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In [hydrogen 1], we have shown that the radial equation
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With � � + 1 in the last term, it is reasonable to expect that �(�) is of the form*
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* We could actually skip this step and go straight to a Fröbenius solution.  Doing this however leads us to a familiar 

differential equation.
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Rearranging according to order, we have
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which simplifies to
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Factoring out ���!, we arrive at the Associated Laguerre Equation
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The Associated Laguerre Equation may be solved using the Fröbenius method.  

Assuming a power series solution,
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The differential equation then reduces to a power series expression
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The expression can be rearranged in terms of powers of �
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The first term can be split as
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Since - is a dummy index, we can replace it back with �. We then have
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Invoking linear independence, the coefficients of each power vanish separately.  

Thus,

* * + " %� = 0
� + * + 1 � + * + " + 1 %&'! + (# − � − *)%&= 0

The first expression yields the indicial equation

* * + " = 0
suggesting that * = 0, −".  Taking * = 0 so that we have a series of positive 

powers, the second equation becomes
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This yields the recursion relation
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At large �,

%&'! ≈ %&
�

Just like in [harmonic oscillator 4], this indicates that the power series diverges as 

� → ∞ unless the series terminates. This implies that there must exist a positive 

integer � = 3 such at that

%4'! = (3 − #)
3 + 1 3 + " + 1 %4 = 0

Thus, # = 3 and

# = � − � − 1 ≥ 0
As the angular momentum quantum number � is a positive definite integer 

[spherical harmonics 1], then � must be an integer + such that

+ ≥ � + 1
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The expression

+ ≥ � + 1
not only restricts the possible values of the angular momentum quantum number �, 
it also provides a condition on the eigenenergies of the atom
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Thus, as to be expected for bound systems, the energy eigenvalues of the 

Hydrogen atom are quantized
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This is the same expression obtained by [Bohr].

Since eigenenergy is specified by +, the latter is called the principal quantum 

number.
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The power series expression of the Radial function  (�) may be evaluated using 

the recursion relation
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For � = 0,
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For � = 1,
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2 " + 2 %! = #(# − 1)
2 1 " + 2 " + 1 %�

For � = 2.
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3 " + 3 %� = −#(# − 1)(# − 2)
3 2 1 " + 3 " + 2 " + 1 %�



Associated Laguerre PolynomialsAssociated Laguerre PolynomialsAssociated Laguerre PolynomialsAssociated Laguerre Polynomials

By induction,
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If we take*
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and we have the associated Laguerre polynomials
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* Taken from the normalization of the [Associated Laguerre] Polynomials


