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PerturbationPerturbationPerturbationPerturbation

Perturbations are small influences “on top” of a dominant force.  There are very 

few quantum mechanical systems that are exactly solvable.  However, there are 

a good number of cases in which the Hamiltonian may be expressed as 

� = �� + ��
where (a) the effects of �� are much weaker than that of ��, and (b) The 

eigenfunctions and eigenvalues of �� are exact, and have been solved.

In these cases, approximate eigenvalues and eigenfunctions for the full 

Hamiltonian � can be solved using Perturbation Theory.



EigenenergyEigenenergyEigenenergyEigenenergy

Let ��(�)
 be the (known and exact) eigenkets of ��, then

����(�)
 = ��
(�)��(�)


��
(�)

are called the unperturbed eigenenergies, and ��(�)
 are the unperturbed 

states.

In order to keep track of the order of approximation, let us put a marker 
 (or a 

parameter) beside the perturbation Hamiltonian ��.
� = �� + 
��

We now make an ansatz that the eigenenergy can be expressed as a sum of 

successive correction terms of decreasing values

�� = ��
(�) + 
��

(�) + 
���
(�) + ⋯



EigenketsEigenketsEigenketsEigenkets

Since the eigenkets ��(�)
 of �� are complete, we may use the expansion 

postulate to express the eigenkets |�⟩ of � as linear combinations of the former

|�⟩ = �(
) ��(�)
 + � ���(
)��(�)

�

���
If 
 = 0, the Hamiltonian � reduces to the unperturbed Hamiltonian ��.  Thus, for 

consistency

� 
 = 0 = 1
��� 
 = 0 = 0

We likewise assume that the expansion coefficient can be expressed as a sum of 

correction terms

���(
) = 
���
(�) + 
����

(�) + ⋯



ExpansionExpansionExpansionExpansion

The eigenvalue equation

�|�⟩ = ��|�⟩
may then be expressed as

�� + 
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(�)��(�)
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(�) + ⋯  ��(�)
 + 
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(�)��(�)
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OrdersOrdersOrdersOrders

Equating terms of the same power of 
, we have for order zero,

����(�)
 = ��
(�)��(�)


For order one,
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�

���
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For order two,
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and so on

⋮



FirstFirstFirstFirst––––Order EnergyOrder EnergyOrder EnergyOrder Energy

If we take the inner product of the first-order expression with ��(�)�
� ���

(�)��(�)�����(�)
 +
�

���
��(�)�����(�)
 = ��

(�) � ���
(�) �(�) �(�)
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we have

� ���
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(�) �� +
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���
��(�)�����(�)
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(�)
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���
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which yields the formula for the first-order correction for energy

��
(�) = ��(�)�����(�)




FirstFirstFirstFirst––––Order Order Order Order EigenketsEigenketsEigenketsEigenkets

If we take the inner product of the first-order expression with �!(�)�, for ! ≠ �,

� ���
(�)�!(�)�����(�)
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we have
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(�) #� +
�

���
�!(�)�����(�)
 = ��

(�) � ���
(�)
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which reduces to

��#
(�)�#

(�) + �!(�)�����(�)
 = ��
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(�)

Rearranging, we get the first order coefficient for the eigenkets

��#
(�) = �!(�)�����(�)
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SecondSecondSecondSecond----Order EnergyOrder EnergyOrder EnergyOrder Energy

If we take the inner product of the second-order expression with ��(�)�
� ���
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we have
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which yields the second-order correction to the energy
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If we take the inner product of the second-order expression with�!(�)�, for ! ≠ �,
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Rearranging, we have
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which yields the second-order coefficients for the eigenkets
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