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Clebsch-Gordan Coefficients
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For �� = 1, �� = �
� , the possible values of the quantum number � of the total 

angular momentum 	 = 	� + 	� are
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� states form a doublet, the � = 
� states form  a quadruplet.

The Clebsch Gordan coefficients �������� ������ are defined through
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Dispensing with the writing of the quantum numbers ����, the coupled and 
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We begin by taking note that from the addition of the � − components,

� = �� + ��
We then start from the “highest” |��⟩ state ��

� , �
��.  The only |����⟩ state that will 

satisfy � = �� + �� is �1, �
��. Thus,

�
� , 

��′ = �1, �
��

where to differentiate between the two sets of kets, we denote |��⟩ states by a 

prime.

We now use the lowering operator

	!|�, �⟩ = �(� + 1) − �(� − 1)$ ℏ|�, � − 1⟩
to evaluate the “lower” states, noting that

	! = 	�! + 	�!
and that 	&! acts only on the �& states.
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We also note that

� � + 1 − � � − 1 = �� + � − �� + � = � + � � − � + 1
So we have a more convenient expression

	!|�, �⟩ = � + � � − � + 1$ ℏ|�, � − 1⟩
Thus
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Using the lowering operator again,
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we have
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	!|�, �⟩ = � + � � − � + 1$ ℏ|�, � − 1⟩
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And once more,
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we have
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We can pick out the Clebsch-

Gordan coefficients from the 

relations between the |��⟩ and 
|����⟩. For � = 3 2⁄ , we have

�
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We tabulate this on the right
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To declutter, we leave all non-essential zeroes as blanks
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We are now left with � = 1 2⁄ states. However, we cannot use ladder operators 

to go from one � state to a state with a different value of �.
We do know that eigenstates of Hermitian operators are orthogonal

�)�′ �� = *��)*��)

To move from a � = 3 2⁄ state to a � = 1 2⁄ state, let us then consider the 

orthogonality

� , � �

� , � = 0
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Let us take the “highest” � − state for � = 1 2⁄ . Since � = �� + ��, we may 

write
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indicating that

, = − 2$  +
Thus,
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Normalizing, we have
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Using the lowering operator,
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	!|�, �⟩ = � + � � − � + 1$ ℏ|�, � − 1⟩
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For � = 1 2⁄ , we have
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We tabulate the Clebsch-Gordan

coefficients on the right.

The complete CG table is shown on 

the next slide.

	 = 1
2 �

�� ��
1
2 − 1

2
1

1
2

1 − 1
2 − �


$

0
1
2

�


$

0 − 1
2 − �


$

-1
1
2

�


$

-1 − 1
2

To declutter, we leave all non-essential zeroes as blanks



ClebschClebschClebschClebsch----GordanGordanGordanGordan TableTableTableTable

�� = 1
�� = �

�

	 = 3
2 	 = 1

2
�

�� ��
3
2

1
2 − 1

2 − 3
2

1
2 − 1

2
1

1
2 1

1 − 1
2

�


$ − �


$

0
1
2

�


$ �


$

0 − 1
2

�


$ − �


$

-1
1
2

�


$ �


$

-1 − 1
2 1


