Quantum Mechanics 2

Robert C. Roleda Physics Department

Clebsch-Gordan Coefficients $j_1 = 1, j_2 = 1$

Quantum States

For $j_1 = 1, j_2 = 1$, the possible values of the quantum number j of the total angular momentum $J = J_1 + J_2$ are

$$j = 0, 1, 2$$

The j = 0 state is a singlet, the j = 1 states form a triplet, and the j = 2 states form a quintuplet.

The Clebsch Gordan coefficients $\langle j_1 j_2 m_1 m_2 | j_1 j_2 jm \rangle$ are defined through

$$|j_1 j_2 jm\rangle = \sum_{m_1}^{j_1} \sum_{m_2}^{j_2} |j_1 j_2 m_1 m_2\rangle \langle j_1 j_2 m_1 m_2 | j_1 j_2 jm\rangle$$

Dispensing with the writing of the quantum numbers j_1j_2 , the coupled and uncoupled states are

$$\begin{split} |jm\rangle &= |2,2\rangle, |2,1\rangle, |2,0\rangle, \left|2,-1\rangle, |2,-2\rangle, |1,1\rangle, |1,0\rangle, |1,-1\rangle, |0,0\rangle \\ |m_1m_2\rangle &= |1,1\rangle, |1,0\rangle, |1,-1\rangle, |0,1\rangle, |0,0\rangle, |0,-1\rangle, \left|-1,1\rangle, |-1,0\rangle, |-1,-1\rangle \end{split}$$

We begin by taking note that from the addition of the z – components,

 $m = m_1 + m_2$

We then start from the "highest" $|jm\rangle$ state $|2,2\rangle$. The only $|m_1m_2\rangle$ state that will satisfy $m = m_1 + m_2$ is $|1,1\rangle$. Thus,

 $|2,2\rangle' = |1,1\rangle$

where to differentiate between the two sets of kets, we denote $|jm\rangle$ states by a prime.

We now use the lowering operator

$$J_{-}|j,m\rangle = \sqrt{j(j+1) - m(m-1)}\hbar|j,m-1\rangle$$

to evaluate the "lower" states, noting that

$$J_{-} = J_{1-} + J_{2-}$$

and that J_{i-} acts only on the m_i states.

We also note that

$$j(j+1) - m(m-1) = j^2 + j - m^2 + m = (j+m)(j-m+1)$$

So we have a more convenient expression

$$J_{-}|j,m\rangle = \sqrt{(j+m)(j-m+1)}\hbar|j,m-1\rangle$$

Thus

$$J_{-}|2,2\rangle' = (J_{1-} + J_{2-})|1,1\rangle$$

yields

$$\sqrt{4}\hbar|2,2\rangle' = \sqrt{2}\hbar|0,1\rangle + \sqrt{2}\hbar|1,0\rangle$$

which gives

$$|2,1\rangle' = \frac{1}{\sqrt{2}}|0,1\rangle + \frac{1}{\sqrt{2}}|1,0\rangle$$

Using the lowering operator again,

$$J_{-}|2,1\rangle' = (J_{1-} + J_{2-})\left[\frac{1}{\sqrt{2}}|0,1\rangle + \frac{1}{\sqrt{2}}|1,0\rangle\right]$$

we have

$$\sqrt{6}\hbar|2,0\rangle' = \left[\sqrt{2}\hbar\frac{1}{\sqrt{2}}|-1,1\rangle + \sqrt{2}\hbar\frac{1}{\sqrt{2}}|0,0\rangle + \sqrt{2}\hbar\frac{1}{\sqrt{2}}|0,0\rangle + \sqrt{2}\hbar\frac{1}{\sqrt{2}}|1,-1\rangle\right]$$

which gives

$$|2,0\rangle' = \left[\frac{1}{\sqrt{6}}|-1,1\rangle + \frac{2}{\sqrt{6}}|0,0\rangle + \frac{1}{\sqrt{6}}|1,-1\rangle\right]$$

$$J_{-}|j,m\rangle = \sqrt{(j+m)(j-m+1)}\hbar|j,m-1\rangle$$

De La Salle University

And once more,

$$J_{-}|2,0\rangle' = (J_{1-} + J_{2-})\left[\frac{1}{\sqrt{6}}|-1,1\rangle + \frac{2}{\sqrt{6}}|0,0\rangle + \frac{1}{\sqrt{6}}|1,-1\rangle\right]$$

we have

$$\sqrt{6}\hbar|2,-1\rangle' = \left[\sqrt{2}\hbar\frac{1}{\sqrt{6}}|-1,0\rangle + \sqrt{2}\hbar\frac{2}{\sqrt{6}}|-1,0\rangle + \sqrt{2}\hbar\frac{2}{\sqrt{6}}|0,-1\rangle + \sqrt{2}\hbar\frac{1}{\sqrt{6}}|0,-1\rangle\right]$$

which gives

$$|2,-1\rangle' = \frac{1}{\sqrt{2}}|-1,0\rangle + \frac{1}{2}|0,-1\rangle$$

$$J_{-}|j,m\rangle = \sqrt{(j+m)(j-m+1)}\hbar|j,m-1\rangle$$

De La Salle University

And once more,

$$J_{-}|2,-1\rangle' = (J_{1-} + J_{2-})\left[\frac{1}{\sqrt{2}}|-1,0\rangle + \frac{1}{2}|0,-1\rangle\right]$$

we have

$$\sqrt{4}\hbar|2,-2\rangle' = \left[\sqrt{2}\hbar\frac{1}{\sqrt{2}}|-1,-1\rangle + \sqrt{2}\hbar\frac{1}{\sqrt{2}}|-1,-1\rangle\right]$$

which gives

$$|2,-2\rangle' = |-1,-1\rangle$$

 $J_{-}|j,m\rangle = \sqrt{(j+m)(j-m+1)}\hbar|j,m-1\rangle$

Silversite Colle Chiversity

Clebsch-Gordan Coefficients

We can pick out the Clebsch-Gordan coefficients from the relations between the $|im\rangle$ and $|m_1m_2\rangle$. For j = 2, we have $|2,2\rangle' = |1,1\rangle$ $|2,1\rangle' = \frac{1}{\sqrt{2}}|0,1\rangle + \frac{1}{\sqrt{2}}|1,0\rangle$ |2,0)' $= \frac{1}{\sqrt{6}} |-1,1\rangle + \frac{2}{\sqrt{6}} |0,0\rangle + \frac{1}{\sqrt{6}} |1,-1\rangle$ $|2,-1\rangle' = \frac{1}{\sqrt{2}}|-1,0\rangle + \frac{1}{2}|0,-1\rangle$ $|2, -2\rangle' = |-1, -1\rangle$

We tabulate this on the right

To declutter, we leave all non-essential zeroes as blanks

<i>J</i> = 2						
m_1	m_2	2	1	0	-1	-2
1	1	1				
1	0		$1/\sqrt{2}$			
1	-1			1/√6		
0	1		$1/\sqrt{2}$			
0	0			2/√6		
0	-1			a li	$1/\sqrt{2}$	DINIVERSIT
-1	1			1/√6	- 19	6
-1	0				$1/\sqrt{2}$	
-1	-1			XXXXXX		1
						Land I

We cannot use ladder operators to go from one j state to a state with a different value of j.

We do know that eigenstates of Hermitian operators are orthogonal

$$\langle j'm'|jm\rangle = \delta_{jj'}\delta_{mm'}$$

To move from a j = 2 state to a j = 1 state, let us then consider the orthogonality

 $\langle 2, m | 1, m \rangle = 0$

Let us take the "highest" m – state for j = 1. Since $m = m_1 + m_2$, we may write $|1,1\rangle' = a|0,1\rangle + b|1,0\rangle$

Then

$$\langle 2,1|1,1\rangle' = \left[\frac{1}{\sqrt{2}}\langle 0,1| + \frac{1}{\sqrt{2}}\langle 1,0|\right] [a|0,1\rangle + b|1,0\rangle] = \frac{1}{\sqrt{2}}a + \frac{1}{\sqrt{2}}b = 0$$

indicating that

b = a

Thus,

$$|1,1\rangle' = a|0,1\rangle - a|1,0\rangle$$

Normalizing, we have

$$|1,1\rangle' = \frac{1}{\sqrt{2}}|0,1\rangle - \frac{1}{\sqrt{2}}|1,0\rangle$$

Using the lowering operator,

$$J_{-}|1,1\rangle' = (J_{1-} + J_{2-}) \left[\frac{1}{\sqrt{2}} |0,1\rangle - \frac{1}{\sqrt{2}} |1,0\rangle \right]$$

we have

$$\sqrt{2}\hbar|1,0\rangle' = \left[\sqrt{2}\hbar\frac{1}{\sqrt{2}}|-1,1\rangle + \sqrt{2}\hbar\frac{1}{\sqrt{2}}|0,0\rangle - \sqrt{2}\hbar\frac{1}{\sqrt{2}}|0,0\rangle - \sqrt{2}\hbar\frac{1}{\sqrt{2}}|1,-1\rangle\right]$$

which gives

$$|1,0\rangle' = \left[\frac{1}{\sqrt{2}}|-1,1\rangle - \frac{1}{\sqrt{2}}|1,-1\rangle\right]$$

$$J_{-}|j,m\rangle = \sqrt{(j+m)(j-m+1)}\hbar|j,m-1\rangle$$

De La Salle University

And again,

$$J_{-}|1,0\rangle' = (J_{1-} + J_{2-})\left[\frac{1}{\sqrt{2}}|-1,1\rangle - \frac{1}{\sqrt{2}}|1,-1\rangle\right]$$

we have

$$\sqrt{2}\hbar|1,-1\rangle' = \left[\sqrt{2}\hbar\frac{1}{\sqrt{2}}|-1,0\rangle - \sqrt{2}\hbar\frac{1}{\sqrt{2}}|0,-1\rangle\right]$$

which gives

$$|1, -1\rangle' = \left[\frac{1}{\sqrt{2}}|-1, 0\rangle - \frac{1}{\sqrt{2}}|0, -1\rangle\right]$$

 $J_{-}|j,m\rangle = \sqrt{(j+m)(j-m+1)}\hbar|j,m-1\rangle$

vrietwin U offe? offe 2007

Clebsch-Gordan Coefficients

For j = 1, we have

$$|1,1\rangle' = \frac{1}{\sqrt{2}}|0,1\rangle - \frac{1}{\sqrt{2}}|1,0\rangle$$
$$|1,0\rangle' = \frac{1}{\sqrt{2}}|-1,1\rangle - \frac{1}{\sqrt{2}}|1,-1\rangle$$
$$|1,-1\rangle' = \frac{1}{\sqrt{2}}|-1,0\rangle - \frac{1}{\sqrt{2}}|0,-1\rangle$$

We tabulate the Clebsch-Gordan coefficients on the right.

m_1 m_2 1 0 -1 1 1 1 1 1 1 0 $-1/\sqrt{2}$ 1 1 1 0 $-1/\sqrt{2}$ 1 1 1 -1 $-1/\sqrt{2}$ 1 1 0 1 $1/\sqrt{2}$ 1 1 0 0 0 0 1 0 -1 0 0 1 -1 1 $1/\sqrt{2}$ 1 1 -1 0 1 $1/\sqrt{2}$ 1	<i>J</i> =	= 1	т				
1 1 1 1 1 0 $-1/\sqrt{2}$ 1 1 -1 $-1/\sqrt{2}$ 1 0 1 $1/\sqrt{2}$ 1 0 0 0 0 0 -1 $-1/\sqrt{2}$ 1 -1 1 $1/\sqrt{2}$ 1 -1 1 $1/\sqrt{2}$ 1 1 1 $1/\sqrt{2}$ 1	m_1	m_2	1	0	-1		
1 0 $-1/\sqrt{2}$ 1 -1 $-1/\sqrt{2}$ 0 1 $1/\sqrt{2}$ 0 0 0 0 0 0 0 -1 $-1/\sqrt{2}$ -1 1 $1/\sqrt{2}$ -1 0 $1/\sqrt{2}$ 1 1 $1/\sqrt{2}$	1	1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	$-1/\sqrt{2}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	-1		$-1/\sqrt{2}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	$1/\sqrt{2}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0		0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	-1	12	-LA-SI	$-1/\sqrt{2}$		
-1 0 $1/\sqrt{2}$	-1	1		$1/\sqrt{2}$	THU &		
1 1	-1	0			$1/\sqrt{2}$	A A A A A A A A A A A A A A A A A A A	
	-1	-1			No.		

To declutter, we leave all non-essential zeroes as blanks

The Singlet State

Let us take the
$$j = 0$$
 state. Since $m = m_1 + m_2$, we may write $|0,0\rangle' = c|1,-1\rangle + d|0,0\rangle + e|-1,1\rangle$

Then

$$\begin{aligned} \langle 1,0|0,0\rangle' &= \left[-\frac{1}{\sqrt{2}} \langle 1,-1| + \frac{1}{\sqrt{2}} \langle -1,1| \right] [c|1,-1\rangle + d|0,0\rangle + e|-1,1\rangle] \\ &= -\frac{1}{\sqrt{2}} c + \frac{1}{\sqrt{2}} e = 0 \end{aligned}$$

indicating that c = e. On the other hand

$$\begin{aligned} \langle 2,0|0,0\rangle' &= \left[\frac{1}{\sqrt{6}}\langle 1,-1| + \frac{2}{\sqrt{6}}\langle 0,0| + \frac{1}{\sqrt{6}}\langle -1,1|\right] [c|1,-1\rangle + d|0,0\rangle + c|-1,1\rangle] \\ &= \frac{1}{\sqrt{6}}c + \frac{2}{\sqrt{6}}d + \frac{1}{\sqrt{6}}c = 0 \end{aligned}$$

indicating that d = -c

Thus,

$$|0,0\rangle' = \frac{1}{\sqrt{3}}|1,-1\rangle - \frac{1}{\sqrt{3}}|0,0\rangle + \frac{1}{\sqrt{3}}|-1,1\rangle$$

Clebsch-Gordan Table

$j_1 = 1$ $j_2 = 1$		J = 2				J = 1			J = 0	
		m								
m_1	m_2	2	1	0	-1	-2	1	0	-1	0
1	1	1								
1	0		$1/\sqrt{2}$				$-1/\sqrt{2}$			
1	-1			$1/\sqrt{6}$				$-1/\sqrt{2}$		$1/\sqrt{3}$
0	1		$1/\sqrt{2}$				$1/\sqrt{2}$			
0	0			2/√6				0		$-1/\sqrt{3}$
0	-1				$1/\sqrt{2}$				$-1/\sqrt{2}$	OMIVERSIC
-1	1			$1/\sqrt{6}$				$1/\sqrt{2}$		1/√3
-1	0				$1/\sqrt{2}$				$1/\sqrt{2}$	
-1	-1					1				

