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Let us consider a damped oscillator for which the Hamiltonian is
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We know the exact solutions for the Harmonic oscillator.  We may thus assign
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The eigenenergies of a Harmonic oscillator are
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Ladder OperatorsLadder OperatorsLadder OperatorsLadder Operators

We recall from [ladder 4] that the position operator may be expressed in terms of 

ladder operators 
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and the ladder operators act on the harmonic oscillator energy eigenkets in the 

following ways:
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The first-order correction for energy is
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Now,
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The second-order correction to the energy is
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And summing over  ,
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The lowest-order correction to the energy is then
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The first order coefficient for the eigenkets are
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To first-order, the energy eigenkets are
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The perturbed ground state is for example
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RenormalizationRenormalizationRenormalizationRenormalization

We note that even if the harmonic oscillator eigenstates ��(�)� are normalized, the 

perturbed eigenstates are linear combinations of ��(�)�, and these have to be 

normalized again

��(�)� = ( ��(�)� + ���
2�ℏ	) 

�
�(� − 1)(�)� − (� + 1)��

2�ℏ	)  
�

�(� + 1)(�)�

The renormalization constant is
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Thus the renormalized perturbed ground state is
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the first excited state is
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and the second excited state is
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Exact SolutionExact SolutionExact SolutionExact Solution

The damped oscillator is actually an exactly solvable problem. The potential term 

is quadratic
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By completing the square,
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and changing the variable
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The Schrödinger equation may be recast as
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The eigenvalues of this differential equation are
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Thus, the eigenenergies of the damped oscillator are
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Note that the extra term on the right are exactly the second-order corrections 

calculated earlier.

Following [Harmonic Oscillator 5], the exact energy eigenstates of the damped 

oscillator are 
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