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Associated Laguerre Equation

The Associated Laguerre Equation
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The Associated Laguerre polynomials L¥may also be evaluated from the Laguerre
Polynomials through
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The Laguerre polynomials L,, satisfies the equation
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Recursion and Orthogonality

Alternatively, the Associated Laguerre polynomials can be evaluated using
Rodrigues’ formula
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A potent relation is the recursion relation
(s+ DL () = Qs +k+1—p)LE(p) — (s + KLE_1(p)
and its derivative

dL%(p)
dp

= sLX(p) — (s + K)LE_,(p)

Of particular importance is the orthogonality condition
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Other Useful Relations

Another useful relations is
(s + k)!

Ky —
Ls(0) = slk!

The recursion relation can be rearranged as
pLE(p) = (25 + k + DLE(p) — (s + k)LE_1(p) — (s + DL, 1 (p)
Thus,
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Applying the orthogonality condition, we get have
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