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Perturbation

Perturbations are small influences “on top” of a dominant force. There are very
few quantum mechanical systems that are exactly solvable. However, there are
a good number of cases in which the Hamiltonian may be expressed as

H=H0+HI

where (a) the effects of H; are much weaker than that of H,, and (b) The
eigenfunctions and eigenvalues of H, are exact, and have been solved.

In these cases, approximate eigenvalues and eigenfunctions for the full
Hamiltonian H can be solved using Perturbation Theory.
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Let [n(?)) be the (known and exact) eigenkets of H,, then
Ho|n®) = E|n©)

E'? are called the unperturbed eigenenergies, and [n(?) are the unperturbed
states.

In order to keep track of the order of approximation, let us put a marker A (or a
parameter) beside the perturbation Hamiltonian H;.

H = H, + AH,

We now make an ansatz that the eigenenergy can be expressed as a sum of
successive correction terms of decreasing values

E,=E +2ED + 2EP + -
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Since the eigenkets [n(®)) of H, are complete, we may use the expansion
postulate to express the eigenkets |n) of H as linear combinations of the former

RO} + Y Cu@lk®)

k#n

In) = N(1)

If A = 0, the Hamiltonian H reduces to the unperturbed Hamiltonian H,. Thus, for
consistency

NA=0)=1
Crc(A=0)=0

We likewise assume that the expansion coefficient can be expressed as a sum of
correction terms

Crie(D) = AC5Y) +22¢D) + ...
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Fxpansion

The eigenvalue equation

Hln) = En[n)

may then be expressed as

(Ho + AH) ||[n©®) + 2 Z CD|k®) + 22 Z COK@) 4 .
k#n k#n
= (B +2E" + 2B + - )[|n(0)) +2) CPI@)+ 22 ) CR @) + -
k#n k#n
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Equating terms of the same power of 1, we have for order zero,
Ho|n®) = E|n©)

For order one,
1 0 1 1
Ho ) CR@) + Hyn®) = B ) cQk©@) + EN @)«
k#n k#n
For order two,

Hy ) CR k@) +H; ) c{lk®)

k+n k+n

_ E(O) Z C(2)|k(0) ) + E(l) Z C(1)|k(0) ) + E(Z) In(©@) A

k+n k+n

and so on §
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First-Order Energy

If we take the inner product of the first-order expression with (n(®|

> DOt k@) + (O] [n®) = B Y €D k@) + B nO[nc®)

k*n k+n

we have

z COED/ 4 (nO|H,[n©®) = E(O)z C 8 + EV

k+n k#n
which yields the formula for the first-order correction for energy
E(l) (n(0)| H, |n(0)>
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First-Order Eigenkets

If we take the inner product of the first-order expression with (m(®|, for m = n,
1 0 1 1
3 O | k) 4 (mO 1 ) = 5D Y cmOkO) + B mO[n)
k+n k+n
we have
1 0 0 1 1
> CQE S + (MO @) = EP N €8 6 + B S5
k#n k#n
which reduces to
1 0 0 1
COED + (O, ) = B0 C)

Rearranging, we get the first order coefficient for the eigenkets

(m@|H,[n©)
£ _ ;O
n m
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Second-Order Energy

If we take the inner product of the second-order expression with (n(®|

D G (@ Holk®) + 3 Cn ||k

k+n k+n
=EP Y (D O®) + ED D cQnOfk@) + EP (1@ [n)

k+n k#n

we have
> R <n%>> - RO k) = £
k#n k+n

which yields the second-order correction to the energy

kO |H, |n© O|H, k@)
E® - z< (0)| ’ln(0)> (n©|H,;|k©) = z [(n (Ol) | .
E® —F EY — E b

k+n —n k k+n
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Second-Order Eigenkets

If we take the inner product of the second-order expression with(m(®|, for m = n,

>R (mO[Hol k@) + )" ¢ (m@ |, | ®)

k#n k+n

£ ¢@ mO@) + £ Y cPm@[e®) + ED (m@n®)

k+n k+n

we have
2 0 1 0 2 1 1
Z CDED 8, + 2 C(mO|H, |k @) = EL” Z C2 8y + ESV Z S
k#n k+n k+n k#n

which reduces to

2 0 1 0 2 1 1
CRED + Y Ok ®) = EPCE + EOC

nm-~m
k+n
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Second-Order Eigenkets

Rearranging, we have

(1) (1) ~(1)
C(Z) — an (m(O)lHllk(0)> - En Cnm
nm § E,SO) _ E,(,(l))

k+n

which yields the second-order coefficients for the eigenkets

C(z) B Z (m(o)|H,|k(0))(k(0)|H,|n(°)) (m(o)|H1|n(°))(n(0)|H1|n(°))
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