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Damped Oscillator

Let us consider a damped oscillator for which the Hamiltonian is
2

p
H = _ 2.2
= +2ma)x + bx

We know the exact solutions for the Harmonic oscillator. We may thus assign

2
p 1
H. = _ 2.2
0 —2m+2mwx

lebx

The eigenenergies of a Harmonic oscillator are

1
E1(10) - (TI + E) hw
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LLadder Operators

We recall from [ladder 4] that the position operator may be expressed in terms of
ladder operators

h
= ——— -|-
X 2mw<A+A)

and the ladder operators act on the harmonic oscillator energy eigenkets in the
following ways:

Aln®) = |(n — 1))
At @) =vn+1|(n+ 1)©®)
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First-Order Energy

The first-order correction for energy is

2
ES = (Ot |n®) = (@ [bxfn®) = | (n@](4 + 4T)}n®)
Now,
(n@]4[n®) = yR(r®|(n — 1)) = 0
(n©@]AT[n@) = Vn + 1(n@|(n + H@) =0
Hence,
EM =0

b
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Second-Order Energy

The second-order correction to the energy is

R ATl (O](4 + AN EO)P
z E(O) E(O) mez (n — k)hw

k+n k+n

Since
(n(0)|A|k(0)) — \/F(n(o)|(k _ 1)(0)) — @511,1(-1
(n@|atk©@) = vk + 1(n@|(k + 1)) = Vk + 16, 541
|<Tl(0)|(A + AT)|k(O)>|2 = k6n,k—16n,k—1 + 2\/%\' k + 151”L,Ic—16n,k+1 + (k + 1)51”L,k+16n,k+1

And summing over k,

D (n+ Dy 21/n(n 1) 5,/;1 : ] ~ (n A 1)
2maw —hw ha) 2mw ha)
The lowest-order correction to the energy is then §
s _ b |
n 2mw? S
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First-Order Eigenkets

The first order coefficient for the eigenkets are

@ (kOHn@)  [ab2 (K©|(A + AT)[n(®) hb2 M8y o1 + VN + 18, s

nk — ET(lO) _ E}EO) [ 2mw (n — k)hw 2mw (n—k)hw

To first-order, the energy eigenkets are

o)+ Y 6 k)

k+n

|n(1)) =N

Hence,

MY =
|n ) N 2mhw3 2mhw?3

In©®) 4 nb2 (= 1) — \/(n + 1)b? i+ 1)(0)>]

The perturbed ground state is for example

2

l0®) = N [|o©@) —

2mhw3
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Renormalization

We note that even if the harmonic oscillator eigenstates |[n(?) are normalized, the

perturbed eigenstates are linear combinations of [n(?)), and these have to be
normalized again

nb? (n + 1)b?
|n(1)) =N |n(0)) + ——s |(n _ 1)(0)) _\/ —— |(n + 1)(0))

The renormalization constant is

nb? _ (n+1)b? e @+ b2 T
2mhw3 2mhw3 B 2mhw3
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Renormalization

Thus the renormalized perturbed ground state is

2 1/2 2
00) =1+ | {19)~ [ 1)
the first excited state is
3p2 1 V2| | b2 2h2
MY — (0) 0)\ _ (0)
|1 ) [1+2mha)3] 2mhw3|0 >+|1 ) 2mhw3|2 )
and the second excited state is
5p2 1 2| | 2p2 3h2
(DY — (0) 0\ _ (0)
20) = [+ ] | [ 1)+ 2O = s 300
1
1
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Exact Solution

The damped oscillator is actually an exactly solvable problem. The potential term
IS quadratic

V= Ema)zx2 + bx

By completing the square,

1 ., 2b b \* b2_12+b2b2
x mw2x+ mw? mw? _me x mw? 2mw?

V = -mw?
and changing the variable

2

x—>y=x+mw2

The Schrodinger equation may be recast as

h? 0%u(y) 1

2
~om 9y? + Ema)zyzu(y) = (En +

Zma)Z)u(y) b
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Exact Solution

The eigenvalues of this differential equation are
1
(n + E) hw
Thus, the eigenenergies of the damped oscillator are
1 b
E, = (n +§) how — T2

Note that the extra term on the right are exactly the second-order corrections
calculated earlier.

Following [Harmonic Oscillator 5], the exact energy eigenstates of the damped
oscillator are

2
un() = @12 (B0 ( $(’C + mif)) o (JZ_;) <x 3 miz) ) "
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