
IT1814

Design Principles *Property of STI
 courseware.feedback@sti.edu Page 1 of 8

TOPIC TITLE: DESIGN PRINCIPLES

LEARNING OBJECTIVES:

At the end of the topic session, the students should be able to:

LO1: Compare the scope of applicability of the different design
principles; and

LO2: Apply design principles when designing object-oriented systems.

MATERIALS/EQUIPMENT:

o Computer
o LCD projector
o File/s (03 Design Principles and Patterns)

• 03 Handout 1.pdf
• 03 LCD Slides 1.ppsx
• 03 Laboratory Exercise 1.pdf
• 03 Laboratory Exercise 1 Answer Key.pdf
• 03 Skills Checklist.pdf

o Software requirement
• MS PowerPoint

o Whiteboard marker and eraser

TOPIC PREPARATION:

o The instructor is encouraged to research materials that will help
supplement the topics in this session.

o Log on to eLMS to obtain a copy of 03 Handout 1 which will be
used in this session.

o Review 03 Handout 1. Check the handout together with the slide
presentation to ensure that topics will be discussed cohesively.
Some slides only contain images that support the content of the
handout. Thus, a careful review of related materials is required.

o Encourage the students to take notes.
o Provide additional examples other than the ones provided in the

handout and slides, if needed.
o Motivate the students to engage in all class activities and let

them feel they are important. Religiously follow all activities as
these are geared towards the achievement of the course learning
outcomes.

o Anticipate possible questions that students might raise during
the discussion.

mailto:courseware.feedback@sti.edu

IT1814

Design Principles *Property of STI
 courseware.feedback@sti.edu Page 2 of 8

PRESENTATION OVERVIEW:

A. Introduction 20 min
B. Instructional Input

Overview of Design Principles 30 min
a. Define design principles and SOLID principles.
b. Explain the benefits of using the SOLID principles in

software design.
Single Responsibility Principle 30 min
a. Describe how the Single Responsibility Principle

(SRP) helps in developing clean code.
b. Explain how a software design architecture violates

SRP and what problems may occur on that design.
c. Explain how to implement SRP.
Open-Closed Principle 30 min
a. Describe how the Open-Closed Principle (OCP)

helps in developing clean code.
b. Explain how a software design architecture violates

OCP and what problems may occur on that design.
c. Explain how to implement OCP.
Liskov Substitution Principle 30 min
a. Describe how the Liskov Substitution Principle (LSP)

helps in developing clean code.
b. Explain how a software design architecture

conforms to LSP.
Interface Segregation Principle 30 min
a. Describe how the Interface Segregation Principle

(ISP) helps in developing clean code.
b. Explain how a software design architecture violates

ISP and what problems may occur on that design.
c. Explain how to implement ISP.
Dependency Inversion Principle 30 min
a. Describe how the Dependency Inversion Principle

(DIP) helps in developing clean code.
b. Explain how a software design architecture violates

DIP and what problems may occur on that design.
c. Explain how to implement DIP.

C. Generalization 55 min
D. Evaluation 40 min
E. Application 300 min
F. Assignment 5 min

Total duration 600 min

mailto:courseware.feedback@sti.edu

IT1814

Design Principles *Property of STI
 courseware.feedback@sti.edu Page 3 of 8

TOPIC PRESENTATION:

A. Introduction

1. Before starting the discussion, arrange the students by their assigned
groupings from Prelim. They will perform the activity after discussing
all the topics by group.

2. Display Slide 1 of 03 LCD Slides. Then, tell the following statements:

After software analysis, where we gather and analyze
requirements, the next phase on the development of a
software project is software design. In this phase, we should
ask ourselves, “How are we going to build our software?”

When we develop our software system, we want our system
to be successful. The system should be working properly,
free from any errors, and flexible when new requirements
have occurred to achieve a successful software system.

In this topic, we will discuss how to build a clean, successful,
and flexible software system.

3. Show Slide 2 to present the topic coverage.

4. Ask the students if they have any clarifications before proceeding to
the topic.

B. Instructional Input

Overview of Design Principles

1. For this subtopic, refer the students to Page 1 of 03 Handout 1.

2. Show Slide 3 and ask at least three (3) students to answer each given
question:

• Have you developed a software or a system that already
contains many source codes, folders, packages, etc.?

• If yes, then is there a moment that you need to add or change a
functionality of your software and change a big part of your
source code?

• Is there any error or problem that occurred after you changed
your code?

• How did you solve that problem?

3. Tell the students the following statements:

Slide 1

Property of STI Week 6IT1814

P
ha

se

AnalysisPlanning Design Implementation

https://www.drain1.ca/wp-content/uploads/2018/01/flat-faces-icons-circle-3.png

Software engineer

Model the architectural
design of the software.

Develop the
software.

Tasks

Slide 2

Design Principles
 Overview of Design Principles

 Single Responsibility Principle

 Open-Closed Principle

 Liskov Substitution Principle

 Interface Segregation Principle

 Dependency Inversion Principle

Slide 3

Property of STI Week 6IT1814

• Have you developed a software or a system that already
contains many source codes, folders, packages, etc.?

• If yes, then is there a moment that you need to add or
change a functionality of your software and change a big
part of your source code?

• Is there any error or problem that occurred after you
changed your code?

• How did you solve that problem?

mailto:courseware.feedback@sti.edu

IT1814

Design Principles *Property of STI
 courseware.feedback@sti.edu Page 4 of 8

When you develop software, you encounter some unwilling
code. For example, these codes can be a long method, a long
class, or a dirty code. In this topic, you will learn basic
solutions about such kind of problems. You will also learn the
SOLID principles, including the implementations of each.

4. Show Slide 4. Define design principles and SOLID principles.

5. Show Slide 5. Explain the benefits of using SOLID principles in
software design.

6. Tell the students that on the proceeding topics, you will discuss each
of the SOLID principles and how to implement them.

7. Ask the students the following guide questions to check their
understanding before proceeding to the topic:

• What is the use of design principle?

• What are SOLID principles?

Note: Acknowledge and assess the answers coming from the class.
Provide comments and recommendations to the students about their
answers.

Single Responsibility Principle

1. For this subtopic, refer the students to Pages 1–2 of the handout.

2. Show Slide 6. Describe how the Single Responsibility Principle (SRP)
helps in developing clean code.

3. Show Slide 7. Explain how the given software design architecture
example violates SRP and what problems may occur on this design.

4. Show Slide 8. Ask at least three (3) students to explain how the given
class diagram conforms to SRP. Explain how the given example
solution to the design implements the SRP.

5. Ask the students the following guide question to check their
understanding before proceeding to the topic:

• What does SRP suggest to developers to create a good design
architecture?

Note: Acknowledge and assess the answers coming from the class.
Provide comments and recommendations to the students about their
answers.

Slide 4

Property of STI Week 6IT1814

Overview of Design Principles

https://www.drain1.ca/wp-content/uploads/2018/01/flat-faces-icons-circle-3.png

Software engineer

Design Principles

SOLID Principles
S: Single Responsibility Principle
O: Open-Closed Principle
L: Liskov Substitution Principle
I: Interface Segregation Principle
D: Dependency Inversion Principle

Slide 5

Property of STI Week 6IT1814

Overview of Design Principles

By following the SOLID Principles, developers can achieve
the following:

• Reduce the complexity of source codes.
• Increase readability, extensibility, and

maintenance.
• Reduce accidental errors and

implement reusability easily.
• Achieve easier and better software

testing.

So, if SOLID principles can
help me in writing cleaner
source codes and successful
software systems, how will I
apply them on my next
project?

RJQ1
PJLI2

Slide 6

Property of STI Week 6IT1814

Single Responsibility Principle

https://stackify.com/wp-content/uploads/2018/03/SOLID-Principles_-Single-Design-Principle-881x441.png
https://devopedia.org/images/article/177/8101.1558682601.png

The Single Responsibility Principle
(SRP) instructs developers to
design each module, interface, or
class of a software system to have
only one (1) responsibility.

Slide 7

Property of STI Week 6IT1814

Single Responsibility Principle Example class that
violates SRP

Slide 8

Property of STI Week 6IT1814

Single Responsibility Principle Example class that
conforms to SRP

mailto:courseware.feedback@sti.edu

IT1814

Design Principles *Property of STI
 courseware.feedback@sti.edu Page 5 of 8

Open-Closed Principle

1. For this subtopic, refer the students to Page 3 of the handout.

2. Show Slide 9. Describe how the Open-Closed Principle (OCP) helps in
developing clean code.

3. Show Slide 10. Explain how the given software design architecture
example violates OCP and what problems may occur on this design.

4. Show Slide 11. Ask the students to convert the given class diagram
into a Java program. Explain how the given example solution to the
design implements OCP.

5. Ask the students the following guide question to check their
understanding before proceeding to the topic:

• What does OCP suggest to developers to create a good
design architecture?

Note: Acknowledge and assess the answers coming from the class.
Provide comments and recommendations to the students about their
answers.

Liskov Substitution Principle

1. For this subtopic, refer the students to Pages 3–4 of the handout.

2. Show Slide 12. Describe how the Liskov Substitution Principle (LSP)
helps in developing clean code.

3. Show Slide 13. Explain how the given example design conforms to
LSP.

4. Ask the students the following guide question to check their
understanding before proceeding to the topic:

• What does LSP suggest to developers to create a good design
architecture?

Note: Acknowledge and assess the answers coming from the class.
Provide comments and recommendations to the students about their
answers.

Interface Segregation Principle

1. For this subtopic, refer the students to Pages 4–5 of the handout.

2. Show Slide 14. Describe how the Interface Segregation Principle (ISP)
helps in developing clean code.

Slide 9

Property of STI Week 6IT1814

Open-Closed Principle

https://stackify.com/wp-content/uploads/2018/03/SOLID-Principles-Open-Closed-principle-881x441.png
https://devopedia.org/images/article/177/8101.1558682601.png

The Open-Closed Principle (OCP)
states that software modules,
interfaces, or classes should be
open for extension but closed for
modification.

Slide 10

Property of STI Week 6IT1814

Open-Closed Principle

Disadvantages of this design:
• For every new added methods, the unit

testing of the software should be done
again.

• When a new requirement is added, the
maintenance and adding function may take
time.

• Adding a new requirement might affect the
other functionalities of software even if the
new requirement works.

Slide 11

Property of STI Week 6IT1814

Open-Closed Principle Example class that
conforms to OCP

Slide 12

Property of STI Week 6IT1814

Liskov Substitution Principle

https://stackify.com/solid-design-liskov-substitution-principle/
https://devopedia.org/images/article/177/8101.1558682601.png

The Liskov Substitution Principle
(LSP) suggests that when creating
new derived class of an existing
class, make sure that the derived
class can be substitute for its base
class.

GKTB2

Slide 13

Property of STI Week 6IT1814

Liskov Substitution Principle Example class that
conforms to LCP

License applicant = new License();
applicant = new PersonalLicense();
applicant = new BusinessLicense();

Slide 14

Property of STI Week 6IT1814

Interface Segregation Principle Example class that
violates ISP

mailto:courseware.feedback@sti.edu

IT1814

Design Principles *Property of STI
 courseware.feedback@sti.edu Page 6 of 8

3. Show Slide 15. Explain how the given software design architecture
example violates ISP and what problems may occur on this design.

4. Show Slide 16. Ask the students to convert the given class diagram
into a Java program. Explain how the given example solution to the
design implements the ISP.

5. Ask the students the following guide question to check their
understanding before proceeding to the topic.

• What does ISP suggest to developers to create a good design
architecture?

Note: Acknowledge and assess the answers coming from the class.
Provide comments and recommendations to the students about their
answers.

Dependency Inversion Principle

1. For this subtopic, refer the students to Pages 5–6 of the handout.

2. Show Slide 17. Describe how the Dependency Inversion Principle
(DIP) helps in developing clean code.

3. Show Slide 18. Explain how the given software design architecture
example violates DIP and what problems may occur on this design.

4. Show Slide 19. Ask at least three (3) students to explain how the given
class diagram conforms to DIP. Explain how the given example
solution to the design implements the DIP.

5. Ask the students the following guide question to check their
understanding before closing the topic:

• What does DIP suggest to developers to create a good design
architecture?

Note: Acknowledge and assess the answers coming from the class.
Provide comments and recommendations to the students about their
answers.

C. Generalization
Steps 1–6
Assessment: Group Presentation
Learning Objective(s): LO1 and LO2

1. Show Slide 20. Ask each group to prepare a piece of paper.

2. Instruct them to write their names and their answer on their paper.
Tell them that this activity will exercise their decision-making skills by

Slide 15

Property of STI Week 6IT1814

Interface Segregation Principle Example class that
violates ISP

Slide 16

Property of STI Week 6IT1814

Interface Segregation Principle Example class that
conforms to the ISP

Slide 17

Property of STI Week 6IT1814

Dependency Inversion Principle

https://stackify.com/dependency-inversion-principle/
https://devopedia.org/images/article/177/8101.1558682601.png

The Dependency Inversion Principle (DIP)
states the following part:

A. High-level classes should not dependent
on low-level classes. Both of them should
depend on abstractions.

B. Abstractions should not depend upon
details. Details should depend upon
abstractions.

Slide 18

Property of STI Week 6IT1814

Dependency Inversion Principle

The UserManager class (high-level module) depends on
the EmailNotifier class (low-level module). This design
architecture violates the DIP.

Slide 19

Property of STI Week 6IT1814

Dependency Inversion Principle Example class that
conforms to the DIP

Slide 20

Property of STI Week 6IT1814

Group Activity
Instruction:
Discuss with your group what design principle of SOLID will
you choose to design the architecture of a Web-based Hotel
Management System project.

https://cdn2.vectorstock.com/i/1000x1000/04/21/teamwork-people-top-view-vector-3130421.jpg

mailto:courseware.feedback@sti.edu

IT1814

Design Principles *Property of STI
 courseware.feedback@sti.edu Page 7 of 8

selecting what SOLID principle will be implemented for a certain
project.

3. Allot 20 minutes for the groups to perform the seatwork.

4. Call on at least three (3) groups to present their answers to the class.
Process their answers using the following questions:

a. What design principle(s) did your group choose in designing
the architecture of the software system project?

b. Explain how you considered this design principle to
implement on the project.

Note: Acknowledge and assess the answers coming from the class.
Provide comments and recommendations to the students about their
answers.

5. Use the following rubric for grading the presentation of each group:

GRADING RUBRIC:
Criteria 2 points 3 points 4 points 5 points

Presentation
(×2)

Only one (1)
member of
the group is
active in the
presentation.

Only a few of
the group
members are
active in the
presentation.

Some of the
group members
are active in the
presentation,
showcasing a
comprehensive
knowledge of
their work.

All group
members are
active in the
presentation,
showcasing a
comprehensive
knowledge of
their work.

TOTAL 10 POINTS

6. Collect each group’s seatwork for grading and recording. Return their
seatwork as their reference or reviewer once their scores are
recorded.

7. Ask the students if they have any clarifications.

D. Evaluation
Steps 1–2
Assessment: eLMS Quiz
Learning Objective(s): LO1

1. Before facilitating the laboratory exercise, ask the students to access
their eLMS on their respective computers and answer 03 eLMS Quiz
1 under the Design Principles module.

2. Give them 25 minutes to answer the quiz then ask them to submit
their quiz after answering.

mailto:courseware.feedback@sti.edu

IT1814

Design Principles *Property of STI
 courseware.feedback@sti.edu Page 8 of 8

E. Application
Steps 1–2
Assessment: Hands-on activity
Learning Objective(s): LO2

1. Distribute 03 Laboratory Exercise 1 to the students and discuss its
content. The activities are required to be performed by students with
a partner. Allow the students to select their partner within their
group only.

2. Next, ask the students for questions or clarifications. Address their
queries accordingly. Give them ample time to do the activities.

3. Collect and save the students’ activities.

F. Assignment

1. Show Slide 21. Then, ask the students to log on to their eLMS and
download 04 Handout 1 under the Design Patterns module to be
used for the next session.

REFERENCES
Design Principles (n.d.). In OODesign.com Object Oriented Design.

Retrieved from https://www.oodesign.com/design-
principles.html

Dooley J. (2017). Software development, design and coding: With
patterns, debugging, unit testing, and refactoring (2nd ed.).
Retrieved from
https://books.google.com.ph/books?id=LGRADwAAQBAJ&dq=S
oftware+Development,+Design+and+Coding:+With+Patterns,+D
ebugging,+Unit+Testing,+and+Refactoring

Joshi, B. (2016). Beginning SOLID principles and design patterns for
asp.net developers. California: Apress Media, LLC.

Martin, R. (2017). Clean architecture. A craftsman’s guide to software
structure and design. Retrieved from
https://archive.org/details/CleanArchitecture

Slide 21

Property of STI Week 6IT1814

Assignment

Download 04 Handout 1 under
the Design Patterns module.eLMS

https://www.colourbox.com/vector/man-working-with-computer-vector-24953864

I will review the
next topic.

mailto:courseware.feedback@sti.edu

	LEARNING OBJECTIVES:
	MATERIALS/EQUIPMENT:
	TOPIC PREPARATION:
	PRESENTATION OVERVIEW:
	TOPIC PRESENTATION:
	A. Introduction
	B. Instructional Input
	Overview of Design Principles
	Single Responsibility Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle

	C. Generalization
	D. Evaluation
	E. Application
	F. Assignment

	References

