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Schrödinger Schrödinger Schrödinger Schrödinger EquationEquationEquationEquation

The Schrödinger equation of a Hydrogen atom is
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Since it is a central potential, we separate the wave functions
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so that the angular part obey [see Central Potential]
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The eigenvalues are [see Angular Momentum]
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and the eigenfunctions are the spherical Harmonics [see Spherical Harmonics 2]
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Radial EquationRadial EquationRadial EquationRadial Equation

The radial part on the other hand is [see Central Potential]
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which can also be written as
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We will be most interested with the bound states, where � < 0. We then write 

� = − � . 

We now pare the equation to its barest form (put all the constants together).  

The constant term −2� � /ℏ� can be pared down if we can somehow factor it 

out.  We now note that three of the five terms are dimensionally �-�. The 

factor needed can be attained if we change variable 
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Paring Down the EquationParing Down the EquationParing Down the EquationParing Down the Equation

With the change of variable, we get
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which reduces to
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All the constants are now lumped in the fourth term, so we may define
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With this,
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Asymptotic LimitsAsymptotic LimitsAsymptotic LimitsAsymptotic Limits

Wave functions must be square-integrable.  Let us then consider the 

asymptotic limit / → ∞.  At this limit, all terms with / in the denominator will be 

very small compared to the third term. Thus, 
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This is an [ODE with constant coefficients], the ansatz
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yields the auxiliary equation
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Thus,
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As �3 must be finite in the asymptotic limit, only
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is feasible.



Ensuring SquareEnsuring SquareEnsuring SquareEnsuring Square----IntegrabilityIntegrabilityIntegrabilityIntegrability

To ensure square-integrability of the radial function, we define
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With
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The radial equation
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An Alternative ExpressionAn Alternative ExpressionAn Alternative ExpressionAn Alternative Expression

Factoring out �-5, this simplifies to
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Note that if we define
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The last version of the radial equation can be recast as
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An Alternative ExpressionAn Alternative ExpressionAn Alternative ExpressionAn Alternative Expression

Since 0 is just a constant, let us also define
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With the second change in variable, we get a “neater” equation in that the 

minus two of the second and third terms are replaced by minus one.
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