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Time Evolution Operator

As there are few time-dependent potentials that have exact solutions, let us
consider a perturbation theory for these types of potentials. We start by looking
at the time evolution of the wave function in the interaction picture.

Let
Y (x, t) = Up(t, to) Y (x, to)

where for consistency the interaction-picture time evolution operator satisfies

UI(tO! tO) =1
In the interaction picture,
o, (x,t
lh% = VIl/JI(x, t)

The time-evolution operator therefore satisfies

dU,(t,t
ih ’C(it 0)=V,U,(t,t0)
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The differential equation may be inverted, giving
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This is the Dyson series. The factor —i/h serves as a marker for the order of
perturbation. b
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Expansion Coetficients

Suppose the system is initially in an eigenstate |i) of H,. Then we may write

(o)), = D)

At a later time,
[P (t)), = U (t, to)li)

Using the completeness relation, we may recast this as

(), = ) In)nlUi(t, t0)]i)

|dentifying with the expansion postulate

(O, = ) enl®)ln)

n

we have
cn(t) = (n|U;(t, to)]i)

Y
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Perturbation Terms

If we expand the coefficients as perturbative terms

e (®) = ¢+ e 1 @ 4.

and insert the Dyson series in
cn(t) = (n|U; (2, o)D)

We have
0
C1(1)=6ni
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