Quantum Mechanics 2

Robert C. Roleda
Physics Department

Clebsch-Gordan Coethicients

jl = 1'j2 :%

Izg'g}De La Salle University



Quantum States

For j; = 1,j, =3, the possible values of the quantum number j of the total
angular momentum J =J; +J, are

j:

)

NlWw N -
N[ W

The j = % states form a doublet, the j = = states form a quadruplet.

The Clebsch Gordan coefficients (j; j,m;m,|j,j,jm) are defined through
J1 J2
lj1jzjm) = 2 2|j1j2m1m2>(f1f2m1m2 lj1j2ym)

mi mp

Dispensing with the writing of the quantum numbers j, j,, the coupled and
uncoupled states are

jmy =183 .3 B, -3 3. -9 1.3) . -3)

mama) = [13)11,-3)10.2)[0.3) [-1.2) |1, =3)
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j = 3/2 States

We begin by taking note that from the addition of the z — components,

m = ml + mz
We then start from the “highest” |jm) state |2,2). The only |m;m,) state that will
satisfy m = m; + m, is |1,2). Thus,

22 =112

where to differentiate between the two sets of kets, we denote |jm) states by a
prime.

We now use the lowering operator
J-lj,m) ={jG +1) —m(m— Dhlj,m—1)
to evaluate the “lower” states, noting that
J-=J1i-+]2-

and that J;_ acts only on the m; states.
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j = 3/2 States

We also note that
jG+D)—-mm-1D=j+j—-m?+m=G+m)G—m+1)

So we have a more convenient expression
J-lim) =y +m)( —m+ Dhalj,m - 1)

Thus —
J- |2'2> (]1— +]2—)|1'%)
U/
yields

V3h|2,2) = V2h|0,3) + Via|1, -1)

23y = [Fod)+ -1

which gives
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j = 3/2 States

Using the lowering operator again,

]—l%,%)' = (J1- +J2-) [\/élO,%) + \/§|1, —%)]

we have

Vil 1) = V2 [f-1.) +vin o, -3) + V21 fyo.-3)]

which gives
23 = | fil-r i+ o)

J_|j,m) = \/(] +m)(j—m+ 1Dhal|j,m—1) i

om— m—
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j = 3/2 States

And once more,

J-15,=3) = G1- +J22) [\/glo, —2) + \/§|—1,%)]

we have
Vi, =3 = V2 fo-1,-3) + VI fyl-1-3)
which gives
B3 =1-1-3)

J_lj,m)=( +m)(§ —m+ Dalj,m—1)

—reY
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Clebsch-Gordan Coetficients

3
] = 2
We can pick out the Clebsch-
. 3 1 1
Gordan coefficients from the my m, 5 5 5
relations between the |jm) and N
lm,m,). Forj = 3/2, we have 1 — 1
2
2’ 2) |1 1
L -3 :
3 1\s 2
23 = o)+ i :
0 1 2
3
[f 1.3+ i —%>] 2
) 0 —— ‘
=[-1,-3) 2 3
We tabulate this on the right q 1 1
2 3
a1 | 2
2

To declutter, we leave all non-essential zeroes as blanks
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j = 1/2 States

We are now left with j = 1/2 states. However, we cannot use ladder operators
to go from one j state to a state with a different value of ;.

We do know that eigenstates of Hermitian operators are orthogonal
(i,mlljm> — 6]]I6mml

To move from a j = 3/2 state to a j = 1/2 state, let us then consider the

orthogonality

(3 mlz,m) =0

Y
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j = 1/2 States

Let us take the “highest” m — state for j = 1/2. Since m = m; + m,, we may
write

2:2) = a|0.5) +b|1,—3)

Then

@Y = | o+ 5 | lalod + -1 = Ba+ fro=o0

indicating that
b=—2a
Thus,
[7.2) = al0.3) = V2 al1,—3)

, b
LAY = 308 - 23 _
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j = 1/2 States

Using the lowering operator,

-2 Ul—+fz—>[\g|0»%)—\/§|1,_%)]
we have
Vi3 [‘/_h\ﬂ ~1,3) +Th 3]0,~2) = V2R [£[0,-3) ]
which gives
=] -1 - o)

J_|j,m) = \/(] +m)(j—m+ 1Dhal|j,m—1) i

om— m—
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Clebsch-Gordan Coetficients

1
] = > m
Forj=1/2, we have 1 1
11 1|n 1 2 1 e e E _E
3:3) :\/;O'i)_\/;h'_i) n
1 —
1 1v _ | (2 1 1 1 2
7, —3) = L/; —1'7)—\[§|0» —7)] ”
1 _Z | =2
We tabulate the Clebsch-Gordan 2 >
coefficients on the right. 0 1 1
3
The complete CG table is shown on 2
the next slide. 0 1 vl
2 3
1 1 2
2 3
1 b
-1 _Z _
To declutter, we leave all non-essential zeroes as blanks .
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Clebsch-Gordan Table

. _3 1
].1=]1- ]_2 ]_2
J2 =5 m
3 1 1 1 1
my m, — — —_— — S
2 2 2 2 2
1 1 1
2
1 1 2
l Y 3 43
1 2 1
0 5 5 3
1 2 1
0 Y 3 A
1 1 2
-1 > 3 3
1 =
2
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