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Dirac Delta Function



DefinitionDefinitionDefinitionDefinition

The Dirac Delta function (strictly 

not a function but a distribution) 

is a function that is zero 

everywhere except when its 

argument is zero
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Its value at zero argument is not defined, As such, its definition is 

complemented by the integral 
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Property (ii)Property (ii)Property (ii)Property (ii)

Since �(� − 
) is zero except when � − 
 = 0, then for an arbitrary function �(�),
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where # is an infinitesimal increment, and provided that 
 is in the region of 

integration.  In this neighborhood of 
, �(�) has the fixed value � 
 . Hence,
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This is the most fundamental, and the most useful property of the Dirac delta-

function.
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Using integration by parts,
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As the derivative of a function is likewise a function, the last expression is
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Thus,
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Property (iv)Property (iv)Property (iv)Property (iv)

Suppose we have � �� . First, let � > 0. Then by a change of variable + = ��,
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This has the same effect as
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We may thus write  � �� = �(�) �⁄ , for  � > 0.

On the other hand, for � < 0, we may write � �� = � − � � = � � � , 

where the last relation is due to property (i).  Thus, � �� = �(�) �⁄ for � < 0, 

and in general,
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Property (v)Property (v)Property (v)Property (v)

Suppose we have � 0(� ). If 0 � = 0 at � = 
, then in this neighborhood, 
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and by property (iv)
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If 0 � has several roots �2, �3, ⋯ , �5, 

� � � � 0 � ��
%

%
= 6 � � � � 0 � ��'7 !

'7 !

5

8(2
since the delta function vanishes except in neighborhoods where its argument 

is zero.  Thus,
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Three DimensionsThree DimensionsThree DimensionsThree Dimensions

In three-dimensions.
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For curvilinear coordinates =2, =3, =9, 
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requires that
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For example, in spherical coordinates
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