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Schrodinger Equation

The Schrédinger equation of a Hydrogen atom is
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u(r,0,¢9) = Eu(r,0, @)

Since it is a central potential, we separate the wave functions
u(r,8,9) =R()Y (O, ¢)
so that the angular part obey [see Central Potential]
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The eigenvalues are [see Angular Momentum]
A =1+ 1)h?
and the eigenfunctions are the spherical Harmonics [see Spherical Harmaonics 2]
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Radial Equation

The radial part on the other hand is [see Central Potential]

d dR 2 2 I(l + 1)h?
(rz )+ m[E+ ¢ —( ) ]r2R=O

dr dr h? ATrEyT 2mr?
which can also be written as
d2R+2dR+2mE+ e? l(l+1)h2R—O
dr? rdr h? AT eyt 2mr? B

We will be most interested with the bound states, where E < 0. We then write
E = —|E|.

We now pare the equation to its barest form (put all the constants together).
The constant term —2m|E|/h? can be pared down if we can somehow factor it
out. We now note that three of the five terms are dimensionally 2. The
factor needed can be attained if we change variable

| e |

@ De La Salle University



Paring Down the Equation

With the change of variable, we get
2m|E| d2R+2dR +2m|E| 1+ 1 [2m|E| e? 2m|E| (1 + 1)h? o
h2 do? odp h2 |E| A2 4me,p n2 2m|E|o? —
which reduces to

d2R+2dR+ - 2m  e? I(1L+1) R =0
do®  odo h2|E| 4mey0 02 B

All the constants are now lumped in the fourth term, so we may define
| 2m e?
V= h?|E| 4me,

d?R  2dR vy l(l+1)
a2 tea |t R0

With this,

@ De La Salle University



Asymptotic Limits

Wave functions must be square-integrable. Let us then consider the
asymptotic limit o = co. At this limit, all terms with ¢ in the denominator will be
very small compared to the third term. Thus,

d*Re, P
do? ©
This is an [ODE with constant coefficients], the ansatz
R, = ePe
yields the auxiliary equation
B2 =1
Thus,
R, = e*@
As R,, must be finite in the asymptotic limit, only
R, =¢e7° .
is feasible. 1
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Ensuring Square-Integrability

To ensure square-integrability of the radial function, we define
R(e) = G(e)e™®

With
AR _dG o _ e-e
do deg
R _ d%G e ¢ — Zd—Ge‘Q + Ge™°
do? dp? do
The radial equation
d’R 2dR y ld+1

1+ R=0
do? odg [ 0 0* ]

becomes

d*G dG 21daG I((l+1
— e —2—e 04+ (Ge® +—[—e‘9—Ge‘9]+[—1+y ( )

0 0*
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An Alternative Expression

Factoring out e™¢, this simplifies to

d>¢ [2 dc [y—2 ll+1)
— + + — G=0
do? 0 0%

o “|do

8m|E|
p=20= |5 T

The last version of the radial equation can be recast as

Note that if we define

d*G |8 déc [2y—4 41(l+1)

4—2+ - = R - 2 G=0

dpc |p dp p p

or

d?G [2 dG 2—1 1(l+1

—+|=--1 +y/ —(2)G=0

dp® |p dp p p b
E
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An Alternative Expression

Since y is just a constant, let us also define

Y m  e?
“T27 |2n2E| 4ney

With the second change in variable, we get a “neater” equation in that the
minus two of the second and third terms are replaced by minus one.

dZG_l_[Z 1dG+[a—1 l(l+1)]G_0
dp? |p dp p p?
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