Quantum Mechanics

Robert C. Roleda
Physics Department

Electromagnetic Interaction

De La Salle University

Electromagnetic Interaction

The most common way of studying a quantum system is to probe it using electromagnetic waves. The Hamiltonian of an electron interacting with an electromagnetic field is

$$
H=\frac{\left(p+\frac{e}{c} A\right)^{2}}{2 m}-e \phi
$$

where A, ϕ are the vector and scalar potentials, respectively. Now,

$$
\left(p+\frac{e}{c} A\right)^{2}=p^{2}+\frac{e}{c} p \cdot A+\frac{e}{c} A \cdot p+\left(\frac{e}{c} A\right)^{2}
$$

and

$$
p \cdot A \psi=-i \hbar \partial_{i}\left(A_{i} \psi\right)=-i \hbar \psi \partial_{i} A_{i}-i \hbar A_{i} \partial_{i} \psi=-i \hbar \psi \nabla \cdot A+A \cdot p \psi
$$

In the Coulomb Gauge

$$
\nabla \cdot A=0
$$

Thus,

$$
H=\frac{p^{2}}{2 m}-e \phi+\frac{e}{m c} A \cdot p+\frac{e^{2}}{2 m c^{2}} A^{2}
$$

Interaction Potential

The last term is generally negligible. Thus,

$$
H=H_{0}+\frac{e}{m c} A \cdot p
$$

where

$$
H_{0}=\frac{p^{2}}{2 m}-e \phi
$$

For a system in a radiation field

$$
A(x, t)=A_{0} e^{i(k \cdot x-\omega t)}+A_{0} e^{-i(k \cdot x-\omega t)}
$$

The time dependent potential is

$$
V(t)=\frac{e}{m c} A \cdot p=\frac{e A_{0}}{m c}(\varepsilon \cdot p)\left[e^{i(k \cdot x-\omega t)}+e^{-i(k \cdot x-\omega t)}\right]
$$

where ε is the polarization vector.

Absorption Cross Section

The transition rate with this harmonic perturbation is

$$
\left.w_{i \rightarrow[n]}=\frac{2 \pi}{\hbar} \frac{e^{2}}{m^{2} c^{2}}\left|A_{0}\right|^{2}\left|\langle n|(\varepsilon \cdot p) e^{i k \cdot x}\right| i\right\rangle\left.\right|^{2} \delta\left(E_{n}-E_{i}-\hbar \omega\right)
$$

The absorption cross section is defined as the energy per unit time absorbed by the atom divided by the energy flux of the radiation field which is

$$
u=\frac{1}{2 \pi} \frac{\omega^{2}}{c^{2}}\left|A_{0}\right|^{2}
$$

Thus,

$$
\left.\sigma_{a b s}=\frac{w_{i \rightarrow[n]} \hbar \omega}{u c}=\left(\frac{2 \pi}{m}\right)^{2}\left(\frac{e^{2}}{\hbar c}\right) \frac{\hbar}{\omega}\left|\langle n|(\varepsilon \cdot p) e^{i k \cdot x}\right| i\right\rangle\left.\right|^{2} \delta\left(E_{n}-E_{i}-\hbar \omega\right)
$$

Electric Dipole Approximation

If the wavelength of the radiation field is much longer than the system's dimension,

$$
e^{i k \cdot x}=1+i \frac{\omega}{c} \widehat{k} \cdot x+\cdots
$$

The matrix element may be cast as

$$
\langle n|(\varepsilon \cdot p) e^{i k \cdot x}|i\rangle \approx \varepsilon \cdot\langle n| p|i\rangle
$$

Now,

$$
\begin{aligned}
& {\left[x_{i}, H_{0}\right]=\left[x_{i}, \frac{p^{2}}{2 m}-e \phi(x)\right]=\left[x_{i}, \frac{p^{2}}{2 m}\right]=\sum_{k=1}^{3}\left(\frac{p_{k}}{2 m}\left[x_{i}, p_{k}\right]+\left[x_{i}, p_{k}\right] \frac{p_{k}}{2 m}\right)} \\
& =\sum_{k=1}^{3} \frac{p_{k}}{m} i \hbar \delta_{i k}=i \hbar \frac{p_{i}}{m}
\end{aligned}
$$

Thus,

$$
\langle n| p|i\rangle=\frac{m}{i \hbar}\langle n|\left[x, H_{0}\right]|i\rangle=\frac{m}{i \hbar}\langle n| x H_{0}-H_{0} x|i\rangle=\frac{m}{i \hbar}\left(E_{i}-E_{n}\right)\langle n| x|i\rangle
$$

Because the term ex is the electric dipole, this is called the electric dipole approximation.

Spherical Harmonics Representations

Electromagnetic waves are transverse. The polarization vector ε are perpendicular to the wave vector k. If we take the direction of propagation as the z-axis, then ε must lie on the $x y$ - plane. The matrix element $\langle n|(\varepsilon \cdot p) e^{i k \cdot x}|i\rangle$ therefore carries no $\langle n| z|i\rangle$ term.

The matrix elements $\langle n| x|i\rangle$ and $\langle n| y|i\rangle$ may be evaluated using spherical harmonics

$$
x=\sqrt{\frac{8 \pi}{3}} r\left(\frac{Y_{1,-1}-Y_{11}}{2}\right) ; \quad y=\sqrt{\frac{8 \pi}{3}} r\left(\frac{Y_{1,-1}+Y_{11}}{2}\right)
$$

So $\langle n| \vec{x}|i\rangle$ comprise terms of the form

$$
\langle n l| r\left|n^{\prime} l^{\prime}\right\rangle\langle n l m| Y_{L M}\left|n^{\prime} l^{\prime} m^{\prime}\right\rangle
$$

The angular part may be evaluated using the Triple- Y formula

$$
\int Y_{j m}^{*} Y_{j_{1} m_{1}} Y_{j_{2} m_{2}} d \Omega=\sqrt{\frac{\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)}{4 \pi(2 j+1)}}\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} 00 \mid j_{1} j_{2} j 0\right\rangle
$$

Selection Rules

The Clebsch-Gordan coefficients vanish unless $m^{\prime}=m_{1}+m_{2}$. Since the quantum number M in the middle Y are only ± 1. The magnetic quantum numbers of the initial and final states must therefore differ only by ± 1. The first selection rule is then

$$
\Delta m=m_{f}-m_{i}= \pm 1
$$

Since the middle Y has $L=1$, then the final state, which corresponds to the total angular momentum state in the triple-Y formula, must have a value of either $l-1, l$, or $l+1$.

The matrix element $\langle n|(\varepsilon \cdot p) e^{i k \cdot x}|i\rangle$ is scalar. It must therefore be invariant under reflection. The parity of the spherical harmonics is $(-1)^{l}$. Since the middle Y has $L=1$, The matrix element would be even parity only if the initial and final states have angular momentum quantum numbers that differ by 1 . We then have the second selection rule in the electric dipole approximation

$$
\Delta l=l_{f}-l_{i}= \pm 1
$$

No radiative transitions are allowed unless both selection rules are satisfied.

Thomas-Reiche-Kuhn Sum Rule

Let us consider the commutator $\left[x,\left[x, H_{0}\right]\right]$ and let $|i\rangle$ be eigenkets of H_{0}. Then

$$
\begin{aligned}
& \langle i|\left[x,\left[x, H_{0}\right]\right]|i\rangle=\langle i|\left[x, x H_{0}-H_{0} x\right]|i\rangle=\langle i| x^{2} H_{0}-2 x H_{0} x+H_{0} x^{2}|i\rangle \\
& =2 E_{i}\langle i| x^{2}|i\rangle-2\langle i| x H_{o} x|i\rangle=2 E_{i} \sum_{n}\langle i| x|n\rangle\langle n| x|i\rangle-2 \sum_{n}\langle i| x H_{o}|n\rangle\langle n| x|i\rangle \\
& \left.=2 \sum_{n}\left(E_{i}-E_{n}\right)\langle i| x|n\rangle\langle n| x|i\rangle=\sum_{n} 2 \hbar \omega_{i n}|\langle n| x| i\right\rangle\left.\right|^{2}
\end{aligned}
$$

On the other hand,

$$
\begin{gathered}
{\left[x, H_{0}\right]=i \hbar \frac{p}{m}} \\
{\left[x,\left[x, H_{0}\right]\right]=\frac{i \hbar}{m}[x, p]=-\frac{\hbar^{2}}{m}}
\end{gathered}
$$

Then,

$$
\left.\sum_{n} 2 \hbar \omega_{i n}|\langle n| x| i\right\rangle\left.\right|^{2}=-\frac{\hbar^{2}}{m}
$$

Total Absorption Cross Section

The total absorption cross section is then

$$
\begin{aligned}
& \left.\sigma_{\text {Total }}=\int \sigma_{a b s}(\omega) d \omega=\left(\frac{e^{2}}{\hbar c}\right)\left(\frac{2 \pi}{m}\right)^{2} \int \frac{\hbar}{\omega}\left|\langle n|(\varepsilon \cdot p) e^{i k \cdot x}\right| i\right\rangle\left.\right|^{2} \delta\left(E_{n}-E_{i}-\hbar \omega\right) d \omega \\
& \left.\left.\approx\left(\frac{e^{2}}{\hbar c}\right)\left(\frac{2 \pi}{m}\right)^{2} \sum_{n} \frac{1}{\omega_{n i}}|\varepsilon \cdot\langle n| p| i\right\rangle\left.\right|^{2}=\left(\frac{e^{2}}{\hbar c}\right)\left(\frac{2 \pi}{m}\right)^{2} \sum_{n} \frac{1}{\omega_{n i}}\left|\varepsilon \cdot \frac{m}{i \hbar}\left(E_{i}-E_{n}\right)\langle n| x\right| i\right\rangle\left.\right|^{2}
\end{aligned}
$$

Without loss of generality, we may take the polarization to be along the x-axis. Then

$$
\left.\sigma_{\text {Total }}=\left(\frac{e^{2}}{\hbar c}\right)\left(\frac{2 \pi}{m}\right)^{2} \sum_{n} m^{2} \omega_{n i}|\langle n| x| i\right\rangle\left.\right|^{2}=4 \pi^{2} \alpha \frac{\hbar}{2 m}=\frac{2 \pi^{2} \hbar \alpha}{m}
$$

This is the same as the classical value.

