Quantum Mechanics

Robert C. Roleda Physics Department

Fourier Transform

Fourier Theorem

Fourier theorem states that a periodic function f(x) which is reasonably continuous may be expressed as a sum of a series of sine or cosine terms, each with specific amplitude and phase, known as the Fourier coefficients.

Fourier Series

The amplitude-phase form

$$f(x) = \sum_{i=1}^{N} a_n \sin(k_n x + \varphi_n)$$

may be in a sine-cosine form

Ì

$$f(x) = \sum_{i=1}^{N} a_n \sin k_n x + \sum_{i=1}^{N} b_n \cos k_n x$$

where the amplitude and phase coefficients are replaced by two amplitude coefficients.

With Euler's Formula $e^{i\theta} = \cos \theta + i \sin \theta$, the Fourier series may also be cast in exponential form

$$f(x) = \sum_{i=N}^{N} c_n e^{ik_n x}$$

Fourier Transform

The Fourier series may be analytically continued to cases where wave vectors *k* are continuous, in which case the summation is replaced in an integral

$$f(x) = \frac{1}{\sqrt{2\pi}} \int g(k) e^{ikx} dk$$

where $1/\sqrt{2\pi}$ is a constant chosen to keep the transform and its inverse similar. This is called the Fourier Transform We now note that $\int e^{i(k-k')x} dk = 2\pi\delta(k-k')$ So

$$\int f(x)e^{-ik'x}dx = \frac{1}{\sqrt{2\pi}}\int dkg(k)\int e^{ikx}e^{-ik'x}dx$$
$$= \frac{1}{\sqrt{2\pi}}\int g(k)2\pi\delta(k-k')dk = \sqrt{2\pi}g(k')$$

The inverse Fourier Transform is then

$$g(k) = \frac{1}{\sqrt{2\pi}} \int f(x) e^{-ikx} dx$$

De La Salle University

Plane Wave

A plane wave is described in x – space by

$$\psi(x) = e^{i(qx - \omega t)}$$

where the wave vector q and angular frequency ω are fixed. The corresponding k – space wave function is then

$$\phi(k) = \frac{1}{\sqrt{2\pi}} \int \psi(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \int e^{iqx} e^{-ikx} dx e^{i\omega t} = \sqrt{2\pi} \delta(k-q) e^{i\omega t}$$

Thus in *x* – space, the system is infinitely extended $\delta x \rightarrow \infty$. In *k* – space, the system is localized $\delta k = 0$.

Pulse

A travelling pulse wave is described in x – space by

$$\psi(x) = \delta(x - vt)$$

The k – space wave function is then

