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In [angular momentum], we have evaluated the eigenvalues of the operators
L*and L,

L*|l,m) = (1l + 1)A?|l,m)
L,|l, m) = mh|l,m)

Let us now evaluate the eigenfunctions. For orbital angular momentum,

0
LZ = —lh%
Thus, if we separate the eigenfunctions as

0,0|l,m) =Y;,(0,9) = P (0)P (@)

we have
dd
—ih— = mho®
de
b
which yields L
P(p) = e™? )
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Angular Momentum Quantum Numbers

As we will see later in this course, the quantum number m manifests itself in
the presence of magnetic fields. It is therefore called the magnetic quantum
number. It was shown previously that it may take on values

m=—j,—j+1L—j+2,,j—1,j
In the case of orbital angular momentum, we write j = [. Now, the angular
momentum quantum number j was shown to be either a positive definite
half-integer, or a positive definite integer.
For orbital angular momentum, the ¢ — dependent part of eigenfunction is
D(p) = e™?

Orbital angular momenta are generators of rotation. A rotation of 2z will result
in

O(p + 2m) = elMPi2mn

If 1 is a half-integer, so will m. Thus, e??™" = —1, leading to a non-single
valued eigenfunction as ®(¢ + 2m) = —®(¢). This suggests that for orbital
angular momentum, I must be a positive-definite integer.
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LLadder Operators

Now let us look for the 8 — dependent part of the eigenfunctions. For this, we
will need the ladder operators

Je+ =Ix Xy
which operates on the j?and J, eigenkets as follows
Iz [jmy = ViG+ D =mGn £ DA|jm £ 1)

For orbital angular momentum,

L, = —ihet® +ii—cot6?i
* — 00 By,

Y
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The Lowest m —State

We begin with the eigenket with the lowest value of m. Since it cannot go any
lower,

L|L,-1)=0

This translates to

T8 3 B}
L_Y,_(6,p) = —ihe'? [—l% — cotH%] P, (e =0

which gives us
dpP,_,(0)
% = lcot6 P,_;(6)
This separable ODE yields

InP,_; =lln|sinf| +In(

and so B
Pl,_l(H) = Clsinlﬁ

Y
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Normalization

We may evaluate C; through normalization of the eigenfuction

y

) i - 21 e
| ¥in @ Mm@, 93d0 = [ [P @[ sinodo [ e /I dg
0 0

Vs
= Zﬂf |C;|? sin?'@ sin6 do = 1
0

1 — (sin §)?
Integrating by parts, /

T T T
J (sin8)?!'sin 8 dO = —(sin 8)?! cos 9|0 + 2lj (sin 8)%"1(cos 0)?*d6
0 0
T T
= 21 U (sin8)?-1de —J (sin 9)21+1d61
0 0

Thus,

T T
[21 + 1]f (sin)?'*1dg = ZIJ (sin 6)?"1de
0 0

Y
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Normalization

If we apply

f (sin 6)?*1do = mf (sin0)?-1de
0 0

successively,
hel-2) (7
2l+1)(2l-1)J,

__ @hei-2) T _211(2)
T T @+ DEL- 1)---3f sinb db = o

J (sin 6)%*1de = —j (sin0)?'"1do = (sin 6)%13d6
0

The double factorials may be recast as follows

200 (2D(2L-2)-2 [(2D)(21 = 2) -+ 2]?
QI+ D! QI+DRI-1D-B3)1) QL+DRDEI-D2I=-2)-3)2)1)
RIDA- 112 24 b
T @i+ @2+
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Normalization

We thus have

" 2 cin2lp o 2 —[21“]2
1= ZnJO |C;]“ sin“*0 sin B dO = |C;] 4”(2[ +1)!
and
21+ 1)!
— byi-1 >0~ 7°
¢, = [2'1] \/7
We then have
21+ 1)! :
Y, = [210]7 @i+ sin'g e~!%
, 41
b

—rY
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We now verify that

20+ 1)! .
Yl,—l = (—1)1[2ll!]_1 % Sil’llg e‘”‘p

is indeed an eigenfunction of L2

e H? 9 (  9(sin@)\ (sin@)!gZel¢
sin 6 a0 (sm ¢ T) * sin‘f  dp? ]
1 0
sin 0 a0
= —h2C,[1?(sin 6)'"?(cos 8)? — I(sin 6)! — [?(sin §)!"2]e "1
= h?C;[1%(sin )72 (sin 8)? + I(sin 6)!]e~H®
= I(l + DA%C;(sinO) e~ = [(1 + 1)A%Y, _,

L?Y,_, = —h*C,

= —flzCl

(l(sin 0)! cos 6) — [?(sin 0)1—2] o—ilp
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