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Spherical Harmonics

Part 3 (Properties)
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The eigenfunctions of ��and ��, and the solutions to the angular equation for 

central potentials are the spherical harmonics
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This module covers some special properties of these functions.
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Spherical harmonics are eigenfunctions of the �� operator
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Taking the complex conjugate,
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This implies that
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suggesting that ���∗ are eigenfunctions of �� with eigenvalues −�ℏ.
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The spherical harmonics are also eigenfunctions of ��
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Taking the complex conjugate,
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Thus,
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suggesting that ���∗ are eigenfunctions of �� with eigenvalues 
(
 + 1)ℏ�.  Thus, 

in all
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Now,
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Complex conjugation gives
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On the other hand,
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Aside from

��,��+∗ = −&���,'�'+
We also have
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which gives
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Comparison between the first and the third yields the recursion relation

&��+ = −&�
For � = 0, ���� = 1, so
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Hence, &. = 1.  Using the recursion relation, we have

&+ = −&. = −1;    &� = −&+ = 1;    &1 = −&� = −1;  and so on ⋯



Conjugate, Orthogonality, CompletenessConjugate, Orthogonality, CompletenessConjugate, Orthogonality, CompletenessConjugate, Orthogonality, Completeness

In general, spherical harmonics satisfy the following complex conjugation 

relation
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The spherical harmonics are orthogonal
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and the completeness relation
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