# Quantum Mechanics 2 

Robert C. Roleda<br>Physics Department

Hydrogen Atom<br>Spin-Orbit Coupling

De La Salle University

## Magnetic Field

Classically, from the electron's frame of reference inside an atom, the nucleus is circling around it. A charge moving in a circle sets up a magnetic field. At the center of the circle,

$$
B=\mu_{0} \frac{I}{2 r}
$$

The current set up by a "circling" proton is

$$
I=\frac{e}{T}
$$

The period may be derived from the electron's angular momentum, as the orbital period is the same from both the electron's and the proton's frame

$$
L=m_{e} v r=\frac{m_{e} 2 \pi r^{2}}{T}
$$

Thus,

$$
B=\mu_{0} \frac{e}{2 r T}=\mu_{0} \frac{e}{m_{e} 4 \pi r^{3}} L
$$

## Spin-Orbit Coupling

One glaring omission of Schrödinger's atom is spin. With a spin $S$, the electron would have a magnetic moment

$$
\mu_{e}=-\frac{e}{m_{e}} S
$$

which will interact with the magnetic field at the electron's location to yield an interaction energy

$$
H_{I}=-\mu_{e} \cdot B
$$

In this case,

$$
H_{I}=\left(\frac{e}{m_{e}} S\right) \cdot\left(\mu_{0} \frac{e}{m_{e} 4 \pi r^{3}} L\right)=\mu_{0} \frac{e^{2}}{4 \pi m_{e}^{2} r^{3}} S \cdot L
$$

Because this involves a dot product between the spin and orbital angular momenta, it is called a spin-orbit coupling.

The expression can be harmonized with the expressions we have for hydrogen atom energy by noting that

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}
$$

## Thomas Precession

Thus

$$
H_{I}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{m_{e}^{2} c^{2} r^{3}} S \cdot L
$$

The foregoing discussion was made on classical grounds. This is actually off by a factor of 2 accounted for by a kinematic correction to offset the shifting between reference frames, known as the Thomas precession. The correct expression is

$$
H_{I}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{2 m_{e}^{2} c^{2} r^{3}} S \cdot L
$$

The first-order correction to energy due to spin-orbit coupling is

$$
E_{n(S O)}^{(1)}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{2 m_{e}^{2} c^{2}}\left\langle n l m_{l} m_{s}{ }^{(0)}\right| \frac{S \cdot L}{r^{3}}\left|n l m_{l} m_{s}{ }^{(0)}\right\rangle
$$

## Total Angular Momentum

The dot product may be evaluated as follows. Let us take the total angular momentum

$$
J=L+S
$$

Noting that

$$
[L, S]=0
$$

we have

$$
J^{2}=L^{2}+S^{2}+2 S \cdot L
$$

Hence,

$$
S \cdot L=\frac{J^{2}-L^{2}-S^{2}}{2}
$$

The good quantum numbers in this case are $j, m$ instead of $m_{l}, m_{s}$. Thus, we write

$$
\begin{aligned}
& \left\langle n l m_{l} m_{s}{ }^{(0)}\right| \frac{S \cdot L}{r^{3}}\left|n l m_{l} m_{s}{ }^{(0)}\right\rangle=\left\langle n l^{(0)}\right| r^{-3}\left|n l^{(0)}\right\rangle\left\langle l s j m^{(0)}\right| \frac{J^{2}-L^{2}-S^{2}}{2}\left|l s j m^{(0)}\right| \\
& =\left\langle r^{-3}\right\rangle \frac{1}{2}[j(j+1)-l(l+1)-s(s+1)] \hbar^{2}
\end{aligned}
$$

## Radial Part

The radial part can be evaluated using Kramers' relation [Hydrogen 4]

$$
\frac{s+1}{n^{2}} Z^{2}\left\langle r^{s}\right\rangle-(2 s+1) Z a_{0}\left\langle r^{s-1}\right\rangle+\frac{s}{4}\left[(2 l+1)^{2}-s^{2}\right] a_{0}^{2}\left\langle r^{s-2}\right\rangle=0
$$

In particular, for $s=-1$,

$$
a_{0}\left\langle r^{-2}\right\rangle-\frac{1}{4}\left[(2 l+1)^{2}-1\right] a_{0}^{2}\left\langle r^{-3}\right\rangle=0
$$

From [Hydrogen 6],

$$
\left\langle\frac{1}{r^{2}}\right\rangle=\frac{2}{(2 l+1) n^{3} a_{0}^{2}}
$$

Hence,

$$
a_{0} \frac{2}{(2 l+1) n^{3} a_{0}^{2}}=\frac{1}{4}\left[4 l^{2}+4 l+1-1\right] a_{0}^{2}\left\langle r^{-3}\right\rangle
$$

and

$$
\left\langle r^{-3}\right\rangle=\frac{1}{l(l+1)\left(l+\frac{1}{2}\right) n^{3} a_{0}^{3}}
$$

## Spin-Orbit Correction

Putting everything together, we then have

$$
\begin{aligned}
& E_{n(S O)}^{(1)}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{2 m_{e}^{2} c^{2}} \frac{\left.\left[j(j+1)-l(l+1)-\frac{3}{4}\right)\right] \hbar^{2}}{2 l(l+1)\left(l+\frac{1}{2}\right) n^{3} a_{0}^{3}} \\
& =\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{\hbar^{2}}{m_{e} a_{0}} \frac{1}{4 n^{3} a_{0}^{2}} \frac{1}{m_{e} c^{2}} \frac{\left.\left[j(j+1)-l(l+1)-\frac{3}{4}\right)\right]}{l(l+1)\left(l+\frac{1}{2}\right)} \\
& =\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \frac{1}{4 n^{4} a_{0}^{2}} \frac{1}{m_{e} c^{2}} \frac{\left.n\left[j(j+1)-l(l+1)-\frac{3}{4}\right)\right]}{l(l+1)\left(l+\frac{1}{2}\right)}
\end{aligned}
$$

This can be written as

$$
E_{n(S O)}^{(1)}=\frac{\left(E_{n}^{(0)}\right)^{2}}{m_{e} c^{2}} \frac{\left.n\left[j(j+1)-l(l+1)-\frac{3}{4}\right)\right]}{l(l+1)\left(l+\frac{1}{2}\right)}
$$

