Quantum Mechanics 2

Robert C. Roleda
Physics Department

Hydrogen Atom
Zeeman Effect

Normal Zeeman Effect

If a Hydrogen atom is placed in a magnetic field, it interacts with this field through its orbital and spin angular momenta.

$$
H_{Z}=-\mu \cdot B
$$

The magnetic moment of an electron due to its orbital angular momentum is

$$
\mu_{l}=-\frac{e}{2 m_{e}} L
$$

Thus,

$$
H_{Z}=\frac{e}{2 m_{e}} L \cdot B
$$

For a uniform magnetic field, we may take its direction as the z - axis. The first order correction due to this interaction is then

$$
E_{(N Z)}^{(1)}=\langle n \operatorname{lm}| H_{Z}|n l m\rangle=\frac{e B}{2 m_{e}}\langle n \operatorname{lm}| L_{Z}|n \operatorname{lm}\rangle=\frac{e B}{2 m_{e}} m \hbar
$$

The leads to the splitting of the azimuthal degeneracy, and it is called the Normal Zeeman Effect

Anomalous Zeeman Effect

The magnetic moment of an electron due to its spin is

$$
\mu_{s}=-\frac{e}{m_{e}} S
$$

Its interaction Hamiltonian is then

$$
H_{Z}=\frac{e}{m_{e}} S \cdot B
$$

Taken together with the interaction with the orbital angular momentum

$$
H_{Z}=\frac{e}{2 m_{e}}(L+2 S) \cdot B
$$

For a uniform magnetic field, we may take its direction as the z - axis. The first order correction due to this interaction is then

$$
\begin{aligned}
& E_{(A Z)}^{(1)}=\left\langle n l m_{l} m_{s}\right| H_{Z}\left|n l m_{l} m_{s}\right\rangle=\frac{e B}{2 m_{e}}\left\langle n l m_{l} m_{s}\right|\left(L_{z}+2 S_{Z}\right)\left|n l m_{l} m_{s}\right\rangle \\
& =\frac{e B}{2 m_{e}}\left(m_{l}+2 m_{s}\right) \hbar
\end{aligned}
$$

This leads to a doubling of the azimuthal degeneracy splits, and is known as the Anomalous Zeeman Effect

Weak Fields

If the external magnetic field is very weak, the Zeeman interaction is much weaker than the spin-orbit interaction. Thus, we may take it as a perturbation relative to the Hamiltonian

$$
H_{0}=\frac{p^{2}}{2 m_{e}}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}+\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{2 m_{e}^{2} c^{2} r^{3}} S \cdot L
$$

The good quantum numbers for fine structure are n, l, s, j, m. Thus,

$$
E_{(W Z)}^{(1)}=\langle n l s j m| H_{Z}|n l \operatorname{sjm}\rangle=\frac{e B}{2 m_{e}}\langle n l s j m|\left(L_{z}+2 S_{z}\right)|n l s j m\rangle
$$

The total angular momentum is

$$
J=L+S
$$

Thus,

$$
L_{z}+2 S_{z}=J_{z}+S_{z}
$$

The first term is compatible with the quantum numbers but the second is not

Spin

We note that the total angular momentum is a constant of motion, and that L and S have fixed magnitudes but the vectors precess about the direction of J.

We may then express

$$
\vec{S}=(\vec{S} \cdot \hat{J}) \hat{J}=\frac{(\vec{S} \cdot \vec{J})}{J^{2}} \vec{J}
$$

Now,

$$
L=J-S
$$

so

$$
L^{2}=J^{2}+S^{2}-2 S \cdot J
$$

Thus,

$$
S \cdot J=\frac{1}{2}\left[J^{2}+S^{2}-L^{2}\right]
$$

and

$$
S_{z}=\frac{\left[J^{2}+S^{2}-L^{2}\right]}{2 J^{2}} J_{z}
$$

De La Salle University

Weak Field Correction

Therefore, in weak fields

$$
\begin{aligned}
& E_{(W Z)}^{(1)}=\frac{e B}{2 m_{e}}\langle n l s j m|\left(J_{z}+\frac{\left[J^{2}+S^{2}-L^{2}\right]}{2 J^{2}} J_{z}\right)|n l s j m\rangle \\
& =\frac{e B}{2 m_{e}}\left[1+\frac{j(j+1)+\frac{3}{4}-l(l+1)}{2 j(j+1)}\right] m \hbar
\end{aligned}
$$

For $j=l+\frac{1}{2}$,

$$
\begin{aligned}
& \frac{j(j+1)+\frac{3}{4}-l(l+1)}{2 j(j+1)}=\frac{\left(l+\frac{1}{2}\right)\left(l+\frac{3}{2}\right)-l(l+1)+\frac{3}{4}}{2\left(l+\frac{1}{2}\right)\left(l+\frac{3}{2}\right)}=\frac{l^{2}+2 l+\frac{3}{4}-l^{2}-l+\frac{3}{4}}{(2 l+1)\left(l+\frac{3}{2}\right)} \\
& =\frac{l+\frac{3}{2}}{(2 l+1)\left(l+\frac{3}{2}\right)}=\frac{1}{(2 l+1)}
\end{aligned}
$$

For $j=l-\frac{1}{2}$,

$$
\begin{aligned}
& \frac{j(j+1)+\frac{3}{4}-l(l+1)}{2 j(j+1)}=\frac{\left(l-\frac{1}{2}\right)\left(l+\frac{1}{2}\right)-l(l+1)+\frac{3}{4}}{2\left(l-\frac{1}{2}\right)\left(l+\frac{1}{2}\right)}=\frac{l^{2}-\frac{1}{4}-l^{2}-l+\frac{3}{4}}{2\left(l-\frac{1}{2}\right)\left(l+\frac{1}{2}\right)} \\
& =\frac{-l+\frac{1}{2}}{\left(l-\frac{1}{2}\right)(2 l+1)}=-\frac{1}{(2 l+1)}
\end{aligned}
$$

De La Salle University

Weak Field Correction

The weak field Zeeman effect is therefore

$$
E_{(W Z)}^{(1)}=\frac{e B}{2 m_{e}}\left[1 \pm \frac{1}{(2 l+1)}\right] m \hbar
$$

