Quantum Mechanics 2

Robert C. Roleda
Physics Department

Clebsch-Gordan Coefficients

$$
j_{1}=1, j_{2}=1
$$

Quantum States

For $j_{1}=1, j_{2}=1$, the possible values of the quantum number j of the total angular momentum $J=J_{1}+J_{2}$ are

$$
j=0,1,2
$$

The $j=0$ state is a singlet, the $j=1$ states form a triplet, and the $j=2$ states form a quintuplet.

The Clebsch Gordan coefficients $\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle$ are defined through

$$
\left|j_{1} j_{2} j m\right\rangle=\sum_{m_{1}}^{j_{1}} \sum_{m_{2}}^{j_{2}}\left|j_{1} j_{2} m_{1} m_{2}\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle
$$

Dispensing with the writing of the quantum numbers $j_{1} j_{2}$, the coupled and uncoupled states are

$$
\begin{aligned}
|j m\rangle & =|2,2\rangle,|2,1\rangle,|2,0\rangle,|2,-1\rangle,|2,-2\rangle,|1,1\rangle,|1,0\rangle,|1,-1\rangle,|0,0\rangle \\
\left|m_{1} m_{2}\right\rangle & =|1,1\rangle,|1,0\rangle,|1,-1\rangle,|0,1\rangle,|0,0\rangle,|0,-1\rangle,|-1,1\rangle,|-1,0\rangle,|-1,-1\rangle
\end{aligned}
$$

$j=2$ States

We begin by taking note that from the addition of the z - components,

$$
m=m_{1}+m_{2}
$$

We then start from the "highest" $|j m\rangle$ state $|2,2\rangle$. The only $\left|m_{1} m_{2}\right\rangle$ state that will satisfy $m=m_{1}+m_{2}$ is $|1,1\rangle$. Thus,

$$
|2,2\rangle^{\prime}=|1,1\rangle
$$

where to differentiate between the two sets of kets, we denote $|j m\rangle$ states by a prime.

We now use the lowering operator

$$
J_{-}|j, m\rangle=\sqrt{j(j+1)-m(m-1)} \hbar|j, m-1\rangle
$$

to evaluate the "lower" states, noting that

$$
J_{-}=J_{1-}+J_{2-}
$$

and that J_{i-} acts only on the m_{i} states.

$\boldsymbol{j}=2$ States

We also note that

$$
j(j+1)-m(m-1)=j^{2}+j-m^{2}+m=(j+m)(j-m+1)
$$

So we have a more convenient expression

$$
J_{-}|j, m\rangle=\sqrt{(j+m)(j-m+1)} \hbar|j, m-1\rangle
$$

Thus

$$
J_{-}|2,2\rangle^{\prime}=\left(J_{1-}+J_{2-}\right)|1,1\rangle
$$

yields

$$
\sqrt{4} \hbar|2,2\rangle^{\prime}=\sqrt{2} \hbar|0,1\rangle+\sqrt{2} \hbar|1,0\rangle
$$

which gives

$$
|2,1\rangle^{\prime}=\frac{1}{\sqrt{2}}|0,1\rangle+\frac{1}{\sqrt{2}}|1,0\rangle
$$

$\boldsymbol{j}=2$ States

Using the lowering operator again,

$$
J_{-}|2,1\rangle^{\prime}=\left(J_{1-}+J_{2-}\right)\left[\frac{1}{\sqrt{2}}|0,1\rangle+\frac{1}{\sqrt{2}}|1,0\rangle\right]
$$

we have

$$
\sqrt{6} \hbar|2,0\rangle^{\prime}=\left[\sqrt{2} \hbar \frac{1}{\sqrt{2}}|-1,1\rangle+\sqrt{2} \hbar \frac{1}{\sqrt{2}}|0,0\rangle+\sqrt{2} \hbar \frac{1}{\sqrt{2}}|0,0\rangle+\sqrt{2} \hbar \frac{1}{\sqrt{2}}|1,-1\rangle\right]
$$

which gives

$$
|2,0\rangle^{\prime}=\left[\frac{1}{\sqrt{6}}|-1,1\rangle+\frac{2}{\sqrt{6}}|0,0\rangle+\frac{1}{\sqrt{6}}|1,-1\rangle\right]
$$

$$
J_{-}|j, m\rangle=\sqrt{(j+m)(j-m+1)} \hbar|j, m-1\rangle
$$

$\boldsymbol{j}=2$ States

And once more,

$$
J_{-}|2,0\rangle^{\prime}=\left(J_{1-}+J_{2-}\right)\left[\frac{1}{\sqrt{6}}|-1,1\rangle+\frac{2}{\sqrt{6}}|0,0\rangle+\frac{1}{\sqrt{6}}|1,-1\rangle\right]
$$

we have

$$
\sqrt{6} \hbar|2,-1\rangle^{\prime}=\left[\sqrt{2} \hbar \frac{1}{\sqrt{6}}|-1,0\rangle+\sqrt{2} \hbar \frac{2}{\sqrt{6}}|-1,0\rangle+\sqrt{2} \hbar \frac{2}{\sqrt{6}}|0,-1\rangle+\sqrt{2} \hbar \frac{1}{\sqrt{6}}|0,-1\rangle\right]
$$

which gives

$$
|2,-1\rangle^{\prime}=\frac{1}{\sqrt{2}}|-1,0\rangle+\frac{1}{2}|0,-1\rangle
$$

$$
J_{-}|j, m\rangle=\sqrt{(j+m)(j-m+1)} \hbar|j, m-1\rangle
$$

$\boldsymbol{j}=\mathbf{2}$ States

And once more,

$$
J_{-}|2,-1\rangle^{\prime}=\left(J_{1-}+J_{2-}\right)\left[\frac{1}{\sqrt{2}}|-1,0\rangle+\frac{1}{2}|0,-1\rangle\right]
$$

we have

$$
\sqrt{4} \hbar|2,-2\rangle^{\prime}=\left[\sqrt{2} \hbar \frac{1}{\sqrt{2}}|-1,-1\rangle+\sqrt{2} \hbar \frac{1}{\sqrt{2}}|-1,-1\rangle\right]
$$

which gives

$$
|2,-2\rangle^{\prime}=|-1,-1\rangle
$$

$$
J_{-}|j, m\rangle=\sqrt{(j+m)(j-m+1)} \hbar|j, m-1\rangle
$$

Clebsch-Gordan Coefficients

We can pick out the ClebschGordan coefficients from the relations between the $|j m\rangle$ and $\left|m_{1} m_{2}\right\rangle$. For $j=2$, we have

$$
|2,2\rangle^{\prime}=|1,1\rangle
$$

$$
|2,1\rangle^{\prime}=\frac{1}{\sqrt{2}}|0,1\rangle+\frac{1}{\sqrt{2}}|1,0\rangle
$$

$$
\begin{gathered}
|2,0\rangle^{\prime} \\
=\frac{1}{\sqrt{6}}|-1,1\rangle+\frac{2}{\sqrt{6}}|0,0\rangle+\frac{1}{\sqrt{6}}|1,-1\rangle \\
|2,-1\rangle^{\prime}=\frac{1}{\sqrt{2}}|-1,0\rangle+\frac{1}{2}|0,-1\rangle \\
|2,-2\rangle^{\prime}=|-1,-1\rangle
\end{gathered}
$$

We tabulate this on the right

To declutter, we leave all non-essential zeroes as blanks

$J=2$			m					
m_{1}	m_{2}	2	1	0	-1	-2		
1	1	1						
1	0		$1 / \sqrt{2}$					
1	-1			$1 / \sqrt{6}$				
0	1		$1 / \sqrt{2}$					
0	0			$2 / \sqrt{6}$				
0	-1				$1 / \sqrt{2}$			
-1	1			$1 / \sqrt{6}$				
-1	0				$1 / \sqrt{2}$			
-1	-1					1		

$j=1$ States

We cannot use ladder operators to go from one j state to a state with a different value of j.

We do know that eigenstates of Hermitian operators are orthogonal

$$
\left\langle j^{\prime} m^{\prime} \mid j m\right\rangle=\delta_{j j \prime} \delta_{m m \prime}
$$

To move from a $j=2$ state to a $j=1$ state, let us then consider the orthogonality

$$
\langle 2, m \mid 1, m\rangle=0
$$

$j=1$ States

Let us take the "highest" m - state for $j=1$. Since $m=m_{1}+m_{2}$, we may write

$$
|1,1\rangle^{\prime}=a|0,1\rangle+b|1,0\rangle
$$

Then

$$
\langle 2,1 \mid 1,1\rangle^{\prime}=\left[\frac{1}{\sqrt{2}}\langle 0,1|+\frac{1}{\sqrt{2}}\langle 1,0|\right][a|0,1\rangle+b|1,0\rangle]=\frac{1}{\sqrt{2}} a+\frac{1}{\sqrt{2}} b=0
$$

indicating that

$$
b=a
$$

Thus,

$$
|1,1\rangle^{\prime}=a|0,1\rangle-a|1,0\rangle
$$

Normalizing, we have

$$
|1,1\rangle^{\prime}=\frac{1}{\sqrt{2}}|0,1\rangle-\frac{1}{\sqrt{2}}|1,0\rangle
$$

$j=1$ States

Using the lowering operator,

$$
J_{-}|1,1\rangle^{\prime}=\left(J_{1-}+J_{2-}\right)\left[\frac{1}{\sqrt{2}}|0,1\rangle-\frac{1}{\sqrt{2}}|1,0\rangle\right]
$$

we have

$$
\sqrt{2} \hbar|1,0\rangle^{\prime}=\left[\sqrt{2} \hbar \frac{1}{\sqrt{2}}|-1,1\rangle+\sqrt{2} \hbar \frac{1}{\sqrt{2}}|0,0\rangle-\sqrt{2} \hbar \frac{1}{\sqrt{2}}|0,0\rangle-\sqrt{2} \hbar \frac{1}{\sqrt{2}}|1,-1\rangle\right]
$$

which gives

$$
|1,0\rangle^{\prime}=\left[\frac{1}{\sqrt{2}}|-1,1\rangle-\frac{1}{\sqrt{2}}|1,-1\rangle\right]
$$

$$
J_{-}|j, m\rangle=\sqrt{(j+m)(j-m+1)} \hbar|j, m-1\rangle
$$

$j=1$ States

And again,

$$
J_{-}|1,0\rangle^{\prime}=\left(J_{1-}+J_{2-}\right)\left[\frac{1}{\sqrt{2}}|-1,1\rangle-\frac{1}{\sqrt{2}}|1,-1\rangle\right]
$$

we have

$$
\sqrt{2} \hbar|1,-1\rangle^{\prime}=\left[\sqrt{2} \hbar \frac{1}{\sqrt{2}}|-1,0\rangle-\sqrt{2} \hbar \frac{1}{\sqrt{2}}|0,-1\rangle\right]
$$

which gives

$$
|1,-1\rangle^{\prime}=\left[\frac{1}{\sqrt{2}}|-1,0\rangle-\frac{1}{\sqrt{2}}|0,-1\rangle\right]
$$

$$
J_{-}|j, m\rangle=\sqrt{(j+m)(j-m+1)} \hbar|j, m-1\rangle
$$

Clebsch-Gordan Coefficients

For $j=1$, we have

$$
\begin{gathered}
|1,1\rangle^{\prime}=\frac{1}{\sqrt{2}}|0,1\rangle-\frac{1}{\sqrt{2}}|1,0\rangle \\
|1,0\rangle^{\prime}=\frac{1}{\sqrt{2}}|-1,1\rangle-\frac{1}{\sqrt{2}}|1,-1\rangle \\
|1,-1\rangle^{\prime}=\frac{1}{\sqrt{2}}|-1,0\rangle-\frac{1}{\sqrt{2}}|0,-1\rangle
\end{gathered}
$$

We tabulate the Clebsch-Gordan coefficients on the right.

To declutter, we leave all non-essential zeroes as blanks

$J=1$		m		
m_{1}	m_{2}	1	0	-1
1	1			
1	0	$-1 / \sqrt{2}$		
1	-1		$-1 / \sqrt{2}$	
0	1	$1 / \sqrt{2}$		
0	0		0	
0	-1			$-1 / \sqrt{2}$
-1	1		$1 / \sqrt{2}$	
-1	0			$1 / \sqrt{2}$
-1	-1			

The Singlet State

Let us take the $j=0$ state. Since $m=m_{1}+m_{2}$, we may write

$$
|0,0\rangle^{\prime}=c|1,-1\rangle+d|0,0\rangle+e|-1,1\rangle
$$

Then

$$
\begin{aligned}
& \langle 1,0 \mid 0,0\rangle^{\prime}=\left[-\frac{1}{\sqrt{2}}\langle 1,-1|+\frac{1}{\sqrt{2}}\langle-1,1|\right][c|1,-1\rangle+d|0,0\rangle+e|-1,1\rangle] \\
& =-\frac{1}{\sqrt{2}} c+\frac{1}{\sqrt{2}} e=0
\end{aligned}
$$

indicating that $c=e$. On the other hand

$$
\begin{aligned}
& \langle 2,0 \mid 0,0\rangle^{\prime}=\left[\frac{1}{\sqrt{6}}\langle 1,-1|+\frac{2}{\sqrt{6}}\langle 0,0|+\frac{1}{\sqrt{6}}\langle-1,1|\right][c|1,-1\rangle+d|0,0\rangle+c|-1,1\rangle] \\
& =\frac{1}{\sqrt{6}} c+\frac{2}{\sqrt{6}} d+\frac{1}{\sqrt{6}} c=0
\end{aligned}
$$

indicating that $d=-c$
Thus,

$$
|0,0\rangle^{\prime}=\frac{1}{\sqrt{3}}|1,-1\rangle-\frac{1}{\sqrt{3}}|0,0\rangle+\frac{1}{\sqrt{3}}|-1,1\rangle
$$

Clebsch-Gordan Table

$\begin{aligned} & j_{1}=1 \\ & j_{2}=1 \end{aligned}$		$J=2$					$J=1$			$J=0$
		m								
m_{1}	m_{2}	2	1	0	-1	-2	1	0	-1	0
1	1	1								
1	0		$1 / \sqrt{2}$				$-1 / \sqrt{2}$			
1	-1			$1 / \sqrt{6}$				$-1 / \sqrt{2}$		$1 / \sqrt{3}$
0	1		$1 / \sqrt{2}$				$1 / \sqrt{2}$			
0	0			$2 / \sqrt{6}$				0		$-1 / \sqrt{3}$
0	-1				$1 / \sqrt{2}$				$-1 / \sqrt{2}$	
-1	1			$1 / \sqrt{6}$				$1 / \sqrt{2}$		$1 / \sqrt{3}$
-1	0				$1 / \sqrt{2}$				$1 / \sqrt{2}$	
-1	-1					1				

De La Salle University

