. Every node is connected to the two closest nodes to their right and to

their left. This is a network that is clearly clustered spatially (nodes connecting to

their four closest neighbors). It has a network clustering coefficient C¼ 0.5. In

Fig. 10b, we show exactly the same network (the same connectivity matrix), but the

connected nodes are physically far apart in distance along the ring. Because the

connectivity matrix has not changed, the network-clustering coefficient stays the

same; however, the connected nodes are no longer clustered spatially. Thus, just

because in a SW network we have large clustering, it does not imply that the nodes

connected into triangles have to also be physically close to one another. The SW

definition is simply topological; it does not imply any spatial embedding.

Another, more realistic example comes from comparing the roadway network

with the airline network. While both networks are embedded in space, they are

drastically different. In the roadway network (formed by intersections of highways

as nodes and edges as highway segments between intersections), there is strong

spatial clustering (see Fig. 10c). Since there are no shortcuts in the roadway

network, all network triangles are formed by nodes that are also physically close

to one another, connected by road segments. By contrast, in the airline network

(nodes are airports, edges are flights, Fig. 10d), which has a large network clustering
coefficient (C¼ 0.34), the triangles are formed between physically distant nodes.

There are typically no direct flights between physically close airports; instead we

have to fly through network hubs to reach them.
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The brain has some of both aspects: there is strong spatial and local network

clustering between neighboring areas in the network, but there are also long-range

links contributing to global clustering. Thus network clustering in this case is

Fig. 9 A four-node graph in which nodes a and c are topologically equidistant from node b but

nodes c and d are physically closer to node b

Fig. 10 Network clustering does not imply spatial clustering. A simple, regular network of

16 nodes embedded on a ring. In (a) the nodes are connected to their (spatially closest) four

neighbors, whereas (b) shows the same network, therefore with identical network clustering, but

without spatial clustering (the four neighbors of a node are at large distances from the node). (c)

shows the US roadway (highway) network, in which nodes are spatially clustered (especially in

densely populated areas), whereas (d) shows the United/Continental airline network, which has

large network clustering but all triangles are between far-apart nodes. The SW property definition

does not discriminate between (a) and (b) or (c) and (d)
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composed of both types of clustering: on one hand there are many triangles between

closely spaced areas and, on the other, there are also many triangles in which at least

two sides of the triangles are made of long-range connections.
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In-Vivo Connectivity in Monkeys

Wim Vanduffel

Abstract Major efforts are underway to provide highly detailed descriptions of

static anatomical brain connectivity in rodents, even down to the level of individual

synapses. To fully understand brain functioning and to bridge the gap between

rodents and humans, however, I argue in this chapter that effective connectivity

studies in nonhuman primates are equally critical. The primate community should

embrace the novel, high-precision genetic-based toolkits developed in invertebrates

and rodents to study how activity in one brain region influences that in connected

brain regions. These methods will allow us to measure true functional weights of

anatomical connections during highly varying cognitive and perceptual demands in

primates. Why monkeys, and why effective connectivity in addition to anatomical

connectivity? First, the nonhuman primate is critically important to understand the

functioning of the human brain since important brain regions, such as the granular

prefrontal cortex carrying higher cognitive functions, are lacking in rodents as

opposed to primates. Second, a pure anatomical description of connections at

different scales may be useful to constrain models of brain functioning, however,

it has little value to explain perception and behavior emerging from dynamic

neuronal activity in distributed brain networks. Hence, tools that allow us to

measure these dynamics at large scale and to causally interfere with the system at

high temporal and spatial resolution are required to increase our understanding of

changes in information processing at different stages within a functional network.

In this chapter I will review past and emerging methods to study effective connec-

tivity (mainly) in nonhuman primates, in other words how activity within a given

brain area influences processing in anatomically connected brain regions. I will also

argue that high-resolution whole brain imaging in monkeys may be invaluable to

guide reversible perturbations and massive neurophysiological recordings simulta-

neously within multiple nodes of functional networks.
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Anatomical, Functional and Effective Connectivity

in Animal Models

Perception and behavior emerges from the concerted activity of millions of neurons

constituting a distributed but connected network of brain regions. To understand

brain function, it will not suffice to define the detailed characteristics of single

neurons or of a handful of “representative” neurons in one or a few areas simulta-

neously. A critical piece of information required for building biologically-plausible

models of brain function is the manner in which these neurons are connected

anatomically. Following decreasing interest in connectivity studies over several

decades, this field has regained considerable impetus in recent years, mainly thanks

to the appearance of new technologies allowing high throughput of connectivity

data, which has been fueled by high-profile funding schemes such as the

Connectome (Van Essen et al. 2012) and BRAIN (Devor et al. 2013) initiatives

in the USA, the Human Brain Project (Markram 2012) in Europe and the BRAIN/

MINDS (Okano et al. 2015) project in Japan. Also privately-sponsored institutes

such as the Alan Institute and Janelia farms have launched projects aimed at

collecting large-scale connectomics data, mainly in rodents. The resulting static

descriptions of anatomical connections will be of great benefit for constraining

models of cortical functioning at the micro-, meso- and macroscale.

However, critically important information, that cannot be gleaned from static

descriptions of anatomical connectivity, concerns the variations in the functional

strength of these connections across the highly-dynamic, constantly-varying states

of the subject. Although intuitively one might expect that a strong anatomical

connection exerts more weight on a target area than a weaker one, it actually

depends on a variety of factors including the subject’s behavioral state, the specific
perceptual or task demands, the type of connection (i.e. feedforward or feedback),

the excitation/inhibition balance, and the neurotransmitter systems involved. There-

fore, the extent to which a set of neurons can influence processing in another set of

neurons under various mental states and behavioral conditions constitutes crucial

information required to fully understand brain function. In general, this is referred

to as effective connectivity as opposed to functional connectivity (Friston 2011).

Measures of functional connectivity are typically based on correlations of neuronal

or hemodynamic activity across brain sites. Effective connectivity, on the other

hand, relates to the mechanisms driving such correlated activity. This can be caused

by common inputs, or by regions that actively influence activities in connected

areas. Effective connectivity can be inferred statistically by, for example, using

Granger causality, which relies on the fact that the history of activity in a source

region is more predictive of activity in a target region than the history of the latter

region itself. However, the only direct method to assess whether a particular region

has a causal effect on processing in other regions is the use of focal perturbation

methods in combination with a read-out tool such as electrophysiology, or any kind
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of functional imaging. In this chapter I will briefly discuss several methods that are

being used to investigate effective connectivity in awake animal models, thereby

focusing on the past and current work of my group and speculating about future

approaches.

Towards Causality: Effective Connectivity with Focal

Perturbation Tools

The oldest perturbation tool is a simple lesion. The major disadvantage here is the

irreversible nature of lesions, rendering test-retest experiments impossible. More-

over, the permanent nature of a lesion can trigger compensatory brain mechanisms

whereby lost functionality at the site of the lesion may be partially assumed by other

regions, although the temporal dynamics by which compensatory mechanisms are

engaged remain unknown. Reversible perturbation methods are obviously advan-

tageous compared to lesions.

Traditional focal, reversible perturbation tools used in animals include chemical,

thermal, and electrical methods. Less focal, though non-invasive, inactivation pro-

tocols include transcranial magnetic stimulation (Gerits et al. 2011), and

transcranial pulsed ultrasound methods (Tufail et al. 2010). Frequently-used chem-

ical inactivation methods rely on the injection of local anesthetics or GABA-

agonists such as muscimol (Hikosaka and Wurtz 1985). These chemicals have a

relatively long half-life when injected, rendering them less than optimal for fast

test-retest protocols and leaving them vulnerable to possible rapid functional

reorganizations of the brain. Focal cooling of the brain is quite appealing, since

the activity of neurons under the cooling probe can be blocked when the temper-

ature falls below 20 �C without affecting transmission in traversing fibers (Lomber

et al. 1994; Vanduffel et al. 1997; Lomber et al. 1999). Although several cycles of

cooling can be performed within an experimental session, a major issue is that

cooling is applicable mainly to easily accessible structures at the cortical surface.

Cooling subcortical structures, or within a sulcus, without damaging tissue is

technically demanding and affects neighboring tissue (such as both banks of a

sulcus). Almost two decades ago, we cooled extrastriate cortex in awake cats in

combination with deoxyglucose measurements, through which metabolic activity

can be assessed throughout the entire brain (Vanduffel et al. 1997). As predicted by

the excitatory nature of most cortico-cortical connections, we observed reduced

metabolic activity in areas connected with the cooled region. Intriguingly, we

observed that the effect on feedforward connections was stronger than predicted

based on the anatomical strength of these connections alone, and that the converse

was true for feedback connections. To the best of my knowledge, this was the first

experimental evidence that the strength of an anatomical connection does not

predict its functional weight (see Fig. 1).
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Fig. 1 (a) Color-coded image of 2-Deoxyglucose (2DG) concentrations in a coronal section of the

cerebral cortex of the cat during cooling-induced deactivation of the middle suprasylvian sulcus

(MS). White circles in MS sulcus represent position of the cooling probe. Color scale indicates
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Electrical microstimulation is a focal perturbation tool used to map sensory

cortex in humans (Rasmussen and Penfield 1947). Despite its high temporal

resolution, microstimulation of local neuronal activity can be facilitatory or inhib-

itory, depending on parameters such as the amplitude, frequency, and duration of

the stimulation trains (Tehovnik and Lee 1993). Another drawback relates to the

microstimulation currents that can produce electrical artifacts during and immedi-

ately after the pulses when the procedure is combined with electrophysiology

(Premereur et al. 2012, 2014; Moore and Armstrong 2003). Also, as nicely illus-

trated by Clay Reid’s group, it is not always obvious which neuronal elements are

affected at the electrode tip (Histed et al. 2009).

More recently, genetically-based perturbation tools with superior temporal and

spatial resolution have emerged, the most established of these being optogenetics

(Yizhar et al. 2011). This method enables one to manipulate activity of neurons on a

millisecond time-scale. Optogenetics relies on light-sensitive proteins (opsins)

incorporated into neuronal membranes using viral vectors or genetically engineered

organisms [for details see Karl Deisseroth’s (2015b)]. The activities of cells

expressing the opsins can be manipulated by illumination with specific wave-

lengths. Depending on the opsin type, neurons and other cells can be depolarized

(activated) or hyperpolarized (deactivated) when illuminated. The appeal of

optogenetics is its millisecond temporal resolution and its superior spatial resolu-

tion relative to other techniques (Deisseroth 2015a). Although optogenetics allows

modulation of activity in specific cell types, the results of cell-type specific

optogenetics should be interpreted with some caution, because information arising

from transduced cells is immediately transmitted to downstream neurons within the

targeted micro-and macro circuitry. Therefore, any readout method (including

behavior) with a temporal resolution lower than tens of milliseconds will encounter

difficulties in differentiating between effects induced by the modulated cells and

those (in)directly connected. Immediate downstream effects have been nicely

demonstrated in monkeys by Bob Desimone’s group, who observed, exactly as

expected, enhanced neuronal activity, consequent to transduction with a

depolarizing opsin, near the targeted site (Han et al. 2009). However, they also

measured consistent suppressed neuronal activity in the site injected with the viral

⁄�

Fig. 1 (continued) 2DG concentrations. White scale bar, 5 mm. SVA splenial visual area, Aud
auditory cortex, LGN lateral geniculate nucleus, Pul pulvinar nucleus, LP lateral posterior nucleus;

17, 18 areas 17 and 18; 19M, 19F area 19 medial or fundal parts. (b) Distribution of [3H] proline

and [3H] leucine transported after injections in the middle suprasylvian suclus. Darkfield illumi-

nation indicating strength of connections from MS sulcus. (c) Normalized tracer density versus

normalized cooling effect on 2DG concentration for a variety of cortical and subcortical structures.

Solid line represents slope of unity where tracer density and effects on 2DG uptake are equal.Gray
lines represent 20 % deviation from these values. Squares indicate cortical structures, circles
subcortical structures. The color-coded labels for the various structures reflect levels of visual

processing: blue, early; green yellow, intermediate; and red, late. Points below the diagonal show a

weaker 2DG effect than anticipated from the anatomy, whereas points above the diagonal show a

stronger 2DG effect than anticipated. Figure adapted from Vanduffel et al. (1997)
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vector construct. The latter effect appeared at longer latencies, thus in neurons that

are at least one synapse away from the transduced neurons.

Other very promising genetically-based methods include DREADDs (designer

receptors exclusively activated by designer drug), whereby an artificial receptor is

expressed in the cell membranes which can be activated by an artificial ligand

(Dong et al. 2010). Hence, this method is much less invasive than optogenetics

since no optical fiber is required, only the administration of a drug that activates the

receptor. These DREADD-type approaches are very promising, especially for

applications where the temporal resolution of the perturbation is less important.

Ultimately, to completely understand the neuronal processes underlying percep-

tion and behavior, one will need to acquire electrophysiological signals at the

single-cell level simultaneously from all brain sites involved in these processes.

Furthermore, to clarify whether all such neuronal populations are critically

involved, their activity needs to be up-or down regulated while the effect on

perception or behavior is being assessed. Despite recent technological advances

for recording from several dozens of single neurons simultaneously, even in

multiple areas, and despite the astounding innovations in genetically-based

methods to reversibly perturb activity in brain cells, this ambitious goal cannot be

achieved as of yet, especially in primates. To make this daunting task somewhat

tractable and to vastly reduce the needle-in-a-haystack aspect, I propose that

targeting of these multiple recording sites should be guided by high-resolution

whole-brain imaging (Vanduffel et al. 2014). We recently developed implanted

phased-array coils in monkeys to obtain sub-millimeter whole-brain functional data

with standard clinical MR scanners, which might serve this purpose (Janssens

et al. 2012) (see Fig. 2).

Fig. 2 (a) Photo of phased-array MR coil embedded in the headset of the monkeys (b) Increase in

signal-to-noise ratio of implanted phased-array coil relative to other external phased-array coils.

This coil allows sub-millimeter fMRI in monkeys at 3 T. Figure adapted from Janssens

et al. (2012)
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Effective Connectivity: Combined Electrical

Microstimulation and Whole-Brain fMRI

In the past, we have employed whole-brain imaging during microstimulation of the

FEF (FEF-EM), a region that can be behaviorally-defined, based on its involvement

in saccade generation. When this region is electrically stimulated with low currents,

monkeys make eye movements whose direction and amplitude depend on the exact

location of the electrodes within the topographically-organized FEF. The endpoints

of these saccade vectors correspond to the movement fields of the neurons sur-

rounding the electrode tip. Mounting evidence suggests that, in addition to its

functional role in generating eye movements, the FEF is an area sending selective

top-down signals to occipital regions in order to modulate incoming sensory

activity in an attention-dependent manner. FEF is well-positioned for the task,

since it receives connections from several higher-order neighboring areas involved

in cognitive control (Schall et al. 1995). Moreover, it comprises a topographic map

representing the visual field in a relatively well-organized manner (Janssens

et al. 2014), hence FEF has the capacity to send spatially-specific signals back to

upstream areas (Schall 1997).

Electrophysiology has shown that when FEF is stimulated at current levels

insufficient to generate a saccade, activity in single V4 (Moore and Armstrong

2003) and LIP (Premereur et al. 2014) neurons can be enhanced for stimuli placed

in the stimulated movement fields—as opposed to stimuli shown outside these

movement fields. Furthermore, the modulation of the V4 firing rates is more

pronounced when competing stimuli are shown, mimicking distractors surrounding

a target during a spatial attention experiment. These sorts of changes in neuronal

firing rates resemble the selective spatial attention effects previously observed in

V4 (McAdams and Maunsell 1999).

In a follow-up experiment, Tirin Moore’s group also showed that this subthresh-
old electrical stimulation in FEF resulted in improved detection thresholds for

low-contrast stimuli flashed in the FEF movement fields (Moore and Fallah

2004). Albeit indirect, the combination of the behavioral and electrophysiological

results obtained in V4 provided strong evidence that FEF can influence neuronal

activity in visual cortex, in a manner very similar to that observed during selective

spatial attention. Indeed, selective attention to a specific location in the visual field

will enhance the neuronal processing of stimuli presented at that location, and these

effects are particularly pronounced for less salient stimuli and when distractor

stimuli are present. A direct link between microstimulation results and selective

attention remains unverified, however, since the behavioral and electrophysiology

experiments were not performed concurrently. Hence, the existence of a direct link

between enhanced V4 activity and improved perception cannot yet be confirmed.

To complement these two groups of experiments, we attempted to visualize how

increased FEF activity modulates activity throughout the visual cortex, rather than

at the single-neuron level, by combining FEF-EM with functional magnetic reso-

nance imaging (fMRI) in monkeys (Ekstrom et al. 2008). We chose FEF as the

In-Vivo Connectivity in Monkeys 81



(first) target in a series of combined EM-fMRI experiments, since the behavioral

read-out, i.e. EM-triggered saccades, is straightforward. This is especially benefi-

cial during fMRI experiments, since currents induced in the electrodes, by the

switching gradient fields of the MR scanner, would have been immediately appar-

ent in the animal’s eye-movements. In fact, simulations prior to the experiments,

taking into account the MRI sequences, properties of the gradient coils, as well as

tissue and electrode properties, indicated that we barely induced currents in the

electrodes. When FEF was stimulated with currents well below those necessary to

evoke saccades, exactly as in Tirin Moore’s experiments (Moore and Armstrong

2003), we could visualize the network of areas that are anatomically linked with the

FEF using concurrent fMRI. The EM-evoked activity patterns over the entire brain

matched surprisingly well those patterns of connectivity obtained using traditional

tract-tracing methods for which animals need to be sacrificed (see Fig. 3). Hence the

combination of electrical microstimulation with whole-brain fMRI is an excellent

tool for revealing, at least as a proxy, in-vivo anatomical connectivity information

(with some caveats, see below).

More interestingly, when a visual stimulus was placed in the stimulated FEF

movement fields, we observed modulation of fMRI activity in those parts of the

visual cortex that are driven by the visual stimulus. This modulation was

Fig. 3 Comparison between (a) anatomical tractography, (b) electrical microstimulation (EM),

and (c) optical stimulation. Injections of tracer in the frontal eye fields (FEF) of macaque monkey

produced labeled cells in the lateral intraparietal area (LIP), the medial superior temporal area

(MST), and the superior temporal polysensory area (STP) (Schall et al. 1995). fMRI combined

with EM of the FEF resulted in fMRI activations in LIP, MST, and STP [67] (Ekstrom et al. 2008).

Monkey optogenetic-fMRI with channel-rhodopsin-transduced neurons in FEF also showed an

increase in fMRI signal in LIP, MST, and STP (Gerits et al. 2012). Note the striking correspon-

dence between the in-vivo microstimulation and optogenetic induced fMRI activations and the

ex-vivo tractography data. Figure adapted from Gerits and Vanduffel (2013)
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topographically-specific to the representations of the stimuli placed within the FEF

movement fields and included regions with both increased and decreased fMRI

activity.

Thus, as in Tirin Moore’s experiments, we found modulation of fMRI activity in

visual cortex for stimuli presented in the stimulated FEF movement fields. A

surprising discrepancy between the results of this EM-fMRI experiment and

single-unit data from V4, however, is that we generally observed decreased activity

in the same voxels of visual cortex that are optimally driven by visual stimuli in the

absence of FEF microstimulation. In contrast, voxels that were only weakly driven

by the visual stimulus showed enhanced fMRI activity when the corresponding FEF

movement fields were electrically stimulated. This counterintuitive result can be

explained, however, by the nature of the stimuli and the experimental design. In our

first series of experiments, we used high-contrast, colored gratings presented one at

a time. If electrical stimulation of specific FEF-movement fields would mimic

‘covert attention’ to that location, one could argue that the evoked modulatory

effects in visual cortex would be small for a highly salient (high-contrast) stimulus,

since no additional ‘attentional boost’ is required. The same holds true for stimuli

presented in isolation without competing distractors, as attention effects are typi-

cally stronger for targets embedded in a field of distractors compared to targets in

isolation.

In two follow-up experiments, we addressed whether FEF-EM would induce

stronger modulatory effects in visual cortex for low- versus high-salient stimuli by

manipulating either the luminance contrast or by adding ‘distractor’ stimuli

(Ekstrom et al. 2009; Ekstrom et al. 2008). These experiments confirmed that

FEF-EM had a much stronger effect on the low-contrast luminance-defined stimuli

(see Fig. 4). Activity in visual cortex was upregulated for low-contrast gratings and

unaffected, or even suppressed for high-contrast stimuli, thus confirming the results

of the first experiment with the high-contrast colored gratings. In essence, we

observed a contrast-gain as opposed to an activity-gain effect, whereby the

contrast-response curves were shifted to the left. In the second control experiment,

concurrent FEF-EM demonstrated that the representation of a grating embedded in

a scene including several competing gratings showed much larger modulatory

effects compared to a grating presented in isolation, keeping all other experimental

parameters identical.

These control experiments showed that FEF is capable of modulating represen-

tations in visual cortex in a manner that closely resembles attention-dependent

effects. Although the experiments were performed in the absence of explicit

attentional requirements, the effects observed are surprisingly similar to those

obtained during selective spatial attention (Reynolds and Heeger 2009). This

indicates that the necessary hardware, i.e. wiring, neurotransmitter systems, and

axonal properties, exist that allow the FEF to alter sensory-driven activity in visual

cortex based on non-retinal signals such as selective attention. As we have stated,

conclusive evidence for this hypothesis needs to be provided by studies in which the

FEF is stimulated while behavioral and neuronal effects are recording

simultaneously.
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Novel Genetically-Based Perturbation Methods?

A possible caveat in using electrical microstimulation pertains to the inherent

difficulties in distinguishing between the ortho- and anti-dromic effects of EM. In

other words, the EM effects observed in V4 neurons (Tirin Moore’s studies) and in
visual and parietal cortex in general (our studies) might be either the result of

activation of the axon terminals of neurons with cell bodies in the visual cortex or,

alternatively, of neurons located in the FEF that project to visual cortex. In lieu of

FEF’s proposed role as a source area sending higher-order cognitive signals to

sensory cortex, the latter interpretation is the more favorable, yet conclusive

evidence is largely lacking.

A possible solution to this conundrum is the use of focal pharmacological

receptor (anta)gonists that specifically alter the output of the targeted area

(Noudoost and Moore 2011). Alternatively, one could rely on optogenetics

whereby, with the right combination of serotype and promoter in the viral vector

construct, only projection cells are targeted, and no cells are retrogradely

Fig. 4 Electrical microstimulation of monkey FEF boosts activity in visual cortex for low- but not

high-contrast gratings. (a) Visually-driven activations by the stimuli on a flattened representation

of occipital cortex. These voxels, obtained from the localizer experiment, were used to perform the

analyses in panel (c). (b) Stimuli (contrast-varying gratings) used in the fMRI experiment. These

were paired with and without concurrent electrical stimulation of the corresponding FEF move-

ment fields. (c) Fractional differences in MR signal change in area V1, indicating the effective

change in fMRI activity caused by FEF-EM relative to the visual-only activation level. In all

panels, error bars indicate 1 SEM across epochs; some error bars are smaller than the symbol used.

Note the large positive effect for low contrast and even a negative effect for high contrast stimuli.

Figure adapted from Ekstrom et al. (2009)
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transduced. Even more appealing approaches include the use of viral vectors with

highly-efficient retrograde transduction capacities. These can be injected in the

projection sites of FEF after which the retrogradely-labeled cell bodies in the FEF

can be targeted with optogenetics (Yizhar et al. 2011). Although such retrograde, or

other conditional gene expression, approaches have been highly successful in

rodents (Packer et al. 2013), there are no studies to date where retrogradely-driven

optogenetics has been used in the cerebrum of nonhuman primates. A very elegant

study using a highly efficient retrograde transduction system in nonhuman primates,

resulting in exclusive expression of neurotoxin-producing enzymes in projection

cells, has shown its efficacy in the spinal cord of monkeys (Kinoshita et al. 2012).

Conceivably, similar pathway-specific, genetically-based perturbation methods

will soon become applicable in the cerebrum of macaques. The enormous advan-

tage of such techniques is that, instead of a specific region, the functional role of a

specific pathway between two regions can be investigated.

A few years ago, we optogenetically targeted specific regions in frontal cortex of

monkeys performing a saccade task, guided by prior fMRI maps (Gerits

et al. 2012). Although optogenetically-induced neuronal effects in monkeys had

been described previously (Han et al. 2009; Diester et al. 2011), our fMRI-guidance

strategy allowed us to observe, for the first time, an optogenetically-induced

behavioral effect in monkeys—i.e. faster saccades during an eye-movement task.

When combined with concurrent fMRI, we also observed increased activity in

connected regions, strongly resembling the anatomically-connected areas, and

hence mimicking the electrical microstimulation effects described above (see

Fig. 3). Meanwhile, several groups replicated optogenetically-induced behavioral

effects in monkeys with different tasks and targeting different regions but without

fMRI-guidance (Cavanaugh et al. 2012; Dai et al. 2014; Ohayon et al. 2013;

Jazayeri et al. 2012). fMRI-based guidance, however, will greatly facilitate exper-

iments aimed at simultaneously targeting multiple sites in the same subjects. With

optogenetics, one can then temporarily activate or inactivate one or several of these

nodes, even within specific subcomponents of a behavioral task.

In conclusion, I would argue that the genetically-based tools, which have

recently instigated a revolution in rodent-based neuroscience, will ultimately find

their way into nonhuman primate research. Although achieving cell-specificity will

be challenging in monkeys due to the lack of Cre-lines, this animal model is crucial

for elucidating the underpinnings of high-level perceptual and cognitive processes

absent in rodents. To study multiple nodes within a functional network, high-

resolution functional imaging will greatly advance the precision of the targeting,

be it with high-throughput electrodes, viral vector injections, or pharmacological

agents.
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Parcellations and Connectivity Patterns
in Human and Macaque Cerebral Cortex

David C. Van Essen, Chad Donahue, Donna L. Dierker,
and Matthew F. Glasser

Abstract To decipher brain function, it is vital to know how the brain is wired.

This entails elucidation of brain circuits at multiple scales, including microscopic,

mesoscopic, and macroscopic levels. Here, we review recent progress in mapping

the macroscopic brain circuits and functional organization of the cerebral cortex in

primates—humans and macaque monkeys, in particular. There are many similari-

ties across species in terms of overall patterns of cortical gray matter myelination as

well as functional areas that are presumed to be homologous. However, there are

also many important species differences, including cortical convolutions that are

much more complex and more variable in humans than in monkeys. Our ability to

analyze structure and function has benefited from improved methods for inter-

subject registration that cope with this individual variability. To characterize

long-distance connectivity, powerful but indirect methods are now available,

including resting-state functional connectivity and diffusion imaging coupled

with probabilistic tractography. We illustrate how connectivity inferred from dif-

fusion imaging and tractography can be evaluated in relation to ‘ground truth’
based on anatomical tracers in the macaque. Interspecies registration between

human and macaque cortex based on presumed interspecies homologies demon-

strates an impressive degree of areal expansion in regions associated with

higher cognitive function.

Introduction

The past decade has seen an explosion of interest and information about mamma-

lian brain connectivity over a wide range of spatial scales, including the macro-

scopic, microscopic, and mesoscopic levels discussed in the present volume. For

the human brain, there has been exciting progress in examining brain connectivity

and function using increasingly powerful methods of noninvasive imaging. These
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methods include the systematic acquisition, analysis and sharing of large amounts

of high-quality data through efforts such as the Human Connectome Project (HCP;

Van Essen et al. 2012a, 2013). However, the indirect nature of in vivo imaging

methods makes it critical to interpret results carefully and to seek better ways to

compare and validate against ‘ground truth’ information available in animal

models, particularly nonhuman primates such as the intensively studied macaque

monkey. This chapter focuses on the functional organization and connectivity of

human and macaque cerebral cortex. We consider (1) cortical organization, indi-

vidual variability, and parcellation in both species; (2) connectivity in the macaque

as revealed by tracers and by tractography; (3) connectivity of human cortex as

revealed by noninvasive imaging methods; and (4) interspecies registration as a

way to facilitate evolutionary comparisons and for cross-species connectivity

validation.

Cortical Cartography and Parcellation

Useful Cortical Numbers It is informative to review a few basic anatomical facts

about cortical organization, starting with some numbers related to the neocortex as

a whole in macaques and humans. The cerebral neocortex is a sheet-like structure

that in the macaque contains ~1.4 billion neurons/hemisphere deployed over a

surface area of ~105 cm2 per hemisphere—equivalent to a pair of ~12 cm diameter

cookies (Collins et al. 2010; Van Essen et al. 2012b). Human cortex has about

fourfold more neurons (~8 billion/hemisphere) and ninefold greater surface area

(~973� 88 cm2/hemisphere), equivalent to a pair of 35 cm pizzas (Azevedo

et al. 2009; Van Essen et al. 2012c). The average number of neurons underneath

each mm2 of the cortical surface is lower in humans (8�103) than in the macaque

(1.4� 104). Neuronal density is even lower in humans because the neocortex is on

average slightly thicker in humans (2.44 mm, from Van Essen et al. 2012c;

2.68� 0.40 mm for 196 HCP subjects—Glasser et al. 2013b) than in macaques

(1.86� 0.40 mm from 19 macaques—Glasser et al. 2013b).

Convolutions and Folding Variability In lissencephalic species (e.g., mice and

marmosets), the cerebral neocortex wraps smoothly around most of the underlying

white matter and subcortical gray matter structures, with no excess surface area. In

contrast, gyrencephalic species have a disproportionately large number of neo-

cortical relative to subcortical neurons, owing to differential neuronal proliferation

(Finlay and Darlington 1995). Convolutions arise because the resultant expansion

of neocortical surface area exceeds that of the subcortical nuclei and white matter

(Van Essen 2006); they keep the brain physically compact, allowing a large cortical

surface area to fit inside a cranial vault of modest volume. The specific pattern of

cortical convolutions is distinct for each species, as is the degree of individual

variability. Macaque cerebral cortex contains a dozen major sulci, with little

variability across individuals in the pattern of folding or in the relationship of
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cortical areas to these folds. In contrast, the ninefold larger human cortical sheet is

far more convoluted, with many primary, secondary and tertiary folds. It is also far

more variable in the pattern of convolutions and in the relation of areal boundaries

to cortical folds (Amunts et al. 2007; Fischl et al. 2008; Van Essen et al. 2012c).

Figure 1 illustrates the variability of human cortical folding in six exemplar right

hemispheres, shown on the left as 3D ‘midthickness’ surfaces and on the right as

FreeSurfer ‘sulc’ (depth) maps on inflated surfaces. This figure makes two impor-

tant additional points, arising because the six individuals represent three pairs of

monozygotic (MZ) twins taken from the HCP dataset. By visual inspection, MZ

twins differ markedly in their folding patterns; qualitatively, the within-pair differ-

ences (between columns) are comparable to those between unrelated individuals

(between rows). For example, the inferior frontal sulcus (IFS, red arrows) and

posterior inferior temporal sulcus (pITS, yellow arrows) differ between MZ twins

in the extent, depth, and relationship to nearby sulci. Quantitatively, however, the

correlation of folding patterns in MZ twins is actually greater than that for unrelated

individuals, as shown by K. Botteron, D. Dierker, D. Van Essen, R. Todd (2008

OHBM abstract and unpublished observations) and confirmed in the HCP dataset

(Van Essen et al. 2014b). Moreover, the correlations are greater for MZ twins

compared to dizygotic (DZ) twins, implying that there is significant heritability of

folding patterns, though it is modest in magnitude (Van Essen et al. 2014b).

Developmental Considerations Given the complexity and variability of cortical

convolutions, it is useful to briefly consider the underlying developmental events

that provide useful mechanistic insights. Cortical folding takes place mainly in late

prenatal development (the third trimester in humans) and has been suggested to be

driven by mechanical tension along long-distance axons within the white matter

Fig. 1 Folding variability in human cortex is pronounced, even in identical twins. Left panels:
three pairs of identical (MZ) twin pairs (A1–2, B1–2, C1–2), shown on midthickness surfaces.

Right panels: corresponding inflated surfaces displaying FreeSurfer ‘sulc’ maps
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(Van Essen 1997). If the hypothesis of tension-based folding is correct, folding

variability should largely reflect individual differences in connectivity, which in

turn should reflect differences in the size as well as the connectivity profile of each

cortical area. Consistent folding (e.g., the central sulcus) may arise from regions

dominated by large areas and major pathways, whereas variable folding may reflect

competition among smaller areas with greater connectional diversity. This hypoth-

esis raises the intriguing puzzle of why cortical folding patterns differ so much in

MZ twins. One possibility is that areal sizes and connectivity profiles are indeed

markedly different in MZ twin pairs, owing to epigenetic and intrauterine environ-

mental factors that impact cortical differentiation and wiring (in ways that are

currently not understood). Alternatively, very different patterns of cortical folding

in MZ twins may arise from subtle mechanical influences that ‘buckle’ or ‘crumple’
the cortex in ways that reflect stochastic fluctuations (e.g., external pressure on the

cranium that affects overall brain shape) despite similar areal sizes and connectivity

profiles. Careful analysis of the MZ and DZ twins in the HCP datasets may yield

further insights that help address these issues.

Intersubject Alignment Irrespective of its developmental origins, folding variability

poses important practical challenges whenever one aims to compare neuroimaging

results obtained in different individuals. A widely used general strategy is to register

individuals to a common spatial framework, i.e., an atlas. Intensive efforts have gone

into improving brain atlases and the associated registration methods. For cerebral

cortex, surface-based registration (SBR) and surface-based atlases have inherent

advantages over conventional, volume-based registration because they respect the

topology of the cortical sheet (Anticevic et al. 2008; Fischl et al. 1999; 2008; Frost

and Goebel 2012; Tucholka et al. 2012; Van Essen et al. 2012c). Until recently, the

available methods for SBR have used shape cues related to the folding pattern to

constrain the registration from individuals to the atlas. This approach is inherently

problematic for dealing with regions of high folding variability, especially since the

location of the cortical areas and functionally specialized regions vary in relation to

gyral and sulcal landmarks. Fortunately, new registration methods have recently

emerged that capitalize on functionally relevant features (e.g., myelin maps, fMRI

data) in conjunction with shape-based information (Sabuncu et al. 2010; Robinson

et al. 2013). In the examples illustrated below, we capitalize on the Multimodal

Surface Matching (MSM) method as applied to HCP and macaque datasets (Robinson

et al. 2013, 2014; Glasser et al. 2014).

Regional Patterns Primate neocortex has a common overall architecture, but some

features that vary systematically across the cortical sheet provide valuable guides to

its functional organization. We first consider regional differences in myelin content,

neuronal density, and dendritic arbor size, which collectively reflect important

overall patterns that are independent of any particular parcellation scheme. Myelin

content within the cortical ribbon can be estimated by taking the ratio between

T1-weighted and T2-weighted structural MRI scans at each voxel and mapping this

ratio onto the cortical surface (Glasser and Van Essen 2011). Figure 2 illustrates

population-average maps of myelin content, displayed on inflated atlas surfaces of
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the macaque and human right hemispheres (Glasser et al. 2013b). Several important

commonalities in the overall pattern for the two species are readily discernible.

Most notably, early sensory and motor areas are heavily myelinated (red, yellow),

whereas lightly myelinated regions (blue, indigo) occur mainly in regions of lateral

temporal, parietal, and prefrontal cortex that are generally associated with higher

cognitive functions. The most striking species difference is that the proportion of

lightly myelinated cortex in humans far exceeds that in the macaque. This finding

provides important clues about evolutionary expansion that are considered in a later

section.

In the macaque, a fivefold range of neuronal cell density (neurons per gram of

cortex) has been demonstrated using quantitative methods of cell fractionation

applied to small patches of cortical gray matter (Collins et al. 2010). These cell

density differences are correlated with the pattern of myelination, insofar as high

neuronal density occurs in heavily myelinated early sensory and low density in the

lightly myelinated ‘higher’ cortical areas (though the correlation is imperfect as

heavily myelinated motor cortex has low neuronal density). Another important

correlation is with dendritic arbor sizes (basal dendritic area) and spine numbers,

determined by labeling individual neurons in lightly fixed tissue sampled from

different cortical regions. Average dendritic arbor area and number of spines per

neuron are low in areas V1 and V2 and are several-fold greater in temporal and

prefrontal cortex (Elston 2000, 2002; Elston and Rosa 1997; Elston et al. 1999,

2001, 2006). In humans, comparable regional differences in dendritic arbor size and

even larger differences in spine number have been demonstrated (Elston et al. 2001,

2006). There are also interesting correlations with patterns of cortical development.

Human cortical surface area expands threefold after birth, but this postnatal expan-

sion is nonuniform. The largest expansion (~4-fold) occurs mainly in the lightly

Fig. 2 Group-average myelin maps for macaque (n¼ 19, Yerkes19) and human (n¼ 196, HCP),

adapted from Glasser et al. (2013a, 2014). Myelin maps were generated by computing the

T1w/T2w ratio for each cortical gray matter voxel, mapping it to individual cortical surfaces,

and registering the individuals to a species-specific atlas surface (Glasser and Van Essen 2011)

using the MSM registration method (Robinson et al. 2013, 2014)
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myelinated higher cognitive regions, whereas the least expansion (~2-fold) occurs

in early sensory areas (Hill et al. 2010). A likely cellular-level correlate is that, in

the macaque, dendritic arbors sizes and synapse number increase between birth and

adulthood in inferotemporal cortex, whereas there is a net decrease in both mea-

sures for early visual areas (Elston et al. 2010). Thus, in both species regional

differences in neuronal density, average dendritic arbor size, and myelin content

conform to a general pattern that provides important insights for understanding

brain function, evolution, and development.

Cortical Parcellation Over the past century, a growing arsenal of methods has

been used to parcellate cerebral cortex—that is, to identify distinct cortical areas

based on differences across one or more four broad domains: architecture (cyto-,

myelo- chemo-, and immunocyto-architectonics), connectivity (tracers and/or

imaging-based), topography (e.g., retinotopy, somatotopy), and function (based

on neurophysiology, lesions, and neuroimaging). Arguably the most accurate

parcellation of mammalian cortex to date is in the lissencephalic mouse, where

there is strong evidence for about 40 cortical areas based on a multi-modal analysis

of architectonics, topography, and connectivity (Wang et al. 2012; see Burkhalter

2015). For macaque and human cortex, a consensus parcellation has yet to be

attained in either species despite intensive efforts, because the differences between

adjacent cortical areas are often subtle, are not always in concordance across

different measures, and are susceptible to a variety of neurobiological confounds

(e.g., differences in areal size across individuals, and in areal location relative to

cortical folds) and other methodological confounds. Figure 3 illustrates composite

parcellation schemes for macaque and human cortex based on studies that mapped

Fig. 3 Parcellations of macaque and human cortex. (a) A composite parcellation of macaque

cortex into 129 areas based on published architectonic maps [adapted, with permission, from Van

Essen et al. (2012b)]. (b) A 52-area parcellation of human cortex that is a composite of five

published parcellations [adapted, with permission, from Van Essen et al. (2012c)]. (c) Resting-
state network (RSN) parcels, from splitting Yeo et al.’s 17 networks into spatially contiguous

subregions at least 50 mm2 in surface area. Areal boundaries from panel (b) are superimposed for

comparison on inflated and flatmap surfaces
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parcels to the cortical surface accurately in individual subjects and then from

individuals to an atlas surface using surface-based registration.

The macaque parcellation (Fig. 3a), based on a composite drawn from three

architectonic analyses, includes 129 areas covering 93 % of neocortex (Van Essen

et al. 2012b). The size (surface area) of different areas spans a 100-fold range, and

across individuals the size of any given area varies twofold or more. Comparisons

across 15 published parcellation schemes registered to the atlas surface reveal a

consensus for only a minority of these areas. For example, retinotopic mapping

studies reveal a finer-grained parcellation of extrastriate visual cortex than in the

above architectonic scheme (Kolster et al. 2009), but a consensus among

parcellations based on different modalities has yet to be attained in the macaque

for visual cortex beyond V1–V4 and MT (Van Essen et al. 2012b). Moreover, there

is strong evidence for ‘patch-like’ functional specializations within some higher

cortical regions. For example, lateral occipital and temporal cortex contains patches

associated with processing of faces (Tsao et al. 2008) and color (Lafer-Sousa and

Conway 2013), with each color patch just ventral to one of the face patches. An

important but unresolved question is whether face and color patches should each be

considered a distinct cortical ‘area.’ A plausible alternative is to consider them

modular components of larger areas that are heterogeneous in function and con-

nectivity, analogous to the modularity identified in areas V1, V2, and V4 (Deyoe

et al. 1990). Reconciliation of the many discrepancies among extant macaque

cortical parcellations will require additional data from multiple modalities that

are acquired and analyzed with careful attention to spatial fidelity at every stage,

including accurate intersubject registration to a surface-based atlas.

For human cortex, analyses based on accurate surface maps of architectonic and

retinotopic areas have enabled identification of 52 areas, encompassing about

one-third of the cortical sheet, to be mapped to a surface-based atlas (Fig. 3b;

Van Essen et al. 2012c). If the intervening regions contain areas that are similar or

slightly smaller in average surface area, as suggested by architectonic analyses yet

to be accurately surface-mapped (Amunts et al. 2007), human cortex may contain

150–200 distinct areas in each hemisphere.

A valuable noninvasive approach to parcellating the entire cerebral cortex makes

use of resting-state functional connectivity. ‘Resting-state networks’ (RSNs) rep-
resent regions that have similar fMRI (BOLD) time courses, as revealed using

independent components analysis (ICA) or other ways of analyzing fMRI

timeseries data. Importantly, many RSN components (‘nodes’) include spatially

noncontiguous domains that can be widely dispersed (e.g., in different cortical

lobes), reflecting a spatially distributed arrangement of regions that share similar

fMRI time courses and are presumed to be involved in similar functions. To

facilitate comparisons with spatially contiguous cortical areas derived using other

methods (e.g., the architectonic and retinotopic areas in Fig. 3a, b), it is useful to

subdivide each RSN into parcels that include only contiguous subregions. For

example, Fig. 3c shows the 17 RSNs identified by Yeo et al. (2011) after splitting

into a total of about 50 contiguous RSN parcels per hemisphere, displayed on a

flatmap as well as inflated surfaces. Comparison of these RSN parcels with the

Parcellations and Connectivity Patterns in Human and Macaque Cerebral Cortex 95



overlaid boundaries of architectonic/retinotopic areas (from Fig. 3b) reveals numer-

ous mismatches, because RSN parcel boundaries generally do not align with

cortical areas defined by architectonic and topographic criteria. For example, the

complex of early somatomotor areas (architectonic areas 1, 3a, 3b, and 4) includes

two large RSN parcels that are split on the basis of somatotopy rather than areal

boundaries. The cyan RSN parcel includes the face representation of somatomotor

cortex but also extends into much of auditory cortex. The blue RSN parcel covers

the body and limb representations but, except for the posterior boundary of area

2 (yellow arrow), the architectonic and RSN boundaries are not co-aligned. The

separation into face vs. body RSN components is consistent with tracer studies in

the macaque indicating differential anatomical connectivity patterns relating to

somatotopy (Johnson et al. 1996; Matelli et al. 1998; Tanne-Gariepy et al. 2002;

Luppino et al. 2003). The visual cortex includes three RSN components. One

(in red) represents central vision of V1 and V2, plus many third-tier and fourth-

tier retinotopic areas and additional portions of ventral occipito-temporal cortex. A

second (purple) represents peripheral V1 and V2 and other medial regions that

emphasize peripheral vision. The third (light green) includes the ‘IPS complex’ of
parietal visual areas but extends as a narrow strip laterally and ventrally.

Both neurobiological and methodological factors contribute to the mismatches

between RSN-based and architectonic/retinotopic-based parcellation boundaries.

Genuinely heterogeneous connectivity patterns within well-defined cortical areas

are likely to be a major contributor, for reasons already noted above. Methodo-

logical factors include (1) inaccurate mapping to the cortical surface arising from

cross-sulcal bleeding and mapping of signals from draining veins rather than

cortical gray matter, both of which are exacerbated by larger voxel sizes (e.g.,

3-mm isotropic voxels in Yeo et al. 2011); (2) noisy data arising from short-

duration fMRI scans and imperfect denoising; and (3) inaccurate intersubject

alignment when generating a population-average parcellation.

Prospects for improved human cortical parcellations are excellent, particularly

in view of the high-quality data made available by the HCP (Van Essen et al. 2013;

Smith et al. 2013). Of particular relevance are (1) more accurate cortical segmen-

tation and surface reconstructions (higher resolution, improved algorithms; Glasser

et al. 2013a); (2) higher quality rfMRI scans (1-h duration, multiband acquisition

enabling 2 mm spatial and 0.7 s temporal resolution); (3) improved intersubject

alignment using the aforementioned MSM algorithm (Robinson et al. 2014); plus

additional methods refinements (Glasser et al. 2014). Even with these advances,

there are significant challenges to improving the fidelity of cortical parcellation. For

example, independent component analysis (ICA) can be used to generate ‘soft’
parcellations (each gray ordinate can have a weighted contribution to several

network components), which can yield many ICA components that are substantially

finer-grained than those illustrated in Fig. 3 (Van Essen et al. 2013; Smith

et al. 2013). However, for reasons already mentioned, it is challenging to identify

cortical areas by relying on RSNs alone. An attractive alternative in general is to use

multiple MRI modalities (rfMRI, tfMRI, myelin, and cortical thickness being the

most informative) and to combine across modalities in ways that maximize the
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prospect of identifying neurobiologically well-defined areas and sub-areas. Given

the growing body of freely available HCP data, combined with ongoing methods

refinements (especially in multimodal registration), high quality group-average

human cortical parcellations are anticipated in the near future.

Distributed Cortical Connectivity

Our understanding of general principles of cortico-cortical connectivity has

evolved dramatically in recent decades. Early studies suggested that each cortical

area received only a few inputs and outputs (Van Essen 1979). Subsequent analyses

using more sensitive tracers revealed evidence for hundreds of pathways among

dozens of visual areas (Felleman and Van Essen 1991). There was also a growing

realization that different pathways ranged widely in strength. Accurate quantitation

of connection strengths and mapping to a surface-based parcellation is feasible

(Lewis and Van Essen 2000a, b; Van Essen et al. 2001) but is tedious and

technically demanding. Major progress on this front has come from a recent

systematic effort from the laboratory of Henry Kennedy, revealing that connectivity

profiles are more highly distributed and that connection strengths span a much

wider range than previously realized (Knoblauch et al. 2015). Using a 91-area

cortical parcellation and retrograde tracers injected into 29 cortical areas, Markov

et al. (2012) determined that each cortical area receives on average inputs from

55 other areas out of a (minimum) 26 and (maximum) 87; when expressed as the

fraction of retrogradely labeled neurons, these pathways vary over five orders of

magnitude in connection strength (Markov et al. 2011, 2012; Knoblauch

et al. 2015). This translates to 1615 inter-areal pathways out of 2610 possible in a

29� 91 connectivity matrix. Most pathways are reciprocal and comparable in

strength for the forward and feedback components, though the incidence of uni-

directional pathways is greater than previously suspected (Markov et al. 2012).

These findings demonstrate that cortical connectivity is far from sparse, or

‘small world,’ when expressed as area-to-area connectivity. On the other hand,

connections are much sparser when evaluated at finer-grained levels such as those

of individual neurons or small patches of cortex. For example, each cortical neuron

receives and makes about 104 synapses on average; given 109 neurons in the

macaque, the upper bound of direct contacts is about ~1 neuron in 105 (and even

lower for human cortex). At an intermediate level of granularity, it is of interest to

estimate the spatial extent of cortex that provides some degree of direct input to any

given patch of cortex. Each mm2 patch of macaque cortex contains ~105 neurons

and may contain ~109 synapses (but with significant regional variability, as noted

above). An estimated 80 % of inputs come from local (intra-areal) circuits, within a

radius of several mm of a given patch (Markov et al. 2011). The remaining 20 % of

long-distance within-hemisphere inputs are distributed across the 10,000-mm2

surface area of each hemisphere. Inspection of the long-distance retrogradely

labeled neurons seen in histological sections (Markov et al. 2012, supplemental
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material) suggests that perhaps 10–20 % of these patches contain at least one

labeled neuron (but often many) and thus provide direct input to any given tracer

injection site (Van Essen 2013). It would be possible to estimate this more accu-

rately by mapping retrogradely labeled neurons directly from individual sections

onto surface reconstructions (of individual hemispheres or directly to a surface-

based atlas). In any event, the density or sparseness of cortico-cortical connectivity

depends greatly on the scale of analysis.

Similar principles of connectivity have recently been demonstrated in the mouse,

based on an inter-areal parcellated connectome using anterograde tracers in ten

areas of visual cortex (Wang et al. 2012; Burkhalter 2015) and on a meso-

connectome regional analysis involving nearly 300 bidirectionally analyzed path-

ways (Oh et al. 2014). As in the macaque, connection patterns in the mouse are

highly distributed, and connection strengths vary over many orders of magnitude,

suggesting that these principles may reflect a common mammalian plan.

Tracers vs. Tractography in the Macaque The aforementioned quantitative tracer

studies in the macaque provide the closest currently available to ground truth

connectivity data and are invaluable for assessing the performance of more indirect

methods for estimating connectivity. For example, we have used this approach to

evaluate diffusion imaging (dMRI) and probabilistic tractography analyzed in a

postmortem macaque brain. This is especially important because tractography

shows a strong ‘gyral bias,’ in which streamlines tend to terminate on gyral crowns,

both in human and macaque cortex. This bias has been suggested to reflect actual

anatomical connectivity (Nie et al. 2012). However, we contend that it conflicts

with ground-truth neuroanatomy and instead reflects the tendency for the dominant

fiber orientation in white matter ‘blades’ to be oriented along the axis pointing

towards the gyral crown (Van Essen et al. 2014a). In myelin-stained sections, fibers

‘peel off’ to provide axons to and from the sulcal banks, but their radius of curvature

is typically smaller than the dMRI voxel size (Van Essen et al. 2014a).

Figure 4b shows that area 7a receives inputs from 60 of the 90 other areas shown

in the Fig. 4a parcellation, and that connection strengths vary over >5 orders of

magnitude, indicated by the logarithmic scale. Figure 4c shows the average con-

nection strength (averaged across the two directions) for the subset of 29 areas that

were also injection sites. For the tractography-based ‘structural connectivity’ and
the same subset of areas (Fig. 4d), the strength of connectivity shows many

similarities but also many differences, e.g., the pathway between area PBr is

stronger for tractography than for tracers (arrows). A scatterplot of the pathway

strength by the two methods for all connection pairs in the 29� 29 matrix (Fig. 4e)

shows a correlation that is significant for only the top ~20 % of tracer pathways

(right of the vertical blue line).

Functional Connectivity Validation in the Macaque It is widely appreciated that

functional connectivity is an inherently indirect surrogate for direct anatomical

connectivity, because correlated activity can arise from common inputs and/or

indirect anatomical pathways as well as direct connections (Smith et al. 2013).

Hence, an important empirical question is the degree to which estimates of functional
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connectivity correlate with anatomical connectivity in the macaque. Vincent

et al. (2007) showed qualitatively that functional connectivity in the anesthetized

macaque correlated well with anatomical connectivity when testing a seed region in

the vicinity of area LIPv, whereas a seed region centered in area V1 revealed

evidence of a combination of direct connections (e.g., with area MT) and indirect

connections (e.g., with the horizontal meridian of contralateral area V1, which has no

direct interhemispheric connections). A recent study showed a modest (r¼ 0.35) but

highly significant correlation between functional connectivity in the anesthetized

macaque and the Markov et al. (2012) quantitative parcellated connectivity matrix

(Miranda-Dominguez et al. 2014). Importantly, the analysis revealed many false

negatives (negative functional connectivity, or anti-correlation between areas that

are strongly connected anatomically). Thus, as with tractography, it is important to

remain mindful of the indirect nature of functional connectivity analyses and the

limited capability for estimating actual connection strengths in nonhuman primates

when using standard data acquisition and analysis methods.

Human Cortical Connectivity Structural connectivity (based on dMRI and

tractography) and functional connectivity (based on resting-state fMRI) have

Fig. 4 (a) 91-area parcellation of macaque cortex on the inflated atlas surface. (b) Anatomical

connectivity of area 7a based on a retrograde tracer injection into area 7a and quantitative mapping

of its connection strength with all other areas (Markov et al. 2012). Connection strengths are on a

log10 scale and span five orders of magnitude [same scale as for panels (c, d)]. (c) Average
bidirectional tracer-based connectivity of area 7a based on the 29� 29 ‘edge-complete’ bidirec-
tional connectivity matrix. (d) Tractography-based connectivity, also for area 7a but from a

different macaque (cf., Van Essen et al. 2014a). Arrows in (c, d) point to area PBr, whose estimated

connectivity based on tractography exceeds that determined using tracers. (e) Scatterplot of

tracers-vs.-tractography connection strengths
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already been discussed in relation to the macaque and also in relation to cortical

parcellation in humans. However, much of the interest in these approaches derives

from the prospect of charting the actual ‘wiring diagram’ of the human brain, how it

varies across individuals, and how it relates to and contributes to individual

differences in behavior. Indeed, this is the central focus of the HCP, as discussed

extensively elsewhere (Van Essen et al. 2013; Smith et al. 2013). Here, we focus on

several key observations and issues about the opportunities and challenges associ-

ated with this endeavor.

We focus on data and initial results from the HCP, as this represents the state-of-

the-art in acquiring and analyzing dMRI and rfMRI data in humans. Figure 5 shows

a direct comparison between structural and functional connectivity in an individual

HCP subject, using a seed location in the middle temporal gyrus (MTG, large green

sphere). Structural connectivity based on probabilistic tractography (Fig. 5a) pro-

vides evidence of connectivity between the MTG and many regions, both nearby, at

intermediate distances (two large patches in and near the angular gyrus, smaller

green dots), and at long distances (e.g., on the inferior frontal gyrus). For the same

seed location on the MTG (Fig. 5b), the map of functional connectivity shows many

similarities but also many differences. The similarities indicate cross-modal con-

sistency, suggesting that both patterns include many neurobiologically valid con-

nections. For reasons already stated, differences may reflect neurobiological factors

but also methodological biases or artifacts. For example, regions with strong

functional connectivity but weak structural connectivity might in theory (white

arrow in prefrontal cortex) reflect a pathway with only weak direct connections but

strong indirect (polysynaptic) connections. Alternatively, a robust direct pathway

may exist but fail to be captured by tractography owing to methodological limita-

tions (e.g., inaccurate charting of the complex trajectories of fibers in white matter).

Regions that suggest structural connectivity but not functional connectivity (e.g.,

red arrow in insular cortex) might reflect false positives in the tractography analysis

Despite these caveats and limitations, it is important to appreciate that the

HCP structural and functional connectivity data represent major advances in our

ability to acquire and analyze information about human brain circuitry. Examining

Fig. 5 Comparing structural connectivity (a) and functional connectivity (b) in an individual HCP
subject for a seed vertex on the middle temporal gyrus [reproduced, with permission, from Van

Essen et al. (2014a)]
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seed-based connectivity in individual subjects reveals that MRI-based data are

inherently noisy and subject to bias. To gain meaningful insights, it is necessary

to integrate across space (i.e., to use parcel-based analyses) and/or across the

population (i.e., to capitalize on the large and growing number of HCP subjects).

The need for parcel-based analysis that is based on functionally distinct brain

subdivisions is a strong driver for the ongoing effort to improve human cortical

parcellation using multimodal analysis, as discussed in an earlier section. The need

for group-based analyses is a strong driver for the ongoing effort to improve

intersubject alignment. Progress on both of these fronts will enhance the utility

and interpretability of the HCP datasets and also other datasets that capitalize on

these methodological improvements.

Interspecies Registration

Figures 2 and 3 provided evidence of many similarities in the functional organi-

zation of macaque and human cortex but also for major species differences in the

relative sizes of different areas and regions presumed to be homologous. Inter-

species surface-based registration offers a useful approach to comparing across

species in ways that are systematic, quantitative, and objective; it will enable the

use of tracer-based connectivity data in the macaque to inform and validate

structural and functional connectivity findings in humans.

We have previously used landmark-constrained registration using about two

dozen landmark contours that represent areal boundaries or other functional tran-

sitions presumed to reflect evolutionary homologies (Denys et al. 2004; Van Essen

2005). This approach provides evidence of hotspots of human evolution in lateral

temporal, parietal, and prefrontal cortex that have expanded dramatically in the

human lineage relative to that in the macaque; the pattern is remarkably similar to

human postnatal cortical expansion, between birth and adulthood (Van Essen and

Dierker 2007; Hill et al. 2010). To better understand this pattern of evolutionary

divergence, it is desirable to have a larger set of known or presumed homologies

between specie, and also to have improved methods of interspecies registration that

handle the highly nonuniform spatial patterns of expansion. Here, we illustrate a

brief progress report in this direction. It includes a more extensive set of landmark

contours (38 in all), including orbitofrontal, lateral temporal, and parietal regions

suspected to reflect homologies (Fig. 6a). Another advance involves an improved

landmark-based registration method (the ‘LVD’ algorithm; Van Essen et al. 2012b)

relative to an earlier method. The resultant map of interspecies cortical expansion

(Fig. 6b) suggests that cortical expansion in these hotspots exceeds 30-fold, com-

pared to the twofold to fourfold expansion over most of early visual cortex.

Refinements to this general picture can be anticipated by invoking additional

features to constrain interspecies registration, along with improved registration

algorithms such as the multimodal surface matching method (Robinson

et al. 2014) that can use continuously varying features (e.g., the myelin maps
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shown in Fig. 2) as well as discrete areal delimitations, rather than the purely

landmark-constrained approach used to date. This will also be aided by incorpo-

rating chimpanzee cortex (Glasser et al. 2013b) as an important intermediary for

examining evolutionary relationships.

It is now feasible to use interspecies registration as a test bed for evaluating

human connectivity. Indeed, such an analysis was recently reported by Miranda-

Dominguez et al. (2014), who used an earlier interspecies registration to compare

human functional connectivity with the macaque tracer-based connectivity after

registration to human cortex. They found a slightly higher correlation between

human functional connectivity and interspecies-registered macaque connectivity

(r¼ 0.42) than for the aforementioned macaque functional-vs.-tracer correlation

(r¼ 0.35), raising the possibility that the quality of the functional connectivity data

might be better for their human vs. their (anesthetized) macaque. Future analyses

along these lines can be applied to tractography, different functional connectivity

datasets (including HCP) and different ways of analyzing the structural and func-

tional connectivity (e.g., with vs. without regression of mean-gray-timecourse;

Fig. 6 (a) Landmarks used to register macaque to human cortex. (b) Areal expansion maps

between human and macaque cortex, revealing hotspots of cortical expansion in lateral temporal,

parietal, and frontal cortex. The expansion map was smoothed after initial computation of the

interspecies area ratio to reduce neurobiologically implausible local irregularities
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partial vs. full correlation), and other possible measures as well as improved

interspecies registrations.

Concluding Comments

Two decades ago, hardly anything was known about long-distance pathways in the

human brain, other than the general distribution of major fiber tracts discernible

from classical blunt dissection studies (e.g., Gluhbegovic and Williams 1980). This

problem was famously articulated by Crick and Jones (1993) just when fMRI was

beginning to emerge and before diffusion imaging began. The explosion of

methodological advances has been dramatic but so have the many challenges of

carefully analyzing and interpreting these highly complex datasets.
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Connectome Networks: From Cells

to Systems

Olaf Sporns

Abstract Nervous systems are networks of neurons and brain regions that are

structurally interconnected and dynamically linked in complex patterns. As map-

ping and recording techniques become increasingly capable of capturing neural

structure and activity across widely distributed circuits and systems, there is a

growing need for new analysis tools and modeling approaches to make sense of

these rich “big data” sets. Modern network science offers a way forward. Both

structural and functional brain data sets can be rendered in the form of complex

networks and thus become amenable for network modeling and analysis, which can

be carried out across scales, from the micro-scale of individual neurons to the

macro-scale of whole-brain recordings. In this article, I sketch an overview of

structural and functional brain network studies ranging from cells to systems. My

emphasis will be on common themes in mapping network attributes across scales.

In addition to highlighting important advances, I will outline some major chal-

lenges that need to be overcome to achieve a more complete understanding of

connectome networks.

Defining the Connectome

Understanding the role of connectivity in brain function is a long-standing goal of

both cellular and systems neuroscience (Sporns 2011; Schmahmann and Pandya

2007). Neuronal circuits have been at the center of anatomical and physiological

investigation since the groundbreaking studies of Camillo Golgi and Santiago

Ram�on y Cajal in the late nineteenth century. Connectional anatomy was a core

theme in early accounts of human brain function by Carl Wernicke, Theodor

Meynert and Siegmund Exner that made reference to the layout and interconnec-

tivity of brain regions and pathways. Anatomical studies that employed ever more

sensitive histological staining and tracing tools and new insights into the
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functioning of neurons and circuits led to theoretical notions of “neural networks.”

Such network models first gained momentum in the work of pioneers like Warren

McCulloch and Frank Rosenblatt and ultimately transformed into “connectionism,”

which placed a strong emphasis on distributed processing and learning as key

ingredients of neural computation.

A core theme in these historical developments is the foundational role of

connectivity for brain function, an idea that has motivated the compilation of a

complete connection map of the nervous system of Caenorhabditis elegans (White

et al. 1986) as well as several landmark attempts to compile maps of interregional

projections in the mammalian cerebral cortex (Zeki and Shipp 1988; Felleman and

van Essen 1991; Young 1993). These early network maps triggered a string of

theoretical and computational studies aimed at using connectivity data to define

functional specialization (Passingham et al. 2002), spatial layout and wiring min-

imization (Chklovskii et al. 2002) as well as clusters and small-world attributes

(Hilgetag et al. 2000). The importance of connectivity maps gave rise to the concept

of the “connectome,” first defined as “a comprehensive structural description of the

network of elements and connections” of a given nervous system (Sporns

et al. 2005). Several challenges were recognized right from the outset. First, brain

networks span multiple spatial scales, from synaptic circuits among individual

neurons all the way to whole-brain systems; integrating connectome maps across

these multiple scales poses numerous conceptual and technological hurdles. Sec-

ond, the connectome is changing across time as a result of neuroplasticity and

development across the life span; mapping these changes requires comparative

analysis of connectomes in relation to individual experience and across age. Third,

connectome networks exhibit considerable variability across individuals; this struc-

tural variability may reflect individual differences in behavioral and cognitive

performance. Finally, connectomics comprises a combination of structural mapping

efforts and functional brain recordings, thus addressing the fundamental question of

how observed brain dynamics emerge from the anatomical patterns of neural

circuits.

This brief review article provides a selective overview of connectome studies

that address a subset of these challenges. First, the article surveys structural

mapping studies across multiple spatial scales, from connections among neurons

to systems-level networks. Next, the article examines the relation of structural

connectivity to dynamic brain function, including both spontaneous activity and

stimulus-driven neuronal responses. The article closes with a brief summary of

current efforts to use connectivity maps as key ingredients for computational

models of brain function and a reflection on the status of connectomics as a

foundational tool for understanding brain organization.
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Brain Networks and Graph Theory

Brain networks are collections of nodes (neuronal elements) and edges (their

interconnections; Fig. 1). Empirically, brain networks are constructed from mea-

surements of structural or functional relationships between pairs of neurons or brain

regions. These pairwise relations are summarized in the form of a connection

matrix that describes the relations between nodes and edges, i.e., the network’s
topology. Empirical methods for extracting brain network data from structural or

functional measurements are continually evolving and represent an area of rapid

neurotechnological innovation. Current approaches include the reconstruction of

single-cell neuronal morphology and connectivity using electron or light micros-

copy (e.g., Helmstaedter et al. 2013), novel labeling and tract tracing approaches

(e.g., Oh et al. 2014), large-scale optical recordings (e.g., Ahrens et al. 2013), and

refinements of noninvasive imaging techniques (e.g., Van Essen et al. 2012).

An important distinction concerns the difference between structural and func-

tional brain networks. Structural networks are derived from anatomical data sets

and represent physical synaptic connections between neural elements, whereas

functional networks are derived from neural recordings and represent their statis-

tical relationships, e.g., covariance or cross-correlation. Structural networks are

often sparse (most possible structural connections do not exist) and relatively stable

across time. In contrast, functional networks undergo rapid changes in the course of

both spontaneous and task-evoked neural activity and can be configured from a

large number of time series analysis measures. Importantly, statements about

“connectivity” in functional networks only refer to the similarity or coherence of

neural time courses that may be dependent on but do not directly correspond to

structural connections.

Once brain network data have been rendered in matrix form, they are amenable

to an extremely wide range of statistical and modeling tools coming from network

science, especially the mathematical framework of graph theory (Bullmore and

Sporns 2009). A comprehensive overview of the application and interpretation of

graph-theoretical approaches to brain networks is beyond the scope of this chapter

[for reviews, see Rubinov and Sporns (2010), Stam (2010), and Lohmann

et al. (2013)]. Briefly, descriptive measures of brain network connectivity fall

into at least three different categories, reporting on different aspects of network

organization. Broadly, these aspects refer to segregation, integration, and influence.

Segregation and integration are best considered jointly, as they represent somewhat

opposite trends towards greater functional specialization and greater functional

coherence, respectively (Sporns 2013a). Graph measures of segregation

(or specialization) capture the extent to which nodes aggregate into separate

clusters or communities, which can be expressed by computing the network’s
clustering coefficient or by its tendency to form distinct modules. In contrast,

measures of integration are generally aimed at quantifying the ease with which

communication may occur along network paths, presumably an important aspect of

how nodes can exchange information; key measures of integration relate to
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Fig. 1 Schematic illustration of a simple graph and several basic graph measures. (a) The graph

represented here is binary and undirected, and it consists of a set of nodes and edges. (b) Based on

the number of edges per node, some nodes can be described as low-degree and others as high-

degree. Paths (sequences of edges) connect nodes to each other. In the example shown here, the

shortest path linking nodes A and B consists of three edges—hence, the topological distance

between A and B is three steps. (c) The network can be partitioned into two modules. Given the

module partition, high-degree nodes can be classified as either connector hubs or provincial hubs.

Connector hubs maintain many connections that link different modules, whereas provincial hubs

mainly connect within one module only
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communication efficiency and path length. The combination of high clustering

(segregation) and short path length (integration) generally indicates the presence

of “small world” organization, a mode of connectivity that has been found in

numerous other social, technological and biological networks (Watts and Strogatz

1998).

Measures of influence aim at quantifying the importance of network elements

(nodes or edges) for the global functionality of the network, for example, by

expressing their centrality in communication or their vulnerability to structural

damage. Influence or centrality measures are important for detecting network

“hubs.” While there is no precise definition for hubs in the network literature,

hubs are most often identified on the basis of their node degree (the number of

distinct connections they maintain across the network) or, alternatively, through a

combination of multiple nodal metrics related to connectedness and communication

(Sporns et al. 2007; van den Heuvel and Sporns 2013). Hubs represent nodes of

special interest in many network studies since their central embedding in the

network topology makes them attractive candidates for information integration

while also rendering them vulnerable to attack. In some networks (including

brains), hubs can be found to be highly interconnected to form a so-called “rich

club” (van den Heuvel and Sporns 2011). The concept of hubs is strongly related to

modularity and network communities; hubs that predominantly link nodes within

one community are also referred to as “provincial hubs,” whereas hubs that

interconnect multiple communities are called “connector hubs” (Fig. 1). Increas-

ingly, cross-cutting characterizations of brain network organization that simulta-

neously capture segregation, integration and influence rely on decomposing

networks into modules or communities that are linked by bridge connections and

hub nodes. Such modular accounts of brain networks are particularly appealing

since they can be applied to both structural and functional networks, and since the

resulting modules have been shown to have behavioral and cognitive relevance.

Network analysis based on graph theory is prone to a number of potential

limitations and pitfalls (Sporns 2014). Like all quantitative analysis, its reliability,

sensitivity and reproducibility are crucially dependent on the integrity of connec-

tivity data. This issue becomes especially important in the area of node definition,

i.e., the parcellation of neural tissue into coherent areas by applying some criteria of

structural or functional homogeneity. The parcellation problem (and hence node

definition) continues to present pressing challenges at the meso- and macro-scales

of whole-brain connectomics. In parallel, the definition of edges, particularly the

estimation of structural connections using sensitive microscopic, histological or

imaging techniques, continues to be problematic. Both the detection of the presence

or absence of connections or pathways and the estimation of their strength or weight

(based on synaptic contact area, labeling density, or tractography measures) are

subject to noise, statistical biases and observational error. Significant efforts to

improve neural tracing and recording techniques are currently underway, and these

efforts will continue to deliver ever more accurate and more highly resolved brain

network data sets.
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Topology of Structural Brain Networks

This section summarizes some recent studies reporting on the topology of structural

brain networks at micro-, meso- and macro-scales. The focus is on studies that have

yielded significant insights into characteristic patterns and motifs of network

connectivity.

Microscale

Microscale studies of structural connectivity depend on the development of tech-

niques for automated histology (electron microscopy or light microscopy) and

reconstruction that combine sensitivity with scalability (Kleinfeld et al. 2011;

Helmstaedter et al. 2011; Helmstaedter 2013). While these techniques have not

yet delivered any whole-brain wiring diagrams for complex organisms, they have

been successfully deployed to map specific circuits in both invertebrate and verte-

brate nervous systems.

Recent studies in three model organisms (C. elegans, Drosophila, mouse) have

yielded significant microscale connectivity data that have added to our knowledge

of connectome architecture at the cellular level. Building on the ground-breaking

work of White et al. (1986), recent studies have reported on the wiring diagram of

the posterior nervous system of the C. elegans adult male, reconstructed from serial

electron micrograph sections (Jarrell et al. 2012). Analysis of the resulting wiring

pattern showed a network that was characterized by a number of features, including

the presence of multiple parallel pathways that linked sensory neurons to effector

neurons, some degree of recurrence within sensory systems, and the presence of

structural modules. These connectional features could be related to specific aspects

of sensorimotor processing and behavior. Other studies have provided additional

insights for how circuit connectivity in C. elegans constrains function and behavior.
Bumbarger et al. (2013) compared the synaptic connectivity of the pharyngeal

nervous system of two different nematode species that exhibit very different

feeding behavior. Employing graph-theoretic analyses, these behavioral differences

could be traced to differences in synaptic rewiring that determined different roles of

several neurons involved in regulating predatory feeding.

Studies of microscale wiring patterns in Drosophila have demonstrated that the

topology of specific subcircuits can be explained on the basis of wiring length

minimization and volume exclusion, both mechanisms directed at the economical

conservation of space (Rivera-Alba et al. 2011). In a more recent electron micro-

scopic study, Takemura et al. (2013) reconstructed a microscale circuit comprising

379 neurons and 8637 synapses within the optic medulla, a structure involved in

visual motion detection. The circuit reconstruction revealed specific patterns of

inter-neuronal connectivity that were consistent with the roles of individual neurons

in generating direction selectivity.
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Detection of directed visual motion was also studied in circuits of the mouse

retina, reconstructed from data obtained with serial block-face electron microscopy

(Briggman et al. 2011). Analysis showed anatomically specific patterns of connec-

tivity between amacrine and ganglion cells that were in register with physiologi-

cally measured direction selectivity of individual neurons. In subsequent work,

dense reconstruction of a significant portion of the mouse retina was carried out by

Helmstaedter et al. (2013). The use of a combination of manual annotation and

machine learning resulted in a synaptic “contact matrix” between 950 neurons in

the inner plexiform layer. Microscale connection motifs in this matrix revealed

circuit mechanisms underlying motion detection and other aspects of visual

function.

Direct applications of graph theory or network science methods to microscale

connectivity data are still scarce, in part due to the lack of data sets comprising more

than just a few neurons. Quantitative network analysis has only just begun to

contribute to microscale connectome studies. Important open questions in this

area concern the specificity of connections between individual neurons, the prev-

alence of specific network motifs that might be specialized to carry out local

computations, or the presence of small world organization. As more microscale

connectome data accrue, network analysis will become increasingly important for

characterizing circuit models of neural computation (Denk et al. 2012).

Mesoscale

Mesoscale efforts to assemble connectivity maps for large portions or even com-

plete nervous systems are under way in a number of organisms, with some of the

most important insights coming from Drosophila and mouse.

Chiang et al. (2011) collected high-resolution 3D images of approximately

16,000 single neurons in the Drosophila brain that were then used to assemble a

whole-brain connectivity matrix. Aggregation of single-neuron images into func-

tional subdivisions, so-called “local processing units,” resulted in a mesoscale

connectome comprising 41 nodes and their weighted interconnections. Cluster

analysis revealed distinct network communities or modules whose members were

functionally specialized to carry out visual, olfactory, auditory and motor

processing. Ongoing work has begun to reveal additional network attributes, includ-

ing additional submodules and small-world organization (Shih et al. 2013; 2015).

Mesoscalemouse connectome projects (as well as parallel efforts in the rat cerebral

cortex; Bota et al. 2015) have produced similar insights.Wang et al. (2012) performed

a detailed quantitative analysis of the anatomical connections of ten areas of mouse

visual cortex, including both their mutual connectivity and their external projection

targets. Modularity analysis demonstrated a division of mouse cortex into two

processing streams, with some anatomical and physiological data suggesting a close

correspondence to the dorsal/ventral streams found in primate visual cortex. Zingg

et al. (2014) generated a connectivity matrix for mouse neocortex by combining data
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from hundreds of tracer injections into a single network representation. The resulting

directed connectivity networkwas shown to contain severalmodules corresponding to

subdivisions or “subnetworks” involved in various sensory, motor and integrative

functions. A parallel effort (Oh et al. 2014), involving high-resolution optical imaging

and tracing of projections across the entire mouse brain, has resulted in another mouse

connectome map that charts the directed and weighted anatomical links among

295 gray-matter regions. Initial network analysis of this map indicates the presence

of high clustering as well as a number of highly connected network hubs.

Common themes in mesoscale connectomics across species are a prevalence of

high clustering due to the existence of network modules, a strong association of

these modules with distinct functional or behavioral domains, and the use of

connection profiles of individual areas to build an understanding of their potential

functional contributions. Network architectures involving modules interconnected

by hubs appear to be shared among several species (invertebrate, mammalian,

as well as the avian brain; see Shanahan et al. 2013).

Macroscale

The distinction between meso- and macro-scales is at present somewhat indistinct.

Mesoscale maps result in connectivity data that report on areas and their inter-areal

projections, as do most macroscale efforts that leverage tract tracing methods in

non-human primates or noninvasive imaging in human brain. The macroscale

studies summarized in this section all focus on inter-areal or large-scale projections

in primate cerebral cortex.

Tract tracing has an important role to play for the study of anatomical connec-

tions in animal models, particularly in non-human primates. An extensive set of

studies carried out by Henry Kennedy and colleagues (Markov et al. 2011, 2013a, b,

2014) have revealed the connectional anatomy of the macaque cerebral cortex in

new detail. Injections of retrograde tracers in 29 cortical areas followed by rigorous

quantification of label density across the entire cortex demonstrated a previously

unknown degree of connectedness among areas. Numerous new (and mostly rela-

tively weak) projections were uncovered, and the overall connectivity profile for

each area was best approximated by a lognormal distribution (Markov et al. 2011),

with a few strong projections and a large admixture of medium or weak pathways.

Graph analysis provided evidence for a relatively high proportion of unidirectional

links (Markov et al. 2014), a strong contribution of long-distance projections

towards areal specificity (Markov et al. 2013a), significant distance-dependence

of connection densities (Ercsey-Ravasz et al. 2013), and hierarchical arrangement

of areas into “counter-streams” (Markov et al. 2013b). Several of these character-

istic topological features are also found in other mammalian species, e.g., the cat or

rodent brain. While the sensitivity and quantifiability of tract tracing data offer new

opportunities for mapping connectome networks, the invasiveness of the method

and the current inability to conduct whole-brain tracing across the entire network of
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pathways simultaneously impose some limitations, especially in estimating indi-

vidual variability and in relating connectivity patterns to behavior.

Human brain connectomics currently relies primarily on imaging and

reconstructing structural connections on the basis of diffusion MRI and

tractography. This approach uses signals that record the diffusion anisotropy of

water or other small molecules within biological tissue. Based on these signals,

reconstruction methods then deliver inferential and statistical models of fiber

anatomy. Methods for data acquisition and fiber reconstruction are under continual

development, with significant recent refinements involving increased spatial reso-

lution (U�gurbil et al. 2013), more robust probabilistic methods for tractography

(Sotiropoulos et al. 2013) and additional measures of white matter microstructure

such as axonal diameters (Alexander et al. 2010). A unique feature of noninvasive

imaging methods is that they allow the acquisition of data from large numbers of

individuals, thus opening opportunities for measuring individual variability and

relation of connectional features to behavioral and cognitive performance, taking

steps towards “population neuroscience” (Falk et al. 2013).

A large number of studies have generated network maps of the human

connectome (Hagmann et al. 2008; Gong et al. 2009; Bassett et al. 2010; van den

Heuvel and Sporns 2011). Network studies of human structural connectivity pat-

terns have consistently reported broad degree distributions, with a “heavy tail” of

well-connected nodes, including some that maintain very high numbers of connec-

tions. The precise shape of the degree distribution remains somewhat uncertain, due

to resolution limits and issues related to node parcellation, with most studies

suggesting exponential or exponentially truncated power-law distributions for

node degree. An intriguing question for future work is how these distributions

might compare to the log-normal profiles of connection density and weight

obtained from other species (see above). Another common feature encountered

across most, if not all, network studies of the human connectome is “small-

worldness,” i.e., the presence of high clustering and short path length (Bassett

and Bullmore 2006). This is significant as the presence of small-world organization

is consistent with a balance between anatomical and functional segregation on the

one side (as captured by high clustering) and a simultaneous capacity for global

integration on the other side (as captured by short communication paths).

High clustering in the human brain (as well as in the nervous systems of other

species) is mainly driven by the presence of modules, or network communities of

densely interconnected neural elements. From a network perspective, structural

modules offer a connectional substrate for rapid and efficient sharing of information

among restricted sets of brain regions (often found to contribute to a common set of

tasks) while also promoting the functional specialization of these regions by

creating boundaries that limit the spread of information across the entire network.

A complementary concept is that of network hubs. As discussed earlier, hubs are

regions that are less central to specific modules but instead interconnect multiple

modules to each other; such hubs are generally characterized by their high degree,

high centrality, and diverse connection profiles. In the human cerebral cortex, hubs

have been identified in portions of the medial and superior parietal cortex as well as
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selected regions in orbitofrontal, superior frontal and lateral prefrontal cortex

(Hagmann et al. 2008; Gong et al. 2009; van den Heuvel and Sporns 2013), with

many of them previously described as multi- or transmodal association areas (e.g.,

Mesulam 1998).

Recently, several human connectivity studies have suggested a tendency for

hubs to be densely interconnected in a structural core (Hagmann et al. 2008) or a

“rich club” (van den Heuvel and Sporns 2011), again paralleling findings in other

species (e.g., Zamora-L�opez et al. 2010; Harriger et al. 2012). Across these

different studies, a common prediction is that rich club nodes and their intercon-

nections may have particularly important roles to play in brain communication (van

den Heuvel et al. 2012). Computational studies of the human connectome have

shown that a very high percentage of all short communication paths among non-rich

club regions across the network must pass through the rich club. Furthermore,

damage to connections that link rich club regions is predicted to have a larger

disruptive effect on network communication than an equal amount of damage to

connections among non-rich club regions.

Numerous common themes have emerged across different studies of primate

cortex. The emerging picture is one of a modular small-world network, with

clustered network communities that are interlinked by a coherent core or

subnetwork (the rich club) of hub regions. The placement of the rich club within

the overall network is strongly suggestive of a central role in global information

flow and integration. The implications of such a structural core or rich club for

cognition and behavior remain largely unexplored. One important conceptual link

is that between rich-club organization and theories of “global workspace” in

relation to cognition and consciousness (Dehaene and Changeux 2011). Workspace

theories postulate mechanisms for integration across sensory, motor and cognitive

domains that may require a dense subnetwork of distributed hub regions, i.e., the

presence of a cortical rich club.

Comparison Across Scales and Challenges

How do connectome mapping efforts across different scales relate to each other?

For the purpose of mapping whole nervous systems that are small and compact

(such as those of many invertebrates) as well as for elucidating connectivity of local

circuits in more complex brains, microscale approaches to structural connectomics

are clearly of major importance. However, it seems unlikely that the application of

microscale connectomics technology, even if successful across the whole brain,

will ever entirely remove the need for measuring connectivity at coarser spatial

scales. For descriptions of brain connectivity in large brains (e.g., in mammalian

species), mesoscale and macroscale maps will remain essential as they allow

establishing relations between connectivity and behavior. In addition, meso- and

macroscale in vivo mapping strategies such as noninvasive neuroimaging, despite

limits on resolution and various methodological biases, make an important
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contribution by drawing links between individual variations in connectivity and

individual differences in cognitive and behavioral performance. It is difficult to

imagine at present how microscale approaches alone can address these important

research goals of connectomics in the foreseeable future.

Several challenges for structural connectomics remain. As the field matures,

there will be a growing need for annotation of connectome maps with additional

physiological parameters, for example, data on connectional microstructure, neu-

rotransmitter receptors, plasticity and neuromodulatory effects, all aspects that are

crucial for interpreting the functional role of connectional topology. The goal of

using connectome data for explaining and predicting the operation of neuronal

circuits and populations requires the inclusion of these physiological features of

connections that are known to have important impacts on how neurons interact and

how circuits compute (Bargmann 2012). Another challenge is to map features of

connectome topology across scales, from cells to whole-brain systems. Data on

nervous systems across a range of species have demonstrated a surprising degree to

which global network organization is preserved; virtually all brain network data

sets examined so far share some degree of high clustering, short path length,

modules and hubs, and even rich-club organization. It is unknown at present if

similarities exist also across different scales within the same nervous system, for

example, long-range pathways between brain areas as well as local cortical circuits.

Relations Between Structure and Function

Structure-function relationships are crucial for achieving a deeper understanding of

biological processes. In line with this view, the relation of structural to functional

connectivity offers a key motivation for mapping connectome networks. A number

of studies across micro, meso and macro scale have suggested that patterns of

structural connections are indeed instrumental in shaping the dynamics of

neural activity.

Microscale

The relations between circuit topology, neural computation and behavior are still

relatively unexplored. Significant inroads have been made in the network anatomy

of specific subregions of the C. elegans nervous system and its relation to specific

behaviors (see above). Another area where detailed reconstructions of cell morpho-

logy and circuit anatomy have helped understand circuit function is motion detec-

tion (Borst and Euler 2011), specifically motion detection circuits of Drosophila
and the mouse retina (see above).

Important insights have been gained from microscale studies that are built on a

combined structure-function approach. An example is an analysis of anatomy and
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physiology of a subset of neurons in primary visual cortex of the mouse carried out

by Bock et al. (2011). First, the authors characterized functional properties of

neurons, such as their preferred stimulus orientation, using optical imaging. Then,

they performed serial sectioning electron microscopy of the same tissue volume to

map and reconstruct synaptic interconnections, eventually resulting in a network

graph. Detailed analysis of the final connection diagram revealed some specific

connectional features such as convergence of inputs from multiple pyramidal cells

with diverse orientation preference onto inhibitory neurons. This pattern of con-

vergence, while unrelated to the physiological specializations of the presynaptic

cells, was partially predicted by axonal geometry, specifically the pair-wise spatial

overlap of their synaptic boutons. Together with the study of Briggman et al. (2011)

on direction selectivity in mouse retina (see above), this work represents an

example of how the combined analysis of anatomy and physiology can inform

neural accounts of computations that relate to behavior.

Large-scale recording methods applied to organisms such as the zebrafish larva

can yield whole-brain recordings of highly resolved neural population activity

(Ahrens et al. 2013). This dynamic circuit activity can be analyzed with time series

methods, and there is evidence of functionally coherent circuits forming clusters or

modules (Portugues et al. 2014). A near-term goal will be to relate the timing of

correlated neural events to underlying anatomical connections that modulate

whole-brain functional connectivity. Furthermore, modern molecular tools open

the possibility to not only monitor but also manipulate circuit activity, for example,

through the use of optogenetics (Portugues et al. 2013). This might eventually allow

for uncovering causal (directed or effective) relationships between circuit elements,

an aspect of connectome studies that is currently difficult to attain at the meso- and

macroscales.

Mesoscale

Mesoscale studies of structural and functional connectivity have so far largely been

carried out in the non-human primate. However, the increasing availability of

mesoscale connectome data (e.g., Oh et al. 2014) as well as high-resolution

functional MRI recordings (Mechling et al. 2014) may soon offer an opportunity

to explore the issue in the mouse brain. Some important work in this area has been

carried out in the macaque monkey.

Wang et al. (2013) studied the relationship between structural and functional

connectivity at high spatial resolution within the monkey somatosensory cortex.

Their focus of study was on connectivity within two specialized areas of the squirrel

monkey somatosensory cortex (areas 3b and 1), both containing representations of

the monkey’s body surface, specifically the tips of the digits of the monkey’s hand.
Resting-state functional connectivity was recorded using high-field strength func-

tional magnetic resonance imaging (fMRI) and revealed topographically precise

coupling between corresponding digits across both areas, as well as within area 3b.
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This pattern matched anatomical connectivity patterns observed after injections of

anatomical tracers into specific digit representations. Overall, connectivity within

the squirrel monkey somatosensory cortex appears to be organized anatomically

and functionally in highly similar patterns, with two main “axes of information

flow.” One axis predominantly links representations of matched digits in area 3b to

area 1, whereas the other axis links representations of different digits within area

3b.

At the whole-brain level, a study of functional connectivity driven by spontane-

ous neural activity in the macaque monkey cortex by Vincent et al. (2007) found

that patterns of coherent spontaneous blood oxygenation level dependent (BOLD)

fluctuations were similar to patterns of anatomical connectivity derived from tract

tracing studies. Adachi et al. (2012) performed a similar analysis, comparing

structural and functional connectivity across 39 regions of macaque cortex and

demonstrating a significant statistical relationship. More detailed analysis of func-

tional connectivity patterns demonstrated that strong coupling among brain regions

could be observed even if no direct anatomical connection was present. These

indirect functional relationships were found to be due to the flow of signals along

indirect structural paths and other, more complex network-wide coupling effects.

Both direct and indirect couplings could be successfully captured in computational

models. Taken together, these findings further support a mechanistic role of struc-

tural connections in generating organized patterns of neural dynamics.

Macroscale

At the macroscale, comparisons of structural and functional connectivity have

largely centered on spontaneous or endogenously driven neural activity. In

human imaging, much of the emphasis over the past several years has been on

fluctuations in BOLD activity in the human brain acquired during a “task-free” or

resting state. Despite its unconstrained nature, numerous studies have shown that

spatial and temporal patterns of resting brain activity can be richly informative

about the brain’s functional organization (Raichle 2011; Buckner et al. 2013).

Resting-state functional connectivity is generally expressed as the cross-correlation

of time series of BOLD signals recorded with fMRI across the whole brain.

Direct comparison of resting-state functional connectivity and structural con-

nectivity (connectome) networks has revealed robust and reproducible statistical

relationships, giving rise to the idea that structural connections shape functional

connectivity. A systematic analysis of structural and functional connectivity in a

small cohort of human participants used a parcellation of the cortex into approxi-

mately 1000 equal-sized regions of interest (Hagmann et al. 2008). The study

reported robust correlations between the strengths of structural and functional

connectivity across the entire cortical surface. A more detailed analysis of the

same data set (Honey et al. 2009) demonstrated that this correlation persisted

even after potential confounds such as spatial proximity between regions were
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taken into account. The analysis also showed that indirect structural connections

could account for a significant proportion of the functional connectivity observed

between node pairs lacking direct linkage. This finding strongly suggested that

functional connectivity may be partly due to the passing on of indirect influence

along multi-step paths in the connectome (see Adachi et al. 2012). A parallel

analysis (Skudlarski et al. 2008) also reported robust structural connectivity-

functional connectivity correlations based on a voxel-by-voxel structural connec-

tivity-functional connectivity comparison across the cerebral cortex.

Following these early analyses, numerous independent studies have confirmed

the existence of robust and significant statistical relationships between structural

and (resting state) functional connectivity in the human brain (e.g., Hermundstad

et al. 2013). Several studies have focused on the role of spatial embedding (i.e., the

distance dependence apparent in both structural and functional connections) for

shaping the topology of structural and functional connections (e.g., Vértes

et al. 2012; Samu et al. 2014). Other studies have compared structure-function

relations across species (Miranda-Dominguez et al. 2014). The notion that struc-

tural connections shape and/or constrain functional connections is not only

supported through comparisons of anatomical and functional connectivity but is

also reinforced by interventional studies that have reported changes in functional

connectivity resulting from manipulations of the anatomical substrate (Johnston

et al. 2008; O’Reilly et al. 2013). Extending this notion to brain and mental

disorders, a large number of studies have attempted to link dysregulation of

functional connectivity patterns to underlying disturbances of structural connectiv-

ity, e.g., in disrupted hub or rich club connections [reviewed in van den Heuvel and

Sporns (2013)].

Comparison Across Scales and Challenges

In summary, there is converging evidence suggesting that the connectional anatomy

of neurons and brain regions is shaping or constraining the statistical dependencies

that emerge as neurons and brain regions become functionally activated. Many

studies have relied on simple measures of dependency (such as cross-correlation or

covariance) to demonstrate this relationship. A future challenge is to develop and

deploy more complex and specific measures, for example, measures that are based

on partial correlations or directed influence, to better distinguish statistical depen-

dencies due to transitive (correlative) couplings from others that are mediated by

direct structural connections (and hence more causal in nature). Another challenge

is to observe brain dynamics at both circuit and whole-brain levels, which is

currently impossible with most standard recording techniques that either suffer

from a limited “field of view” (recording only very few neurons in great detail) or

limited spatial and temporal resolution (e.g., noninvasive imaging). Combining

whole-brain coverage with fine spatial and temporal detail would allow capturing

dynamic activity unfolding within a brain’s structural connectome, perhaps even in
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relation to behavior. Promising steps in this direction have been made, with the

development of new activity-dependent probes and of whole-brain recordings in

C. elegans and zebrafish (see above).

Future Perspectives

As the many contributions to this volume document, research in micro-, meso- and

macroconnectomics is rapidly expanding and is offering a fresh perspective on

brain function as emerging from the structure and dynamics of complex networks

(Sporns 2011). The future of the field is difficult to predict. Extrapolating from the

past, it seems likely that connectomics will be strongly influenced by new meth-

odological and analytic developments in both data acquisition and analysis. In this

final section of the article, I attempt to forecast some of the areas where the field of

connectomics may make important contributions in the near future.

Computational models will play an increasingly important role, for example, in

attempts to use connectome data to inform computational models of brain function

and dynamics (Fig. 2). A series of such models have been used to investigate the

structural basis of spontaneous or resting-brain functional connectivity as recorded

with fMRI [reviewed in Deco et al. (2011)]. Model design generally combines sets

of biophysical equations that specify the dynamics of neurons or neuronal

populations with sets of coupling terms (for example, structural couplings specified

by a connectome map). Model analysis proceeds by using some of the same time

series measures (e.g., cross-correlations between neural activity patterns) that are

also employed in empirical studies. Key findings coming from this modeling work

include robust relations between empirical and simulated functional networks

(Honey et al. 2007, 2009; Adachi et al. 2012), as well as an important role for

conduction delays and noise in generating realistic resting-brain dynamics (Deco

et al. 2009). This connectome-based modeling framework can be extended to

include anatomically detailed models of dynamic effects induced by focal brain

lesions (Alstott et al. 2009) or degeneration of brain connectivity (de Haan

et al. 2012). While biophysically based models can generate simulations of rich

brain dynamics, simpler models that are based on structural graph measures (Go~ni
et al. 2014) and/or models of diffusive processes (Abdelnour et al. 2014) and

routing (Mišić et al. 2014) are gaining in importance due to their computational

simplicity and analytic transparence.

Another challenge concerns the realization that brain networks are not static in

time; instead, they exhibit dynamic changes on multiple time scales. Tracking such

network dynamics across time presents major methodological and analytic hurdles.

Networks change on slow time scales, for example, across development and the

human life span, and a growing number of imaging studies are directed at charac-

terizing the processes that guide network growth and maturation, as well as the

changing distributions of hubs and network communities (e.g., Power et al. 2010).

In addition to these slow changes across time, networks change on much faster time
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scales (seconds and milliseconds), both during “resting state” (more appropriately

conceptualized as the “restless brain”; Raichle 2011) and in transitions between

tasks. Informed by new approaches to network dynamics coming from network

science (e.g., Mucha et al. 2010), recent studies have attempted to measure fast

changes in network topology in brain recordings (Bassett et al. 2013).

In conclusion, as small data give way to “big data” in neuroscience (much of it

coming from the domains of structural and functional connectivity), connectomics

is likely to expand significantly in coming years. Several large-scale national and

international projects and consortia directed at brain science are underway, includ-

ing the Human Connectome Project and the BRAIN initiative in the U.S. as well as

the Human Brain Project in the E.U. As these projects progress, there will be an

increasing need for a theoretical framework that can underpin and help make sense

of “big brain data” (Sporns 2013b). One promising candidate for such a framework

Fig. 2 An example of modeling the structure/function relationship in brain networks. (a) A

structural connectivity matrix comprising 47 regions of the macaque cortex and their anatomical

relationships, based on a collation of tract-tracing data [for more detail, see Honey et al. (2007)].

The matrix is binary and directed, with black squares indicating the presence of a connection from
one area (matrix row) to another (matrix column). (b) Biophysical equations that describe nodal

dynamics in a so-called neural mass model (Honey et al. 2007). (c) Combination of the structural

connectivity matrix and the biophysical equations yields a time series for neuronal dynamics that

can be rendered as functional connectivity. Structural perturbations (e.g., deletion of nodes or

edges in the connectome) or functional inputs (e.g., simulating task performance) can be used to

explore differences in functional connectivity. Both structural and functional connectivity are

presented with identical arrangements of brain regions, and two functional modules are indicated

(modules 1 and 2)
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is the science of networks, with its many applications in the brain across different

scales and systems.
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Intra- and Inter-hemispheric Connectivity

Supporting Hemispheric Specialization

Nathalie Tzourio-Mazoyer

Abstract Hemispheric specialization (HS), or hemispheric dominance, is a nine-

teenth century concept that relates to the fact that a given hemisphere is the pilot of

a given function such as, for example, the left hemisphere is dominant for language

and for right-handedness. HS is grounded in both intra-hemispheric white matter

connections, supported by associative bundles, and inter-hemispheric connections

between cortical areas located in mirrored positions (homotopic), through the

corpus callosum (CC) fiber tracts. Imaging investigations have measured anatom-

ical and/or functional asymmetry, assessing HS at the voxelwise, regional, or

hemispheric level. Comparison of these simple measures obtained with functional

imaging during language tasks with results from the Wada test has validated that

asymmetries do size up HS and pave the way for the investigation of HS in healthy

humans. Anatomical asymmetries explain only a fraction of functional variability

in lateralization, likely because structural and functional asymmetries develop at

different periods of life. Anatomical asymmetries appear as early as the 26th week

of gestation; at birth they are identical to those of adults. In contrast, functional

neuroimaging investigations have revealed that inter-hemispheric connectivity

appears at birth and is leftward asymmetrical in auditory areas, whereas in high-

order language areas, this inter-hemispheric connectivity slowly shifts during

development to a predominant intra-hemispheric connectivity in the adult. The

precise timing and neural basis of this shift are still unknown, but it has been

nevertheless shown that the connectivity is not yet in place at the age of seven and

that it parallels an increase in leftward asymmetry during language tasks. Abnormal

development of this asymmetry is observed in severe mental illnesses that exhibit

language symptoms, such as schizophrenia and autism. In addition, after a domi-

nant hemisphere lesion, good language capacities are associated with the recovery

of a leftward asymmetry during language tasks. However, neuroimaging studies

have shown that HS variability for language, up to rightward dominance, exists in

healthy individuals and is partly explained by both behavioral (handedness) and

anatomical (i.e., brain volume, size of the left planum temporale) factors, with these

factors possibly interacting with one another. Knowledge of the setting up of
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language HS is still fractional and very little is known about right hemisphere

dominance and complementary specialization of the two hemispheres. Considering

the complexity of the question, progress will come from the acquisition and

analysis of databases developed to answer those questions, such as the BIL&GIN,

which includes a sample of 450 healthy volunteers balanced for handedness and

gender. Each participant has been characterized for cognitive abilities, anatomy,

resting state connectivity and activated networks during motor, language and

visuospatial tasks.

Introduction

Human Dualism: Two Hands, Two Brains

Hemispheric specialization (HS) relates to the symmetry and asymmetry of the

human body and behavior, which have imprinted human thinking. Since the birth of

the first cosmological religions, the most prominent behavioral asymmetry of

humans, namely handedness, has embodied dualism (in the sense of opposition)

and Manichaeism. In these primitive religions, when facing the morning sun,

humans had darkness and cold on their left side, warmth and light on their right

side, which also faced the entire course of the sun in the sky. The association of

right with south and left with north is seen in various languages, such as Celtic, old

French, Irish, Sanskrit, and Hebrew (Bertrand 2001). In a still lively religion such as

Catholicism, one may observe that the left is the side of evil and Inferno and the

right is the side of God and Heaven. Although not explicitly stated, and although

left-handers are no longer constrained or persecuted in Europe or USA, these ideas

are still alive. One example can be found in Charles Laughton’s 1955 movie, “The

Night of the Hunter,” in which the devilish reverend Harry Powell asks the children

he is chasing, “Would you like me to tell you the little story of right-hand/left-hand.

The story of good and evil?” At this stage, the movie star Robert Mitchum has the

word “LOVE” tattooed on his right hand fingers and “HATE” on his left ones. Such

an embodiment of dualism is present not only at the cultural level but also at the

individual level. A recent psychological investigation demonstrated that right-

handers place “good” things (namely animals in the referenced experiment) on

their right, whereas left-handers do the opposite (Casasanto and Henetz 2012).

At level of the brain, handedness, one of the most lateralized behavior in

humans, is related to the fact that one hemisphere—the left in right-handers—is

dominant for hand control, a feature characteristic of HS. Although Max Dax and

his son first conceptualized HS (Manning and Thomas-Antérion 2011), early on

Broca associated the occurrence of aphasia after a left hemispheric lesion with the

high prevalence of right-handedness in humans. The left hemisphere—hosting both

right-handedness and language control—was declared “dominant” or “major,” as

opposed to the right hemisphere, which was considered as “minor.” Later neuro-

psychological studies confirmed that, in most humans, a lesion of the left

130 N. Tzourio-Mazoyer



hemisphere leads to aphasia and apraxia whereas a lesion on the right leads to

spatial neglect, attesting right hemisphere dominance for attention and visuospatial

processes.

Major input to the role of each hemisphere came from split-brain investigations

that have revealed the existence of hemisphere-dedicated functions, which have

been demonstrated when the two hemispheres are disconnected. This approach has

demonstrated the crucial role of inter-hemispheric connectivity in the setting up of

HS [review in Gazzaniga (2000)]. A Manichaeism view of the hemispheres’ role
and function emerged in the 1980’s, with a “cold” left brain hosting language and

logic versus an “emotional” and creative right brain, a view that is still present in

current thinking, as evidenced, for example, by recent advertising staging pictures

of hemispheres with strongly contrasting characteristics.

Asymmetries Measured with Brain Imaging

The advent of functional neuroimaging has permitted the investigation of HS in

healthy subjects; the first step has been to compare functional imaging results with

those of Wada testing. Because the Wada procedure consists of testing language

functions after anesthesia in one hemisphere, the first imaging approach designed

for classifying individuals in terms of their language-dominant hemisphere has

been to compute left minus right differences of activations during various language
tasks, and then to categorize individuals according to an asymmetry index (positive

corresponding to left-hemisphere dominance, negative to atypical individuals).

Whatever the language tasks used or the technology (fCTD, fMRI) or the method-

ology (hemispheric, regional) applied to the computation of this asymmetry index,

very consistent results have been obtained when comparing such an index with

Wada testing in the same patients (Dym et al. 2011). Such validation paves the way

for the use of functional imaging to investigate, through the study of inter-

individual variability, the factors at stake in the setting up of HS.

It is remarkable that the search for the underpinnings of hemispheric specificity,

in terms of anatomical as well as functional investigations, has mainly relied on a

very simple model: the calculation of a left minus right value. The implicit model

underlying such a computation is that of an elementary network composed of pairs

of areas, most generally located in mirrored locations, and thus principally

grounded on callosal connections. As we will see, tackling differences in intra-

hemispheric organization has occurred more recently and was first addressed with

anatomical imaging using a connectomics approach after virtually removing the

corpus callosum connections (Iturria-Medina et al. 2011).

In this chapter, we will first present the current knowledge and hypotheses

regarding the anatomical and functional support of HS. Second, we will discuss

the consequences of recent literature describing the developmental time course of

anatomical and functional inter-hemispheric organization. Third, we will present

results and hypotheses regarding the relationships between HS, cognitive abilities
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and developmental/psychiatric illness. Lastly, we will comment on a tool we have

designed to study HS in healthy humans, the BIL&GIN database, with the aim of

investigating the lateralization of motor, verbal, and visuospatial functions.

Anatomo-Functional Support of HS

Gray Matter Macroscopic Asymmetries and HS

The search for relationships between anatomical asymmetries in the brain and HS

for language was revolutionized in 1968 when Geschwind and Levitsky (1968)

reported on a leftward asymmetry of a temporal cortex area involved in speech

sound processing, namely, the planum temporale (PT). This seminal finding, which

was obtained through measurements of the PT surface area in post-mortem brains,

was considered as a proof of an anatomical substrate for left hemisphere dominance

for language. Cytoarchitectonic studies have further refined our knowledge by

showing that the asymmetric PT cortex corresponds to the Tpt area, which hosts

the unimodal associative auditory cortex (Galaburda et al. 1978). PT area measure-

ments in healthy subjects using modern neuroimaging techniques started in the

1980’s (Steinmetz et al. 1989), confirming that right-handers have a large leftward

PT asymmetry [for a review, see Shapleske et al. (1999)].

PT asymmetry is related to a global brain torsion, named the brain Yakovlevian

torque (Barrick et al. 2005), which leads to a protrusion of the right inferior frontal

gyrus and of the left occipital areas [review in Toga and Thompson (2003)]. Such a

torsion is also observed in 25 % of great apes but its occurrence rises to more than

80 % in modern humans. This asymmetrical torsion is associated with a backward

shift of the left hemisphere temporal sulci, leaving a larger space at the surface of

the left Sylvian fissure that hosts the PT (Lyttelton et al. 2009).

Because of the reduced occurrence of left hemisphere dominance for language in

left-handers (Hécaen et al. 1981), a way to test the relationship between PT

asymmetry and HS for language has been to search for differences in asymmetry

between right- and left-handers. While Steinmetz reported lower PT asymmetry in

left-handers (Steinmetz et al. 1991), others did not find such a difference (Habib

et al. 1991; Foundas et al. 1995). This discrepancy is likely due to the fact that PT is

a highly variable structure, as shown by probabilistic mapping revealing that only

one voxel is common to 60 % of individuals after brain normalization in the

stereotaxic space (Westbury et al. 1999). This huge variability calls for large

sample investigations, and we have recently reported in a sample of 273 healthy

subjects that manual preference has no effect on left PT surface area or asymmetry

(Tzourio-Mazoyer et al. 2010b).

Another anatomical marker of language lateralization is Heschl’s gyrus, hosting
the primary auditory cortex. In the left hemisphere, the size of this area is related to

the volume of activated cortex during temporal processing of language sound, a
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mandatory component of language understanding (Warrier et al. 2009). Such a

relationship between Heschl’s structural asymmetry, or more precisely its pattern of

duplication, and its functional asymmetry during speech listening has been recently

reported in a large sample of healthy volunteers (Tzourio-Mazoyer et al. 2015).

In the frontal lobe, results concerning an asymmetry of the inferior frontal gyrus,

hosting Broca’s area in the left hemisphere, have been inconsistent, but a recent

report in a large sample of 200 healthy adults showed a leftward asymmetry of the

insula that was related to word recognition lateralization (Chiarello et al. 2013).

Moreover, this work revealed that the anatomo-functional relationship between

these asymmetries was stronger than the one observed with the PT, demonstrating

that the search for anatomical markers of HS is still lively.

However, one should keep in mind that, even if anatomical and functional

asymmetries during language tasks can be found to be correlated, such a relation-

ship must be quite weak, considering that some studies found evidence for it

(Tzourio et al. 1998; Josse et al. 2006, 2009) whereas others did not (Eckert

et al. 2006). As will be further developed, this discrepancy is likely due to a stronger

correspondence existing in primary areas having an early anatomical and functional

maturation than in high-order cortices that show a delayed anatomical and func-

tional development (Hill et al. 2010b), leaving environmental factors to exert a

stronger influence.

White Matter Connections Supporting HS

In terms of White Matter (WM) anatomy, HS is grounded both in intra-hemispheric

connections supported by associative bundles and in inter-hemispheric connections

between cortical areas located in mirrored positions (homotopic) connected by the

corpus callosum [review in van der Knaap and van der Ham (2011)].

Corpus Callosum

The two hemispheres are connected by the CC, which is made up of 200 million

fibers issuing from pyramidal cells of cortical layers II and III with homotopic

projections on contralateral neurons of the same layer. Major advances in defining

the functional role of the CC have come from investigations of split-brain patients

with partial or total hemispheric disconnection after callosotomy. Cases of partial

callosotomy have shown that CC is topographically organized, with transfer of

visual, auditory and somatosensory information in its posterior parts and of atten-

tional resources and higher cognitive information in more anterior regions. Inves-

tigations conducted by Sperry and Gazzaniga established the allocation of functions

between the two hemispheres and the fundamental role of CC in the transfer of

information between them [review in Gazzaniga (2000)]. They also described the

alien-hand syndrome and conflicting hand-motor behavior in the acute phase after
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CC surgery, demonstrating that the CC also has an inhibitory role that is crucial for

human behavior. The CC has thus been at center stage in the investigation of HS

anatomical support.

Considering that, in the course of evolution, there has been a decrease in CC size

with increasing brain size and complexity, it is assumed that a smaller CC was

associated with increased hemispheric lateralization of functions (Hopkins and

Cantalupo 2008). In humans, it has also been shown that large brains have relatively

smaller CC surface area (Jäncke and Steinmetz 1998); these authors considered that

this finding supported the theory proposed by Ringo that increasing size, and

thereby inter-hemispheric transfer, was a mechanical factor favoring the grouping

of areas supporting a given function within one hemisphere (Ringo et al. 1994).

However, there is also evidence of increased hemispheric lateralization associated

with increased CC size, at least in some of its subparts. For example, in 74 healthy

volunteers in whom language lateralization was measured during a semantic deci-

sion task on written words, a stronger lateralization was associated with increased

mid-sagittal CC size (Josse et al. 2008). These apparent discrepancies in the

literature are likely due to several difficulties in CC functional exploration. First,

CC contains both small diameter fibers conveying inhibitory connections across

high-order areas and large fast-conducting fibers connecting primary and unimodal

associative areas; it is thus difficult to infer its role only from anatomical variables.

Second, the topographical organization of CC is complex and fine-grained, and

until now, most investigations have mainly relied on the total surface area or on a

coarse parcellation scheme. A detailed mapping of the topographical organization

of CC based on DTI data is ongoing in healthy volunteers, and its findings will be

very useful for future research (Putnam et al. 2010; Chao et al. 2009).

Intra-hemispheric Structural Connectivity

The two hemispheres appear to have a very comparable anatomical organization in

terms of WM fiber bundles. The coarse picture that one gets from long-distance

fasciculus organization in the brain is that of a globally symmetrical pattern, in

accordance with the fact that the right and left hemispheres have comparable

organization in terms of cortical hierarchy and cognitive network organization

(Mesulam 2000; Fuster 2009). Only a few investigations have reported WM

asymmetries, and all focused on the arcuate fasciculus, which is known to support

language on the left, and on the cortico-spinal tract that connects the motoneurons

to the medulla. Using DTI, the initial observation of bilateral arcuate fasciculus,

with subjects without a right arcuate fasciculus (Catani et al. 2007), has not been

replicated, although a leftward asymmetry of the arcuate fasciculus and

corticospinal tracts seems present in healthy adults (Thiebaut de Schotten

et al. 2011). A leftward asymmetry in terms of fractional anisotropy has also been

observed in the WM connecting frontal and occipital areas (Suchan et al. 2013).

The picture is clearer in newborns, where leftward asymmetry of the arcuate

fasciculus has been observed at birth (Dubois et al. 2009; Leroy et al. 2011). Thus,
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even if hemispheric dominance corresponds to differences in cognitive processes,

the structure of the two hemispheres follows the same anatomo-functional organi-

zational rules. Differences are thus likely to be subtle.

Even though investigating differences in WM intra-hemispheric organization

may seem complex, Iturria-Medina et al. (2011) have developed a promising

approach, applying graph analyses to WM images obtained with DTI. The origi-

nality of this approach is that WM hemisphere graphs are computed after a virtual

cut of the inter-hemispheric callosal connections, making it possible to unravel

potential differences that were probably masked by the strength of existing callosal

connections. Although the results were obtained in a limited sample of individuals,

they evidenced hemispheric differences: the left hemisphere was hosting more

nodes, whereas the right had more connections. Comparison of this observation

to functional or behavioral observations will allow us to progress in understanding

these hemispheric differences in WM connectivity.

Functional Asymmetries and Hemispheric Dominance
for Language Assessed with Meta-analysis

Language was one of the first cognitive functions scrutinized with functional

imaging (Petersen et al. 1988). Since its advent, functional imaging has developed

tools allowing for the averaging of different brains in a common reference system

(Fox et al. 1985). This approach allowed for conducting a posteriori meta-analyses

that permitted a precise description of the localization of brain areas activated

during various tasks. Using the localization of activated regions as the starting

point, it is possible to speculate about the role of these regions by analyzing their

involvement in different tasks.

Using a meta-analysis approach, we evaluated the relative roles of the left and

right hemispheres during linguistic tasks by analyzing 128 functional imaging

studies dealing with language tasks in healthy, right-handed participants (Vigneau

et al. 2006). We found 59 articles reporting right-hemisphere participation, with

105 language contrasts providing 218 peaks that were analyzed in a second step

(Vigneau et al. 2011). Compared to the 728 peaks observed in the left hemisphere,

the low proportion of right-hemisphere participation in the same studies was early

evidence of the left-hemisphere language dominance. To better characterize hemi-

spheric participation, we described inter-hemispheric interactions in each of the

language contrasts involving both hemispheres. We classified peaks as unilateral or

bilateral. During a given task of a given study, a unilateral peak should not exhibit

any homotopic activation, homotopic activation being defined as the presence of an

activation focus located in a mirror position in the other hemisphere. In contrast, a

bilateral peak was defined when it was accompanied by homotopic activation in the

opposite hemisphere during the same contrast.
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We computed the proportion of unilateral and bilateral peaks in each hemisphere

and observed that, while the majority of left hemisphere peaks were unilateral

(79 %), a reverse pattern was observed on the right (67 % bilateral). These results

demonstrated that the left hemisphere works in an intra-hemispheric manner in

adults, in contrast to the right hemisphere, which is under the dominance of the left

hemisphere (Vigneau et al. 2011). As developed below, this observation accords

with recent investigations of intrinsic connectivity (Perani et al. 2011) and func-

tional connectivity during sentence listening (Friederici 2011), which demonstrated

with a seed approach the existence of strong intra-hemispheric temporal connec-

tivity across frontal and temporal high-order language areas.

Developmental Course of the Setting Up of Anatomical

and Functional Asymmetries

Anatomical asymmetries, in terms of depth of the Sylvian fissure, have been

observed with MRI as early as the 26th week of gestation (Habas et al. 2012),

and such an asymmetry is at birth identical to that of adults (Hill et al. 2010a). It is

important to underline that later studies have shown that these asymmetries do not

evolve much during childhood (Li et al. 2013). On the functional side, in utero,

neuroimaging investigations have revealed that intrinsic connectivity remains local

until birth, when inter-hemispheric connectivity appears (Smyser et al. 2011).

Applying a seed approach, Perani et al. (2011) specifically investigated the intrinsic

connectivity of the left inferior frontal gyrus and the left superior temporal gyrus,

two areas where language develops. They showed that that, at birth, these regions

were only connected to homotopic areas, with no intra-hemispheric intrinsic con-

nectivity. This birth pattern was opposed to that of adults included in the same

study, who exhibited a preeminent left intra-hemispheric synchronization of BOLD

variation at rest in this fronto-temporal network (Perani et al. 2011). However, one

should note that, in primary auditory cortices that exhibit a leftward anatomical

asymmetry at birth (Li et al. 2013), a leftward functional asymmetry is present

when infants listen to language, whereas a rightward one is revealed when they

listen to music (Dehaene-Lambertz et al. 2010). This latter study demonstrates a

consistency between anatomical and functional asymmetries of the Sylvian fissure

cortex at birth and that the inter-hemispheric connectivity is a key element of the

development of the lateralization of auditory cortices. However, the change in the

organization of higher-order language areas from an initial inter- to the intra-

hemispheric organization of adults is still not in place at 7 years of age (Friederici

et al. 2011). In this study, 5–7-year-old children were presented with four condi-

tions: two including correct sentences, one including semantically incorrect

sentences, and one including syntactically incorrect sentences. The children’s task
was to judge the acceptability of the sentences. Applying a seed in areas that had

been identified in functional MRI studies as supporting sentence processing
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[namely, the left dorsal inferior frontal gyrus (IFG) and the left posterior superior

temporal gyrus (STG) and sulcus (STS)], the authors showed that, when seeded in

the left posterior STS, strong correlations with the left IFG were found in adults. For

children, in contrast to adults, the analysis revealed strong correlations with the

contralateral temporal region. The same observation was present when the seed was

in the IFG. Within the same period in which homotopic connections prevail, a

5-year longitudinal study showed a linear increase with age of the left hemisphere

involvement in the IFG during verb generation (Szaflarski et al. 2006), an additional

demonstration that language left-hemisphere specialization develops first through

callosal interactions.

As a whole, these recent functional imaging studies show that anatomical and

functional asymmetries of auditory primary areas are in place at birth, whereas in

high-order language areas (IFG, STS, STG) leftward asymmetries develop slowly

along with verbal acquisition, before reaching the adult pattern of a dominant intra-

hemispheric processing of language. To our knowledge, the exact time course and

the physiological underpinnings of this developmental switch from inter- to intra-

hemispheric functioning during language processing remain to be established. It is

not known whether this type of developmental scenario is also at stake for other

left-lateralized function, such as praxis (Vingerhoets et al. 2013), or for right-

lateralized functions, such as spatial attention.

HS, Cognitive Abilities and Developmental/Psychiatric

Diseases

Cognitive Skills and Asymmetries

How does this developmental change in brain organization relate to cognitive

development and abilities? Everts et al. (2009) mapped 9–21-year-old healthy

participants during rhyming and synonym language tasks and measured both their

hemispheric asymmetry and their verbal abilities. They observed that the increase

in leftward asymmetry was linearly correlated with age but also, independently of

age, with verbal performances. Importantly, in the same individuals they measured

hemispheric asymmetries during a visuospatial task and observed the reverse

pattern for this right hemisphere-dominant function: a right asymmetry increase

with age, and the larger the rightward asymmetry, the better the visuospatial

performances of the participants (Everts et al. 2009).

As will be further developed, the case is not so clear in healthy adults, but there is

a study pointing toward an association between leftward asymmetry and verbal

performances in individuals who had suffered from pre- or perinatal stroke.

Twenty-five of such subjects were mapped (7–23 years old) during a word gener-

ation task and a measure of asymmetry in their IFG activity during this task was

computed. As opposed to a control group, they did not show a leftward asymmetry
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because of the recruitment of the right IFG during the language task, which was

considered as a compensatory or plastic participation. Importantly, the analysis of

the relationship between verbal abilities of these patients and their laterality index

evidenced that, the more leftward the asymmetry, the better the performances,

showing that a good recovery was associated with the possibility of regaining a

left-hemisphere dominance for language (Raja Beharelle et al. 2010).

As reviewed by Cathy Price (Price and Crinion 2005), the role of inter-

hemispheric connections is essential and complex during the recovery of produc-

tion aphasia after a stroke. The quality of recovery depends on slowly evolving

activation changes in the left hemisphere. By contrast, right hemisphere activation

observed after a left hemisphere lesion has been interpreted as the consequence of a

transcallosal dis-inhibition that is not directly involved in recovery. Such activa-

tions occur early after stroke in areas homotopic to the lesion site, and their intensity

does not correlate with the level of recovery, as opposed to that of peri-lesional

activations (Rosen et al. 2000; Perani et al. 2003). Note that, unlike speech

production, recovery of speech comprehension appears to depend on both left and

right temporal lobe activation (Price and Crinion 2005).

Many investigations of the relationships between cognitive skills and brain

asymmetries in healthy adults have been conducted through a comparison between

right- and left-handers, whereas very few directly tested a relationship between

hemispheric functional lateralization and cognitive performances. Based on the

divided visual field paradigm, a series of behavioral studies in healthy participants

have addressed the issue of the benefit of hemispheric lateralization (Boles

et al. 2008; Chiarello et al. 2009; Hirnstein et al. 2010). In this paradigm, difference

in performances following a presentation of the stimuli in either the left hemi-field

(right hemisphere) or the right hemi-field (left hemisphere) is interpreted as an

index reflecting the hemispheric dominance for the stimuli processing. These

studies have reported divergent outcomes, some emphasizing a positive correlation

between the index of lateralization for various linguistic tasks and reading skills

(Chiarello et al. 2009) whereas other reported that high degrees of lateralization

were detrimental to cognitive performance in word-matching and face-decision

tasks (Hirnstein et al. 2010). A study that used functional transcranial Dopler

sonography (fTCD) to directly assess the hemispheric dominance did not report

any relationship between hemispheric asymmetry and the number of foreign lan-

guages spoken fluently, academic achievement and the practice of artistic activities

or, in a sub-group of 21 participants, general IQ (Knecht et al. 2001). A recent study

including 6–24-year-old right-handed participants revealed differences according

to the language task used for measuring asymmetries. While there was a correlation

between verbal IQ and the hemispheric functional lateralization index obtained by

fMRI during language comprehension, the correlation was absent between verbal

IQ and hemispheric asymmetries during language production. In addition, better

performances were associated with larger right hemisphere participation (Lidzba

et al. 2011).

In summary, there is an association between verbal abilities and a leftward

hemispheric asymmetry during a language task in the developmental course.
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Leftward asymmetry during language production is also associated with a good

recovery of production aphasia. However, there is no such evidence of an associ-

ation between language skills and leftward hemispheric lateralization in healthy

adults, although the limited number of investigations leaves the question open.

Moreover, one should tackle the issue of whether such an association is specific to

language skills rather than to more general cognitive functioning abilities.

Language HS, Developmental and Psychiatric Diseases

Discovery of the PT leftward asymmetry triggered the search for an association

between a decrease in this asymmetry and the occurrence of developmental lan-

guage disorders such as dysphasia and dyslexia. Geschwind and Galaburda (1985a,

b) have elaborated a model of the setting up of left hemisphere dominance based on

the idea that asymmetries are due to a reduction of right-hemispheric structures

through development. Their model linked developmental language pathologies to

decreases in anatomical asymmetries. There have been numerous works showing an

association between language developmental pathologies and language lateraliza-

tion markers, in particular decreases in anatomical asymmetries [reviewed in

Leonard and Eckert (2008)]. Such differences in language asymmetry in develop-

mental pathologies are modest but have been associated with other severe pathol-

ogies encompassing language deficits such as schizophrenia and autism.

Failure to develop normal language comprehension is an early sign of autism

and, in this developmental pathology, a deficit in the setting up of a language

leftward functional asymmetry has also been reported by Eyler et al. (2012), who

used fMRI to investigate hemispheric asymmetries in 12–48-month-old toddlers

with autistic spectrum disorder who were later diagnosed with autism. Measuring

their brain activity during story listening while toddlers were asleep, they observed

not only a decreased leftward lateralization in the temporal cortex as compared to

control children but also a trend to a rightward temporal increase in activation

between 1 and 4 years of age, as opposed to the typical increase in leftward

asymmetry in normally developing children. The authors interpreted their findings

as attesting that a failure in the setting up of leftward asymmetry during language

processing is a fundamental abnormality of autism (Eyler et al. 2012).

Decreases in the anatomical and functional asymmetry of language areas have

also been reported in schizophrenia. Starting from the saliency of language defects

in schizophrenic patients, Crow (1997) proposed that schizophrenia could be

considered an anomaly of the function of language and that the pathophysiology

of schizophrenia should be found in the mechanisms underlying the development of

HS. Crow’s hypothesis was based on the observation that pre-schizophrenic chil-

dren were more likely to be rated as ambidextrous at the age of 7 years and were less

strongly right-handed than their peers at the age of 11, suggesting a delay in the

establishment of their HS (Crow et al. 1996). In addition, left hemisphere anatom-

ical abnormalities centered on the temporal lobe were reported in schizophrenic
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patients with a decreased asymmetry of the PT (DeLisi 1997; Sommer et al. 2001).

In an fMRI investigation of right-handed schizophrenic patients during a language

comprehension task, Dollfus et al. (2005) observed decreased left hemispheric

activity in language regions in patients as compared to matched healthy controls.

Such a finding was also reported in the first episode of schizophrenic patients during

a language generation task, making the decrease in asymmetry independent of the

type of language task and of the potential effects of the illness and its treatment

(Bleich-Cohen et al. 2009). In addition, it was shown that the decreased leftward

asymmetry during verbal production in schizophrenic patients was not related to

auditory hallucinations (Diederen et al. 2010).

As a whole, a defect in the setting up of language leftward asymmetry is

observed in severe mental pathologies that include language dysfunction among

other symptoms. The deficit in leftward lateralization targets a dysfunction of HS as

an early developmental mechanism fundamental to further harmonious develop-

ment of functional brain architecture. Further research is needed to evaluate

whether this developmental failure results in a pure language lateralization deficit

or corresponds to a general dysfunction in the lateralization of cognitive functions.

Inter-individual Variability in HS: Factors at Play

Although encountered in pathological conditions, a decrease in language laterali-

zation can also be found in healthy individuals, as revealed by neuroimaging studies

describing between-individual variability of hemispheric or regional functional

lateralization of language. As developed below, variability in language lateraliza-

tion of healthy individuals is multifactorial and depends on both behavioral char-

acteristics, such as handedness, and anatomical features, such as brain volume or

size of the left PT. Variability in functional lateralization also depends on the type

of language process targeted by the language task performed during imaging,

language production being more strongly leftward lateralized than language com-

prehension. Finally, it must be underscored that language lateralization varies

according to the hierarchical level of the regions studied: primary areas receiving

bilateral sensory inputs have a lateralization that is weaker than that of high-order

language areas, and factors explaining this regional variability may be different. For

example, the pattern of gyrification of Heschl’s gyrus explains the variability in

asymmetry of this region during speech listening but not that of other areas

activated during this task, such as the STS (Tzourio-Mazoyer et al. 2015).

Handedness was identified early on as a source of between-subject variability in

language lateralization. The fact that more than 90 % of right-handers have a left

dominance for language has nourished both evolutionary and genetic models of the

origin of language [reviewed in Corballis et al. (2012)]. However, it must be

stressed that around 80 % of left-handers exhibit the same typical left lateralization

during language production and that the increased variability of language lateral-

ization within left-handers is characterized by the existence of rare rightward
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asymmetrical individuals, who in addition exhibit strong left-hand preference

(Pujol et al. 1999; Knecht et al. 2000). Note, however, that apart from these rare

individuals having reverse language lateralization, occurring with similar propor-

tions in children and adults, handedness has no influence on the maturational

increase of leftward asymmetries for language (Szaflarski et al. 2011).

The fact that dissociations have been observed between the lateralization of

language areas involved during language production and those involved in lan-

guage perception suggests that there are different factors related to specific aspects

of speech processing. In favor of this hypothesis is the evidence that anatomical

factors explain a part of the variability of anatomical or functional lateralization of

speech processing areas. Among them, brain volume determines inter-hemispheric

distance and transfer time. According to Ringo et al. (1994), brain volume con-

strains high-speed processes to intra-hemispheric clustering in bulky brains. This

theory fits within the framework of perceptual theories of the origin of language

lateralization postulating that it arises from speed constraints on speech perception.

As a matter of fact, we found positive correlations between brain volume and both

leftward functional asymmetry during speech perception (Josse et al. 2006;

Tzourio-Mazoyer et al. 2010a) and leftward gray matter hemispheric asymmetry

(Tzourio-Mazoyer et al. 2010b). These results support Ringo’s theory of a ‘mechan-

ical’ impact of brain volume on speech lateralization. Other arguments come from

the fact that anatomical characteristics of the auditory cortices explain a part of the

functional variability in language lateralization, as, for example, the positive

correlation between the left PT surface area and lateralization of activations during

story listening (Tzourio et al. 1998; Josse et al. 2003).

The picture is likely to be even more complex, given that factors can interact. For

example, in right-handers, we showed that weaker manual lateralization decreases

leftward lateralization for language only in individuals with familial sinistrality

(Tzourio-Mazoyer et al. 2010a). Moreover, factors that influence variability in HS,

such as gender and brain volume, may also be partially confounded (Leonard

et al. 2008). Finally, it must be emphasized that, although much is known about

HS for language, the factors that might influence right hemisphere specialization

remain to be discovered.

BIL&GIN: A Multimodal Database for Investigating HS

To address some of the issues raised in this chapter and to make progress in our

understanding of the role of HS in shaping the large-scale organization of the

human brain, we acquired a multimodal (neuroimaging, cognitive/behavioral abil-

ities, genetic) database designed for the investigation of HS. This database, named

BIL&GIN (Brain Imaging of Lateralization by the Groupe d’Imagerie Neurofonc-

tionnelle), included a sample of 453 healthy adults (aged 18–54 years), balanced for

sex and handedness (Mazoyer et al. 2015). For each participant, we recorded

manual skills, hand and eye preference, and familial sinistrality. Verbal, spatial,
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and numerical abilities were assessed with a large battery of tests. Finally, multi-

modal MRI data were acquired in each participant, namely T1 and DTI for

conducting morphometric analysis of gray matter and WM, and resting-state

fMRI data for assessing intrinsic connectivity. Finally, in a subsample of 300 indi-

viduals, task-related fMRI was performed using a battery of 15 language, motor and

visuospatial tasks designed to explore various aspects of HS. The first analyses of

the BIL&GIN illustrate the power of combining a large sample with a multimodal

approach. For example, we recently reported that the verbal and spatial abilities

increase with right asymmetry in motor skills and that cognitive performance is

reduced in participants having a familial sinistrality combined with non-maximal

preference strength of the dominant hand (Mellet et al. 2014). Original findings

regarding the Heschl’s gyrus interhemispheric duplication pattern (Marie

et al. 2015) and its relationship with the functional asymmetry of this area during

speech listening (Tzourio-Mazoyer et al. 2015) were also previously mentioned in

this chapter.

Conclusion

HS, which is grounded mainly by inter-hemispheric connectivity, is an essential

feature of human anatomo-functional brain architecture. This very simple right-left

connection is essential to the development of language and, likely, to optimal

cognitive functioning. We believe that its investigation within the framework of

the research on the connectomics of the brain will provide important knowledge

regarding the large-scale architecture supporting human cognition.
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Genetics of the Connectome

and the ENIGMA Project

Paul M. Thompson, Derrek P. Hibar, Jason L. Stein, Gautam Prasad,

and Neda Jahanshad

Abstract Here we give an overview of a worldwide effort, called the ENIGMA

Consortium (http://enigma.ini.usc.edu), which unites scientists worldwide to deter-

mine how variants in our genetic code influence the brain, and how 12 major diseases

affect the brainworldwide.At the timeofwriting,ENIGMAinvolves over 500 scientists

from 185 institutions worldwide, working together on around 30 projects to discover

factors that may help or harm the brain. By pooling genome-wide genomic data and

brain imaging from over 33,000 people, ENIGMA has been able to identify single-

nucleotide differences in the genome that are associatedwith differences in human brain

structure and function. Given the broad interest in brain connectivity and the factors that

affect it, we outline some tactics adopted by ENIGMA to discover specific genes that

affect the brain; thenwe describe howENIGMA is extending thesemethods to discover

genetic influences on brain connectivity.

Background to ENIGMA

ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) is a world-

wide network of researchers who work together to investigate various questions

about the brain. The consortium pools brain imaging and genetic data from over

200 institutions around the world. The main goals of ENIGMA are to discover

factors that help and harm the brain; the sheer size of the dataset is unprecedented,

making it possible to see which effects on the brain are robust and consistent by

pooling data worldwide. The idea for ENIGMA originated in late 2009 and the

consortium has since published some of the largest brain imaging studies in the

world—both in terms of the total number of individuals genotyped and scanned

(now over 33,000) and in terms of the number of scientists collaborating [several

hundred co-authors, in Stein et al. (2012), Thompson et al. (2014), and Hibar et al.

(2015)]. Also, by pooling brain imaging and genomic data from tens of thousands of

people, we were able to overcome several technical and sociological barriers; here
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we outline some of the strategies employed and the main findings and lessons

learned. As befits a chapter in a book on brain connectivity, we also summarize the

tactics that ENIGMA is beginning to employ to discover genetic influences on brain

connectivity.

Genetic Influences on the Brain

By 2009, nearly 100 studies had been published showing that numerous measures

of brain structure are heritable (Blokland et al. 2012). In other words, individual

differences in our genetic code do affect specific features of the brain, such as the

overall volume of the brain, the size of the hippocampus, and even measures of

functional activity based on EEG or functional MRI. To establish this, researchers

began by studying family-based cohorts or twins who were scanned with anatom-

ical or functional MRI; when people with greater genetic similarity were compared,

their brains were found to be more similar, on average, than were unrelated people

of the same age and sex.

To formalize these ideas, the classical twin design has often been used to

estimate the heritability of a behavioral trait by studying both identical and fraternal

twins (siblings or other family members are often evaluated as well; Boomsma

et al. 2002). Based on structural equation models, or even based on simpler

approaches involving correlations, twin studies are able to estimate what fraction

of the observed variability in a brain measure is due to genetics, that is, due to the

genetic differences among individuals. Many measures of brain structure, such as

the total amount of gray or white matter in the brain or the overall volume of the

ventricles, were found to be heritable; that is to say, genetic factors are involved in

determining their eventual values. Note that this type of genetic analysis does not

require the direct examination of the DNA sequence, only the study of resem-

blances among family members with different degrees of familial relatedness (e.g.,

identical twins, siblings, etc.).

Soon afterwards, 3D “maps” of heritability began to be produced for a variety of

brain measures, such as regional gray matter volumes in the cortex (Thompson

et al. 2001), cortical thickness (Joshi et al. 2012), surface area (Chen et al. 2012),

and fiber microstructure in diffusion-weighted MRI scans (Chiang et al. 2009). The

proportion of variance due to genetic factors is not expected to be completely uniform

across the brain. In general, genetic variation accounts for around half of the observed

variance for many brain measures, in some cases more, making neuroimaging mea-

sures an attractive target for in-depth genetic analysis (Glahn et al. 2007).

The high heritability of brain structure is in line with many behavioral genetic

studies showing substantial genetic effects on behavior and even risk for neurolog-

ical and psychiatric illnesses, such as Alzheimer’s disease and schizophrenia.

Genetic studies have shown that numerous traits relating to personality, cognition,

and even risk for neurological or psychiatric disease are influenced by genetics to

some degree. The influence of genetic versus environmental factors on cognition
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and intellectual performance was one of the most hotly debated scientific topics of

the twentieth century (Jensen 1969; Lewontin et al. 1984). Of course, even if we

concede that genes play some role in behavior, several caveats to heritability

calculations apply: genetic variants do not influence the brain independently of

other factors, and their effects may depend on a person’s age, sex, level of nutrition,
education, or many other contextual factors in the population (Visscher et al. 2008).

Although they are not necessarily heritable, epigenetic factors, such as methylation

and acetylation, act on the genome to switch off or promote the action of certain

parts of our genetic code. Also, an individual’s environment may be correlated to

some degree with their genotype; for example, people with a natural aptitude for

certain kinds of activity may seek out environments that promote those activities.

This makes the effects of genes and environment difficult or impossible to disen-

tangle. Gene x Environment interactions are also found, where a gene’s effect on
the brain or behavior is accentuated or suppressed under certain conditions. In fact,

much work in the fields of pharmacogenomics and personalized medicine depends

on the notion that people with certain genetic risk factors may be less or more

responsive to medication or other kinds of therapy. As such, the quest to identify

genetic variants that relate to brain measures is likely to accelerate our genetic

understanding of brain disease and mental illness. With this in mind, ENIGMA has

several projects that relate brain measures to genomic variation and to disease, a

topic that we will return to later.

Finding the Genes Involved

Knowing that a brain measure is heritable—or influenced by genetic factors—is the

first step on the long road towards identifying specific differences in the genome

that influence it. By 2009, genetic “sequencing” had become relatively inexpensive,

and it was possible to reliably identify a person’s individual DNA sequence at each

of over one million genetic locations, based on a person’s blood or saliva sample.

Although well over 99 % of the genetic code is identical across healthy individuals,

people do differ substantially in specific areas of the genetic code: there are

deletions, expansions, and even single-nucleotide or single “letter” spelling differ-

ences in the base pair sequence. Some of these genetic differences do not affect the

protein product, if the gene is expressed at all. Other genetic differences render the

protein product dysfunctional or modify its activity, and they may influence brain

function and behavior and our risk for disease.

Genotyping companies began to offer genotyping services whereby over a

million common genetic variants—or single nucleotide polymorphisms (SNPs)—

could be assessed cheaply; in the United States, for example, some personalized

genomics companies offered to send a person a million “letters,” or nucleotides, of

their genetic code for $99 (in U.S. dollars). This ability to genotype common

variants in the genome led to a surge in the popularity of genome-wide association

studies (GWAS), efforts to identify markers or common variants in the human
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genome that are statistically associated with a certain trait, such as obesity, schizo-

phrenia, depression, or Alzheimer’s disease. Many of these genomic screens were

very successful. For instance, certain “risk genes,” such as APOE, CLU, and
TREM2, have alternative sequences wherein one form is more commonly found

in patients with Alzheimer’s disease (Harold et al. 2009; Jonsson et al. 2013). The

quest to find these risk-associated genetic variants is motivated by finding new drug

targets or, in the short term, evaluating a person’s risk for a specific disease, which

can help in clinical trial design.

Again, several caveats apply. Common variants are not the only source of

genetic variations that have an impact on the brain; in fact, rare variants—or even

private variants found only within a single family or individual—have been found

that associate with risk for autism or other disorders (Sanders et al. 2012; Purcell

et al. 2014). When GWAS was first feasible on a large scale, studies of tens of

thousands of individuals began to unearth common genetic differences associated

with cholesterol levels in the blood and with bone density, obesity, or stroke, and a

range of other common conditions. In each study, the genome was scanned for

sequence variations associated with a single trait, such as a person’s height, body
mass index, or a psychiatric diagnosis such as schizophrenia or bipolar illness, for

example. Because of the high risk of false positives—searching millions of letters

of the genetic code would likely detect many false associations—geneticists began

to enforce a very high statistical threshold to implicate a genetic variant in a

disorder, often requiring tens of thousands of subjects to find an association and

replicate it.

GWAS of the Brain

Around 2009, GWAS began to be performed on brain measures [see supplementary

information in Medland et al. (2014)], such as temporal lobe volume (Stein

et al. 2010). Although some of the top “hits” in these studies seemed convincing

from a mechanistic point of view, many geneticists argued that the power to detect

common genetic variants that affect the brain was very limited, even in samples of

approximately 1000 subjects. As brain imaging data are expensive and time-

consuming to collect, only the largest national initiatives could even achieve

sample sizes of 1000 subjects; the Alzheimer’s Disease Neuroimaging Initiative

(ADNI; Jack et al. 2008), for example, was one of the largest studies ever attempted

with neuroimaging. ADNI still took many years to recruit and scan a cohort of

800 people at 58 sites across North America. Power calculations suggest that

cohorts of 10,000 or more subjects should be needed to zero in on genomic regions

with reliable associations to brain measures, unless of course their effect sizes are

extremely large. And so began a debate as to whether imaging would offer a more

efficient way to detect influential genetic variants.
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Counterarguments and Power

Two arguments were commonly advanced to suggest that large samples might not

be required for successful genetic studies of brain images, but the evidence for each

argument began to wane. The first was that some image-derived measures might be

more highly reproducible than psychiatric diagnostic tests or cognitive scores; some

measures from images (such as the density of connections between brain regions)

might be closer to the biology of the gene action as well and therefore show a

stronger effect. For example, a growth factor gene, such as BDNF, might influence

the cell numbers or cell volumes in a specific structure of the brain, such as the

hippocampus. If so, then the statistical association between common variants

influencing the function of that gene and the size of the brain structure should be

fairly easy to identify in a database of brain scans. As we shall see, this optimism

had to be tempered; at least for the brain measures assessed so far, sample sizes

needed for successful genetic association studies have been about the same as those

needed to discover risk genes for clinical conditions such as Alzheimer’s disease or
schizophrenia, though less than those for major depression, and have been on the

order of tens of thousands. Even so, one should bear in mind that the large samples

required to detect effects does not mean effects are trivial or unimportant. Rare

variants with large effect, for example TREM2, appear to double a person’s risk for
Alzheimer’s disease (Guerreiro et al. 2013; Jonsson et al. 2013) and cause brain

tissue loss at twice the normal rate (Rajagopalan et al. 2013). Despite the fact that

only 1 % of people carry this risk allele, the aggregate effect on society is no doubt

substantial, perhaps similar to other mental disorders with similar prevalence but

with devastating impact.

A second argument was that we should focus on candidate genes when looking

for factors that affect the brain, rather than performing a completely open-ended,

genome-wide search. Because certain growth factors in the brain—BDNF, and

NGF, for example—have polymorphic variants within their genes, they could be

natural candidates for affecting volumes of the brain and perhaps other more subtle

features of brain function, such as functional activation or metabolism. Except for

major risk genes such as APOE, a risk factor for late-onset Alzheimer’s disease,
ENIGMA’s data would ultimately show that many of these candidate genes, long

thought to affect brain measures, did not appear to do so in much larger sample

sizes. This finding was confirmed in samples of 10,000 brain scans or more, samples

large enough to detect effects accounting for as little as 1 % of the variance in a

brain measure.

Between 2009 and 2012, over 20 cohorts worldwide came together to form

ENIGMA. The initial study (called “ENIGMA1”; Stein et al. 2012) found common

variants near the TESC gene that were associated with hippocampal volume

measured in MRI scans of the brain. The SNPs involved also affected gene

expression in living brain tissue, as confirmed by analysis of post-mortem brain

tissue. Carrying one form of the gene was associated with a hippocampal volume

that was smaller by an amount equivalent to about 3 years of brain aging, a small
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but substantial effect on a brain scan; the possible cognitive effects of this genetic

change, and their effects on disease risk, are now the target of study. Other findings

of ENIGMA1 included an association between intracranial volume in healthy

subjects and a genetic variant in HMGA2, a gene that had formerly been associated

with height and whose role in cell proliferation was beginning to be understood.

ENIGMA would not have been able to demonstrate that these associations were

robust without the help of another large consortium, CHARGE (Cohorts for Heart

and Aging Research in Genomic Epidemiology), whose GWAS studies of the aging

brain in five large elderly cohorts were crucial in establishing the generality of the

findings. In fact, when the two consortia exchanged their top findings for genetic

variants associated with hippocampal and intracranial volumes, their top five hits

were the same. The most associated SNPs in each consortium were the same ones,

even though the studies assessed different individuals and were designed indepen-

dently (Bis et al. 2012).

Non-biological Information Arising from ENIGMA

After ENIGMA’s first study, some hypotheses had to be revised about which genes

might affect brain measures and how easy it would be to detect their effects. Some

of the “hallowed” candidate genes in psychiatric genetics—COMT, for example—

were initially hailed as explaining a fair proportion of the risk for psychiatric

illness, only to be found less relevant or not well supported in follow-up studies

[see Button et al. (2013) for an analysis of this “winner’s curse” effect]. Perhaps for
the same reasons, many genes expected to influence brain structure were not found

to do so, even in ENIGMA’s highly powered study. Only APOE had a convincing

effect on hippocampal volume, with many growth factors and common psychiatric

risk genes not showing demonstrable effects in much larger sample sizes than

previously studied. Although it is not possible to rule out an effect that is

undetected, the effects of these genes would likely be less than 1 % of the measured

variance, much smaller than some originally thought.

On the bright side, the power to replicate findings across the whole diverse range

of cohorts and populations in ENIGMA was surprising and encouraging. Most

studies contributing to ENIGMA were designed with other goals in mind, on

different scanners and some on different continents. As the data were pooled after

the fact, substantial work went into showing that reproducible and accurate mea-

sures could be made of the same brain regions across sites and scanners [see

Supplemental Materials in Stein et al. (2012)]. On the genomic side, ENIGMA’s
use of reference panels such as HapMap3 and the 1000 Genomes datasets to

“impute” genetic data collected from different genotyping chips also made it

possible to pool data across sites, attaining a power not previously imagined for a

brain imaging study.
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But Do the ENIGMA Genes Affect Disease Risk?

Shortly after the initial study was published, a second initiative was started to screen

the genome for common variants associated with volumes of seven other subcor-

tical structures (the project was called “ENIGMA2”; Hibar et al. 2015) and 34 other

cortical structures (ENIGMA3; in progress). In the course of these studies, a

collaborative partnership began with the Psychiatric Genomics Consortium

(PGC) to see if any of the brain-relevant genes were “enriched” in the PGC’s
own screens for genes associated with psychiatric illnesses such as schizophrenia.

ENIGMA studies of schizophrenia, epilepsy, obsessive compulsive disorder, and

Alzheimer’s disease are currently underway. There is some optimism that these

enrichment analyses may show that some of the same genes that affect the structure

of the brain also create risk for disease. Several disease risk genes are known to be

convincingly associated with brain differences: many of the top 20 or so

Alzheimer’s risk genes (according to alzgene.org) are associated with differences

in brain structure, metabolism, or pathology identifiable with brain imaging. Some

of the logistics involved in looking up ENIGMA’s genes in other psychiatric

GWAS involves performing “checksum” tests to exclude people who have taken

part in both GWAS studies; such participants could cause spurious associations,

making it important to screen out non-independent data.

In parallel, ENIGMA launched several working groups to identify brain mea-

sures that showed the greatest patient vs. control differences in cohorts of patients

with schizophrenia (Turner et al. 2014; van Erp et al. 2015), bipolar illness (Hibar

et al. 2014), depression (Schmaal et al. 2014, 2015), and ADHD (Hoogman

et al. 2014). Some of these studies now number 4000–8000 subjects, making

them the largest studies ever of their respective disorders. Clearly, the power to

identify correlates of behavioral and cognitive dysfunction, and relevant modula-

tors of illness such as medication effects, makes these efforts highly informative.

All these studies are in their earlier phases now, but ultimately they may yield new

sources of information to distinguish psychiatric profiles based on brain imaging

and genetics and for differential diagnosis and even perhaps prognosis.

Searching Brain Images for Statistical Effects

In brain imaging studies more generally, it is common to align a group of subjects’
images to a standardized coordinate space and try to find parts of the brain with

consistent activations or brain regions whose activity relates to modifiable param-

eters of the experimental design. One such approach, called statistical parametric
mapping, or SPM, can identify brain regions where brain signals relate to some

external predictor, such as a task performed in the scanner, or psychiatric diagnosis.

To do this, often a regression model is fitted at thousands to millions of different
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locations in a 3D brain image and the significant regions are shown, after some

suitable correction for the multiple statistical tests made in the image.

Brain-Wide Genome-Wide Scanning

Although it may seem a daunting task, Stein et al. (2010) proposed a method to

screen every voxel (location) in the brain and every genotyped variant in a genomic

screen to search both images and genomes at once for promising associations. The

sheer number of computations can exceed one billion statistical tests. The first such

efforts found no genuinely replicated associations and were computationally feasi-

ble only on a massively parallel computer cluster.

Due to the massive number of statistical tests, the significance threshold that

needs to be achieved to control for false positives is around a billion to one (see

Medland et al. 2014). Even so, this threshold was achievable and far exceeded by

several “hits” (i.e., genetic associations) in ENIGMA2, making the approach

feasible statistically as well. Although voxel-wise GWAS is a tour de force com-

putationally, it can be combined with other techniques for dimension reduction to

focus the search on promising signals. These methods can be statistical, based on

genetic clustering or prioritizing brain measures with highest heritability, or they

can be based on biology and known genetic pathways. Such efforts are reviewed in

Thompson et al. (2013, 2014, 2015).

Genetic Screening of the Connectome

Based on the power that has been achieved so far through ENIGMA to discover

common genetic influences on brain structure, it should now be clear that genome-

wide analysis can also be extended to measures beyond that of individual neuro-

anatomical structures to discover factors that influence how regions of the brain are

connected or work together, i.e., measures of brain connectivity. Brain connectivity

can be modeled in terms of networks describing how different regions of the brain

function together (functional connectivity) or how they are physically connected in

terms of the strength, integrity, or pattern of the white matter fibers (structural

connectivity) (Fig. 1).

Family and twin studies found that specific connections and global organiza-

tional measures are heritable in both functional and structural networks. Glahn

et al. (2010) found that the resting state functional network, derived from blood

oxygen level-dependent functional MRI imaging, is remarkably heritable; Smit

et al. (2010) used EEG-based measures of connectivity to study the heritability of

measures of network “clustering” and path length. Fornito et al. (2011) examined

local and global measures of efficiency and connection distance, along with overall

density for resting state networks. In a similar investigation of functional
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connectivity in children, however, van den Heuvel et al. (2013) did not detect

significant heritability for certain local measures while robustly finding that more

global measures of network organization were heritable. Structural connectivity

and patterns of organization are also influenced by genetic factors. Jahanshad

et al. (2013b) showed that a fraction of the total number of detected connections

are indeed highly heritable, while Bohlken et al. (2014) studied the network’s
topology to establish heritability for other global measures of fiber connections.

The genetic influences on these brain measures have also been established by

exploring the effect of known disease risk genes on the connectome. Candidate

gene analyses have even suggested that connectome properties may be associated

with genetic risk factors for diseases and disorders such as autism (Scott-Van

Zeeland et al. 2010; Dennis et al. 2011), schizophrenia (Braskie et al. 2012), and

dementia (Brown et al. 2011; Jahanshad et al. 2012); given the history of candidate

gene associations in psychiatric genetics, these findings will need to be replicated

Fig. 1 Various forms of connectivity measures extracted from brain images; all these methods

allow us to study the brain from a higher dimensional perspective and observe correlations and

connections between regions. In the more classical approaches, voxelwise maps of activity or

DTI-based integrity measures can be mapped out. In addition to MRI-based imaging, electrodes

can be placed around the brain to obtain functional activation or electrophysiological signals.

Structural or functional connections between different regions can be estimated. A broad search

over all possible connections can lead to mapping the information in a matrix to form a mathe-

matical graph representation. Global properties of this matrix can then be thought of as measures

that describe the network as a whole. For example, one measure of interest examines the shortest

path lengths in the network or the paths with the lowest numbers of connections between one

region, or node, and all the others
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and assessed in larger samples. There is clear potential for using connectivity

measures as targets for genetic analysis or perhaps even for successfully discover-

ing disease risk genes through a genome-wide search.

While functional connectivity measures also appear to be promising targets for

genetic study, here we focus our discussion on expanding structural connectivity

analyses for large-scale genetic analyses in ENIGMA. Figure 2 shows the structural

connectivity matrix from an individual: it stores information on the proportion of

detected fibers connecting each pair of brain regions. Jahanshad et al. (2013a, b)

proposed a method to map structural connectivity based on diffusion-weighted MRI

and prioritize the resulting connections for a genome-wide screen to identify

common variants that affect brain connectivity. Not all possible connections are

found in all individuals and not all parts of the brain are directly connected to all the

others, so the connectivity matrices are relatively sparse (see Fig. 2). As such, a

matrix that represents some measure of the quality or density of connections

between all pairs of regions on the cortex may represent a number of possible

connections that is equal to the square of the number of regions, in theory. For

example, breaking up the cortex into 70 regions (Desikan et al. 2006) would lead to

a connectivity matrix of almost 5000 elements, but only around 1 % of these might

show high reproducibility and heritability in a population.

Using a classical twin model based on identical and fraternal twins, Jahanshad

et al. (2013a, b) identified the heritable connections within structural connectivity

Fig. 2 The structural connectivity matrix. Using standard anatomical MRI and a variant called

diffusion-weighted MRI for fiber tracking, we can map out the structural connectivity network of

the brain. To do this, we combine a cortical parcellation (top left) with a set of fiber pathways

computed using tractography algorithms (bottom left). The resulting connections between all pairs
of cortical regions are organized into a connectivity matrix (right). Its rows and columns corre-

spond to the cortical regions and the magnitudes of the elements represent properties of the

connections detected between them, such as fiber integrity or density
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matrices of several thousand elements and carried forward only the approximately

50 heritable connections into a genome-wide screen. The gene showing a genome-

wide and connectome-wide level association with a particular connection within the

connectome, SPON1, was subsequently also associated with cognitive decline in an
independent study, albeit at a different locus (Sherva et al. 2014). This gene is also

implicated in amyloid processing (Hafez et al. 2012), a key component of

Alzheimer’s disease pathology.
Clearly, the ability to pursue such an approach on a large scale, within

ENIGMA, depends on several factors: a working group, ENIGMA-DTI, was set

up to assess its feasibility. First, unless diffusion-weighted MRI measures show

greater genetic effect sizes than other traits assessed so far, there must be tens of

thousands of DTI scans available from people with GWAS for such a study to be

well powered. Second, the format of the connectivity matrix must be sufficiently

standardized and agreed on in advance, to allow the exchange and pooling of brain

connectivity data across sites.

Encouragingly, by mid-2014, the ENIGMA-DTI working group had amassed

around 10,000 DTI scans. Pilot studies showed that the data could be analyzed in a

consistent way (Jahanshad et al. 2013a; Kochunov et al. 2014). As the ENIGMA3

project involves a cortical volumetric analysis, the current plan is for ENIGMA to

use those cortical regions as the basis for a structural connectivity analysis, using

the same voxel-wise analysis of the connections as advocated in Stein et al. (2010)

and Jahanshad et al. (2013b). It will be interesting to see if similar sample sizes, tens

of thousands, are needed to find and replicate genetic associations with measures of

structural brain connectivity. It could be that mathematical tactics for dimension

reduction, or network-based measures, are also attractive targets for genetic anal-

ysis; so far the relative merits of each of these measures remains to be seen.

Caveats for Multi-site Genomic Analysis of the Connectome

In addition to the caveats noted for pooling multi-site structural MRI data, several

additional caveats make the analysis of connectivity challenging. First, the choice

of tractography methods can result in different matrices; the method only detects

fibers that the algorithm can identify, so many true connections may be missed and

some “false positive” connections will also be detected. As with standard MRI,

these factors are largely influenced by the signal to noise ratio and resolutions of the

images. Often, an arbitrary threshold is implemented to remove the false positive

connections, but short fibers can be filtered out. If a connection appears to be weak

or inconsistent across subjects, this connection may also be removed. Interestingly,

Fornito et al. (2011) found that, for resting state networks at different thresholds, the

degree of heritability varied for different global measures, and heritability was not

uniform across all nodes; there were various levels of genetic influence for each

measure. Lastly, while seemingly intuitive, the results do depend on the

parcellation of the cortex, the way the cortical surface is split up into regions of
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interest. Depending on the goals of the study, parcellation schemes can be improved

to maximize power.

Before embarking on large-scale collaborative efforts combining connectivity

matrices and network metrics, confounding factors such as these should be properly

investigated as is currently being done in ENIGMA’s working groups, such as the

ENIGMA-DTI and EEG working groups, among others. For example, in single site

studies, Buchanan et al. (2014) performed test-retest reliability analyses to explore

the reliability of measures after exploring a variety of commonly used approaches.

Dennis et al. (2012) and Zhan et al. (2013) explored the consequences of altering

the thresholds used to define networks as well as different methods of tractography,

respectively.

Future Directions: Adaptive Connectomics and EPIC

In Prasad et al. (2014), we introduced a method called “EPIC” (Evolving Partitions

in Connectomics) to compute brain connectivity in such a way as to be optimally

sensitive to statistical effects in a population, such as the effect of Alzheimer’s
disease or depression. Clearly, the brain can be divided into regions in many

different ways, such as spectral clustering (Craddock et al. 2012), hierarchical

clustering (Blumensath et al. 2013), or even genetic clustering (Chen et al. 2012).

Each one leads to a different definition of brain connectivity between the resulting

regions. Although the set of possible partitions is truly astronomical in number,

EPIC offers a principled approach to identify the optimal set of brain regions to find

specific statistical effects on the connectivity of the resulting regions. Put another

way, if we are seeking brain regions whose connectivity is disrupted in Alzheimer’s
disease, the algorithm will merge and split parts of the brain until it reaches a set of

connections that best differentiates Alzheimer’s disease patients from controls.

With this adaptive method in mind, it is easy to see how the brain could be

partitioned in such a way to maximize the heritability of the connections, automat-

ically de-selecting unfavorable measures before performing a genome-wide screen.

If that were done, genomic screens of the connectome might be more efficient,

allowing a two-way interplay between discovered genes and the search for connec-

tions they might affect.

Still further potential is available once a genome-wide hit is detected; in that

case, it should be possible to merge and split cortical sectors so that the genetic

effect of a SNP or set of SNPs is more powerfully detected. In other words, one

could adjust the cortical partition to maximize the proportion of variance that can be

attributed to SNPs or common genetic variants. These high-dimensional searches of

the connectome and genome at once will draw upon the full breadth of ingenuity of

mathematicians and geneticists alike.

With the scale of ENIGMA and other consortia now planned, it seems likely that

we may crack the “Enigma code” of the brain’s connectivity network, using

intelligent algorithms and the concerted efforts of the worldwide scientific
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community. Identifying the genetic influences on the structure and function of the

human brain can allow us to understand what makes us human and help uncover the

mechanisms causing psychiatric illness.
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