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Central fields (potential) constitute another class of problems with separable 

Schrodinger Equation.  By definition, central fields are those with potentials 

�(�) that depend on distance � = �� + 	� + 
��
 only. Thus, the Schrodinger 

equation is best expressed in spherical coordinates
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Laplacian in spherical polar coordinates is 
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If we separate the wave functions
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Separated Schrodinger EquationSeparated Schrodinger EquationSeparated Schrodinger EquationSeparated Schrodinger Equation

The Schrodinger equation becomes
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Multiplying by �� ��⁄ , we have
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which separates into the radial equation
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and the angular equation
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Rotational SymmetryRotational SymmetryRotational SymmetryRotational Symmetry

The potential is found only in the radial equation.  Thus, the specific dynamics 

of the system is contained in the radial equation.

On the other hand, all central field systems have the same angular equation.

Because the potential depends on � only, the system has rotational symmetry.  

By Noether’s Theorem, there must be a conserved quantity, and that is the 

angular momentum.

It is thus worth looking at angular momentum.
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Angular momentum is defined by

" = � × $

In coordinate representation, the linear momentum operator is
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Coordinate TransformationCoordinate TransformationCoordinate TransformationCoordinate Transformation

The coordinate transformation between Cartesian and spherical coordinates 

are as follows:

� = � sin � cos �
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 = � cos �

and the partial derivatives transform as [see partial derivatives – Cartesian to 

polar]
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Angular Momentum in Spherical CoordinatesAngular Momentum in Spherical CoordinatesAngular Momentum in Spherical CoordinatesAngular Momentum in Spherical Coordinates

Angular momentum operators may the be expressed in spherical coordinates 

as
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The angular equation is therefore none other than the eigenvalue equation for 

the operator "�
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