Quantum Mechanics

Robert C. Roleda
Physics Department

Two-Level Systems

Two-Level Systems

- There are few exact solutions for time-dependent potentials
- Two-level systems are an exception: nuclear magnetic resonance, laser, maser

Let

$$
\begin{gathered}
H_{0}=E_{1}|1\rangle\langle 1|+E_{2}|2\rangle\langle 2| \\
V(t)=\gamma e^{i \omega t}|1\rangle\langle 2|+\gamma e^{-i \omega t}|2\rangle\langle 1|
\end{gathered}
$$

with γ, ω real positive constants, and $E_{1}<E_{2}$.
Without losing generality, let us consider the case where initially only the lower state is populated

$$
c_{1}(0)=1 . \quad c_{2}(0)=0
$$

From [interaction picture], the probability amplitude of each state evolves as follows

$$
i \hbar \frac{d c_{n}}{d t}=\sum_{m} V_{n m} e^{i \omega_{n m} t} c_{m}
$$

Evolution of Amplitudes

We note that

$$
V_{11}=0 \quad V_{12}=\gamma e^{i \omega t} \quad V_{21}=\gamma e^{-i \omega t} \quad V_{22}=0
$$

Thus,

$$
\begin{aligned}
& i \hbar \frac{d c_{1}}{d t}=\gamma e^{i \omega t} e^{i \omega_{12} t} c_{2} \\
& i \hbar \frac{d c_{2}}{d t}=\gamma e^{-i \omega t} e^{i \omega_{21} t} c_{1}
\end{aligned}
$$

where $E_{n}-E_{m}=\hbar \omega_{n m}$.
Taking the second derivative of the second equation,

$$
i \hbar \frac{d^{2} c_{2}}{d t^{2}}=\gamma e^{i\left(\omega_{21}-\omega\right) t} \frac{d c_{1}}{d t}+i\left(\omega_{21}-\omega\right) \gamma e^{i\left(\omega_{21}-\omega\right) t} c_{1}
$$

Referring to the two original equations, we can recast the second derivative as

$$
i \hbar \frac{d^{2} c_{2}}{d t^{2}}=\frac{\gamma^{2}}{i \hbar} c_{2}++i\left(\omega_{21}-\omega\right) i \hbar \frac{d c_{2}}{d t}
$$

General Solution

The differential equation can be reorganized as

$$
\frac{d^{2} c_{2}}{d t^{2}}-i\left(\omega_{21}-\omega\right) \frac{d c_{2}}{d t}+\frac{\gamma^{2}}{\hbar^{2}} c_{2}=0
$$

This is a second-order differential equation with constant coefficients. For the ansatz $c_{2}=e^{k t}$, the auxiliary equation is

$$
k^{2}-i\left(\omega_{21}-\omega\right) k+\frac{\gamma^{2}}{\hbar^{2}}=0
$$

which has the roots

$$
k=\frac{i\left(\omega_{21}-\omega\right) \pm \sqrt{-\left(\omega_{21}-\omega\right)^{2}-4(\gamma / \hbar)^{2}}}{2}=i \frac{\left(\omega_{21}-\omega\right)}{2} \pm i \sqrt{\frac{\left(\omega_{21}-\omega\right)^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}
$$

The general solution is then

$$
c_{2}(t)=e^{i\left(\omega_{21}-\omega\right) t / 2}[A \sin \Omega t+B \cos \Omega t]
$$

where

$$
\Omega=\sqrt{\frac{\left(\omega_{21}-\omega\right)^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}
$$

Initial Conditions

Applying the initial condition $c_{2}(0)=0$, we have

$$
B=0
$$

Thus,

$$
\begin{gathered}
c_{2}(t)=A e^{i\left(\omega_{21}-\omega\right) t / 2} \sin \Omega t \\
\frac{d c_{2}}{d t}=\frac{i\left(\omega_{21}-\omega\right)}{2} A e^{i\left(\omega_{21}-\omega\right) t / 2} \sin \Omega t+\Omega A e^{i\left(\omega_{21}-\omega\right) t / 2} \cos \Omega t
\end{gathered}
$$

Comparing with

$$
i \hbar \frac{d c_{2}}{d t}=\gamma e^{i\left(\omega_{21}-\omega\right) t} c_{1}
$$

we have

$$
c_{1}(t)=\frac{i \hbar}{\gamma} A e^{-i\left(\omega_{21}-\omega\right) t / 2}[\sin \Omega t+\Omega \cos \Omega t]
$$

With $c_{1}(0)=1$

$$
A=\frac{\gamma}{i \hbar \Omega}
$$

Initial Conditions

We then have

$$
\begin{gathered}
c_{1}(t)=e^{-i\left(\omega_{21}-\omega\right) t / 2}\left[\frac{1}{\Omega} \sin \Omega t+\cos \Omega t\right] \\
c_{2}(t)=\frac{\gamma}{i \hbar \Omega} e^{i\left(\omega_{21}-\omega\right) t / 2} \sin \Omega t
\end{gathered}
$$

If the system is initially in the lower energy state, the probability that at a later time t, it is found in the higher energy state is

$$
\left|c_{2}(t)\right|^{2}=\frac{\gamma^{2} / \hbar^{2}}{\gamma^{2} / \hbar^{2}+\left(\omega_{21}-\omega\right)^{2} / 4} \sin ^{2}\left(\sqrt{\frac{\left(\omega_{21}-\omega\right)^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}} t\right)
$$

This is the Rabi formula, named after the father of molecular beam Isaac Rabi.
The probability that it remains in the lower state is

$$
\left|c_{1}(t)\right|^{2}=1-\left|c_{2}(t)\right|^{2}
$$

