Quantum Mechanics

Robert C. Roleda
Physics Department

Time-Dependent Perturbation Theory

Time Evolution Operator

As there are few time-dependent potentials that have exact solutions, let us consider a perturbation theory for these types of potentials. We start by looking at the time evolution of the wave function in the interaction picture.

Let

$$
\psi_{I}(x, t)=U_{I}\left(t, t_{0}\right) \psi\left(x, t_{0}\right)
$$

where for consistency the interaction-picture time evolution operator satisfies

$$
U_{I}\left(t_{0}, t_{0}\right)=1
$$

In the interaction picture,

$$
i \hbar \frac{\partial \psi_{I}(x, t)}{\partial t}=V_{I} \psi_{I}(x, t)
$$

The time-evolution operator therefore satisfies

$$
i \hbar \frac{d U_{I}\left(t, t_{0}\right)}{d t}=V_{I} U_{I}\left(t, t_{0}\right)
$$

Dyson Series

The differential equation may be inverted, giving

$$
U_{I}\left(t, t_{0}\right)=1-\frac{i}{\hbar} \int_{t_{0}}^{t} V_{I}\left(t^{\prime}\right) U_{I}\left(t^{\prime}, t_{0}\right) d t^{\prime}
$$

Iterating,

$$
\begin{aligned}
& U_{I}\left(t, t_{0}\right)=1-\frac{i}{\hbar} \int_{t_{0}}^{t} V_{I}\left(t^{\prime}\right)\left[1-\frac{i}{\hbar} \int_{t_{0}}^{t^{\prime}} V_{I}\left(t^{\prime \prime}\right) U_{I}\left(t^{\prime \prime}, t_{0}\right) d t^{\prime \prime}\right] d t^{\prime} \\
& =1+\left(-\frac{i}{\hbar}\right) \int_{t_{0}}^{t} V_{I}\left(t^{\prime}\right) d t^{\prime}+\left(-\frac{i}{\hbar}\right)^{2} \int_{t_{0}}^{t} d t^{\prime} \int_{t_{0}}^{t^{\prime}} d t^{\prime \prime} V_{I}\left(t^{\prime}\right) V_{I}\left(t^{\prime \prime}\right)+\cdots \\
& +\left(-\frac{i}{\hbar}\right)^{n} \int_{t_{0}}^{t} d t^{\prime} \int_{t_{0}}^{t^{\prime}} d t^{\prime \prime} \cdots \int_{t_{0}}^{t^{(n-1)}} d t^{(n)} V_{I}\left(t^{\prime}\right) V_{I}\left(t^{\prime \prime}\right) \cdots V_{I}\left(t^{(n)}\right)
\end{aligned}
$$

This is the Dyson series. The factor $-i / \hbar$ serves as a marker for the order of perturbation.

Expansion Coefficients

Suppose the system is initially in an eigenstate $|i\rangle$ of H_{0}. Then we may write

$$
\left|\psi\left(t_{0}\right)\right\rangle_{I}=|i\rangle
$$

At a later time,

$$
|\psi(t)\rangle_{I}=U_{I}\left(t, t_{0}\right)|i\rangle
$$

Using the completeness relation, we may recast this as

$$
|\psi(t)\rangle_{I}=\sum_{n}|n\rangle\langle n| U_{I}\left(t, t_{0}\right)|i\rangle
$$

Identifying with the expansion postulate

$$
|\psi(t)\rangle_{I}=\sum_{n} c_{n}(t)|n\rangle
$$

we have

$$
c_{n}(t)=\langle n| U_{I}\left(t, t_{0}\right)|i\rangle
$$

Perturbation Terms

If we expand the coefficients as perturbative terms

$$
c_{n}(t)=c_{n}^{(0)}+c_{n}^{(1)}+c_{n}^{(2)}+\cdots
$$

and insert the Dyson series in

$$
c_{n}(t)=\langle n| U_{I}\left(t, t_{0}\right)|i\rangle
$$

We have

$$
\begin{gathered}
c_{n}^{(0)}=\delta_{n i} \\
c_{n}^{(1)}=\left(-\frac{i}{\hbar}\right) \int_{t_{0}}^{t}\langle n| V_{I}\left(t^{\prime}\right)|i\rangle d t^{\prime}=\left(-\frac{i}{\hbar}\right) \int_{t_{0}}^{t} V_{n i}\left(t^{\prime}\right) e^{i \omega_{n i} t^{\prime}} d t^{\prime} \\
c_{n}^{(2)}=\left(-\frac{i}{\hbar}\right)^{2} \sum_{m} \int_{t_{0}}^{t} d t^{\prime} \int_{t_{0}}^{t^{\prime}} d t^{\prime \prime} V_{n m}\left(t^{\prime}\right) V_{m i}\left(t^{\prime \prime}\right) e^{i \omega_{n m} t^{\prime}} e^{i \omega_{m i} t^{\prime \prime}}
\end{gathered}
$$

